NVMe: Optimise memory usage for I/Os between 4k and 128k
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
39
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
44 #define IO_TIMEOUT      (5 * HZ)
45 #define ADMIN_TIMEOUT   (60 * HZ)
46
47 static int nvme_major;
48 module_param(nvme_major, int, 0);
49
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52
53 /*
54  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
55  */
56 struct nvme_dev {
57         struct nvme_queue **queues;
58         u32 __iomem *dbs;
59         struct pci_dev *pci_dev;
60         struct dma_pool *prp_page_pool;
61         struct dma_pool *prp_small_pool;
62         int instance;
63         int queue_count;
64         u32 ctrl_config;
65         struct msix_entry *entry;
66         struct nvme_bar __iomem *bar;
67         struct list_head namespaces;
68         char serial[20];
69         char model[40];
70         char firmware_rev[8];
71 };
72
73 /*
74  * An NVM Express namespace is equivalent to a SCSI LUN
75  */
76 struct nvme_ns {
77         struct list_head list;
78
79         struct nvme_dev *dev;
80         struct request_queue *queue;
81         struct gendisk *disk;
82
83         int ns_id;
84         int lba_shift;
85 };
86
87 /*
88  * An NVM Express queue.  Each device has at least two (one for admin
89  * commands and one for I/O commands).
90  */
91 struct nvme_queue {
92         struct device *q_dmadev;
93         struct nvme_dev *dev;
94         spinlock_t q_lock;
95         struct nvme_command *sq_cmds;
96         volatile struct nvme_completion *cqes;
97         dma_addr_t sq_dma_addr;
98         dma_addr_t cq_dma_addr;
99         wait_queue_head_t sq_full;
100         struct bio_list sq_cong;
101         u32 __iomem *q_db;
102         u16 q_depth;
103         u16 cq_vector;
104         u16 sq_head;
105         u16 sq_tail;
106         u16 cq_head;
107         u16 cq_phase;
108         unsigned long cmdid_data[];
109 };
110
111 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
112
113 /*
114  * Check we didin't inadvertently grow the command struct
115  */
116 static inline void _nvme_check_size(void)
117 {
118         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
119         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
120         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
121         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
122         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
123         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
125         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
126         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
127 }
128
129 struct nvme_cmd_info {
130         unsigned long ctx;
131         unsigned long timeout;
132 };
133
134 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
135 {
136         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
137 }
138
139 /**
140  * alloc_cmdid - Allocate a Command ID
141  * @param nvmeq The queue that will be used for this command
142  * @param ctx A pointer that will be passed to the handler
143  * @param handler The ID of the handler to call
144  *
145  * Allocate a Command ID for a queue.  The data passed in will
146  * be passed to the completion handler.  This is implemented by using
147  * the bottom two bits of the ctx pointer to store the handler ID.
148  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
149  * We can change this if it becomes a problem.
150  */
151 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
152                                                         unsigned timeout)
153 {
154         int depth = nvmeq->q_depth;
155         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
156         int cmdid;
157
158         BUG_ON((unsigned long)ctx & 3);
159
160         do {
161                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
162                 if (cmdid >= depth)
163                         return -EBUSY;
164         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
165
166         info[cmdid].ctx = (unsigned long)ctx | handler;
167         info[cmdid].timeout = jiffies + timeout;
168         return cmdid;
169 }
170
171 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
172                                                 int handler, unsigned timeout)
173 {
174         int cmdid;
175         wait_event_killable(nvmeq->sq_full,
176                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
177         return (cmdid < 0) ? -EINTR : cmdid;
178 }
179
180 /* If you need more than four handlers, you'll need to change how
181  * alloc_cmdid and nvme_process_cq work.  Consider using a special
182  * CMD_CTX value instead, if that works for your situation.
