NVMe: Set block queue max sectors
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define NVME_IO_TIMEOUT (5 * HZ)
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
63  */
64 struct nvme_dev {
65         struct list_head node;
66         struct nvme_queue **queues;
67         u32 __iomem *dbs;
68         struct pci_dev *pci_dev;
69         struct dma_pool *prp_page_pool;
70         struct dma_pool *prp_small_pool;
71         int instance;
72         int queue_count;
73         int db_stride;
74         u32 ctrl_config;
75         struct msix_entry *entry;
76         struct nvme_bar __iomem *bar;
77         struct list_head namespaces;
78         char serial[20];
79         char model[40];
80         char firmware_rev[8];
81         u32 max_hw_sectors;
82 };
83
84 /*
85  * An NVM Express namespace is equivalent to a SCSI LUN
86  */
87 struct nvme_ns {
88         struct list_head list;
89
90         struct nvme_dev *dev;
91         struct request_queue *queue;
92         struct gendisk *disk;
93
94         int ns_id;
95         int lba_shift;
96 };
97
98 /*
99  * An NVM Express queue.  Each device has at least two (one for admin
100  * commands and one for I/O commands).
101  */
102 struct nvme_queue {
103         struct device *q_dmadev;
104         struct nvme_dev *dev;
105         spinlock_t q_lock;
106         struct nvme_command *sq_cmds;
107         volatile struct nvme_completion *cqes;
108         dma_addr_t sq_dma_addr;
109         dma_addr_t cq_dma_addr;
110         wait_queue_head_t sq_full;
111         wait_queue_t sq_cong_wait;
112         struct bio_list sq_cong;
113         u32 __iomem *q_db;
114         u16 q_depth;
115         u16 cq_vector;
116         u16 sq_head;
117         u16 sq_tail;
118         u16 cq_head;
119         u16 cq_phase;
120         unsigned long cmdid_data[];
121 };
122
123 /*
124  * Check we didin't inadvertently grow the command struct
125  */
126 static inline void _nvme_check_size(void)
127 {
128         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
140                                                 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143         nvme_completion_fn fn;
144         void *ctx;
145         unsigned long timeout;
146 };
147
148 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
149 {
150         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
151 }
152
153 /**
154  * alloc_cmdid() - Allocate a Command ID
155  * @nvmeq: The queue that will be used for this command
156  * @ctx: A pointer that will be passed to the handler
157  * @handler: The function to call on completion
158  *
159  * Allocate a Command ID for a queue.  The data passed in will
160  * be passed to the completion handler.  This is implemented by using
161  * the bottom two bits of the ctx pointer to store the handler ID.
162  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
163  * We can change this if it becomes a problem.
164  *
165  * May be called with local interrupts disabled and the q_lock held,
166  * or with interrupts enabled and no locks held.
167  */
168 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
169                                 nvme_completion_fn handler, unsigned timeout)
170 {
171         int depth = nvmeq->q_depth - 1;
172         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
173         int cmdid;
174
175         do {
176                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
177                 if (cmdid >= depth)
178                         return -EBUSY;
179         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
180
181         info[cmdid].fn = handler;
182         info[cmdid].ctx = ctx;
183         info[cmdid].timeout = jiffies + timeout;
184         return cmdid;
185 }
186
187 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
188                                 nvme_completion_fn handler, unsigned timeout)
189 {
190         int cmdid;
191         wait_event_killable(nvmeq->sq_full,
192                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
193         return (cmdid < 0) ? -EINTR : cmdid;
194 }
195
196 /* Special values must be less than 0x1000 */
197 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
198 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
199 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
200 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
201 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
202
203 static void special_completion(struct nvme_dev *dev, void *ctx,
204                                                 struct nvme_completion *cqe)
205 {
206         if (ctx == CMD_CTX_CANCELLED)
207                 return;
208         if (ctx == CMD_CTX_FLUSH)
209                 return;
210         if (ctx == CMD_CTX_COMPLETED) {
211                 dev_warn(&dev->pci_dev->dev,
212                                 "completed id %d twice on queue %d\n",
213                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
214                 return;
215         }
216         if (ctx == CMD_CTX_INVALID) {
217                 dev_warn(&dev->pci_dev->dev,
218                                 "invalid id %d completed on queue %d\n",
219                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
220                 return;
221         }
222
223         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
224 }
225
226 /*
227  * Called with local interrupts disabled and the q_lock held.  May not sleep.
228  */
229 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
230                                                 nvme_completion_fn *fn)
231 {
232         void *ctx;
233         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
234
235         if (cmdid >= nvmeq->q_depth) {
236                 *fn = special_completion;
237                 return CMD_CTX_INVALID;
238         }
239         *fn = info[cmdid].fn;
240         ctx = info[cmdid].ctx;
241         info[cmdid].fn = special_completion;
242         info[cmdid].ctx = CMD_CTX_COMPLETED;
243         clear_bit(cmdid, nvmeq->cmdid_data);
244         wake_up(&nvmeq->sq_full);
245         return ctx;
246 }
247
248 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
249                                                 nvme_completion_fn *fn)
250 {
251         void *ctx;
252         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
253         if (fn)
254                 *fn = info[cmdid].fn;
255         ctx = info[cmdid].ctx;
256         info[cmdid].fn = special_completion;
257         info[cmdid].ctx = CMD_CTX_CANCELLED;
258         return ctx;
259 }
260
261 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
262 {
263         return dev->queues[get_cpu() + 1];
264 }
265
266 static void put_nvmeq(struct nvme_queue *nvmeq)
267 {
268         put_cpu();
269 }
270
271 /**
272  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
273  * @nvmeq: The queue to use
274  * @cmd: The command to send
275  *
276  * Safe to use from interrupt context
277  */
278 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
279 {
280         unsigned long flags;
281         u16 tail;
282         spin_lock_irqsave(&nvmeq->q_lock, flags);
283         tail = nvmeq->sq_tail;
284         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
285         if (++tail == nvmeq->q_depth)
286                 tail = 0;
287         writel(tail, nvmeq->q_db);
288         nvmeq->sq_tail = tail;
289         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
290
291         return 0;
292 }
293
294 /*
295  * The nvme_iod describes the data in an I/O, including the list of PRP
296  * entries.  You can't see it in this data structure because C doesn't let
297  * me express that.  Use nvme_alloc_iod to ensure there's enough space
298  * allocated to store the PRP list.
