NVMe: Fix off-by-one when filling in PRP lists
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/version.h>
40
41 #define NVME_Q_DEPTH 1024
42 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
43 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
44 #define NVME_MINORS 64
45 #define IO_TIMEOUT      (5 * HZ)
46 #define ADMIN_TIMEOUT   (60 * HZ)
47
48 static int nvme_major;
49 module_param(nvme_major, int, 0);
50
51 static int use_threaded_interrupts;
52 module_param(use_threaded_interrupts, int, 0);
53
54 static DEFINE_SPINLOCK(dev_list_lock);
55 static LIST_HEAD(dev_list);
56 static struct task_struct *nvme_thread;
57
58 /*
59  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
60  */
61 struct nvme_dev {
62         struct list_head node;
63         struct nvme_queue **queues;
64         u32 __iomem *dbs;
65         struct pci_dev *pci_dev;
66         struct dma_pool *prp_page_pool;
67         struct dma_pool *prp_small_pool;
68         int instance;
69         int queue_count;
70         u32 ctrl_config;
71         struct msix_entry *entry;
72         struct nvme_bar __iomem *bar;
73         struct list_head namespaces;
74         char serial[20];
75         char model[40];
76         char firmware_rev[8];
77 };
78
79 /*
80  * An NVM Express namespace is equivalent to a SCSI LUN
81  */
82 struct nvme_ns {
83         struct list_head list;
84
85         struct nvme_dev *dev;
86         struct request_queue *queue;
87         struct gendisk *disk;
88
89         int ns_id;
90         int lba_shift;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct device *q_dmadev;
99         struct nvme_dev *dev;
100         spinlock_t q_lock;
101         struct nvme_command *sq_cmds;
102         volatile struct nvme_completion *cqes;
103         dma_addr_t sq_dma_addr;
104         dma_addr_t cq_dma_addr;
105         wait_queue_head_t sq_full;
106         wait_queue_t sq_cong_wait;
107         struct bio_list sq_cong;
108         u32 __iomem *q_db;
109         u16 q_depth;
110         u16 cq_vector;
111         u16 sq_head;
112         u16 sq_tail;
113         u16 cq_head;
114         u16 cq_phase;
115         unsigned long cmdid_data[];
116 };
117
118 /*
119  * Check we didin't inadvertently grow the command struct
120  */
121 static inline void _nvme_check_size(void)
122 {
123         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132 }
133
134 struct nvme_cmd_info {
135         unsigned long ctx;
136         unsigned long timeout;
137 };
138
139 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140 {
141         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142 }
143
144 /**
145  * alloc_cmdid() - Allocate a Command ID
146  * @nvmeq: The queue that will be used for this command
147  * @ctx: A pointer that will be passed to the handler
148  * @handler: The ID of the handler to call
149  *
150  * Allocate a Command ID for a queue.  The data passed in will
151  * be passed to the completion handler.  This is implemented by using
152  * the bottom two bits of the ctx pointer to store the handler ID.
153  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154  * We can change this if it becomes a problem.
155  */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157                                                         unsigned timeout)
158 {
159         int depth = nvmeq->q_depth - 1;
160         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161         int cmdid;
162
163         BUG_ON((unsigned long)ctx & 3);
164
165         do {
166                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167                 if (cmdid >= depth)
168                         return -EBUSY;
169         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171         info[cmdid].ctx = (unsigned long)ctx | handler;
172         info[cmdid].timeout = jiffies + timeout;
173         return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177                                                 int handler, unsigned timeout)
178 {
179         int cmdid;
180         wait_event_killable(nvmeq->sq_full,
181                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182         return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /*
186  * If you need more than four handlers, you'll need to change how
187  * alloc_cmdid and nvme_process_cq work.  Consider using a special
188  * CMD_CTX value instead, if that works for your situation.
189  */
190 enum {
191         sync_completion_id = 0,
192         bio_completion_id,
193 };
194
195 /* Special values must be a multiple of 4, and less than 0x1000 */
196 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201
202 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
203 {
204         unsigned long data;
205         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
206
207         if (cmdid >= nvmeq->q_depth)
208                 return CMD_CTX_INVALID;
209         data = info[cmdid].ctx;
210         info[cmdid].ctx = CMD_CTX_COMPLETED;
211         clear_bit(cmdid, nvmeq->cmdid_data);
212         wake_up(&nvmeq->sq_full);
213         return data;
214 }
215
216 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
217 {
218         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219         info[cmdid].ctx = CMD_CTX_CANCELLED;
220 }
221
222 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
223 {
224         int qid, cpu = get_cpu();
225         if (cpu < ns->dev->queue_count)
226                 qid = cpu + 1;
227         else
228                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
229         return ns->dev->queues[qid];
230 }
231
232 static void put_nvmeq(struct nvme_queue *nvmeq)
233 {
234         put_cpu();
235 }
236
237 /**
238  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239  * @nvmeq: The queue to use
240  * @cmd: The command to send
241  *
242  * Safe to use from interrupt context
243  */
244 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245 {
246         unsigned long flags;
247         u16 tail;
248         spin_lock_irqsave(&nvmeq->q_lock, flags);
249         tail = nvmeq->sq_tail;
250         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251         if (++tail == nvmeq->q_depth)
252                 tail = 0;
253         writel(tail, nvmeq->q_db);
254         nvmeq->sq_tail = tail;
255         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257         return 0;
258 }
259
260 struct nvme_prps {
261         int npages;
262         dma_addr_t first_dma;
263         __le64 *list[0];
264 };
265
266 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
267 {
268         const int last_prp = PAGE_SIZE / 8 - 1;
269         int i;
270         dma_addr_t prp_dma;
271
272         if (!prps)
273                 return;
274
275         prp_dma = prps->first_dma;
276
277         if (prps->npages == 0)
