NVMe: Change nvme_completion_fn to take a dev
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define IO_TIMEOUT      (5 * HZ)
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
63  */
64 struct nvme_dev {
65         struct list_head node;
66         struct nvme_queue **queues;
67         u32 __iomem *dbs;
68         struct pci_dev *pci_dev;
69         struct dma_pool *prp_page_pool;
70         struct dma_pool *prp_small_pool;
71         int instance;
72         int queue_count;
73         int db_stride;
74         u32 ctrl_config;
75         struct msix_entry *entry;
76         struct nvme_bar __iomem *bar;
77         struct list_head namespaces;
78         char serial[20];
79         char model[40];
80         char firmware_rev[8];
81 };
82
83 /*
84  * An NVM Express namespace is equivalent to a SCSI LUN
85  */
86 struct nvme_ns {
87         struct list_head list;
88
89         struct nvme_dev *dev;
90         struct request_queue *queue;
91         struct gendisk *disk;
92
93         int ns_id;
94         int lba_shift;
95 };
96
97 /*
98  * An NVM Express queue.  Each device has at least two (one for admin
99  * commands and one for I/O commands).
100  */
101 struct nvme_queue {
102         struct device *q_dmadev;
103         struct nvme_dev *dev;
104         spinlock_t q_lock;
105         struct nvme_command *sq_cmds;
106         volatile struct nvme_completion *cqes;
107         dma_addr_t sq_dma_addr;
108         dma_addr_t cq_dma_addr;
109         wait_queue_head_t sq_full;
110         wait_queue_t sq_cong_wait;
111         struct bio_list sq_cong;
112         u32 __iomem *q_db;
113         u16 q_depth;
114         u16 cq_vector;
115         u16 sq_head;
116         u16 sq_tail;
117         u16 cq_head;
118         u16 cq_phase;
119         unsigned long cmdid_data[];
120 };
121
122 /*
123  * Check we didin't inadvertently grow the command struct
124  */
125 static inline void _nvme_check_size(void)
126 {
127         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 }
137
138 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
139                                                 struct nvme_completion *);
140
141 struct nvme_cmd_info {
142         nvme_completion_fn fn;
143         void *ctx;
144         unsigned long timeout;
145 };
146
147 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
148 {
149         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
150 }
151
152 /**
153  * alloc_cmdid() - Allocate a Command ID
154  * @nvmeq: The queue that will be used for this command
155  * @ctx: A pointer that will be passed to the handler
156  * @handler: The function to call on completion
157  *
158  * Allocate a Command ID for a queue.  The data passed in will
159  * be passed to the completion handler.  This is implemented by using
160  * the bottom two bits of the ctx pointer to store the handler ID.
161  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
162  * We can change this if it becomes a problem.
163  *
164  * May be called with local interrupts disabled and the q_lock held,
165  * or with interrupts enabled and no locks held.
166  */
167 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
168                                 nvme_completion_fn handler, unsigned timeout)
169 {
170         int depth = nvmeq->q_depth - 1;
171         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
172         int cmdid;
173
174         do {
175                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
176                 if (cmdid >= depth)
177                         return -EBUSY;
178         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
179
180         info[cmdid].fn = handler;
181         info[cmdid].ctx = ctx;
182         info[cmdid].timeout = jiffies + timeout;
183         return cmdid;
184 }
185
186 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
187                                 nvme_completion_fn handler, unsigned timeout)
188 {
189         int cmdid;
190         wait_event_killable(nvmeq->sq_full,
191                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
192         return (cmdid < 0) ? -EINTR : cmdid;
193 }
194
195 /* Special values must be less than 0x1000 */
196 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201
202 static void special_completion(struct nvme_dev *dev, void *ctx,
203                                                 struct nvme_completion *cqe)
204 {
205         if (ctx == CMD_CTX_CANCELLED)
206                 return;
207         if (ctx == CMD_CTX_FLUSH)
208                 return;
209         if (ctx == CMD_CTX_COMPLETED) {
210                 dev_warn(&dev->pci_dev->dev,
211                                 "completed id %d twice on queue %d\n",
212                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
213                 return;
214         }
215         if (ctx == CMD_CTX_INVALID) {
216                 dev_warn(&dev->pci_dev->dev,
217                                 "invalid id %d completed on queue %d\n",
218                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
219                 return;
220         }
221
222         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
223 }
224
225 /*
226  * Called with local interrupts disabled and the q_lock held.  May not sleep.