299  */
300 struct nvme_iod {
301         void *private;          /* For the use of the submitter of the I/O */
302         int npages;             /* In the PRP list. 0 means small pool in use */
303         int offset;             /* Of PRP list */
304         int nents;              /* Used in scatterlist */
305         int length;             /* Of data, in bytes */
306         dma_addr_t first_dma;
307         struct scatterlist sg[0];
308 };
309
310 static __le64 **iod_list(struct nvme_iod *iod)
311 {
312         return ((void *)iod) + iod->offset;
313 }
314
315 /*
316  * Will slightly overestimate the number of pages needed.  This is OK
317  * as it only leads to a small amount of wasted memory for the lifetime of
318  * the I/O.
319  */
320 static int nvme_npages(unsigned size)
321 {
322         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
323         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
324 }
325
326 static struct nvme_iod *
327 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
328 {
329         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
330                                 sizeof(__le64 *) * nvme_npages(nbytes) +
331                                 sizeof(struct scatterlist) * nseg, gfp);
332
333         if (iod) {
334                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
335                 iod->npages = -1;
336                 iod->length = nbytes;
337         }
338
339         return iod;
340 }
341
342 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
343 {
344         const int last_prp = PAGE_SIZE / 8 - 1;
345         int i;
346         __le64 **list = iod_list(iod);
347         dma_addr_t prp_dma = iod->first_dma;
348
349         if (iod->npages == 0)
350                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
351         for (i = 0; i < iod->npages; i++) {
352                 __le64 *prp_list = list[i];
353                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
354                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
355                 prp_dma = next_prp_dma;
356         }
357         kfree(iod);
358 }
359
360 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
361 {
362         struct nvme_queue *nvmeq = get_nvmeq(dev);
363         if (bio_list_empty(&nvmeq->sq_cong))
364                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
365         bio_list_add(&nvmeq->sq_cong, bio);
366         put_nvmeq(nvmeq);
367         wake_up_process(nvme_thread);
368 }
369
370 static void bio_completion(struct nvme_dev *dev, void *ctx,
371                                                 struct nvme_completion *cqe)
372 {
373         struct nvme_iod *iod = ctx;
374         struct bio *bio = iod->private;
375         u16 status = le16_to_cpup(&cqe->status) >> 1;
376
377         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
378                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
379         nvme_free_iod(dev, iod);
380         if (status) {
381                 bio_endio(bio, -EIO);
382         } else if (bio->bi_vcnt > bio->bi_idx) {
383                 requeue_bio(dev, bio);
384         } else {
385                 bio_endio(bio, 0);
386         }
387 }
388
389 /* length is in bytes.  gfp flags indicates whether we may sleep. */
390 static int nvme_setup_prps(struct nvme_dev *dev,
391                         struct nvme_common_command *cmd, struct nvme_iod *iod,
392                         int total_len, gfp_t gfp)
393 {
394         struct dma_pool *pool;
395         int length = total_len;
396         struct scatterlist *sg = iod->sg;
397         int dma_len = sg_dma_len(sg);
398         u64 dma_addr = sg_dma_address(sg);
399         int offset = offset_in_page(dma_addr);
400         __le64 *prp_list;
401         __le64 **list = iod_list(iod);
402         dma_addr_t prp_dma;
403         int nprps, i;
404
405         cmd->prp1 = cpu_to_le64(dma_addr);
406         length -= (PAGE_SIZE - offset);
407         if (length <= 0)
408                 return total_len;
409
410         dma_len -= (PAGE_SIZE - offset);
411         if (dma_len) {
412                 dma_addr += (PAGE_SIZE - offset);
413         } else {
414                 sg = sg_next(sg);
415                 dma_addr = sg_dma_address(sg);
416                 dma_len = sg_dma_len(sg);
417         }
418
419         if (length <= PAGE_SIZE) {
420                 cmd->prp2 = cpu_to_le64(dma_addr);
421                 return total_len;
422         }
423
424         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
425         if (nprps <= (256 / 8)) {
426                 pool = dev->prp_small_pool;
427                 iod->npages = 0;
428         } else {
429                 pool = dev->prp_page_pool;
430                 iod->npages = 1;
431         }
432
433         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
434         if (!prp_list) {
435                 cmd->prp2 = cpu_to_le64(dma_addr);
436                 iod->npages = -1;
437                 return (total_len - length) + PAGE_SIZE;
438         }
439         list[0] = prp_list;
440         iod->first_dma = prp_dma;
441         cmd->prp2 = cpu_to_le64(prp_dma);
442         i = 0;
443         for (;;) {
444                 if (i == PAGE_SIZE / 8) {
445                         __le64 *old_prp_list = prp_list;
446                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
447                         if (!prp_list)
448                                 return total_len - length;
449                         list[iod->npages++] = prp_list;
450                         prp_list[0] = old_prp_list[i - 1];
451                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
452                         i = 1;
453                 }
454                 prp_list[i++] = cpu_to_le64(dma_addr);
455                 dma_len -= PAGE_SIZE;
456                 dma_addr += PAGE_SIZE;
457                 length -= PAGE_SIZE;
458                 if (length <= 0)
459                         break;
460                 if (dma_len > 0)
461                         continue;
462                 BUG_ON(dma_len < 0);
463                 sg = sg_next(sg);
464                 dma_addr = sg_dma_address(sg);
465                 dma_len = sg_dma_len(sg);
466         }
467
468         return total_len;
469 }
470
471 /* NVMe scatterlists require no holes in the virtual address */
472 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
473                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
474
475 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
476                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
477 {
478         struct bio_vec *bvec, *bvprv = NULL;
479         struct scatterlist *sg = NULL;
480         int i, old_idx, length = 0, nsegs = 0;
481
482         sg_init_table(iod->sg, psegs);
483         old_idx = bio->bi_idx;
484         bio_for_each_segment(bvec, bio, i) {
485                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
486                         sg->length += bvec->bv_len;
487                 } else {
488                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
489                                 break;
490                         sg = sg ? sg + 1 : iod->sg;
491                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
492                                                         bvec->bv_offset);
493                         nsegs++;
494                 }
495                 length += bvec->bv_len;
496                 bvprv = bvec;
497         }
498         bio->bi_idx = i;
499         iod->nents = nsegs;
500         sg_mark_end(sg);
501         if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
502                 bio->bi_idx = old_idx;
503                 return -ENOMEM;
504         }
505         return length;
506 }
507
508 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
509                                                                 int cmdid)
510 {
511         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
512
513         memset(cmnd, 0, sizeof(*cmnd));
514         cmnd->common.opcode = nvme_cmd_flush;
515         cmnd->common.command_id = cmdid;
516         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
517
518         if (++nvmeq->sq_tail == nvmeq->q_depth)
519                 nvmeq->sq_tail = 0;
520         writel(nvmeq->sq_tail, nvmeq->q_db);
521
522         return 0;
523 }
524
525 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
526 {
527         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
528                                         special_completion, NVME_IO_TIMEOUT);
529         if (unlikely(cmdid < 0))
530                 return cmdid;
531
532         return nvme_submit_flush(nvmeq, ns, cmdid);
533 }
534
535 /*
536  * Called with local interrupts disabled and the q_lock held.  May not sleep.