278                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
279         for (i = 0; i < prps->npages; i++) {
280                 __le64 *prp_list = prps->list[i];
281                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
282                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
283                 prp_dma = next_prp_dma;
284         }
285         kfree(prps);
286 }
287
288 struct nvme_bio {
289         struct bio *bio;
290         int nents;
291         struct nvme_prps *prps;
292         struct scatterlist sg[0];
293 };
294
295 /* XXX: use a mempool */
296 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
297 {
298         return kzalloc(sizeof(struct nvme_bio) +
299                         sizeof(struct scatterlist) * nseg, gfp);
300 }
301
302 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
303 {
304         nvme_free_prps(nvmeq->dev, nbio->prps);
305         kfree(nbio);
306 }
307
308 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
309                                                 struct nvme_completion *cqe)
310 {
311         struct nvme_bio *nbio = ctx;
312         struct bio *bio = nbio->bio;
313         u16 status = le16_to_cpup(&cqe->status) >> 1;
314
315         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
316                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
317         free_nbio(nvmeq, nbio);
318         if (status)
319                 bio_endio(bio, -EIO);
320         if (bio->bi_vcnt > bio->bi_idx) {
321                 bio_list_add(&nvmeq->sq_cong, bio);
322                 wake_up_process(nvme_thread);
323         } else {
324                 bio_endio(bio, 0);
325         }
326 }
327
328 /* length is in bytes */
329 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
330                                         struct nvme_common_command *cmd,
331                                         struct scatterlist *sg, int length)
332 {
333         struct dma_pool *pool;
334         int dma_len = sg_dma_len(sg);
335         u64 dma_addr = sg_dma_address(sg);
336         int offset = offset_in_page(dma_addr);
337         __le64 *prp_list;
338         dma_addr_t prp_dma;
339         int nprps, npages, i, prp_page;
340         struct nvme_prps *prps = NULL;
341
342         cmd->prp1 = cpu_to_le64(dma_addr);
343         length -= (PAGE_SIZE - offset);
344         if (length <= 0)
345                 return prps;
346
347         dma_len -= (PAGE_SIZE - offset);
348         if (dma_len) {
349                 dma_addr += (PAGE_SIZE - offset);
350         } else {
351                 sg = sg_next(sg);
352                 dma_addr = sg_dma_address(sg);
353                 dma_len = sg_dma_len(sg);
354         }
355
356         if (length <= PAGE_SIZE) {
357                 cmd->prp2 = cpu_to_le64(dma_addr);
358                 return prps;
359         }
360
361         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
362         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
363         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
364         prp_page = 0;
365         if (nprps <= (256 / 8)) {
366                 pool = dev->prp_small_pool;
367                 prps->npages = 0;
368         } else {
369                 pool = dev->prp_page_pool;
370                 prps->npages = npages;
371         }
372
373         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
374         prps->list[prp_page++] = prp_list;
375         prps->first_dma = prp_dma;
376         cmd->prp2 = cpu_to_le64(prp_dma);
377         i = 0;
378         for (;;) {
379                 if (i == PAGE_SIZE / 8) {
380                         __le64 *old_prp_list = prp_list;
381                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
382                         prps->list[prp_page++] = prp_list;
383                         prp_list[0] = old_prp_list[i - 1];
384                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
385                         i = 1;
386                 }
387                 prp_list[i++] = cpu_to_le64(dma_addr);
388                 dma_len -= PAGE_SIZE;
389                 dma_addr += PAGE_SIZE;
390                 length -= PAGE_SIZE;
391                 if (length <= 0)
392                         break;
393                 if (dma_len > 0)
394                         continue;
395                 BUG_ON(dma_len < 0);
396                 sg = sg_next(sg);
397                 dma_addr = sg_dma_address(sg);
398                 dma_len = sg_dma_len(sg);
399         }
400
401         return prps;
402 }
403
404 /* NVMe scatterlists require no holes in the virtual address */
405 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
406                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
407
408 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
409                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
410 {
411         struct bio_vec *bvec, *bvprv = NULL;
412         struct scatterlist *sg = NULL;
413         int i, old_idx, length = 0, nsegs = 0;
414
415         sg_init_table(nbio->sg, psegs);
416         old_idx = bio->bi_idx;
417         bio_for_each_segment(bvec, bio, i) {
418                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
419                         sg->length += bvec->bv_len;
420                 } else {
421                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
422                                 break;
423                         sg = sg ? sg + 1 : nbio->sg;
424                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
425                                                         bvec->bv_offset);
426                         nsegs++;
427                 }
428                 length += bvec->bv_len;
429                 bvprv = bvec;
430         }
431         bio->bi_idx = i;
432         nbio->nents = nsegs;
433         sg_mark_end(sg);
434         if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
435                 bio->bi_idx = old_idx;
436                 return -ENOMEM;
437         }
438         return length;
439 }
440
441 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
442                                                                 int cmdid)
443 {
444         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
445
446         memset(cmnd, 0, sizeof(*cmnd));
447         cmnd->common.opcode = nvme_cmd_flush;
448         cmnd->common.command_id = cmdid;
449         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
450
451         if (++nvmeq->sq_tail == nvmeq->q_depth)
452                 nvmeq->sq_tail = 0;
453         writel(nvmeq->sq_tail, nvmeq->q_db);
454
455         return 0;
456 }
457
458 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
459 {
460         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