227  */
228 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
229                                                 nvme_completion_fn *fn)
230 {
231         void *ctx;
232         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
233
234         if (cmdid >= nvmeq->q_depth) {
235                 *fn = special_completion;
236                 return CMD_CTX_INVALID;
237         }
238         *fn = info[cmdid].fn;
239         ctx = info[cmdid].ctx;
240         info[cmdid].fn = special_completion;
241         info[cmdid].ctx = CMD_CTX_COMPLETED;
242         clear_bit(cmdid, nvmeq->cmdid_data);
243         wake_up(&nvmeq->sq_full);
244         return ctx;
245 }
246
247 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
248                                                 nvme_completion_fn *fn)
249 {
250         void *ctx;
251         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
252         if (fn)
253                 *fn = info[cmdid].fn;
254         ctx = info[cmdid].ctx;
255         info[cmdid].fn = special_completion;
256         info[cmdid].ctx = CMD_CTX_CANCELLED;
257         return ctx;
258 }
259
260 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
261 {
262         return dev->queues[get_cpu() + 1];
263 }
264
265 static void put_nvmeq(struct nvme_queue *nvmeq)
266 {
267         put_cpu();
268 }
269
270 /**
271  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
272  * @nvmeq: The queue to use
273  * @cmd: The command to send
274  *
275  * Safe to use from interrupt context
276  */
277 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
278 {
279         unsigned long flags;
280         u16 tail;
281         spin_lock_irqsave(&nvmeq->q_lock, flags);
282         tail = nvmeq->sq_tail;
283         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
284         if (++tail == nvmeq->q_depth)
285                 tail = 0;
286         writel(tail, nvmeq->q_db);
287         nvmeq->sq_tail = tail;
288         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
289
290         return 0;
291 }
292
293 struct nvme_prps {
294         int npages;             /* 0 means small pool in use */
295         dma_addr_t first_dma;
296         __le64 *list[0];
297 };
298
299 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
300 {
301         const int last_prp = PAGE_SIZE / 8 - 1;
302         int i;
303         dma_addr_t prp_dma;
304
305         if (!prps)
306                 return;
307
308         prp_dma = prps->first_dma;
309
310         if (prps->npages == 0)
311                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
312         for (i = 0; i < prps->npages; i++) {
313                 __le64 *prp_list = prps->list[i];
314                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
315                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
316                 prp_dma = next_prp_dma;
317         }
318         kfree(prps);
319 }
320
321 struct nvme_bio {
322         struct bio *bio;
323         int nents;
324         struct nvme_prps *prps;
325         struct scatterlist sg[0];
326 };
327
328 /* XXX: use a mempool */
329 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
330 {
331         return kzalloc(sizeof(struct nvme_bio) +
332                         sizeof(struct scatterlist) * nseg, gfp);
333 }
334
335 static void free_nbio(struct nvme_dev *dev, struct nvme_bio *nbio)
336 {
337         nvme_free_prps(dev, nbio->prps);
338         kfree(nbio);
339 }
340
341 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
342 {
343         struct nvme_queue *nvmeq = get_nvmeq(dev);
344         if (bio_list_empty(&nvmeq->sq_cong))
345                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
346         bio_list_add(&nvmeq->sq_cong, bio);
347         put_nvmeq(nvmeq);
348         wake_up_process(nvme_thread);
349 }
350
351 static void bio_completion(struct nvme_dev *dev, void *ctx,
352                                                 struct nvme_completion *cqe)
353 {
354         struct nvme_bio *nbio = ctx;
355         struct bio *bio = nbio->bio;
356         u16 status = le16_to_cpup(&cqe->status) >> 1;
357
358         dma_unmap_sg(&dev->pci_dev->dev, nbio->sg, nbio->nents,
359                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
360         free_nbio(dev, nbio);
361         if (status) {
362                 bio_endio(bio, -EIO);
363         } else if (bio->bi_vcnt > bio->bi_idx) {
364                 requeue_bio(dev, bio);
365         } else {
366                 bio_endio(bio, 0);
367         }
368 }
369
370 /* length is in bytes.  gfp flags indicates whether we may sleep. */
371 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
372                                         struct nvme_common_command *cmd,
373                                         struct scatterlist *sg, int *len,
374                                         gfp_t gfp)
375 {
376         struct dma_pool *pool;
377         int length = *len;
378         int dma_len = sg_dma_len(sg);
379         u64 dma_addr = sg_dma_address(sg);
380         int offset = offset_in_page(dma_addr);
381         __le64 *prp_list;
382         dma_addr_t prp_dma;
383         int nprps, npages, i;
384         struct nvme_prps *prps = NULL;
385
386         cmd->prp1 = cpu_to_le64(dma_addr);
387         length -= (PAGE_SIZE - offset);
388         if (length <= 0)
389                 return prps;
390
391         dma_len -= (PAGE_SIZE - offset);
392         if (dma_len) {
393                 dma_addr += (PAGE_SIZE - offset);
394         } else {
395                 sg = sg_next(sg);
396                 dma_addr = sg_dma_address(sg);
397                 dma_len = sg_dma_len(sg);
398         }
399
400         if (length <= PAGE_SIZE) {
401                 cmd->prp2 = cpu_to_le64(dma_addr);
402                 return prps;
403         }
404
405         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
406         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
407         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
408         if (!prps) {
409                 cmd->prp2 = cpu_to_le64(dma_addr);
410                 *len = (*len - length) + PAGE_SIZE;
411                 return prps;
412         }
413
414         if (nprps <= (256 / 8)) {
415                 pool = dev->prp_small_pool;
416                 prps->npages = 0;
417         } else {
418                 pool = dev->prp_page_pool;
419                 prps->npages = 1;
420         }
421
422         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
423         if (!prp_list) {
424                 cmd->prp2 = cpu_to_le64(dma_addr);
425                 *len = (*len - length) + PAGE_SIZE;
426                 kfree(prps);
427                 return NULL;
428         }
429         prps->list[0] = prp_list;
430         prps->first_dma = prp_dma;