537  */
538 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
539                                                                 struct bio *bio)
540 {
541         struct nvme_command *cmnd;
542         struct nvme_iod *iod;
543         enum dma_data_direction dma_dir;
544         int cmdid, length, result = -ENOMEM;
545         u16 control;
546         u32 dsmgmt;
547         int psegs = bio_phys_segments(ns->queue, bio);
548
549         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
550                 result = nvme_submit_flush_data(nvmeq, ns);
551                 if (result)
552                         return result;
553         }
554
555         iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
556         if (!iod)
557                 goto nomem;
558         iod->private = bio;
559
560         result = -EBUSY;
561         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
562         if (unlikely(cmdid < 0))
563                 goto free_iod;
564
565         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
566                 return nvme_submit_flush(nvmeq, ns, cmdid);
567
568         control = 0;
569         if (bio->bi_rw & REQ_FUA)
570                 control |= NVME_RW_FUA;
571         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
572                 control |= NVME_RW_LR;
573
574         dsmgmt = 0;
575         if (bio->bi_rw & REQ_RAHEAD)
576                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
577
578         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
579
580         memset(cmnd, 0, sizeof(*cmnd));
581         if (bio_data_dir(bio)) {
582                 cmnd->rw.opcode = nvme_cmd_write;
583                 dma_dir = DMA_TO_DEVICE;
584         } else {
585                 cmnd->rw.opcode = nvme_cmd_read;
586                 dma_dir = DMA_FROM_DEVICE;
587         }
588
589         result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
590         if (result < 0)
591                 goto free_iod;
592         length = result;
593
594         cmnd->rw.command_id = cmdid;
595         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
596         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
597                                                                 GFP_ATOMIC);
598         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
599         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
600         cmnd->rw.control = cpu_to_le16(control);
601         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
602
603         bio->bi_sector += length >> 9;
604
605         if (++nvmeq->sq_tail == nvmeq->q_depth)
606                 nvmeq->sq_tail = 0;
607         writel(nvmeq->sq_tail, nvmeq->q_db);
608
609         return 0;
610
611  free_iod:
612         nvme_free_iod(nvmeq->dev, iod);
613  nomem:
614         return result;
615 }
616
617 /*
618  * NB: return value of non-zero would mean that we were a stacking driver.
619  * make_request must always succeed.
620  */
621 static int nvme_make_request(struct request_queue *q, struct bio *bio)
622 {
623         struct nvme_ns *ns = q->queuedata;
624         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
625         int result = -EBUSY;
626
627         spin_lock_irq(&nvmeq->q_lock);
628         if (bio_list_empty(&nvmeq->sq_cong))
629                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
630         if (unlikely(result)) {
631                 if (bio_list_empty(&nvmeq->sq_cong))
632                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
633                 bio_list_add(&nvmeq->sq_cong, bio);
634         }
635
636         spin_unlock_irq(&nvmeq->q_lock);
637         put_nvmeq(nvmeq);
638
639         return 0;
640 }
641
642 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
643 {
644         u16 head, phase;
645
646         head = nvmeq->cq_head;
647         phase = nvmeq->cq_phase;
648
649         for (;;) {
650                 void *ctx;
651                 nvme_completion_fn fn;
652                 struct nvme_completion cqe = nvmeq->cqes[head];
653                 if ((le16_to_cpu(cqe.status) & 1) != phase)
654                         break;
655                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
656                 if (++head == nvmeq->q_depth) {
657                         head = 0;
658                         phase = !phase;
659                 }
660
661                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
662                 fn(nvmeq->dev, ctx, &cqe);
663         }
664
665         /* If the controller ignores the cq head doorbell and continuously
666          * writes to the queue, it is theoretically possible to wrap around
667          * the queue twice and mistakenly return IRQ_NONE.  Linux only
668          * requires that 0.1% of your interrupts are handled, so this isn't
669          * a big problem.