183  */
184 enum {
185         sync_completion_id = 0,
186         bio_completion_id,
187 };
188
189 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
190 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
191 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
192 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
193
194 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
195 {
196         unsigned long data;
197         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
198
199         if (cmdid >= nvmeq->q_depth)
200                 return CMD_CTX_INVALID;
201         data = info[cmdid].ctx;
202         info[cmdid].ctx = CMD_CTX_COMPLETED;
203         clear_bit(cmdid, nvmeq->cmdid_data);
204         wake_up(&nvmeq->sq_full);
205         return data;
206 }
207
208 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
209 {
210         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
211         info[cmdid].ctx = CMD_CTX_CANCELLED;
212 }
213
214 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
215 {
216         int qid, cpu = get_cpu();
217         if (cpu < ns->dev->queue_count)
218                 qid = cpu + 1;
219         else
220                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
221         return ns->dev->queues[qid];
222 }
223
224 static void put_nvmeq(struct nvme_queue *nvmeq)
225 {
226         put_cpu();
227 }
228
229 /**
230  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
231  * @nvmeq: The queue to use
232  * @cmd: The command to send
233  *
234  * Safe to use from interrupt context
235  */
236 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
237 {
238         unsigned long flags;
239         u16 tail;
240         /* XXX: Need to check tail isn't going to overrun head */
241         spin_lock_irqsave(&nvmeq->q_lock, flags);
242         tail = nvmeq->sq_tail;
243         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
244         writel(tail, nvmeq->q_db);
245         if (++tail == nvmeq->q_depth)
246                 tail = 0;
247         nvmeq->sq_tail = tail;
248         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
249
250         return 0;
251 }
252
253 struct nvme_prps {
254         int npages;
255         dma_addr_t first_dma;
256         __le64 *list[0];
257 };
258
259 static void nvme_free_prps(struct nvme_queue *nvmeq, struct nvme_prps *prps)
260 {
261         const int last_prp = PAGE_SIZE / 8 - 1;
262         struct nvme_dev *dev = nvmeq->dev;
263         int i;
264         dma_addr_t prp_dma;
265
266         if (!prps)
267                 return;
268
269         prp_dma = prps->first_dma;
270
271         if (prps->npages == 0)
272                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
273         for (i = 0; i < prps->npages; i++) {
274                 __le64 *prp_list = prps->list[i];
275                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
276                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
277                 prp_dma = next_prp_dma;
278         }
279         kfree(prps);
280 }
281
282 struct nvme_bio {
283         struct bio *bio;
284         int nents;
285         struct nvme_prps *prps;
286         struct scatterlist sg[0];
287 };
288
289 /* XXX: use a mempool */
290 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
291 {
292         return kzalloc(sizeof(struct nvme_bio) +
293                         sizeof(struct scatterlist) * nseg, gfp);
294 }
295
296 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
297 {
298         nvme_free_prps(nvmeq, nbio->prps);
299         kfree(nbio);
300 }
301
302 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
303                                                 struct nvme_completion *cqe)
304 {
305         struct nvme_bio *nbio = ctx;
306         struct bio *bio = nbio->bio;
307         u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
310                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
311         free_nbio(nvmeq, nbio);
312         bio_endio(bio, status ? -EIO : 0);
313         bio = bio_list_pop(&nvmeq->sq_cong);
314         if (bio)
315                 nvme_resubmit_bio(nvmeq, bio);
316 }
317
318 /* length is in bytes */
319 static struct nvme_prps *nvme_setup_prps(struct nvme_queue *nvmeq,
320                                         struct nvme_common_command *cmd,
321                                         struct scatterlist *sg, int length)
322 {
323         struct nvme_dev *dev = nvmeq->dev;
324         struct dma_pool *pool;
325         int dma_len = sg_dma_len(sg);
326         u64 dma_addr = sg_dma_address(sg);
327         int offset = offset_in_page(dma_addr);
328         __le64 *prp_list;
329         dma_addr_t prp_dma;
330         int nprps, npages, i, prp_page;
331         struct nvme_prps *prps = NULL;
332
333         cmd->prp1 = cpu_to_le64(dma_addr);
334         length -= (PAGE_SIZE - offset);
335         if (length <= 0)
336                 return prps;
337
338         dma_len -= (PAGE_SIZE - offset);
339         if (dma_len) {
340                 dma_addr += (PAGE_SIZE - offset);
341         } else {
342                 sg = sg_next(sg);
343                 dma_addr = sg_dma_address(sg);
344                 dma_len = sg_dma_len(sg);
345         }
346
347         if (length <= PAGE_SIZE) {
348                 cmd->prp2 = cpu_to_le64(dma_addr);
349                 return prps;
350         }
351
352         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
353         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
354         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
355         prp_page = 0;
356         if (nprps <= (256 / 8)) {
357                 pool = dev->prp_small_pool;
358                 prps->npages = 0;
359         } else {
360                 pool = dev->prp_page_pool;
361                 prps->npages = npages;
362         }
363
364         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
365         prps->list[prp_page++] = prp_list;
366         prps->first_dma = prp_dma;
367         cmd->prp2 = cpu_to_le64(prp_dma);
368         i = 0;
369         for (;;) {
370                 if (i == PAGE_SIZE / 8 - 1) {
371                         __le64 *old_prp_list = prp_list;
372                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
373                         prps->list[prp_page++] = prp_list;
374                         old_prp_list[i] = cpu_to_le64(prp_dma);
375                         i = 0;
376                 }
377                 prp_list[i++] = cpu_to_le64(dma_addr);
378                 dma_len -= PAGE_SIZE;
379                 dma_addr += PAGE_SIZE;
380                 length -= PAGE_SIZE;
381                 if (length <= 0)
382                         break;
383                 if (dma_len > 0)
384                         continue;
385                 BUG_ON(dma_len < 0);
386                 sg = sg_next(sg);
387                 dma_addr = sg_dma_address(sg);
388                 dma_len = sg_dma_len(sg);
389         }
390
391         return prps;
392 }
393