431         cmd->prp2 = cpu_to_le64(prp_dma);
432         i = 0;
433         for (;;) {
434                 if (i == PAGE_SIZE / 8) {
435                         __le64 *old_prp_list = prp_list;
436                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
437                         if (!prp_list) {
438                                 *len = (*len - length);
439                                 return prps;
440                         }
441                         prps->list[prps->npages++] = prp_list;
442                         prp_list[0] = old_prp_list[i - 1];
443                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
444                         i = 1;
445                 }
446                 prp_list[i++] = cpu_to_le64(dma_addr);
447                 dma_len -= PAGE_SIZE;
448                 dma_addr += PAGE_SIZE;
449                 length -= PAGE_SIZE;
450                 if (length <= 0)
451                         break;
452                 if (dma_len > 0)
453                         continue;
454                 BUG_ON(dma_len < 0);
455                 sg = sg_next(sg);
456                 dma_addr = sg_dma_address(sg);
457                 dma_len = sg_dma_len(sg);
458         }
459
460         return prps;
461 }
462
463 /* NVMe scatterlists require no holes in the virtual address */
464 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
465                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
466
467 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
468                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
469 {
470         struct bio_vec *bvec, *bvprv = NULL;
471         struct scatterlist *sg = NULL;
472         int i, old_idx, length = 0, nsegs = 0;
473
474         sg_init_table(nbio->sg, psegs);
475         old_idx = bio->bi_idx;
476         bio_for_each_segment(bvec, bio, i) {
477                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
478                         sg->length += bvec->bv_len;
479                 } else {
480                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
481                                 break;
482                         sg = sg ? sg + 1 : nbio->sg;
483                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
484                                                         bvec->bv_offset);
485                         nsegs++;
486                 }
487                 length += bvec->bv_len;
488                 bvprv = bvec;
489         }
490         bio->bi_idx = i;
491         nbio->nents = nsegs;
492         sg_mark_end(sg);
493         if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
494                 bio->bi_idx = old_idx;
495                 return -ENOMEM;
496         }
497         return length;
498 }
499
500 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
501                                                                 int cmdid)
502 {
503         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
504
505         memset(cmnd, 0, sizeof(*cmnd));
506         cmnd->common.opcode = nvme_cmd_flush;
507         cmnd->common.command_id = cmdid;
508         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
509
510         if (++nvmeq->sq_tail == nvmeq->q_depth)
511                 nvmeq->sq_tail = 0;
512         writel(nvmeq->sq_tail, nvmeq->q_db);
513
514         return 0;
515 }
516
517 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
518 {
519         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
520                                                 special_completion, IO_TIMEOUT);
521         if (unlikely(cmdid < 0))
522                 return cmdid;
523
524         return nvme_submit_flush(nvmeq, ns, cmdid);
525 }
526
527 /*
528  * Called with local interrupts disabled and the q_lock held.  May not sleep.
529  */
530 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
531                                                                 struct bio *bio)
532 {
533         struct nvme_command *cmnd;
534         struct nvme_bio *nbio;
535         enum dma_data_direction dma_dir;
536         int cmdid, length, result = -ENOMEM;
537         u16 control;
538         u32 dsmgmt;
539         int psegs = bio_phys_segments(ns->queue, bio);
540
541         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
542                 result = nvme_submit_flush_data(nvmeq, ns);
543                 if (result)
544                         return result;
545         }
546
547         nbio = alloc_nbio(psegs, GFP_ATOMIC);
548         if (!nbio)
549                 goto nomem;
550         nbio->bio = bio;
551
552         result = -EBUSY;
553         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion, IO_TIMEOUT);
554         if (unlikely(cmdid < 0))
555                 goto free_nbio;
556
557         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
558                 return nvme_submit_flush(nvmeq, ns, cmdid);
559
560         control = 0;
561         if (bio->bi_rw & REQ_FUA)
562                 control |= NVME_RW_FUA;
563         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
564                 control |= NVME_RW_LR;
565
566         dsmgmt = 0;
567         if (bio->bi_rw & REQ_RAHEAD)
568                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
569
570         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
571
572         memset(cmnd, 0, sizeof(*cmnd));
573         if (bio_data_dir(bio)) {
574                 cmnd->rw.opcode = nvme_cmd_write;
575                 dma_dir = DMA_TO_DEVICE;
576         } else {
577                 cmnd->rw.opcode = nvme_cmd_read;
578                 dma_dir = DMA_FROM_DEVICE;
579         }
580
581         result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
582         if (result < 0)
583                 goto free_nbio;
584         length = result;
585
586         cmnd->rw.command_id = cmdid;
587         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
588         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
589                                                         &length, GFP_ATOMIC);
590         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
591         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
592         cmnd->rw.control = cpu_to_le16(control);
593         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
594
595         bio->bi_sector += length >> 9;
596
597         if (++nvmeq->sq_tail == nvmeq->q_depth)
598                 nvmeq->sq_tail = 0;
599         writel(nvmeq->sq_tail, nvmeq->q_db);
600
601         return 0;
602
603  free_nbio:
604         free_nbio(nvmeq->dev, nbio);
605  nomem:
606         return result;
607 }
608
609 /*
610  * NB: return value of non-zero would mean that we were a stacking driver.
611  * make_request must always succeed.