670          */
671         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
672                 return IRQ_NONE;
673
674         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
675         nvmeq->cq_head = head;
676         nvmeq->cq_phase = phase;
677
678         return IRQ_HANDLED;
679 }
680
681 static irqreturn_t nvme_irq(int irq, void *data)
682 {
683         irqreturn_t result;
684         struct nvme_queue *nvmeq = data;
685         spin_lock(&nvmeq->q_lock);
686         result = nvme_process_cq(nvmeq);
687         spin_unlock(&nvmeq->q_lock);
688         return result;
689 }
690
691 static irqreturn_t nvme_irq_check(int irq, void *data)
692 {
693         struct nvme_queue *nvmeq = data;
694         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
695         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
696                 return IRQ_NONE;
697         return IRQ_WAKE_THREAD;
698 }
699
700 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
701 {
702         spin_lock_irq(&nvmeq->q_lock);
703         cancel_cmdid(nvmeq, cmdid, NULL);
704         spin_unlock_irq(&nvmeq->q_lock);
705 }
706
707 struct sync_cmd_info {
708         struct task_struct *task;
709         u32 result;
710         int status;
711 };
712
713 static void sync_completion(struct nvme_dev *dev, void *ctx,
714                                                 struct nvme_completion *cqe)
715 {
716         struct sync_cmd_info *cmdinfo = ctx;
717         cmdinfo->result = le32_to_cpup(&cqe->result);
718         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
719         wake_up_process(cmdinfo->task);
720 }
721
722 /*
723  * Returns 0 on success.  If the result is negative, it's a Linux error code;
724  * if the result is positive, it's an NVM Express status code
725  */
726 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
727                         struct nvme_command *cmd, u32 *result, unsigned timeout)
728 {
729         int cmdid;
730         struct sync_cmd_info cmdinfo;
731
732         cmdinfo.task = current;
733         cmdinfo.status = -EINTR;
734
735         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
736                                                                 timeout);
737         if (cmdid < 0)
738                 return cmdid;
739         cmd->common.command_id = cmdid;
740
741         set_current_state(TASK_KILLABLE);
742         nvme_submit_cmd(nvmeq, cmd);
743         schedule();
744
745         if (cmdinfo.status == -EINTR) {
746                 nvme_abort_command(nvmeq, cmdid);
747                 return -EINTR;
748         }
749
750         if (result)
751                 *result = cmdinfo.result;
752
753         return cmdinfo.status;
754 }
755
756 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
757                                                                 u32 *result)
758 {
759         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
760 }
761
762 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
763 {
764         int status;
765         struct nvme_command c;
766
767         memset(&c, 0, sizeof(c));
768         c.delete_queue.opcode = opcode;
769         c.delete_queue.qid = cpu_to_le16(id);
770
771         status = nvme_submit_admin_cmd(dev, &c, NULL);
772         if (status)
773                 return -EIO;
774         return 0;
775 }
776
777 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
778                                                 struct nvme_queue *nvmeq)
779 {
780         int status;
781         struct nvme_command c;
782         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
783
784         memset(&c, 0, sizeof(c));
785         c.create_cq.opcode = nvme_admin_create_cq;
786         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
787         c.create_cq.cqid = cpu_to_le16(qid);
788         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
789         c.create_cq.cq_flags = cpu_to_le16(flags);
790         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
791
792         status = nvme_submit_admin_cmd(dev, &c, NULL);
793         if (status)
794                 return -EIO;
795         return 0;
796 }
797
798 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
799                                                 struct nvme_queue *nvmeq)
800 {
801         int status;
802         struct nvme_command c;
803         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
804
805         memset(&c, 0, sizeof(c));
806         c.create_sq.opcode = nvme_admin_create_sq;
807         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
808         c.create_sq.sqid = cpu_to_le16(qid);
809         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
810         c.create_sq.sq_flags = cpu_to_le16(flags);
811         c.create_sq.cqid = cpu_to_le16(qid);
812
813         status = nvme_submit_admin_cmd(dev, &c, NULL);
814         if (status)
815                 return -EIO;
816         return 0;
817 }
818
819 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
820 {
821         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
822 }
823
824 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
825 {
826         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
827 }
828
829 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
830                                                         dma_addr_t dma_addr)
831 {
832         struct nvme_command c;
833
834         memset(&c, 0, sizeof(c));
835         c.identify.opcode = nvme_admin_identify;
836         c.identify.nsid = cpu_to_le32(nsid);
837         c.identify.prp1 = cpu_to_le64(dma_addr);
838         c.identify.cns = cpu_to_le32(cns);
839
840         return nvme_submit_admin_cmd(dev, &c, NULL);
841 }
842
843 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
844                                 unsigned nsid, dma_addr_t dma_addr)
845 {
846         struct nvme_command c;
847
848         memset(&c, 0, sizeof(c));
849         c.features.opcode = nvme_admin_get_features;
850         c.features.nsid = cpu_to_le32(nsid);
851         c.features.prp1 = cpu_to_le64(dma_addr);
852         c.features.fid = cpu_to_le32(fid);
853
854         return nvme_submit_admin_cmd(dev, &c, NULL);
855 }
856
857 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
858                         unsigned dword11, dma_addr_t dma_addr, u32 *result)
859 {
860         struct nvme_command c;
861
862         memset(&c, 0, sizeof(c));
863         c.features.opcode = nvme_admin_set_features;
864         c.features.prp1 = cpu_to_le64(dma_addr);
865         c.features.fid = cpu_to_le32(fid);
866         c.features.dword11 = cpu_to_le32(dword11);
867
868         return nvme_submit_admin_cmd(dev, &c, result);
869 }
870
871 static void nvme_free_queue(struct nvme_dev *dev, int qid)
872 {
873         struct nvme_queue *nvmeq = dev->queues[qid];
874         int vector = dev->entry[nvmeq->cq_vector].vector;
875
876         irq_set_affinity_hint(vector, NULL);
877         free_irq(vector, nvmeq);
878
879         /* Don't tell the adapter to delete the admin queue */
880         if (qid) {
881                 adapter_delete_sq(dev, qid);
882                 adapter_delete_cq(dev, qid);
883         }
884
885         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
886                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
887         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
888                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
889         kfree(nvmeq);
890 }
891
892 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
893                                                         int depth, int vector)
894 {
895         struct device *dmadev = &dev->pci_dev->dev;
896         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
897         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
898         if (!nvmeq)
899                 return NULL;
900
901         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
902                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
903         if (!nvmeq->cqes)
904                 goto free_nvmeq;
905         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
906
907         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
908                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
909         if (!nvmeq->sq_cmds)
910                 goto free_cqdma;