394 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
395                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
396 {
397         struct bio_vec *bvec;
398         struct scatterlist *sg = nbio->sg;
399         int i, nsegs;
400
401         sg_init_table(sg, psegs);
402         bio_for_each_segment(bvec, bio, i) {
403                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
404                 sg++;
405                 /* XXX: handle non-mergable here */
406                 nsegs++;
407         }
408         nbio->nents = nsegs;
409
410         return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
411 }
412
413 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
414                                                                 struct bio *bio)
415 {
416         struct nvme_command *cmnd;
417         struct nvme_bio *nbio;
418         enum dma_data_direction dma_dir;
419         int cmdid;
420         u16 control;
421         u32 dsmgmt;
422         unsigned long flags;
423         int psegs = bio_phys_segments(ns->queue, bio);
424
425         nbio = alloc_nbio(psegs, GFP_NOIO);
426         if (!nbio)
427                 goto congestion;
428         nbio->bio = bio;
429
430         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
431         if (unlikely(cmdid < 0))
432                 goto free_nbio;
433
434         control = 0;
435         if (bio->bi_rw & REQ_FUA)
436                 control |= NVME_RW_FUA;
437         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
438                 control |= NVME_RW_LR;
439
440         dsmgmt = 0;
441         if (bio->bi_rw & REQ_RAHEAD)
442                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
443
444         spin_lock_irqsave(&nvmeq->q_lock, flags);
445         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
446
447         memset(cmnd, 0, sizeof(*cmnd));
448         if (bio_data_dir(bio)) {
449                 cmnd->rw.opcode = nvme_cmd_write;
450                 dma_dir = DMA_TO_DEVICE;
451         } else {
452                 cmnd->rw.opcode = nvme_cmd_read;
453                 dma_dir = DMA_FROM_DEVICE;
454         }
455
456         nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
457
458         cmnd->rw.flags = 1;
459         cmnd->rw.command_id = cmdid;
460         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
461         nbio->prps = nvme_setup_prps(nvmeq, &cmnd->common, nbio->sg,
462                                                                 bio->bi_size);
463         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
464         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
465         cmnd->rw.control = cpu_to_le16(control);
466         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
467
468         writel(nvmeq->sq_tail, nvmeq->q_db);
469         if (++nvmeq->sq_tail == nvmeq->q_depth)
470                 nvmeq->sq_tail = 0;
471
472         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
473
474         return 0;
475
476  free_nbio:
477         free_nbio(nvmeq, nbio);
478  congestion:
479         return -EBUSY;
480 }
481
482 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
483 {
484         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
485         if (nvme_submit_bio_queue(nvmeq, ns, bio))
486                 bio_list_add_head(&nvmeq->sq_cong, bio);
487         else if (bio_list_empty(&nvmeq->sq_cong))
488                 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
489         /* XXX: Need to duplicate the logic from __freed_request here */
490 }
491
492 /*
493  * NB: return value of non-zero would mean that we were a stacking driver.
494  * make_request must always succeed.
495  */
496 static int nvme_make_request(struct request_queue *q, struct bio *bio)
497 {
498         struct nvme_ns *ns = q->queuedata;
499         struct nvme_queue *nvmeq = get_nvmeq(ns);
500
501         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
502                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
503                 spin_lock_irq(&nvmeq->q_lock);
504                 bio_list_add(&nvmeq->sq_cong, bio);
505                 spin_unlock_irq(&nvmeq->q_lock);
506         }
507         put_nvmeq(nvmeq);
508
509         return 0;
510 }
511
512 struct sync_cmd_info {
513         struct task_struct *task;
514         u32 result;
515         int status;
516 };
517
518 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
519                                                 struct nvme_completion *cqe)
520 {
521         struct sync_cmd_info *cmdinfo = ctx;
522         if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
523                 return;
524         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
525                 dev_warn(nvmeq->q_dmadev,
526                                 "completed id %d twice on queue %d\n",
527                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
528                 return;
529         }
530         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
531                 dev_warn(nvmeq->q_dmadev,
532                                 "invalid id %d completed on queue %d\n",
533                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
534                 return;
535         }
536         cmdinfo->result = le32_to_cpup(&cqe->result);
537         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
538         wake_up_process(cmdinfo->task);
539 }
540
541 typedef void (*completion_fn)(struct nvme_queue *, void *,
542                                                 struct nvme_completion *);
543
544 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
545 {
546         u16 head, phase;
547
548         static const completion_fn completions[4] = {
549                 [sync_completion_id] = sync_completion,
550                 [bio_completion_id]  = bio_completion,
551         };
552
553         head = nvmeq->cq_head;
554         phase = nvmeq->cq_phase;
555
556         for (;;) {
557                 unsigned long data;
558                 void *ptr;
559                 unsigned char handler;
560                 struct nvme_completion cqe = nvmeq->cqes[head];
561                 if ((le16_to_cpu(cqe.status) & 1) != phase)
562                         break;
563                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
564                 if (++head == nvmeq->q_depth) {
565                         head = 0;
566                         phase = !phase;
567                 }
568
569                 data = free_cmdid(nvmeq, cqe.command_id);
570                 handler = data & 3;
571                 ptr = (void *)(data & ~3UL);
572                 completions[handler](nvmeq, ptr, &cqe);
573         }
574
575         /* If the controller ignores the cq head doorbell and continuously
576          * writes to the queue, it is theoretically possible to wrap around
577          * the queue twice and mistakenly return IRQ_NONE.  Linux only
578          * requires that 0.1% of your interrupts are handled, so this isn't
579          * a big problem.