612  */
613 static int nvme_make_request(struct request_queue *q, struct bio *bio)
614 {
615         struct nvme_ns *ns = q->queuedata;
616         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
617         int result = -EBUSY;
618
619         spin_lock_irq(&nvmeq->q_lock);
620         if (bio_list_empty(&nvmeq->sq_cong))
621                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
622         if (unlikely(result)) {
623                 if (bio_list_empty(&nvmeq->sq_cong))
624                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
625                 bio_list_add(&nvmeq->sq_cong, bio);
626         }
627
628         spin_unlock_irq(&nvmeq->q_lock);
629         put_nvmeq(nvmeq);
630
631         return 0;
632 }
633
634 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
635 {
636         u16 head, phase;
637
638         head = nvmeq->cq_head;
639         phase = nvmeq->cq_phase;
640
641         for (;;) {
642                 void *ctx;
643                 nvme_completion_fn fn;
644                 struct nvme_completion cqe = nvmeq->cqes[head];
645                 if ((le16_to_cpu(cqe.status) & 1) != phase)
646                         break;
647                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
648                 if (++head == nvmeq->q_depth) {
649                         head = 0;
650                         phase = !phase;
651                 }
652
653                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
654                 fn(nvmeq->dev, ctx, &cqe);
655         }
656
657         /* If the controller ignores the cq head doorbell and continuously
658          * writes to the queue, it is theoretically possible to wrap around
659          * the queue twice and mistakenly return IRQ_NONE.  Linux only
660          * requires that 0.1% of your interrupts are handled, so this isn't
661          * a big problem.
662          */
663         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
664                 return IRQ_NONE;
665
666         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
667         nvmeq->cq_head = head;
668         nvmeq->cq_phase = phase;
669
670         return IRQ_HANDLED;
671 }
672
673 static irqreturn_t nvme_irq(int irq, void *data)
674 {
675         irqreturn_t result;
676         struct nvme_queue *nvmeq = data;
677         spin_lock(&nvmeq->q_lock);
678         result = nvme_process_cq(nvmeq);
679         spin_unlock(&nvmeq->q_lock);
680         return result;
681 }
682
683 static irqreturn_t nvme_irq_check(int irq, void *data)
684 {
685         struct nvme_queue *nvmeq = data;
686         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
687         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
688                 return IRQ_NONE;
689         return IRQ_WAKE_THREAD;
690 }
691
692 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
693 {
694         spin_lock_irq(&nvmeq->q_lock);
695         cancel_cmdid(nvmeq, cmdid, NULL);
696         spin_unlock_irq(&nvmeq->q_lock);
697 }
698
699 struct sync_cmd_info {
700         struct task_struct *task;
701         u32 result;
702         int status;
703 };
704
705 static void sync_completion(struct nvme_dev *dev, void *ctx,
706                                                 struct nvme_completion *cqe)
707 {
708         struct sync_cmd_info *cmdinfo = ctx;
709         cmdinfo->result = le32_to_cpup(&cqe->result);
710         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
711         wake_up_process(cmdinfo->task);
712 }
713
714 /*
715  * Returns 0 on success.  If the result is negative, it's a Linux error code;
716  * if the result is positive, it's an NVM Express status code
717  */
718 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
719                         struct nvme_command *cmd, u32 *result, unsigned timeout)
720 {
721         int cmdid;
722         struct sync_cmd_info cmdinfo;
723
724         cmdinfo.task = current;
725         cmdinfo.status = -EINTR;
726
727         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
728                                                                 timeout);
729         if (cmdid < 0)
730                 return cmdid;
731         cmd->common.command_id = cmdid;
732
733         set_current_state(TASK_KILLABLE);
734         nvme_submit_cmd(nvmeq, cmd);
735         schedule();
736
737         if (cmdinfo.status == -EINTR) {
738                 nvme_abort_command(nvmeq, cmdid);
739                 return -EINTR;
740         }
741
742         if (result)
743                 *result = cmdinfo.result;
744
745         return cmdinfo.status;
746 }
747
748 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
749                                                                 u32 *result)
750 {
751         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
752 }
753
754 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
755 {
756         int status;
757         struct nvme_command c;
758
759         memset(&c, 0, sizeof(c));
760         c.delete_queue.opcode = opcode;
761         c.delete_queue.qid = cpu_to_le16(id);
762
763         status = nvme_submit_admin_cmd(dev, &c, NULL);
764         if (status)
765                 return -EIO;
766         return 0;
767 }
768
769 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
770                                                 struct nvme_queue *nvmeq)
771 {
772         int status;
773         struct nvme_command c;
774         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
775
776         memset(&c, 0, sizeof(c));
777         c.create_cq.opcode = nvme_admin_create_cq;
778         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
779         c.create_cq.cqid = cpu_to_le16(qid);
780         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
781         c.create_cq.cq_flags = cpu_to_le16(flags);
782         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
783
784         status = nvme_submit_admin_cmd(dev, &c, NULL);
785         if (status)
786                 return -EIO;
787         return 0;
788 }
789
790 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
791                                                 struct nvme_queue *nvmeq)
792 {
793         int status;
794         struct nvme_command c;
795         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
796
797         memset(&c, 0, sizeof(c));
798         c.create_sq.opcode = nvme_admin_create_sq;
799         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
800         c.create_sq.sqid = cpu_to_le16(qid);
801         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
802         c.create_sq.sq_flags = cpu_to_le16(flags);
803         c.create_sq.cqid = cpu_to_le16(qid);
804
805         status = nvme_submit_admin_cmd(dev, &c, NULL);
806         if (status)
807                 return -EIO;
808         return 0;
809 }
810
811 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
812 {