461                                                 sync_completion_id, IO_TIMEOUT);
462         if (unlikely(cmdid < 0))
463                 return cmdid;
464
465         return nvme_submit_flush(nvmeq, ns, cmdid);
466 }
467
468 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
469                                                                 struct bio *bio)
470 {
471         struct nvme_command *cmnd;
472         struct nvme_bio *nbio;
473         enum dma_data_direction dma_dir;
474         int cmdid, length, result = -ENOMEM;
475         u16 control;
476         u32 dsmgmt;
477         int psegs = bio_phys_segments(ns->queue, bio);
478
479         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
480                 result = nvme_submit_flush_data(nvmeq, ns);
481                 if (result)
482                         return result;
483         }
484
485         nbio = alloc_nbio(psegs, GFP_ATOMIC);
486         if (!nbio)
487                 goto nomem;
488         nbio->bio = bio;
489
490         result = -EBUSY;
491         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
492         if (unlikely(cmdid < 0))
493                 goto free_nbio;
494
495         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
496                 return nvme_submit_flush(nvmeq, ns, cmdid);
497
498         control = 0;
499         if (bio->bi_rw & REQ_FUA)
500                 control |= NVME_RW_FUA;
501         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
502                 control |= NVME_RW_LR;
503
504         dsmgmt = 0;
505         if (bio->bi_rw & REQ_RAHEAD)
506                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
507
508         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
509
510         memset(cmnd, 0, sizeof(*cmnd));
511         if (bio_data_dir(bio)) {
512                 cmnd->rw.opcode = nvme_cmd_write;
513                 dma_dir = DMA_TO_DEVICE;
514         } else {
515                 cmnd->rw.opcode = nvme_cmd_read;
516                 dma_dir = DMA_FROM_DEVICE;
517         }
518
519         result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
520         if (result < 0)
521                 goto free_nbio;
522         length = result;
523
524         cmnd->rw.command_id = cmdid;
525         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
526         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
527                                                                 length);
528         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
529         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
530         cmnd->rw.control = cpu_to_le16(control);
531         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
532
533         bio->bi_sector += length >> 9;
534
535         if (++nvmeq->sq_tail == nvmeq->q_depth)
536                 nvmeq->sq_tail = 0;
537         writel(nvmeq->sq_tail, nvmeq->q_db);
538
539         return 0;
540
541  free_nbio:
542         free_nbio(nvmeq, nbio);
543  nomem:
544         return result;
545 }
546
547 /*
548  * NB: return value of non-zero would mean that we were a stacking driver.
549  * make_request must always succeed.
550  */
551 static int nvme_make_request(struct request_queue *q, struct bio *bio)
552 {
553         struct nvme_ns *ns = q->queuedata;
554         struct nvme_queue *nvmeq = get_nvmeq(ns);
555         int result = -EBUSY;
556
557         spin_lock_irq(&nvmeq->q_lock);
558         if (bio_list_empty(&nvmeq->sq_cong))
559                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
560         if (unlikely(result)) {
561                 if (bio_list_empty(&nvmeq->sq_cong))
562                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
563                 bio_list_add(&nvmeq->sq_cong, bio);
564         }
565
566         spin_unlock_irq(&nvmeq->q_lock);
567         put_nvmeq(nvmeq);
568
569         return 0;
570 }
571
572 struct sync_cmd_info {
573         struct task_struct *task;
574         u32 result;
575         int status;
576 };
577
578 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
579                                                 struct nvme_completion *cqe)
580 {
581         struct sync_cmd_info *cmdinfo = ctx;
582         if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
583                 return;
584         if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
585                 return;
586         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
587                 dev_warn(nvmeq->q_dmadev,
588                                 "completed id %d twice on queue %d\n",
589                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
590                 return;
591         }
592         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
593                 dev_warn(nvmeq->q_dmadev,
594                                 "invalid id %d completed on queue %d\n",
595                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
596                 return;
597         }
598         cmdinfo->result = le32_to_cpup(&cqe->result);
599         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
600         wake_up_process(cmdinfo->task);
601 }
602
603 typedef void (*completion_fn)(struct nvme_queue *, void *,
604                                                 struct nvme_completion *);
605
606 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
607 {
608         u16 head, phase;
609
610         static const completion_fn completions[4] = {
611                 [sync_completion_id] = sync_completion,
612                 [bio_completion_id]  = bio_completion,
613         };
614
615         head = nvmeq->cq_head;
616         phase = nvmeq->cq_phase;
617
618         for (;;) {
619                 unsigned long data;
620                 void *ptr;
621                 unsigned char handler;
622                 struct nvme_completion cqe = nvmeq->cqes[head];
623                 if ((le16_to_cpu(cqe.status) & 1) != phase)
624                         break;
625                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
626                 if (++head == nvmeq->q_depth) {
627                         head = 0;
628                         phase = !phase;
629                 }
630
631                 data = free_cmdid(nvmeq, cqe.command_id);
632                 handler = data & 3;
633                 ptr = (void *)(data & ~3UL);
634                 completions[handler](nvmeq, ptr, &cqe);
635         }
636
637         /* If the controller ignores the cq head doorbell and continuously
638          * writes to the queue, it is theoretically possible to wrap around
639          * the queue twice and mistakenly return IRQ_NONE.  Linux only
640          * requires that 0.1% of your interrupts are handled, so this isn't
641          * a big problem.