911
912         nvmeq->q_dmadev = dmadev;
913         nvmeq->dev = dev;
914         spin_lock_init(&nvmeq->q_lock);
915         nvmeq->cq_head = 0;
916         nvmeq->cq_phase = 1;
917         init_waitqueue_head(&nvmeq->sq_full);
918         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
919         bio_list_init(&nvmeq->sq_cong);
920         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
921         nvmeq->q_depth = depth;
922         nvmeq->cq_vector = vector;
923
924         return nvmeq;
925
926  free_cqdma:
927         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
928                                                         nvmeq->cq_dma_addr);
929  free_nvmeq:
930         kfree(nvmeq);
931         return NULL;
932 }
933
934 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
935                                                         const char *name)
936 {
937         if (use_threaded_interrupts)
938                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
939                                         nvme_irq_check, nvme_irq,
940                                         IRQF_DISABLED | IRQF_SHARED,
941                                         name, nvmeq);
942         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
943                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
944 }
945
946 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
947                                         int qid, int cq_size, int vector)
948 {
949         int result;
950         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
951
952         if (!nvmeq)
953                 return ERR_PTR(-ENOMEM);
954
955         result = adapter_alloc_cq(dev, qid, nvmeq);
956         if (result < 0)
957                 goto free_nvmeq;
958
959         result = adapter_alloc_sq(dev, qid, nvmeq);
960         if (result < 0)
961                 goto release_cq;
962
963         result = queue_request_irq(dev, nvmeq, "nvme");
964         if (result < 0)
965                 goto release_sq;
966
967         return nvmeq;
968
969  release_sq:
970         adapter_delete_sq(dev, qid);
971  release_cq:
972         adapter_delete_cq(dev, qid);
973  free_nvmeq:
974         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
975                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
976         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
977                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
978         kfree(nvmeq);
979         return ERR_PTR(result);
980 }
981
982 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
983 {
984         int result;
985         u32 aqa;
986         u64 cap;
987         unsigned long timeout;
988         struct nvme_queue *nvmeq;
989
990         dev->dbs = ((void __iomem *)dev->bar) + 4096;
991
992         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
993         if (!nvmeq)
994                 return -ENOMEM;
995
996         aqa = nvmeq->q_depth - 1;
997         aqa |= aqa << 16;
998
999         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1000         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1001         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1002         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1003
1004         writel(0, &dev->bar->cc);
1005         writel(aqa, &dev->bar->aqa);
1006         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1007         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1008         writel(dev->ctrl_config, &dev->bar->cc);
1009
1010         cap = readq(&dev->bar->cap);
1011         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1012         dev->db_stride = NVME_CAP_STRIDE(cap);
1013
1014         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1015                 msleep(100);
1016                 if (fatal_signal_pending(current))
1017                         return -EINTR;
1018                 if (time_after(jiffies, timeout)) {
1019                         dev_err(&dev->pci_dev->dev,
1020                                 "Device not ready; aborting initialisation\n");
1021                         return -ENODEV;
1022                 }
1023         }
1024
1025         result = queue_request_irq(dev, nvmeq, "nvme admin");
1026         dev->queues[0] = nvmeq;
1027         return result;
1028 }
1029
1030 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1031                                 unsigned long addr, unsigned length)
1032 {
1033         int i, err, count, nents, offset;
1034         struct scatterlist *sg;
1035         struct page **pages;
1036         struct nvme_iod *iod;
1037
1038         if (addr & 3)
1039                 return ERR_PTR(-EINVAL);
1040         if (!length)
1041                 return ERR_PTR(-EINVAL);
1042
1043         offset = offset_in_page(addr);
1044         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1045         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1046
1047         err = get_user_pages_fast(addr, count, 1, pages);
1048         if (err < count) {
1049                 count = err;
1050                 err = -EFAULT;
1051                 goto put_pages;
1052         }
1053
1054         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1055         sg = iod->sg;
1056         sg_init_table(sg, count);
1057         for (i = 0; i < count; i++) {
1058                 sg_set_page(&sg[i], pages[i],
1059                                 min_t(int, length, PAGE_SIZE - offset), offset);
1060                 length -= (PAGE_SIZE - offset);
1061                 offset = 0;
1062         }
1063         sg_mark_end(&sg[i - 1]);
1064         iod->nents = count;
1065
1066         err = -ENOMEM;
1067         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1068                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1069         if (!nents)
1070                 goto free_iod;
1071
1072         kfree(pages);
1073         return iod;
1074
1075  free_iod:
1076         kfree(iod);
1077  put_pages:
1078         for (i = 0; i < count; i++)
1079                 put_page(pages[i]);
1080         kfree(pages);
1081         return ERR_PTR(err);
1082 }
1083
1084 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1085                         struct nvme_iod *iod)
1086 {
1087         int i;
1088
1089         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1090                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1091
1092         for (i = 0; i < iod->nents; i++)
1093                 put_page(sg_page(&iod->sg[i]));
1094 }
1095
1096 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1097 {
1098         struct nvme_dev *dev = ns->dev;
1099         struct nvme_queue *nvmeq;
1100         struct nvme_user_io io;
1101         struct nvme_command c;
1102         unsigned length;
1103         int status;
1104         struct nvme_iod *iod;
1105
1106         if (copy_from_user(&io, uio, sizeof(io)))
1107                 return -EFAULT;
1108         length = (io.nblocks + 1) << ns->lba_shift;
1109
1110         switch (io.opcode) {
1111         case nvme_cmd_write:
1112         case nvme_cmd_read:
1113         case nvme_cmd_compare:
1114                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1115                 break;
1116         default:
1117                 return -EINVAL;
1118         }
1119
1120         if (IS_ERR(iod))
1121                 return PTR_ERR(iod);
1122
1123         memset(&c, 0, sizeof(c));
1124         c.rw.opcode = io.opcode;
1125         c.rw.flags = io.flags;
1126         c.rw.nsid = cpu_to_le32(ns->ns_id);
1127         c.rw.slba = cpu_to_le64(io.slba);
1128         c.rw.length = cpu_to_le16(io.nblocks);
1129         c.rw.control = cpu_to_le16(io.control);
1130         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1131         c.rw.reftag = io.reftag;
1132         c.rw.apptag = io.apptag;
1133         c.rw.appmask = io.appmask;
1134         /* XXX: metadata */
1135         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1136
1137         nvmeq = get_nvmeq(dev);
1138         /*
1139          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1140          * disabled.  We may be preempted at any point, and be rescheduled
1141          * to a different CPU.  That will cause cacheline bouncing, but no
1142          * additional races since q_lock already protects against other CPUs.