813         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
814 }
815
816 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
817 {
818         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
819 }
820
821 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
822                                                         dma_addr_t dma_addr)
823 {
824         struct nvme_command c;
825
826         memset(&c, 0, sizeof(c));
827         c.identify.opcode = nvme_admin_identify;
828         c.identify.nsid = cpu_to_le32(nsid);
829         c.identify.prp1 = cpu_to_le64(dma_addr);
830         c.identify.cns = cpu_to_le32(cns);
831
832         return nvme_submit_admin_cmd(dev, &c, NULL);
833 }
834
835 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
836                         unsigned dword11, dma_addr_t dma_addr, u32 *result)
837 {
838         struct nvme_command c;
839
840         memset(&c, 0, sizeof(c));
841         c.features.opcode = nvme_admin_get_features;
842         c.features.prp1 = cpu_to_le64(dma_addr);
843         c.features.fid = cpu_to_le32(fid);
844         c.features.dword11 = cpu_to_le32(dword11);
845
846         return nvme_submit_admin_cmd(dev, &c, result);
847 }
848
849 static void nvme_free_queue(struct nvme_dev *dev, int qid)
850 {
851         struct nvme_queue *nvmeq = dev->queues[qid];
852         int vector = dev->entry[nvmeq->cq_vector].vector;
853
854         irq_set_affinity_hint(vector, NULL);
855         free_irq(vector, nvmeq);
856
857         /* Don't tell the adapter to delete the admin queue */
858         if (qid) {
859                 adapter_delete_sq(dev, qid);
860                 adapter_delete_cq(dev, qid);
861         }
862
863         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
864                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
865         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
866                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
867         kfree(nvmeq);
868 }
869
870 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
871                                                         int depth, int vector)
872 {
873         struct device *dmadev = &dev->pci_dev->dev;
874         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
875         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
876         if (!nvmeq)
877                 return NULL;
878
879         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
880                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
881         if (!nvmeq->cqes)
882                 goto free_nvmeq;
883         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
884
885         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
886                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
887         if (!nvmeq->sq_cmds)
888                 goto free_cqdma;
889
890         nvmeq->q_dmadev = dmadev;
891         nvmeq->dev = dev;
892         spin_lock_init(&nvmeq->q_lock);
893         nvmeq->cq_head = 0;
894         nvmeq->cq_phase = 1;
895         init_waitqueue_head(&nvmeq->sq_full);
896         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
897         bio_list_init(&nvmeq->sq_cong);
898         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
899         nvmeq->q_depth = depth;
900         nvmeq->cq_vector = vector;
901
902         return nvmeq;
903
904  free_cqdma:
905         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
906                                                         nvmeq->cq_dma_addr);
907  free_nvmeq:
908         kfree(nvmeq);
909         return NULL;
910 }
911
912 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
913                                                         const char *name)
914 {
915         if (use_threaded_interrupts)
916                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
917                                         nvme_irq_check, nvme_irq,
918                                         IRQF_DISABLED | IRQF_SHARED,
919                                         name, nvmeq);
920         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
921                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
922 }
923
924 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
925                                         int qid, int cq_size, int vector)
926 {
927         int result;
928         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
929
930         if (!nvmeq)
931                 return ERR_PTR(-ENOMEM);
932
933         result = adapter_alloc_cq(dev, qid, nvmeq);
934         if (result < 0)
935                 goto free_nvmeq;
936
937         result = adapter_alloc_sq(dev, qid, nvmeq);
938         if (result < 0)
939                 goto release_cq;
940
941         result = queue_request_irq(dev, nvmeq, "nvme");
942         if (result < 0)
943                 goto release_sq;
944
945         return nvmeq;
946
947  release_sq:
948         adapter_delete_sq(dev, qid);
949  release_cq:
950         adapter_delete_cq(dev, qid);
951  free_nvmeq:
952         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
953                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
954         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
955                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
956         kfree(nvmeq);
957         return ERR_PTR(result);
958 }
959
960 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
961 {
962         int result;
963         u32 aqa;
964         u64 cap;
965         unsigned long timeout;
966         struct nvme_queue *nvmeq;
967
968         dev->dbs = ((void __iomem *)dev->bar) + 4096;
969
970         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
971         if (!nvmeq)
972                 return -ENOMEM;
973
974         aqa = nvmeq->q_depth - 1;
975         aqa |= aqa << 16;
976
977         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
978         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
979         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
980         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
981
982         writel(0, &dev->bar->cc);
983         writel(aqa, &dev->bar->aqa);
984         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
985         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
986         writel(dev->ctrl_config, &dev->bar->cc);
987
988         cap = readq(&dev->bar->cap);
989         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
990         dev->db_stride = NVME_CAP_STRIDE(cap);
991
992         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
993                 msleep(100);
994                 if (fatal_signal_pending(current))
995                         return -EINTR;
996                 if (time_after(jiffies, timeout)) {
997                         dev_err(&dev->pci_dev->dev,