580          */
581         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
582                 return IRQ_NONE;
583
584         writel(head, nvmeq->q_db + 1);
585         nvmeq->cq_head = head;
586         nvmeq->cq_phase = phase;
587
588         return IRQ_HANDLED;
589 }
590
591 static irqreturn_t nvme_irq(int irq, void *data)
592 {
593         irqreturn_t result;
594         struct nvme_queue *nvmeq = data;
595         spin_lock(&nvmeq->q_lock);
596         result = nvme_process_cq(nvmeq);
597         spin_unlock(&nvmeq->q_lock);
598         return result;
599 }
600
601 static irqreturn_t nvme_irq_check(int irq, void *data)
602 {
603         struct nvme_queue *nvmeq = data;
604         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
605         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
606                 return IRQ_NONE;
607         return IRQ_WAKE_THREAD;
608 }
609
610 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
611 {
612         spin_lock_irq(&nvmeq->q_lock);
613         cancel_cmdid_data(nvmeq, cmdid);
614         spin_unlock_irq(&nvmeq->q_lock);
615 }
616
617 /*
618  * Returns 0 on success.  If the result is negative, it's a Linux error code;
619  * if the result is positive, it's an NVM Express status code
620  */
621 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
622                         struct nvme_command *cmd, u32 *result, unsigned timeout)
623 {
624         int cmdid;
625         struct sync_cmd_info cmdinfo;
626
627         cmdinfo.task = current;
628         cmdinfo.status = -EINTR;
629
630         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
631                                                                 timeout);
632         if (cmdid < 0)
633                 return cmdid;
634         cmd->common.command_id = cmdid;
635
636         set_current_state(TASK_KILLABLE);
637         nvme_submit_cmd(nvmeq, cmd);
638         schedule();
639
640         if (cmdinfo.status == -EINTR) {
641                 nvme_abort_command(nvmeq, cmdid);
642                 return -EINTR;
643         }
644
645         if (result)
646                 *result = cmdinfo.result;
647
648         return cmdinfo.status;
649 }
650
651 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
652                                                                 u32 *result)
653 {
654         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
655 }
656
657 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
658 {
659         int status;
660         struct nvme_command c;
661
662         memset(&c, 0, sizeof(c));
663         c.delete_queue.opcode = opcode;
664         c.delete_queue.qid = cpu_to_le16(id);
665
666         status = nvme_submit_admin_cmd(dev, &c, NULL);
667         if (status)
668                 return -EIO;
669         return 0;
670 }
671
672 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
673                                                 struct nvme_queue *nvmeq)
674 {
675         int status;
676         struct nvme_command c;
677         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
678
679         memset(&c, 0, sizeof(c));
680         c.create_cq.opcode = nvme_admin_create_cq;
681         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
682         c.create_cq.cqid = cpu_to_le16(qid);
683         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
684         c.create_cq.cq_flags = cpu_to_le16(flags);
685         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
686
687         status = nvme_submit_admin_cmd(dev, &c, NULL);
688         if (status)
689                 return -EIO;
690         return 0;
691 }
692
693 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
694                                                 struct nvme_queue *nvmeq)
695 {
696         int status;
697         struct nvme_command c;
698         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
699
700         memset(&c, 0, sizeof(c));
701         c.create_sq.opcode = nvme_admin_create_sq;
702         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
703         c.create_sq.sqid = cpu_to_le16(qid);
704         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
705         c.create_sq.sq_flags = cpu_to_le16(flags);
706         c.create_sq.cqid = cpu_to_le16(qid);
707
708         status = nvme_submit_admin_cmd(dev, &c, NULL);
709         if (status)
710                 return -EIO;
711         return 0;
712 }
713
714 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
715 {
716         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
717 }
718
719 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
720 {
721         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
722 }
723
724 static void nvme_free_queue(struct nvme_dev *dev, int qid)
725 {
726         struct nvme_queue *nvmeq = dev->queues[qid];
727
728         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
729
730         /* Don't tell the adapter to delete the admin queue */
731         if (qid) {
732                 adapter_delete_sq(dev, qid);
733                 adapter_delete_cq(dev, qid);
734         }
735
736         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
737                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
738         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
739                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
740         kfree(nvmeq);
741 }
742
743 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
744                                                         int depth, int vector)
745 {
746         struct device *dmadev = &dev->pci_dev->dev;
747         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
748         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
749         if (!nvmeq)
750                 return NULL;
751
752         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
753                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
754         if (!nvmeq->cqes)
755                 goto free_nvmeq;
756         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
757
758         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
759                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
760         if (!nvmeq->sq_cmds)
761                 goto free_cqdma;
762
763         nvmeq->q_dmadev = dmadev;
764         nvmeq->dev = dev;
765         spin_lock_init(&nvmeq->q_lock);
766         nvmeq->cq_head = 0;
767         nvmeq->cq_phase = 1;
768         init_waitqueue_head(&nvmeq->sq_full);
769         bio_list_init(&nvmeq->sq_cong);
770         nvmeq->q_db = &dev->dbs[qid * 2];
771         nvmeq->q_depth = depth;
772         nvmeq->cq_vector = vector;
773
774         return nvmeq;
775
776  free_cqdma:
777         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
778                                                         nvmeq->cq_dma_addr);
779  free_nvmeq:
780         kfree(nvmeq);
781         return NULL;
782 }
783
784 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
785                                                         const char *name)
786 {
787         if (use_threaded_interrupts)
788                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
789                                         nvme_irq_check, nvme_irq,
790                                         IRQF_DISABLED | IRQF_SHARED,
791                                         name, nvmeq);
792         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
793                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
794 }
795
796 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