642          */
643         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
644                 return IRQ_NONE;
645
646         writel(head, nvmeq->q_db + 1);
647         nvmeq->cq_head = head;
648         nvmeq->cq_phase = phase;
649
650         return IRQ_HANDLED;
651 }
652
653 static irqreturn_t nvme_irq(int irq, void *data)
654 {
655         irqreturn_t result;
656         struct nvme_queue *nvmeq = data;
657         spin_lock(&nvmeq->q_lock);
658         result = nvme_process_cq(nvmeq);
659         spin_unlock(&nvmeq->q_lock);
660         return result;
661 }
662
663 static irqreturn_t nvme_irq_check(int irq, void *data)
664 {
665         struct nvme_queue *nvmeq = data;
666         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
667         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
668                 return IRQ_NONE;
669         return IRQ_WAKE_THREAD;
670 }
671
672 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
673 {
674         spin_lock_irq(&nvmeq->q_lock);
675         cancel_cmdid_data(nvmeq, cmdid);
676         spin_unlock_irq(&nvmeq->q_lock);
677 }
678
679 /*
680  * Returns 0 on success.  If the result is negative, it's a Linux error code;
681  * if the result is positive, it's an NVM Express status code
682  */
683 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
684                         struct nvme_command *cmd, u32 *result, unsigned timeout)
685 {
686         int cmdid;
687         struct sync_cmd_info cmdinfo;
688
689         cmdinfo.task = current;
690         cmdinfo.status = -EINTR;
691
692         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
693                                                                 timeout);
694         if (cmdid < 0)
695                 return cmdid;
696         cmd->common.command_id = cmdid;
697
698         set_current_state(TASK_KILLABLE);
699         nvme_submit_cmd(nvmeq, cmd);
700         schedule();
701
702         if (cmdinfo.status == -EINTR) {
703                 nvme_abort_command(nvmeq, cmdid);
704                 return -EINTR;
705         }
706
707         if (result)
708                 *result = cmdinfo.result;
709
710         return cmdinfo.status;
711 }
712
713 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
714                                                                 u32 *result)
715 {
716         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
717 }
718
719 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
720 {
721         int status;
722         struct nvme_command c;
723
724         memset(&c, 0, sizeof(c));
725         c.delete_queue.opcode = opcode;
726         c.delete_queue.qid = cpu_to_le16(id);
727
728         status = nvme_submit_admin_cmd(dev, &c, NULL);
729         if (status)
730                 return -EIO;
731         return 0;
732 }
733
734 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
735                                                 struct nvme_queue *nvmeq)
736 {
737         int status;
738         struct nvme_command c;
739         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
740
741         memset(&c, 0, sizeof(c));
742         c.create_cq.opcode = nvme_admin_create_cq;
743         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
744         c.create_cq.cqid = cpu_to_le16(qid);
745         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
746         c.create_cq.cq_flags = cpu_to_le16(flags);
747         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
748
749         status = nvme_submit_admin_cmd(dev, &c, NULL);
750         if (status)
751                 return -EIO;
752         return 0;
753 }
754
755 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
756                                                 struct nvme_queue *nvmeq)
757 {
758         int status;
759         struct nvme_command c;
760         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
761
762         memset(&c, 0, sizeof(c));
763         c.create_sq.opcode = nvme_admin_create_sq;
764         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
765         c.create_sq.sqid = cpu_to_le16(qid);
766         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
767         c.create_sq.sq_flags = cpu_to_le16(flags);
768         c.create_sq.cqid = cpu_to_le16(qid);
769
770         status = nvme_submit_admin_cmd(dev, &c, NULL);
771         if (status)
772                 return -EIO;
773         return 0;
774 }
775
776 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
777 {
778         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
779 }
780
781 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
782 {
783         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
784 }
785
786 static void nvme_free_queue(struct nvme_dev *dev, int qid)
787 {
788         struct nvme_queue *nvmeq = dev->queues[qid];
789
790         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
791
792         /* Don't tell the adapter to delete the admin queue */
793         if (qid) {
794                 adapter_delete_sq(dev, qid);
795                 adapter_delete_cq(dev, qid);
796         }
797
798         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
799                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
800         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
801                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
802         kfree(nvmeq);
803 }
804
805 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
806                                                         int depth, int vector)
807 {
808         struct device *dmadev = &dev->pci_dev->dev;
809         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
810         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
811         if (!nvmeq)
812                 return NULL;
813
814         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
815                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
816         if (!nvmeq->cqes)
817                 goto free_nvmeq;
818         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
819
820         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
821                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
822         if (!nvmeq->sq_cmds)
823                 goto free_cqdma;
824
825         nvmeq->q_dmadev = dmadev;
826         nvmeq->dev = dev;
827         spin_lock_init(&nvmeq->q_lock);
828         nvmeq->cq_head = 0;
829         nvmeq->cq_phase = 1;
830         init_waitqueue_head(&nvmeq->sq_full);
831         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
832         bio_list_init(&nvmeq->sq_cong);
833         nvmeq->q_db = &dev->dbs[qid * 2];
834         nvmeq->q_depth = depth;
835         nvmeq->cq_vector = vector;
836
837         return nvmeq;
838
839  free_cqdma:
840         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
841                                                         nvmeq->cq_dma_addr);
842  free_nvmeq:
843         kfree(nvmeq);
844         return NULL;
845 }
846
847 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
848                                                         const char *name)
849 {
850         if (use_threaded_interrupts)
851                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
852                                         nvme_irq_check, nvme_irq,
853                                         IRQF_DISABLED | IRQF_SHARED,
854                                         name, nvmeq);
855         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
856                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
857 }
858
859 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