998                                 "Device not ready; aborting initialisation\n");
999                         return -ENODEV;
1000                 }
1001         }
1002
1003         result = queue_request_irq(dev, nvmeq, "nvme admin");
1004         dev->queues[0] = nvmeq;
1005         return result;
1006 }
1007
1008 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
1009                                 unsigned long addr, unsigned length,
1010                                 struct scatterlist **sgp)
1011 {
1012         int i, err, count, nents, offset;
1013         struct scatterlist *sg;
1014         struct page **pages;
1015
1016         if (addr & 3)
1017                 return -EINVAL;
1018         if (!length)
1019                 return -EINVAL;
1020
1021         offset = offset_in_page(addr);
1022         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1023         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1024
1025         err = get_user_pages_fast(addr, count, 1, pages);
1026         if (err < count) {
1027                 count = err;
1028                 err = -EFAULT;
1029                 goto put_pages;
1030         }
1031
1032         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
1033         sg_init_table(sg, count);
1034         for (i = 0; i < count; i++) {
1035                 sg_set_page(&sg[i], pages[i],
1036                                 min_t(int, length, PAGE_SIZE - offset), offset);
1037                 length -= (PAGE_SIZE - offset);
1038                 offset = 0;
1039         }
1040
1041         err = -ENOMEM;
1042         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1043                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1044         if (!nents)
1045                 goto put_pages;
1046
1047         kfree(pages);
1048         *sgp = sg;
1049         return nents;
1050
1051  put_pages:
1052         for (i = 0; i < count; i++)
1053                 put_page(pages[i]);
1054         kfree(pages);
1055         return err;
1056 }
1057
1058 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1059                         unsigned long addr, int length, struct scatterlist *sg)
1060 {
1061         int i, count;
1062
1063         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
1064         dma_unmap_sg(&dev->pci_dev->dev, sg, count, DMA_FROM_DEVICE);
1065
1066         for (i = 0; i < count; i++)
1067                 put_page(sg_page(&sg[i]));
1068 }
1069
1070 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1071 {
1072         struct nvme_dev *dev = ns->dev;
1073         struct nvme_queue *nvmeq;
1074         struct nvme_user_io io;
1075         struct nvme_command c;
1076         unsigned length;
1077         int nents, status;
1078         struct scatterlist *sg;
1079         struct nvme_prps *prps;
1080
1081         if (copy_from_user(&io, uio, sizeof(io)))
1082                 return -EFAULT;
1083         length = (io.nblocks + 1) << ns->lba_shift;
1084
1085         switch (io.opcode) {
1086         case nvme_cmd_write:
1087         case nvme_cmd_read:
1088         case nvme_cmd_compare:
1089                 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1090                                                                 length, &sg);
1091                 break;
1092         default:
1093                 return -EINVAL;
1094         }
1095
1096         if (nents < 0)
1097                 return nents;
1098
1099         memset(&c, 0, sizeof(c));
1100         c.rw.opcode = io.opcode;
1101         c.rw.flags = io.flags;
1102         c.rw.nsid = cpu_to_le32(ns->ns_id);
1103         c.rw.slba = cpu_to_le64(io.slba);
1104         c.rw.length = cpu_to_le16(io.nblocks);
1105         c.rw.control = cpu_to_le16(io.control);
1106         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1107         c.rw.reftag = io.reftag;
1108         c.rw.apptag = io.apptag;
1109         c.rw.appmask = io.appmask;
1110         /* XXX: metadata */
1111         prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1112
1113         nvmeq = get_nvmeq(dev);
1114         /*
1115          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1116          * disabled.  We may be preempted at any point, and be rescheduled
1117          * to a different CPU.  That will cause cacheline bouncing, but no
1118          * additional races since q_lock already protects against other CPUs.
1119          */
1120         put_nvmeq(nvmeq);
1121         if (length != (io.nblocks + 1) << ns->lba_shift)
1122                 status = -ENOMEM;
1123         else
1124                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1125
1126         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg);
1127         nvme_free_prps(dev, prps);
1128         return status;
1129 }
1130
1131 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1132                                         struct nvme_admin_cmd __user *ucmd)
1133 {
1134         struct nvme_dev *dev = ns->dev;
1135         struct nvme_admin_cmd cmd;
1136         struct nvme_command c;
1137         int status, length, nents = 0;
1138         struct scatterlist *sg;
1139         struct nvme_prps *prps = NULL;
1140
1141         if (!capable(CAP_SYS_ADMIN))
1142                 return -EACCES;
1143         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1144                 return -EFAULT;
1145
1146         memset(&c, 0, sizeof(c));
1147         c.common.opcode = cmd.opcode;
1148         c.common.flags = cmd.flags;
1149         c.common.nsid = cpu_to_le32(cmd.nsid);
1150         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1151         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1152         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1153         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1154         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1155         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1156         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1157         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1158
1159         length = cmd.data_len;
1160         if (cmd.data_len) {
1161                 nents = nvme_map_user_pages(dev, 1, cmd.addr, length, &sg);
1162                 if (nents < 0)
1163                         return nents;
1164                 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1165         }
1166
1167         if (length != cmd.data_len)
1168                 status = -ENOMEM;
1169         else
1170                 status = nvme_submit_admin_cmd(dev, &c, NULL);
1171         if (cmd.data_len) {
1172                 nvme_unmap_user_pages(dev, 0, cmd.addr, cmd.data_len, sg);
1173                 nvme_free_prps(dev, prps);
1174         }
1175         return status;
1176 }
1177
1178 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1179                                                         unsigned long arg)
1180 {