797                                         int qid, int cq_size, int vector)
798 {
799         int result;
800         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
801
802         if (!nvmeq)
803                 return NULL;
804
805         result = adapter_alloc_cq(dev, qid, nvmeq);
806         if (result < 0)
807                 goto free_nvmeq;
808
809         result = adapter_alloc_sq(dev, qid, nvmeq);
810         if (result < 0)
811                 goto release_cq;
812
813         result = queue_request_irq(dev, nvmeq, "nvme");
814         if (result < 0)
815                 goto release_sq;
816
817         return nvmeq;
818
819  release_sq:
820         adapter_delete_sq(dev, qid);
821  release_cq:
822         adapter_delete_cq(dev, qid);
823  free_nvmeq:
824         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
825                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
826         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
827                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
828         kfree(nvmeq);
829         return NULL;
830 }
831
832 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
833 {
834         int result;
835         u32 aqa;
836         struct nvme_queue *nvmeq;
837
838         dev->dbs = ((void __iomem *)dev->bar) + 4096;
839
840         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
841         if (!nvmeq)
842                 return -ENOMEM;
843
844         aqa = nvmeq->q_depth - 1;
845         aqa |= aqa << 16;
846
847         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
848         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
849         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
850
851         writel(0, &dev->bar->cc);
852         writel(aqa, &dev->bar->aqa);
853         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
854         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
855         writel(dev->ctrl_config, &dev->bar->cc);
856
857         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
858                 msleep(100);
859                 if (fatal_signal_pending(current))
860                         return -EINTR;
861         }
862
863         result = queue_request_irq(dev, nvmeq, "nvme admin");
864         dev->queues[0] = nvmeq;
865         return result;
866 }
867
868 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
869                                 unsigned long addr, unsigned length,
870                                 struct scatterlist **sgp)
871 {
872         int i, err, count, nents, offset;
873         struct scatterlist *sg;
874         struct page **pages;
875
876         if (addr & 3)
877                 return -EINVAL;
878         if (!length)
879                 return -EINVAL;
880
881         offset = offset_in_page(addr);
882         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
883         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
884
885         err = get_user_pages_fast(addr, count, 1, pages);
886         if (err < count) {
887                 count = err;
888                 err = -EFAULT;
889                 goto put_pages;
890         }
891
892         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
893         sg_init_table(sg, count);
894         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
895         length -= (PAGE_SIZE - offset);
896         for (i = 1; i < count; i++) {
897                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
898                 length -= PAGE_SIZE;
899         }
900
901         err = -ENOMEM;
902         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
903                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
904         if (!nents)
905                 goto put_pages;
906
907         kfree(pages);
908         *sgp = sg;
909         return nents;
910
911  put_pages:
912         for (i = 0; i < count; i++)
913                 put_page(pages[i]);
914         kfree(pages);
915         return err;
916 }
917
918 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
919                                 unsigned long addr, int length,
920                                 struct scatterlist *sg, int nents)
921 {
922         int i, count;
923
924         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
925         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
926
927         for (i = 0; i < count; i++)
928                 put_page(sg_page(&sg[i]));
929 }
930
931 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
932                                         unsigned long addr, unsigned length,
933                                         struct nvme_command *cmd)
934 {
935         int err, nents;
936         struct scatterlist *sg;
937         struct nvme_prps *prps;
938
939         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
940         if (nents < 0)
941                 return nents;
942         prps = nvme_setup_prps(dev->queues[0], &cmd->common, sg, length);
943         err = nvme_submit_admin_cmd(dev, cmd, NULL);
944         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
945         nvme_free_prps(dev->queues[0], prps);
946         return err ? -EIO : 0;
947 }
948
949 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
950 {
951         struct nvme_command c;
952
953         memset(&c, 0, sizeof(c));
954         c.identify.opcode = nvme_admin_identify;
955         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
956         c.identify.cns = cpu_to_le32(cns);
957
958         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
959 }
960
961 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
962 {
963         struct nvme_command c;
964
965         memset(&c, 0, sizeof(c));
966         c.features.opcode = nvme_admin_get_features;
967         c.features.nsid = cpu_to_le32(ns->ns_id);
968         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
969
970         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
971 }
972
973 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
974 {
975         struct nvme_dev *dev = ns->dev;
976         struct nvme_queue *nvmeq;
977         struct nvme_user_io io;
978         struct nvme_command c;
979         unsigned length;
980         u32 result;
981         int nents, status;
982         struct scatterlist *sg;
983         struct nvme_prps *prps;
984
985         if (copy_from_user(&io, uio, sizeof(io)))
986                 return -EFAULT;
987         length = io.nblocks << io.block_shift;
988         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
989         if (nents < 0)
990                 return nents;
991
992         memset(&c, 0, sizeof(c));
993         c.rw.opcode = io.opcode;
994         c.rw.flags = io.flags;
995         c.rw.nsid = cpu_to_le32(io.nsid);
996         c.rw.slba = cpu_to_le64(io.slba);
997         c.rw.length = cpu_to_le16(io.nblocks - 1);
998         c.rw.control = cpu_to_le16(io.control);
999         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1000         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
1001         c.rw.apptag = cpu_to_le16(io.apptag);
1002         c.rw.appmask = cpu_to_le16(io.appmask);
1003         nvmeq = get_nvmeq(ns);
1004         /* XXX: metadata */
1005         prps = nvme_setup_prps(nvmeq, &c.common, sg, length);
1006
1007         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1008          * disabled.  We may be preempted at any point, and be rescheduled
1009          * to a different CPU.  That will cause cacheline bouncing, but no
1010          * additional races since q_lock already protects against other CPUs.