1143          */
1144         put_nvmeq(nvmeq);
1145         if (length != (io.nblocks + 1) << ns->lba_shift)
1146                 status = -ENOMEM;
1147         else
1148                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1149
1150         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1151         nvme_free_iod(dev, iod);
1152         return status;
1153 }
1154
1155 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1156                                         struct nvme_admin_cmd __user *ucmd)
1157 {
1158         struct nvme_admin_cmd cmd;
1159         struct nvme_command c;
1160         int status, length;
1161         struct nvme_iod *iod;
1162
1163         if (!capable(CAP_SYS_ADMIN))
1164                 return -EACCES;
1165         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1166                 return -EFAULT;
1167
1168         memset(&c, 0, sizeof(c));
1169         c.common.opcode = cmd.opcode;
1170         c.common.flags = cmd.flags;
1171         c.common.nsid = cpu_to_le32(cmd.nsid);
1172         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1173         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1174         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1175         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1176         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1177         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1178         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1179         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1180
1181         length = cmd.data_len;
1182         if (cmd.data_len) {
1183                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1184                                                                 length);
1185                 if (IS_ERR(iod))
1186                         return PTR_ERR(iod);
1187                 length = nvme_setup_prps(dev, &c.common, iod, length,
1188                                                                 GFP_KERNEL);
1189         }
1190
1191         if (length != cmd.data_len)
1192                 status = -ENOMEM;
1193         else
1194                 status = nvme_submit_admin_cmd(dev, &c, NULL);
1195
1196         if (cmd.data_len) {
1197                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1198                 nvme_free_iod(dev, iod);
1199         }
1200         return status;
1201 }
1202
1203 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1204                                                         unsigned long arg)
1205 {
1206         struct nvme_ns *ns = bdev->bd_disk->private_data;
1207
1208         switch (cmd) {
1209         case NVME_IOCTL_ID:
1210                 return ns->ns_id;
1211         case NVME_IOCTL_ADMIN_CMD:
1212                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1213         case NVME_IOCTL_SUBMIT_IO:
1214                 return nvme_submit_io(ns, (void __user *)arg);
1215         default:
1216                 return -ENOTTY;
1217         }
1218 }
1219
1220 static const struct block_device_operations nvme_fops = {
1221         .owner          = THIS_MODULE,
1222         .ioctl          = nvme_ioctl,
1223         .compat_ioctl   = nvme_ioctl,
1224 };
1225
1226 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1227 {
1228         int depth = nvmeq->q_depth - 1;
1229         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1230         unsigned long now = jiffies;
1231         int cmdid;
1232
1233         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1234                 void *ctx;
1235                 nvme_completion_fn fn;
1236                 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1237
1238                 if (!time_after(now, info[cmdid].timeout))
1239                         continue;
1240                 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1241                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1242                 fn(nvmeq->dev, ctx, &cqe);
1243         }
1244 }
1245
1246 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1247 {
1248         while (bio_list_peek(&nvmeq->sq_cong)) {
1249                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1250                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1251                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1252                         bio_list_add_head(&nvmeq->sq_cong, bio);
1253                         break;
1254                 }
1255                 if (bio_list_empty(&nvmeq->sq_cong))
1256                         remove_wait_queue(&nvmeq->sq_full,
1257                                                         &nvmeq->sq_cong_wait);
1258         }
1259 }
1260
1261 static int nvme_kthread(void *data)
1262 {
1263         struct nvme_dev *dev;
1264
1265         while (!kthread_should_stop()) {
1266                 __set_current_state(TASK_RUNNING);
1267                 spin_lock(&dev_list_lock);
1268                 list_for_each_entry(dev, &dev_list, node) {
1269                         int i;
1270                         for (i = 0; i < dev->queue_count; i++) {
1271                                 struct nvme_queue *nvmeq = dev->queues[i];
1272                                 if (!nvmeq)
1273                                         continue;
1274                                 spin_lock_irq(&nvmeq->q_lock);
1275                                 if (nvme_process_cq(nvmeq))
1276                                         printk("process_cq did something\n");
1277                                 nvme_timeout_ios(nvmeq);
1278                                 nvme_resubmit_bios(nvmeq);
1279                                 spin_unlock_irq(&nvmeq->q_lock);
1280                         }
1281                 }
1282                 spin_unlock(&dev_list_lock);
1283                 set_current_state(TASK_INTERRUPTIBLE);
1284                 schedule_timeout(HZ);
1285         }
1286         return 0;
1287 }
1288
1289 static DEFINE_IDA(nvme_index_ida);
1290
1291 static int nvme_get_ns_idx(void)
1292 {
1293         int index, error;
1294
1295         do {
1296                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1297                         return -1;
1298
1299                 spin_lock(&dev_list_lock);
1300                 error = ida_get_new(&nvme_index_ida, &index);
1301                 spin_unlock(&dev_list_lock);
1302         } while (error == -EAGAIN);
1303
1304         if (error)
1305                 index = -1;
1306         return index;
1307 }
1308
1309 static void nvme_put_ns_idx(int index)
1310 {
1311         spin_lock(&dev_list_lock);
1312         ida_remove(&nvme_index_ida, index);
1313         spin_unlock(&dev_list_lock);
1314 }
1315
1316 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1317                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1318 {
1319         struct nvme_ns *ns;
1320         struct gendisk *disk;
1321         int lbaf;
1322
1323         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1324                 return NULL;
1325
1326         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1327         if (!ns)
1328                 return NULL;
1329         ns->queue = blk_alloc_queue(GFP_KERNEL);
1330         if (!ns->queue)
1331                 goto out_free_ns;