1181         struct nvme_ns *ns = bdev->bd_disk->private_data;
1182
1183         switch (cmd) {
1184         case NVME_IOCTL_ID:
1185                 return ns->ns_id;
1186         case NVME_IOCTL_ADMIN_CMD:
1187                 return nvme_user_admin_cmd(ns, (void __user *)arg);
1188         case NVME_IOCTL_SUBMIT_IO:
1189                 return nvme_submit_io(ns, (void __user *)arg);
1190         default:
1191                 return -ENOTTY;
1192         }
1193 }
1194
1195 static const struct block_device_operations nvme_fops = {
1196         .owner          = THIS_MODULE,
1197         .ioctl          = nvme_ioctl,
1198         .compat_ioctl   = nvme_ioctl,
1199 };
1200
1201 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1202 {
1203         int depth = nvmeq->q_depth - 1;
1204         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1205         unsigned long now = jiffies;
1206         int cmdid;
1207
1208         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1209                 void *ctx;
1210                 nvme_completion_fn fn;
1211                 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1212
1213                 if (!time_after(now, info[cmdid].timeout))
1214                         continue;
1215                 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1216                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1217                 fn(nvmeq->dev, ctx, &cqe);
1218         }
1219 }
1220
1221 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1222 {
1223         while (bio_list_peek(&nvmeq->sq_cong)) {
1224                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1225                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1226                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1227                         bio_list_add_head(&nvmeq->sq_cong, bio);
1228                         break;
1229                 }
1230                 if (bio_list_empty(&nvmeq->sq_cong))
1231                         remove_wait_queue(&nvmeq->sq_full,
1232                                                         &nvmeq->sq_cong_wait);
1233         }
1234 }
1235
1236 static int nvme_kthread(void *data)
1237 {
1238         struct nvme_dev *dev;
1239
1240         while (!kthread_should_stop()) {
1241                 __set_current_state(TASK_RUNNING);
1242                 spin_lock(&dev_list_lock);
1243                 list_for_each_entry(dev, &dev_list, node) {
1244                         int i;
1245                         for (i = 0; i < dev->queue_count; i++) {
1246                                 struct nvme_queue *nvmeq = dev->queues[i];
1247                                 if (!nvmeq)
1248                                         continue;
1249                                 spin_lock_irq(&nvmeq->q_lock);
1250                                 if (nvme_process_cq(nvmeq))
1251                                         printk("process_cq did something\n");
1252                                 nvme_timeout_ios(nvmeq);
1253                                 nvme_resubmit_bios(nvmeq);
1254                                 spin_unlock_irq(&nvmeq->q_lock);
1255                         }
1256                 }
1257                 spin_unlock(&dev_list_lock);
1258                 set_current_state(TASK_INTERRUPTIBLE);
1259                 schedule_timeout(HZ);
1260         }
1261         return 0;
1262 }
1263
1264 static DEFINE_IDA(nvme_index_ida);
1265
1266 static int nvme_get_ns_idx(void)
1267 {
1268         int index, error;
1269
1270         do {
1271                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1272                         return -1;
1273
1274                 spin_lock(&dev_list_lock);
1275                 error = ida_get_new(&nvme_index_ida, &index);
1276                 spin_unlock(&dev_list_lock);
1277         } while (error == -EAGAIN);
1278
1279         if (error)
1280                 index = -1;
1281         return index;
1282 }
1283
1284 static void nvme_put_ns_idx(int index)
1285 {
1286         spin_lock(&dev_list_lock);
1287         ida_remove(&nvme_index_ida, index);
1288         spin_unlock(&dev_list_lock);
1289 }
1290
1291 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1292                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1293 {
1294         struct nvme_ns *ns;
1295         struct gendisk *disk;
1296         int lbaf;
1297
1298         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1299                 return NULL;
1300
1301         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1302         if (!ns)
1303                 return NULL;
1304         ns->queue = blk_alloc_queue(GFP_KERNEL);
1305         if (!ns->queue)
1306                 goto out_free_ns;
1307         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1308                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1309         blk_queue_make_request(ns->queue, nvme_make_request);
1310         ns->dev = dev;
1311         ns->queue->queuedata = ns;
1312
1313         disk = alloc_disk(NVME_MINORS);
1314         if (!disk)
1315                 goto out_free_queue;
1316         ns->ns_id = nsid;
1317         ns->disk = disk;
1318         lbaf = id->flbas & 0xf;
1319         ns->lba_shift = id->lbaf[lbaf].ds;
1320
1321         disk->major = nvme_major;
1322         disk->minors = NVME_MINORS;
1323         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1324         disk->fops = &nvme_fops;
1325         disk->private_data = ns;
1326         disk->queue = ns->queue;
1327         disk->driverfs_dev = &dev->pci_dev->dev;
1328         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1329         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1330
1331         return ns;
1332
1333  out_free_queue:
1334         blk_cleanup_queue(ns->queue);
1335  out_free_ns:
1336         kfree(ns);
1337         return NULL;
1338 }
1339
1340 static void nvme_ns_free(struct nvme_ns *ns)
1341 {
1342         int index = ns->disk->first_minor / NVME_MINORS;
1343         put_disk(ns->disk);
1344         nvme_put_ns_idx(index);
1345         blk_cleanup_queue(ns->queue);
1346         kfree(ns);
1347 }
1348
1349 static int set_queue_count(struct nvme_dev *dev, int count)
1350 {
1351         int status;
1352         u32 result;
1353         u32 q_count = (count - 1) | ((count - 1) << 16);
1354
1355         status = nvme_get_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1356                                                                 &result);
1357         if (status)
1358                 return -EIO;
1359         return min(result & 0xffff, result >> 16) + 1;
1360 }
1361
1362 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1363 {
1364         int result, cpu, i, nr_io_queues, db_bar_size;
1365
1366         nr_io_queues = num_online_cpus();
1367         result = set_queue_count(dev, nr_io_queues);
1368         if (result < 0)