1011          */
1012         put_nvmeq(nvmeq);
1013         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1014
1015         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1016         nvme_free_prps(nvmeq, prps);
1017         put_user(result, &uio->result);
1018         return status;
1019 }
1020
1021 static int nvme_download_firmware(struct nvme_ns *ns,
1022                                                 struct nvme_dlfw __user *udlfw)
1023 {
1024         struct nvme_dev *dev = ns->dev;
1025         struct nvme_dlfw dlfw;
1026         struct nvme_command c;
1027         int nents, status;
1028         struct scatterlist *sg;
1029         struct nvme_prps *prps;
1030
1031         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1032                 return -EFAULT;
1033         if (dlfw.length >= (1 << 30))
1034                 return -EINVAL;
1035
1036         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1037         if (nents < 0)
1038                 return nents;
1039
1040         memset(&c, 0, sizeof(c));
1041         c.dlfw.opcode = nvme_admin_download_fw;
1042         c.dlfw.numd = cpu_to_le32(dlfw.length);
1043         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1044         prps = nvme_setup_prps(dev->queues[0], &c.common, sg, dlfw.length * 4);
1045
1046         status = nvme_submit_admin_cmd(dev, &c, NULL);
1047         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1048         nvme_free_prps(dev->queues[0], prps);
1049         return status;
1050 }
1051
1052 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1053 {
1054         struct nvme_dev *dev = ns->dev;
1055         struct nvme_command c;
1056
1057         memset(&c, 0, sizeof(c));
1058         c.common.opcode = nvme_admin_activate_fw;
1059         c.common.rsvd10[0] = cpu_to_le32(arg);
1060
1061         return nvme_submit_admin_cmd(dev, &c, NULL);
1062 }
1063
1064 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1065                                                         unsigned long arg)
1066 {
1067         struct nvme_ns *ns = bdev->bd_disk->private_data;
1068
1069         switch (cmd) {
1070         case NVME_IOCTL_IDENTIFY_NS:
1071                 return nvme_identify(ns, arg, 0);
1072         case NVME_IOCTL_IDENTIFY_CTRL:
1073                 return nvme_identify(ns, arg, 1);
1074         case NVME_IOCTL_GET_RANGE_TYPE:
1075                 return nvme_get_range_type(ns, arg);
1076         case NVME_IOCTL_SUBMIT_IO:
1077                 return nvme_submit_io(ns, (void __user *)arg);
1078         case NVME_IOCTL_DOWNLOAD_FW:
1079                 return nvme_download_firmware(ns, (void __user *)arg);
1080         case NVME_IOCTL_ACTIVATE_FW:
1081                 return nvme_activate_firmware(ns, arg);
1082         default:
1083                 return -ENOTTY;
1084         }
1085 }
1086
1087 static const struct block_device_operations nvme_fops = {
1088         .owner          = THIS_MODULE,
1089         .ioctl          = nvme_ioctl,
1090 };
1091
1092 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1093                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1094 {
1095         struct nvme_ns *ns;
1096         struct gendisk *disk;
1097         int lbaf;
1098
1099         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1100                 return NULL;
1101
1102         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1103         if (!ns)
1104                 return NULL;
1105         ns->queue = blk_alloc_queue(GFP_KERNEL);
1106         if (!ns->queue)
1107                 goto out_free_ns;
1108         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1109                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1110         blk_queue_make_request(ns->queue, nvme_make_request);
1111         ns->dev = dev;
1112         ns->queue->queuedata = ns;
1113
1114         disk = alloc_disk(NVME_MINORS);
1115         if (!disk)
1116                 goto out_free_queue;
1117         ns->ns_id = index;
1118         ns->disk = disk;
1119         lbaf = id->flbas & 0xf;
1120         ns->lba_shift = id->lbaf[lbaf].ds;
1121
1122         disk->major = nvme_major;
1123         disk->minors = NVME_MINORS;
1124         disk->first_minor = NVME_MINORS * index;
1125         disk->fops = &nvme_fops;
1126         disk->private_data = ns;
1127         disk->queue = ns->queue;
1128         disk->driverfs_dev = &dev->pci_dev->dev;
1129         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1130         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1131
1132         return ns;
1133
1134  out_free_queue:
1135         blk_cleanup_queue(ns->queue);
1136  out_free_ns:
1137         kfree(ns);
1138         return NULL;
1139 }
1140
1141 static void nvme_ns_free(struct nvme_ns *ns)
1142 {
1143         put_disk(ns->disk);
1144         blk_cleanup_queue(ns->queue);
1145         kfree(ns);
1146 }
1147
1148 static int set_queue_count(struct nvme_dev *dev, int count)
1149 {
1150         int status;
1151         u32 result;
1152         struct nvme_command c;
1153         u32 q_count = (count - 1) | ((count - 1) << 16);
1154
1155         memset(&c, 0, sizeof(c));
1156         c.features.opcode = nvme_admin_get_features;
1157         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1158         c.features.dword11 = cpu_to_le32(q_count);
1159
1160         status = nvme_submit_admin_cmd(dev, &c, &result);
1161         if (status)
1162                 return -EIO;
1163         return min(result & 0xffff, result >> 16) + 1;
1164 }
1165
1166 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1167 {
1168         int result, cpu, i, nr_queues;
1169