860                                         int qid, int cq_size, int vector)
861 {
862         int result;
863         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
864
865         if (!nvmeq)
866                 return NULL;
867
868         result = adapter_alloc_cq(dev, qid, nvmeq);
869         if (result < 0)
870                 goto free_nvmeq;
871
872         result = adapter_alloc_sq(dev, qid, nvmeq);
873         if (result < 0)
874                 goto release_cq;
875
876         result = queue_request_irq(dev, nvmeq, "nvme");
877         if (result < 0)
878                 goto release_sq;
879
880         return nvmeq;
881
882  release_sq:
883         adapter_delete_sq(dev, qid);
884  release_cq:
885         adapter_delete_cq(dev, qid);
886  free_nvmeq:
887         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
888                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
889         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
890                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
891         kfree(nvmeq);
892         return NULL;
893 }
894
895 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
896 {
897         int result;
898         u32 aqa;
899         struct nvme_queue *nvmeq;
900
901         dev->dbs = ((void __iomem *)dev->bar) + 4096;
902
903         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
904         if (!nvmeq)
905                 return -ENOMEM;
906
907         aqa = nvmeq->q_depth - 1;
908         aqa |= aqa << 16;
909
910         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
911         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
912         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
913
914         writel(0, &dev->bar->cc);
915         writel(aqa, &dev->bar->aqa);
916         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
917         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
918         writel(dev->ctrl_config, &dev->bar->cc);
919
920         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
921                 msleep(100);
922                 if (fatal_signal_pending(current))
923                         return -EINTR;
924         }
925
926         result = queue_request_irq(dev, nvmeq, "nvme admin");
927         dev->queues[0] = nvmeq;
928         return result;
929 }
930
931 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
932                                 unsigned long addr, unsigned length,
933                                 struct scatterlist **sgp)
934 {
935         int i, err, count, nents, offset;
936         struct scatterlist *sg;
937         struct page **pages;
938
939         if (addr & 3)
940                 return -EINVAL;
941         if (!length)
942                 return -EINVAL;
943
944         offset = offset_in_page(addr);
945         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
946         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
947
948         err = get_user_pages_fast(addr, count, 1, pages);
949         if (err < count) {
950                 count = err;
951                 err = -EFAULT;
952                 goto put_pages;
953         }
954
955         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
956         sg_init_table(sg, count);
957         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
958         length -= (PAGE_SIZE - offset);
959         for (i = 1; i < count; i++) {
960                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
961                 length -= PAGE_SIZE;
962         }
963
964         err = -ENOMEM;
965         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
966                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
967         if (!nents)
968                 goto put_pages;
969
970         kfree(pages);
971         *sgp = sg;
972         return nents;
973
974  put_pages:
975         for (i = 0; i < count; i++)
976                 put_page(pages[i]);
977         kfree(pages);
978         return err;
979 }
980
981 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
982                                 unsigned long addr, int length,
983                                 struct scatterlist *sg, int nents)
984 {
985         int i, count;
986
987         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
988         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
989
990         for (i = 0; i < count; i++)
991                 put_page(sg_page(&sg[i]));
992 }
993
994 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
995                                         unsigned long addr, unsigned length,
996                                         struct nvme_command *cmd)
997 {
998         int err, nents;
999         struct scatterlist *sg;
1000         struct nvme_prps *prps;
1001
1002         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1003         if (nents < 0)
1004                 return nents;
1005         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
1006         err = nvme_submit_admin_cmd(dev, cmd, NULL);
1007         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
1008         nvme_free_prps(dev, prps);
1009         return err ? -EIO : 0;
1010 }
1011
1012 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
1013 {
1014         struct nvme_command c;
1015
1016         memset(&c, 0, sizeof(c));
1017         c.identify.opcode = nvme_admin_identify;
1018         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1019         c.identify.cns = cpu_to_le32(cns);
1020
1021         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1022 }
1023
1024 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1025 {
1026         struct nvme_command c;
1027
1028         memset(&c, 0, sizeof(c));
1029         c.features.opcode = nvme_admin_get_features;
1030         c.features.nsid = cpu_to_le32(ns->ns_id);
1031         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1032
1033         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1034 }
1035
1036 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1037 {
1038         struct nvme_dev *dev = ns->dev;
1039         struct nvme_queue *nvmeq;
1040         struct nvme_user_io io;
1041         struct nvme_command c;
1042         unsigned length;
1043         u32 result;
1044         int nents, status;
1045         struct scatterlist *sg;
1046         struct nvme_prps *prps;
1047
1048         if (copy_from_user(&io, uio, sizeof(io)))
1049                 return -EFAULT;
1050         length = io.nblocks << io.block_shift;
1051         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
1052         if (nents < 0)
1053                 return nents;
1054
1055         memset(&c, 0, sizeof(c));
1056         c.rw.opcode = io.opcode;
1057         c.rw.flags = io.flags;
1058         c.rw.nsid = cpu_to_le32(io.nsid);
1059         c.rw.slba = cpu_to_le64(io.slba);
1060         c.rw.length = cpu_to_le16(io.nblocks - 1);
1061         c.rw.control = cpu_to_le16(io.control);
1062         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1063         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
1064         c.rw.apptag = cpu_to_le16(io.apptag);
1065         c.rw.appmask = cpu_to_le16(io.appmask);
1066         /* XXX: metadata */
1067         prps = nvme_setup_prps(dev, &c.common, sg, length);
1068
1069         nvmeq = get_nvmeq(ns);
1070         /*
1071          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1072          * disabled.  We may be preempted at any point, and be rescheduled
1073          * to a different CPU.  That will cause cacheline bouncing, but no
1074          * additional races since q_lock already protects against other CPUs.