1332         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1333         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1334         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1335 /*      queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1336         blk_queue_make_request(ns->queue, nvme_make_request);
1337         ns->dev = dev;
1338         ns->queue->queuedata = ns;
1339
1340         disk = alloc_disk(NVME_MINORS);
1341         if (!disk)
1342                 goto out_free_queue;
1343         ns->ns_id = nsid;
1344         ns->disk = disk;
1345         lbaf = id->flbas & 0xf;
1346         ns->lba_shift = id->lbaf[lbaf].ds;
1347         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1348         if (dev->max_hw_sectors)
1349                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1350
1351         disk->major = nvme_major;
1352         disk->minors = NVME_MINORS;
1353         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1354         disk->fops = &nvme_fops;
1355         disk->private_data = ns;
1356         disk->queue = ns->queue;
1357         disk->driverfs_dev = &dev->pci_dev->dev;
1358         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1359         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1360
1361         return ns;
1362
1363  out_free_queue:
1364         blk_cleanup_queue(ns->queue);
1365  out_free_ns:
1366         kfree(ns);
1367         return NULL;
1368 }
1369
1370 static void nvme_ns_free(struct nvme_ns *ns)
1371 {
1372         int index = ns->disk->first_minor / NVME_MINORS;
1373         put_disk(ns->disk);
1374         nvme_put_ns_idx(index);
1375         blk_cleanup_queue(ns->queue);
1376         kfree(ns);
1377 }
1378
1379 static int set_queue_count(struct nvme_dev *dev, int count)
1380 {
1381         int status;
1382         u32 result;
1383         u32 q_count = (count - 1) | ((count - 1) << 16);
1384
1385         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1386                                                                 &result);
1387         if (status)
1388                 return -EIO;
1389         return min(result & 0xffff, result >> 16) + 1;
1390 }
1391
1392 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1393 {
1394         int result, cpu, i, nr_io_queues, db_bar_size;
1395
1396         nr_io_queues = num_online_cpus();
1397         result = set_queue_count(dev, nr_io_queues);
1398         if (result < 0)
1399                 return result;
1400         if (result < nr_io_queues)
1401                 nr_io_queues = result;
1402
1403         /* Deregister the admin queue's interrupt */
1404         free_irq(dev->entry[0].vector, dev->queues[0]);
1405
1406         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1407         if (db_bar_size > 8192) {
1408                 iounmap(dev->bar);
1409                 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1410                                                                 db_bar_size);
1411                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1412                 dev->queues[0]->q_db = dev->dbs;
1413         }
1414
1415         for (i = 0; i < nr_io_queues; i++)
1416                 dev->entry[i].entry = i;
1417         for (;;) {
1418                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1419                                                                 nr_io_queues);
1420                 if (result == 0) {
1421                         break;
1422                 } else if (result > 0) {
1423                         nr_io_queues = result;
1424                         continue;
1425                 } else {
1426                         nr_io_queues = 1;
1427                         break;
1428                 }
1429         }
1430
1431         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1432         /* XXX: handle failure here */
1433
1434         cpu = cpumask_first(cpu_online_mask);
1435         for (i = 0; i < nr_io_queues; i++) {
1436                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1437                 cpu = cpumask_next(cpu, cpu_online_mask);
1438         }
1439
1440         for (i = 0; i < nr_io_queues; i++) {
1441                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1442                                                         NVME_Q_DEPTH, i);
1443                 if (IS_ERR(dev->queues[i + 1]))
1444                         return PTR_ERR(dev->queues[i + 1]);
1445                 dev->queue_count++;
1446         }
1447
1448         for (; i < num_possible_cpus(); i++) {
1449                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1450                 dev->queues[i + 1] = dev->queues[target + 1];
1451         }
1452
1453         return 0;
1454 }
1455
1456 static void nvme_free_queues(struct nvme_dev *dev)
1457 {
1458         int i;
1459
1460         for (i = dev->queue_count - 1; i >= 0; i--)
1461                 nvme_free_queue(dev, i);
1462 }
1463
1464 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1465 {
1466         int res, nn, i;
1467         struct nvme_ns *ns, *next;
1468         struct nvme_id_ctrl *ctrl;
1469         struct nvme_id_ns *id_ns;
1470         void *mem;
1471         dma_addr_t dma_addr;
1472
1473         res = nvme_setup_io_queues(dev);
1474         if (res)
1475                 return res;
1476
1477         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1478                                                                 GFP_KERNEL);
1479
1480         res = nvme_identify(dev, 0, 1, dma_addr);
1481         if (res) {
1482                 res = -EIO;
1483                 goto out_free;
1484         }
1485
1486         ctrl = mem;
1487         nn = le32_to_cpup(&ctrl->nn);
1488         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1489         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1490         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1491         if (ctrl->mdts) {
1492                 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1493                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1494         }
1495
1496         id_ns = mem;
1497         for (i = 1; i <= nn; i++) {
1498                 res = nvme_identify(dev, i, 0, dma_addr);
1499                 if (res)
1500                         continue;
1501
1502                 if (id_ns->ncap == 0)
1503                         continue;
1504
1505                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1506                                                         dma_addr + 4096);
1507                 if (res)
1508                         continue;
1509
1510                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1511                 if (ns)
1512                         list_add_tail(&ns->list, &dev->namespaces);
1513         }
1514         list_for_each_entry(ns, &dev->namespaces, list)
1515                 add_disk(ns->disk);
1516
1517         goto out;
1518
1519  out_free:
1520         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1521                 list_del(&ns->list);
1522                 nvme_ns_free(ns);
1523         }
1524
1525  out:
1526         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1527         return res;
1528 }
1529
1530 static int nvme_dev_remove(struct nvme_dev *dev)
1531 {
1532         struct nvme_ns *ns, *next;
1533