1170         nr_queues = num_online_cpus();
1171         result = set_queue_count(dev, nr_queues);
1172         if (result < 0)
1173                 return result;
1174         if (result < nr_queues)
1175                 nr_queues = result;
1176
1177         /* Deregister the admin queue's interrupt */
1178         free_irq(dev->entry[0].vector, dev->queues[0]);
1179
1180         for (i = 0; i < nr_queues; i++)
1181                 dev->entry[i].entry = i;
1182         for (;;) {
1183                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1184                 if (result == 0) {
1185                         break;
1186                 } else if (result > 0) {
1187                         nr_queues = result;
1188                         continue;
1189                 } else {
1190                         nr_queues = 1;
1191                         break;
1192                 }
1193         }
1194
1195         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1196         /* XXX: handle failure here */
1197
1198         cpu = cpumask_first(cpu_online_mask);
1199         for (i = 0; i < nr_queues; i++) {
1200                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1201                 cpu = cpumask_next(cpu, cpu_online_mask);
1202         }
1203
1204         for (i = 0; i < nr_queues; i++) {
1205                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1206                                                         NVME_Q_DEPTH, i);
1207                 if (!dev->queues[i + 1])
1208                         return -ENOMEM;
1209                 dev->queue_count++;
1210         }
1211
1212         return 0;
1213 }
1214
1215 static void nvme_free_queues(struct nvme_dev *dev)
1216 {
1217         int i;
1218
1219         for (i = dev->queue_count - 1; i >= 0; i--)
1220                 nvme_free_queue(dev, i);
1221 }
1222
1223 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1224 {
1225         int res, nn, i;
1226         struct nvme_ns *ns, *next;
1227         struct nvme_id_ctrl *ctrl;
1228         void *id;
1229         dma_addr_t dma_addr;
1230         struct nvme_command cid, crt;
1231
1232         res = nvme_setup_io_queues(dev);
1233         if (res)
1234                 return res;
1235
1236         /* XXX: Switch to a SG list once prp2 works */
1237         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1238                                                                 GFP_KERNEL);
1239
1240         memset(&cid, 0, sizeof(cid));
1241         cid.identify.opcode = nvme_admin_identify;
1242         cid.identify.nsid = 0;
1243         cid.identify.prp1 = cpu_to_le64(dma_addr);
1244         cid.identify.cns = cpu_to_le32(1);
1245
1246         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1247         if (res) {
1248                 res = -EIO;
1249                 goto out_free;
1250         }
1251
1252         ctrl = id;
1253         nn = le32_to_cpup(&ctrl->nn);
1254         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1255         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1256         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1257
1258         cid.identify.cns = 0;
1259         memset(&crt, 0, sizeof(crt));
1260         crt.features.opcode = nvme_admin_get_features;
1261         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1262         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1263
1264         for (i = 0; i < nn; i++) {
1265                 cid.identify.nsid = cpu_to_le32(i);
1266                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1267                 if (res)
1268                         continue;
1269
1270                 if (((struct nvme_id_ns *)id)->ncap == 0)
1271                         continue;
1272
1273                 crt.features.nsid = cpu_to_le32(i);
1274                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1275                 if (res)
1276                         continue;
1277
1278                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1279                 if (ns)
1280                         list_add_tail(&ns->list, &dev->namespaces);
1281         }
1282         list_for_each_entry(ns, &dev->namespaces, list)
1283                 add_disk(ns->disk);
1284
1285         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1286         return 0;
1287
1288  out_free:
1289         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1290                 list_del(&ns->list);
1291                 nvme_ns_free(ns);
1292         }
1293
1294         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1295         return res;
1296 }
1297
1298 static int nvme_dev_remove(struct nvme_dev *dev)
1299 {
1300         struct nvme_ns *ns, *next;
1301
1302         /* TODO: wait all I/O finished or cancel them */
1303
1304         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1305                 list_del(&ns->list);
1306                 del_gendisk(ns->disk);
1307                 nvme_ns_free(ns);
1308         }
1309
1310         nvme_free_queues(dev);
1311
1312         return 0;
1313 }
1314
1315 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1316 {
1317         struct device *dmadev = &dev->pci_dev->dev;
1318         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1319                                                 PAGE_SIZE, PAGE_SIZE, 0);
1320         if (!dev->prp_page_pool)
1321                 return -ENOMEM;
1322
1323         /* Optimisation for I/Os between 4k and 128k */
1324         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1325                                                 256, 256, 0);
1326         if (!dev->prp_small_pool) {