1075          */
1076         put_nvmeq(nvmeq);
1077         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1078
1079         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1080         nvme_free_prps(dev, prps);
1081         put_user(result, &uio->result);
1082         return status;
1083 }
1084
1085 static int nvme_download_firmware(struct nvme_ns *ns,
1086                                                 struct nvme_dlfw __user *udlfw)
1087 {
1088         struct nvme_dev *dev = ns->dev;
1089         struct nvme_dlfw dlfw;
1090         struct nvme_command c;
1091         int nents, status;
1092         struct scatterlist *sg;
1093         struct nvme_prps *prps;
1094
1095         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1096                 return -EFAULT;
1097         if (dlfw.length >= (1 << 30))
1098                 return -EINVAL;
1099
1100         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1101         if (nents < 0)
1102                 return nents;
1103
1104         memset(&c, 0, sizeof(c));
1105         c.dlfw.opcode = nvme_admin_download_fw;
1106         c.dlfw.numd = cpu_to_le32(dlfw.length);
1107         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1108         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1109
1110         status = nvme_submit_admin_cmd(dev, &c, NULL);
1111         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1112         nvme_free_prps(dev, prps);
1113         return status;
1114 }
1115
1116 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1117 {
1118         struct nvme_dev *dev = ns->dev;
1119         struct nvme_command c;
1120
1121         memset(&c, 0, sizeof(c));
1122         c.common.opcode = nvme_admin_activate_fw;
1123         c.common.rsvd10[0] = cpu_to_le32(arg);
1124
1125         return nvme_submit_admin_cmd(dev, &c, NULL);
1126 }
1127
1128 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1129                                                         unsigned long arg)
1130 {
1131         struct nvme_ns *ns = bdev->bd_disk->private_data;
1132
1133         switch (cmd) {
1134         case NVME_IOCTL_IDENTIFY_NS:
1135                 return nvme_identify(ns, arg, 0);
1136         case NVME_IOCTL_IDENTIFY_CTRL:
1137                 return nvme_identify(ns, arg, 1);
1138         case NVME_IOCTL_GET_RANGE_TYPE:
1139                 return nvme_get_range_type(ns, arg);
1140         case NVME_IOCTL_SUBMIT_IO:
1141                 return nvme_submit_io(ns, (void __user *)arg);
1142         case NVME_IOCTL_DOWNLOAD_FW:
1143                 return nvme_download_firmware(ns, (void __user *)arg);
1144         case NVME_IOCTL_ACTIVATE_FW:
1145                 return nvme_activate_firmware(ns, arg);
1146         default:
1147                 return -ENOTTY;
1148         }
1149 }
1150
1151 static const struct block_device_operations nvme_fops = {
1152         .owner          = THIS_MODULE,
1153         .ioctl          = nvme_ioctl,
1154 };
1155
1156 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1157 {
1158         while (bio_list_peek(&nvmeq->sq_cong)) {
1159                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1160                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1161                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1162                         bio_list_add_head(&nvmeq->sq_cong, bio);
1163                         break;
1164                 }
1165         }
1166 }
1167
1168 static int nvme_kthread(void *data)
1169 {
1170         struct nvme_dev *dev;
1171
1172         while (!kthread_should_stop()) {
1173                 __set_current_state(TASK_RUNNING);
1174                 spin_lock(&dev_list_lock);
1175                 list_for_each_entry(dev, &dev_list, node) {
1176                         int i;
1177                         for (i = 0; i < dev->queue_count; i++) {
1178                                 struct nvme_queue *nvmeq = dev->queues[i];
1179                                 if (!nvmeq)
1180                                         continue;
1181                                 spin_lock_irq(&nvmeq->q_lock);
1182                                 if (nvme_process_cq(nvmeq))
1183                                         printk("process_cq did something\n");
1184                                 nvme_resubmit_bios(nvmeq);
1185                                 spin_unlock_irq(&nvmeq->q_lock);
1186                         }
1187                 }
1188                 spin_unlock(&dev_list_lock);
1189                 set_current_state(TASK_INTERRUPTIBLE);
1190                 schedule_timeout(HZ);
1191         }
1192         return 0;
1193 }
1194
1195 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1196                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1197 {
1198         struct nvme_ns *ns;
1199         struct gendisk *disk;
1200         int lbaf;
1201
1202         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1203                 return NULL;
1204
1205         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1206         if (!ns)
1207                 return NULL;
1208         ns->queue = blk_alloc_queue(GFP_KERNEL);
1209         if (!ns->queue)
1210                 goto out_free_ns;
1211         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1212                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1213         blk_queue_make_request(ns->queue, nvme_make_request);
1214         ns->dev = dev;
1215         ns->queue->queuedata = ns;
1216
1217         disk = alloc_disk(NVME_MINORS);
1218         if (!disk)
1219                 goto out_free_queue;
1220         ns->ns_id = index;
1221         ns->disk = disk;
1222         lbaf = id->flbas & 0xf;
1223         ns->lba_shift = id->lbaf[lbaf].ds;
1224
1225         disk->major = nvme_major;
1226         disk->minors = NVME_MINORS;
1227         disk->first_minor = NVME_MINORS * index;
1228         disk->fops = &nvme_fops;
1229         disk->private_data = ns;
1230         disk->queue = ns->queue;
1231         disk->driverfs_dev = &dev->pci_dev->dev;
1232         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1233         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1234
1235         return ns;
1236
1237  out_free_queue:
1238         blk_cleanup_queue(ns->queue);
1239  out_free_ns:
1240         kfree(ns);
1241         return NULL;
1242 }
1243
1244 static void nvme_ns_free(struct nvme_ns *ns)
1245 {
1246         put_disk(ns->disk);