1534         spin_lock(&dev_list_lock);
1535         list_del(&dev->node);
1536         spin_unlock(&dev_list_lock);
1537
1538         /* TODO: wait all I/O finished or cancel them */
1539
1540         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1541                 list_del(&ns->list);
1542                 del_gendisk(ns->disk);
1543                 nvme_ns_free(ns);
1544         }
1545
1546         nvme_free_queues(dev);
1547
1548         return 0;
1549 }
1550
1551 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1552 {
1553         struct device *dmadev = &dev->pci_dev->dev;
1554         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1555                                                 PAGE_SIZE, PAGE_SIZE, 0);
1556         if (!dev->prp_page_pool)
1557                 return -ENOMEM;
1558
1559         /* Optimisation for I/Os between 4k and 128k */
1560         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1561                                                 256, 256, 0);
1562         if (!dev->prp_small_pool) {
1563                 dma_pool_destroy(dev->prp_page_pool);
1564                 return -ENOMEM;
1565         }
1566         return 0;
1567 }
1568
1569 static void nvme_release_prp_pools(struct nvme_dev *dev)
1570 {
1571         dma_pool_destroy(dev->prp_page_pool);
1572         dma_pool_destroy(dev->prp_small_pool);
1573 }
1574
1575 /* XXX: Use an ida or something to let remove / add work correctly */
1576 static void nvme_set_instance(struct nvme_dev *dev)
1577 {
1578         static int instance;
1579         dev->instance = instance++;
1580 }
1581
1582 static void nvme_release_instance(struct nvme_dev *dev)
1583 {
1584 }
1585
1586 static int __devinit nvme_probe(struct pci_dev *pdev,
1587                                                 const struct pci_device_id *id)
1588 {
1589         int bars, result = -ENOMEM;
1590         struct nvme_dev *dev;
1591
1592         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1593         if (!dev)
1594                 return -ENOMEM;
1595         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1596                                                                 GFP_KERNEL);
1597         if (!dev->entry)
1598                 goto free;
1599         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1600                                                                 GFP_KERNEL);
1601         if (!dev->queues)
1602                 goto free;
1603
1604         if (pci_enable_device_mem(pdev))
1605                 goto free;
1606         pci_set_master(pdev);
1607         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1608         if (pci_request_selected_regions(pdev, bars, "nvme"))
1609                 goto disable;
1610
1611         INIT_LIST_HEAD(&dev->namespaces);
1612         dev->pci_dev = pdev;
1613         pci_set_drvdata(pdev, dev);
1614         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1615         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1616         nvme_set_instance(dev);
1617         dev->entry[0].vector = pdev->irq;
1618
1619         result = nvme_setup_prp_pools(dev);
1620         if (result)
1621                 goto disable_msix;
1622
1623         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1624         if (!dev->bar) {
1625                 result = -ENOMEM;
1626                 goto disable_msix;
1627         }
1628
1629         result = nvme_configure_admin_queue(dev);
1630         if (result)
1631                 goto unmap;
1632         dev->queue_count++;
1633
1634         spin_lock(&dev_list_lock);
1635         list_add(&dev->node, &dev_list);
1636         spin_unlock(&dev_list_lock);
1637
1638         result = nvme_dev_add(dev);
1639         if (result)
1640                 goto delete;
1641
1642         return 0;
1643
1644  delete:
1645         spin_lock(&dev_list_lock);
1646         list_del(&dev->node);
1647         spin_unlock(&dev_list_lock);
1648
1649         nvme_free_queues(dev);
1650  unmap:
1651         iounmap(dev->bar);
1652  disable_msix:
1653         pci_disable_msix(pdev);
1654         nvme_release_instance(dev);
1655         nvme_release_prp_pools(dev);
1656  disable:
1657         pci_disable_device(pdev);
1658         pci_release_regions(pdev);
1659  free:
1660         kfree(dev->queues);
1661         kfree(dev->entry);
1662         kfree(dev);
1663         return result;
1664 }
1665
1666 static void __devexit nvme_remove(struct pci_dev *pdev)
1667 {
1668         struct nvme_dev *dev = pci_get_drvdata(pdev);
1669         nvme_dev_remove(dev);
1670         pci_disable_msix(pdev);
1671         iounmap(dev->bar);
1672         nvme_release_instance(dev);
1673         nvme_release_prp_pools(dev);
1674         pci_disable_device(pdev);
1675         pci_release_regions(pdev);
1676         kfree(dev->queues);
1677         kfree(dev->entry);
1678         kfree(dev);
1679 }
1680
1681 /* These functions are yet to be implemented */
1682 #define nvme_error_detected NULL
1683 #define nvme_dump_registers NULL
1684 #define nvme_link_reset NULL
1685 #define nvme_slot_reset NULL
1686 #define nvme_error_resume NULL
1687 #define nvme_suspend NULL
1688 #define nvme_resume NULL
1689
1690 static struct pci_error_handlers nvme_err_handler = {
1691         .error_detected = nvme_error_detected,
1692         .mmio_enabled   = nvme_dump_registers,
1693         .link_reset     = nvme_link_reset,
1694         .slot_reset     = nvme_slot_reset,
1695         .resume         = nvme_error_resume,
1696 };
1697
1698 /* Move to pci_ids.h later */
1699 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1700
1701 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1702         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1703         { 0, }
1704 };
1705 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1706
1707 static struct pci_driver nvme_driver = {
1708         .name           = "nvme",
1709         .id_table       = nvme_id_table,
1710         .probe          = nvme_probe,
1711         .remove         = __devexit_p(nvme_remove),
1712         .suspend        = nvme_suspend,
1713         .resume         = nvme_resume,
1714         .err_handler    = &nvme_err_handler,
1715 };
1716
1717 static int __init nvme_init(void)
1718 {
1719         int result = -EBUSY;
1720
1721         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1722         if (IS_ERR(nvme_thread))
1723                 return PTR_ERR(nvme_thread);
1724
1725         result = register_blkdev(nvme_major, "nvme");
1726         if (result < 0)
1727                 goto kill_kthread;
1728         else if (result > 0)
1729             nvme_major = result;
1730
1731         result = pci_register_driver(&nvme_driver);
1732         if (result)
1733                 goto unregister_blkdev;
1734         return 0;
1735
1736  unregister_blkdev:
1737         unregister_blkdev(nvme_major, "nvme");
1738  kill_kthread:
1739         kthread_stop(nvme_thread);
1740         return result;
1741 }
1742
1743 static void __exit nvme_exit(void)
1744 {
1745         pci_unregister_driver(&nvme_driver);
1746         unregister_blkdev(nvme_major, "nvme");
1747         kthread_stop(nvme_thread);
1748 }
1749
1750 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1751 MODULE_LICENSE("GPL");
1752 MODULE_VERSION("0.8");
1753 module_init(nvme_init);
1754 module_exit(nvme_exit);