1327                 dma_pool_destroy(dev->prp_page_pool);
1328                 return -ENOMEM;
1329         }
1330         return 0;
1331 }
1332
1333 static void nvme_release_prp_pools(struct nvme_dev *dev)
1334 {
1335         dma_pool_destroy(dev->prp_page_pool);
1336         dma_pool_destroy(dev->prp_small_pool);
1337 }
1338
1339 /* XXX: Use an ida or something to let remove / add work correctly */
1340 static void nvme_set_instance(struct nvme_dev *dev)
1341 {
1342         static int instance;
1343         dev->instance = instance++;
1344 }
1345
1346 static void nvme_release_instance(struct nvme_dev *dev)
1347 {
1348 }
1349
1350 static int __devinit nvme_probe(struct pci_dev *pdev,
1351                                                 const struct pci_device_id *id)
1352 {
1353         int bars, result = -ENOMEM;
1354         struct nvme_dev *dev;
1355
1356         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1357         if (!dev)
1358                 return -ENOMEM;
1359         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1360                                                                 GFP_KERNEL);
1361         if (!dev->entry)
1362                 goto free;
1363         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1364                                                                 GFP_KERNEL);
1365         if (!dev->queues)
1366                 goto free;
1367
1368         if (pci_enable_device_mem(pdev))
1369                 goto free;
1370         pci_set_master(pdev);
1371         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1372         if (pci_request_selected_regions(pdev, bars, "nvme"))
1373                 goto disable;
1374
1375         INIT_LIST_HEAD(&dev->namespaces);
1376         dev->pci_dev = pdev;
1377         pci_set_drvdata(pdev, dev);
1378         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1379         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1380         nvme_set_instance(dev);
1381         dev->entry[0].vector = pdev->irq;
1382
1383         result = nvme_setup_prp_pools(dev);
1384         if (result)
1385                 goto disable_msix;
1386
1387         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1388         if (!dev->bar) {
1389                 result = -ENOMEM;
1390                 goto disable_msix;
1391         }
1392
1393         result = nvme_configure_admin_queue(dev);
1394         if (result)
1395                 goto unmap;
1396         dev->queue_count++;
1397
1398         result = nvme_dev_add(dev);
1399         if (result)
1400                 goto delete;
1401         return 0;
1402
1403  delete:
1404         nvme_free_queues(dev);
1405  unmap:
1406         iounmap(dev->bar);
1407  disable_msix:
1408         pci_disable_msix(pdev);
1409         nvme_release_instance(dev);
1410         nvme_release_prp_pools(dev);
1411  disable:
1412         pci_disable_device(pdev);
1413         pci_release_regions(pdev);
1414  free:
1415         kfree(dev->queues);
1416         kfree(dev->entry);
1417         kfree(dev);
1418         return result;
1419 }
1420
1421 static void __devexit nvme_remove(struct pci_dev *pdev)
1422 {
1423         struct nvme_dev *dev = pci_get_drvdata(pdev);
1424         nvme_dev_remove(dev);
1425         pci_disable_msix(pdev);
1426         iounmap(dev->bar);
1427         nvme_release_instance(dev);
1428         nvme_release_prp_pools(dev);
1429         pci_disable_device(pdev);
1430         pci_release_regions(pdev);
1431         kfree(dev->queues);
1432         kfree(dev->entry);
1433         kfree(dev);
1434 }
1435
1436 /* These functions are yet to be implemented */
1437 #define nvme_error_detected NULL
1438 #define nvme_dump_registers NULL
1439 #define nvme_link_reset NULL
1440 #define nvme_slot_reset NULL
1441 #define nvme_error_resume NULL
1442 #define nvme_suspend NULL
1443 #define nvme_resume NULL
1444
1445 static struct pci_error_handlers nvme_err_handler = {
1446         .error_detected = nvme_error_detected,
1447         .mmio_enabled   = nvme_dump_registers,
1448         .link_reset     = nvme_link_reset,
1449         .slot_reset     = nvme_slot_reset,
1450         .resume         = nvme_error_resume,
1451 };
1452
1453 /* Move to pci_ids.h later */
1454 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1455
1456 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1457         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1458         { 0, }
1459 };
1460 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1461
1462 static struct pci_driver nvme_driver = {
1463         .name           = "nvme",
1464         .id_table       = nvme_id_table,
1465         .probe          = nvme_probe,
1466         .remove         = __devexit_p(nvme_remove),
1467         .suspend        = nvme_suspend,
1468         .resume         = nvme_resume,
1469         .err_handler    = &nvme_err_handler,
1470 };
1471
1472 static int __init nvme_init(void)
1473 {
1474         int result;
1475
1476         nvme_major = register_blkdev(nvme_major, "nvme");
1477         if (nvme_major <= 0)
1478                 return -EBUSY;
1479
1480         result = pci_register_driver(&nvme_driver);
1481         if (!result)
1482                 return 0;
1483
1484         unregister_blkdev(nvme_major, "nvme");
1485         return result;
1486 }
1487
1488 static void __exit nvme_exit(void)
1489 {
1490         pci_unregister_driver(&nvme_driver);
1491         unregister_blkdev(nvme_major, "nvme");
1492 }
1493
1494 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1495 MODULE_LICENSE("GPL");
1496 MODULE_VERSION("0.2");
1497 module_init(nvme_init);
1498 module_exit(nvme_exit);