1247         blk_cleanup_queue(ns->queue);
1248         kfree(ns);
1249 }
1250
1251 static int set_queue_count(struct nvme_dev *dev, int count)
1252 {
1253         int status;
1254         u32 result;
1255         struct nvme_command c;
1256         u32 q_count = (count - 1) | ((count - 1) << 16);
1257
1258         memset(&c, 0, sizeof(c));
1259         c.features.opcode = nvme_admin_get_features;
1260         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1261         c.features.dword11 = cpu_to_le32(q_count);
1262
1263         status = nvme_submit_admin_cmd(dev, &c, &result);
1264         if (status)
1265                 return -EIO;
1266         return min(result & 0xffff, result >> 16) + 1;
1267 }
1268
1269 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1270 {
1271         int result, cpu, i, nr_io_queues;
1272
1273         nr_io_queues = num_online_cpus();
1274         result = set_queue_count(dev, nr_io_queues);
1275         if (result < 0)
1276                 return result;
1277         if (result < nr_io_queues)
1278                 nr_io_queues = result;
1279
1280         /* Deregister the admin queue's interrupt */
1281         free_irq(dev->entry[0].vector, dev->queues[0]);
1282
1283         for (i = 0; i < nr_io_queues; i++)
1284                 dev->entry[i].entry = i;
1285         for (;;) {
1286                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1287                                                                 nr_io_queues);
1288                 if (result == 0) {
1289                         break;
1290                 } else if (result > 0) {
1291                         nr_io_queues = result;
1292                         continue;
1293                 } else {
1294                         nr_io_queues = 1;
1295                         break;
1296                 }
1297         }
1298
1299         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1300         /* XXX: handle failure here */
1301
1302         cpu = cpumask_first(cpu_online_mask);
1303         for (i = 0; i < nr_io_queues; i++) {
1304                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1305                 cpu = cpumask_next(cpu, cpu_online_mask);
1306         }
1307
1308         for (i = 0; i < nr_io_queues; i++) {
1309                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1310                                                         NVME_Q_DEPTH, i);
1311                 if (!dev->queues[i + 1])
1312                         return -ENOMEM;
1313                 dev->queue_count++;
1314         }
1315
1316         return 0;
1317 }
1318
1319 static void nvme_free_queues(struct nvme_dev *dev)
1320 {
1321         int i;
1322
1323         for (i = dev->queue_count - 1; i >= 0; i--)
1324                 nvme_free_queue(dev, i);
1325 }
1326
1327 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1328 {
1329         int res, nn, i;
1330         struct nvme_ns *ns, *next;
1331         struct nvme_id_ctrl *ctrl;
1332         void *id;
1333         dma_addr_t dma_addr;
1334         struct nvme_command cid, crt;
1335
1336         res = nvme_setup_io_queues(dev);
1337         if (res)
1338                 return res;
1339
1340         /* XXX: Switch to a SG list once prp2 works */
1341         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1342                                                                 GFP_KERNEL);
1343
1344         memset(&cid, 0, sizeof(cid));
1345         cid.identify.opcode = nvme_admin_identify;
1346         cid.identify.nsid = 0;
1347         cid.identify.prp1 = cpu_to_le64(dma_addr);
1348         cid.identify.cns = cpu_to_le32(1);
1349
1350         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1351         if (res) {
1352                 res = -EIO;
1353                 goto out_free;
1354         }
1355
1356         ctrl = id;
1357         nn = le32_to_cpup(&ctrl->nn);
1358         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1359         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1360         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1361
1362         cid.identify.cns = 0;
1363         memset(&crt, 0, sizeof(crt));
1364         crt.features.opcode = nvme_admin_get_features;
1365         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1366         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1367
1368         for (i = 0; i <= nn; i++) {
1369                 cid.identify.nsid = cpu_to_le32(i);
1370                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1371                 if (res)
1372                         continue;
1373
1374                 if (((struct nvme_id_ns *)id)->ncap == 0)
1375                         continue;
1376
1377                 crt.features.nsid = cpu_to_le32(i);
1378                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1379                 if (res)
1380                         continue;
1381
1382                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1383                 if (ns)
1384                         list_add_tail(&ns->list, &dev->namespaces);
1385         }
1386         list_for_each_entry(ns, &dev->namespaces, list)
1387                 add_disk(ns->disk);
1388
1389         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1390         return 0;
1391
1392  out_free:
1393         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1394                 list_del(&ns->list);
1395                 nvme_ns_free(ns);
1396         }
1397
1398         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1399         return res;
1400 }
1401
1402 static int nvme_dev_remove(struct nvme_dev *dev)
1403 {
1404         struct nvme_ns *ns, *next;
1405
1406         spin_lock(&dev_list_lock);
1407         list_del(&dev->node);
1408         spin_unlock(&dev_list_lock);
1409
1410         /* TODO: wait all I/O finished or cancel them */
1411
1412         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1413                 list_del(&ns->list);
1414                 del_gendisk(ns->disk);
1415                 nvme_ns_free(ns);
1416         }
1417
1418         nvme_free_queues(dev);
1419
1420         return 0;
1421 }
1422
1423 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1424 {
1425         struct device *dmadev = &dev->pci_dev->dev;
1426         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1427                                                 PAGE_SIZE, PAGE_SIZE, 0);
1428         if (!dev->prp_page_pool)
1429                 return -ENOMEM;
1430
1431         /* Optimisation for I/Os between 4k and 128k */
1432         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1433                                                 256, 256, 0);
1434         if (!dev->prp_small_pool) {
1435                 dma_pool_destroy(dev->prp_page_pool);
1436                 return -ENOMEM;
1437         }
1438         return 0;
1439 }
1440
1441 static void nvme_release_prp_pools(struct nvme_dev *dev)
1442 {
1443         dma_pool_destroy(dev->prp_page_pool);
1444         dma_pool_destroy(dev->prp_small_pool);
1445 }
1446
1447 /* XXX: Use an ida or something to let remove / add work correctly */
1448 static void nvme_set_instance(struct nvme_dev *dev)
1449 {
1450         static int instance;
1451         dev->instance = instance++;
1452 }
1453
1454 static void nvme_release_instance(struct nvme_dev *dev)
1455 {
1456 }
1457
1458 static int __devinit nvme_probe(struct pci_dev *pdev,
1459                                                 const struct pci_device_id *id)
1460 {
1461         int bars, result = -ENOMEM;
1462         struct nvme_dev *dev;
1463
1464         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1465         if (!dev)
1466                 return -ENOMEM;
1467         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1468                                                                 GFP_KERNEL);
1469         if (!dev->entry)
1470                 goto free;
1471         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1472                                                                 GFP_KERNEL);
1473         if (!dev->queues)
1474                 goto free;
1475
1476         if (pci_enable_device_mem(pdev))
1477                 goto free;
1478         pci_set_master(pdev);
1479         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1480         if (pci_request_selected_regions(pdev, bars, "nvme"))
1481                 goto disable;
1482
1483         INIT_LIST_HEAD(&dev->namespaces);
1484         dev->pci_dev = pdev;
1485         pci_set_drvdata(pdev, dev);
1486         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1487         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1488         nvme_set_instance(dev);
1489         dev->entry[0].vector = pdev->irq;
1490
1491         result = nvme_setup_prp_pools(dev);
1492         if (result)
1493                 goto disable_msix;
1494
1495         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1496         if (!dev->bar) {
1497                 result = -ENOMEM;
1498                 goto disable_msix;
1499         }
1500
1501         result = nvme_configure_admin_queue(dev);
1502         if (result)
1503                 goto unmap;
1504         dev->queue_count++;
1505
1506         spin_lock(&dev_list_lock);
1507         list_add(&dev->node, &dev_list);
1508         spin_unlock(&dev_list_lock);
1509
1510         result = nvme_dev_add(dev);
1511         if (result)
1512                 goto delete;
1513
1514         return 0;
1515
1516  delete:
1517         spin_lock(&dev_list_lock);
1518         list_del(&dev->node);
1519         spin_unlock(&dev_list_lock);
1520
1521         nvme_free_queues(dev);
1522  unmap:
1523         iounmap(dev->bar);
1524  disable_msix:
1525         pci_disable_msix(pdev);
1526         nvme_release_instance(dev);
1527         nvme_release_prp_pools(dev);
1528  disable:
1529         pci_disable_device(pdev);
1530         pci_release_regions(pdev);
1531  free:
1532         kfree(dev->queues);
1533         kfree(dev->entry);
1534         kfree(dev);
1535         return result;
1536 }
1537
1538 static void __devexit nvme_remove(struct pci_dev *pdev)
1539 {
1540         struct nvme_dev *dev = pci_get_drvdata(pdev);
1541         nvme_dev_remove(dev);
1542         pci_disable_msix(pdev);
1543         iounmap(dev->bar);
1544         nvme_release_instance(dev);
1545         nvme_release_prp_pools(dev);
1546         pci_disable_device(pdev);
1547         pci_release_regions(pdev);
1548         kfree(dev->queues);
1549         kfree(dev->entry);
1550         kfree(dev);
1551 }
1552
1553 /* These functions are yet to be implemented */
1554 #define nvme_error_detected NULL
1555 #define nvme_dump_registers NULL
1556 #define nvme_link_reset NULL
1557 #define nvme_slot_reset NULL
1558 #define nvme_error_resume NULL
1559 #define nvme_suspend NULL
1560 #define nvme_resume NULL
1561
1562 static struct pci_error_handlers nvme_err_handler = {
1563         .error_detected = nvme_error_detected,
1564         .mmio_enabled   = nvme_dump_registers,
1565         .link_reset     = nvme_link_reset,
1566         .slot_reset     = nvme_slot_reset,
1567         .resume         = nvme_error_resume,
1568 };
1569
1570 /* Move to pci_ids.h later */
1571 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1572
1573 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1574         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1575         { 0, }
1576 };
1577 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1578
1579 static struct pci_driver nvme_driver = {
1580         .name           = "nvme",
1581         .id_table       = nvme_id_table,
1582         .probe          = nvme_probe,
1583         .remove         = __devexit_p(nvme_remove),
1584         .suspend        = nvme_suspend,
1585         .resume         = nvme_resume,
1586         .err_handler    = &nvme_err_handler,
1587 };
1588
1589 static int __init nvme_init(void)
1590 {
1591         int result = -EBUSY;
1592
1593         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1594         if (IS_ERR(nvme_thread))
1595                 return PTR_ERR(nvme_thread);
1596
1597         nvme_major = register_blkdev(nvme_major, "nvme");
1598         if (nvme_major <= 0)
1599                 goto kill_kthread;
1600
1601         result = pci_register_driver(&nvme_driver);
1602         if (result)
1603                 goto unregister_blkdev;
1604         return 0;
1605
1606  unregister_blkdev:
1607         unregister_blkdev(nvme_major, "nvme");
1608  kill_kthread:
1609         kthread_stop(nvme_thread);
1610         return result;
1611 }
1612
1613 static void __exit nvme_exit(void)
1614 {
1615         pci_unregister_driver(&nvme_driver);
1616         unregister_blkdev(nvme_major, "nvme");
1617         kthread_stop(nvme_thread);
1618 }
1619
1620 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1621 MODULE_LICENSE("GPL");
1622 MODULE_VERSION("0.4");
1623 module_init(nvme_init);
1624 module_exit(nvme_exit);