1369                 return result;
1370         if (result < nr_io_queues)
1371                 nr_io_queues = result;
1372
1373         /* Deregister the admin queue's interrupt */
1374         free_irq(dev->entry[0].vector, dev->queues[0]);
1375
1376         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1377         if (db_bar_size > 8192) {
1378                 iounmap(dev->bar);
1379                 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1380                                                                 db_bar_size);
1381                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1382                 dev->queues[0]->q_db = dev->dbs;
1383         }
1384
1385         for (i = 0; i < nr_io_queues; i++)
1386                 dev->entry[i].entry = i;
1387         for (;;) {
1388                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1389                                                                 nr_io_queues);
1390                 if (result == 0) {
1391                         break;
1392                 } else if (result > 0) {
1393                         nr_io_queues = result;
1394                         continue;
1395                 } else {
1396                         nr_io_queues = 1;
1397                         break;
1398                 }
1399         }
1400
1401         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1402         /* XXX: handle failure here */
1403
1404         cpu = cpumask_first(cpu_online_mask);
1405         for (i = 0; i < nr_io_queues; i++) {
1406                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1407                 cpu = cpumask_next(cpu, cpu_online_mask);
1408         }
1409
1410         for (i = 0; i < nr_io_queues; i++) {
1411                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1412                                                         NVME_Q_DEPTH, i);
1413                 if (IS_ERR(dev->queues[i + 1]))
1414                         return PTR_ERR(dev->queues[i + 1]);
1415                 dev->queue_count++;
1416         }
1417
1418         for (; i < num_possible_cpus(); i++) {
1419                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1420                 dev->queues[i + 1] = dev->queues[target + 1];
1421         }
1422
1423         return 0;
1424 }
1425
1426 static void nvme_free_queues(struct nvme_dev *dev)
1427 {
1428         int i;
1429
1430         for (i = dev->queue_count - 1; i >= 0; i--)
1431                 nvme_free_queue(dev, i);
1432 }
1433
1434 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1435 {
1436         int res, nn, i;
1437         struct nvme_ns *ns, *next;
1438         struct nvme_id_ctrl *ctrl;
1439         struct nvme_id_ns *id_ns;
1440         void *mem;
1441         dma_addr_t dma_addr;
1442
1443         res = nvme_setup_io_queues(dev);
1444         if (res)
1445                 return res;
1446
1447         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1448                                                                 GFP_KERNEL);
1449
1450         res = nvme_identify(dev, 0, 1, dma_addr);
1451         if (res) {
1452                 res = -EIO;
1453                 goto out_free;
1454         }
1455
1456         ctrl = mem;
1457         nn = le32_to_cpup(&ctrl->nn);
1458         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1459         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1460         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1461
1462         id_ns = mem;
1463         for (i = 1; i <= nn; i++) {
1464                 res = nvme_identify(dev, i, 0, dma_addr);
1465                 if (res)
1466                         continue;
1467
1468                 if (id_ns->ncap == 0)
1469                         continue;
1470
1471                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1472                                                         dma_addr + 4096, NULL);
1473                 if (res)
1474                         continue;
1475
1476                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1477                 if (ns)
1478                         list_add_tail(&ns->list, &dev->namespaces);
1479         }
1480         list_for_each_entry(ns, &dev->namespaces, list)
1481                 add_disk(ns->disk);
1482
1483         goto out;
1484
1485  out_free:
1486         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1487                 list_del(&ns->list);
1488                 nvme_ns_free(ns);
1489         }
1490
1491  out:
1492         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1493         return res;
1494 }
1495
1496 static int nvme_dev_remove(struct nvme_dev *dev)
1497 {
1498         struct nvme_ns *ns, *next;
1499
1500         spin_lock(&dev_list_lock);
1501         list_del(&dev->node);
1502         spin_unlock(&dev_list_lock);
1503
1504         /* TODO: wait all I/O finished or cancel them */
1505
1506         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1507                 list_del(&ns->list);
1508                 del_gendisk(ns->disk);
1509                 nvme_ns_free(ns);
1510         }
1511
1512         nvme_free_queues(dev);
1513
1514         return 0;
1515 }
1516
1517 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1518 {
1519         struct device *dmadev = &dev->pci_dev->dev;
1520         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1521                                                 PAGE_SIZE, PAGE_SIZE, 0);
1522         if (!dev->prp_page_pool)
1523                 return -ENOMEM;
1524
1525         /* Optimisation for I/Os between 4k and 128k */
1526         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1527                                                 256, 256, 0);
1528         if (!dev->prp_small_pool) {
1529                 dma_pool_destroy(dev->prp_page_pool);
1530                 return -ENOMEM;
1531         }
1532         return 0;
1533 }
1534
1535 static void nvme_release_prp_pools(struct nvme_dev *dev)
1536 {
1537         dma_pool_destroy(dev->prp_page_pool);
1538         dma_pool_destroy(dev->prp_small_pool);
1539 }
1540
1541 /* XXX: Use an ida or something to let remove / add work correctly */
1542 static void nvme_set_instance(struct nvme_dev *dev)
1543 {
1544         static int instance;
1545         dev->instance = instance++;
1546 }
1547
1548 static void nvme_release_instance(struct nvme_dev *dev)
1549 {
1550 }
1551
1552 static int __devinit nvme_probe(struct pci_dev *pdev,
1553                                                 const struct pci_device_id *id)
1554 {
1555         int bars, result = -ENOMEM;
1556         struct nvme_dev *dev;
1557
1558         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1559         if (!dev)
1560                 return -ENOMEM;
1561         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1562                                                                 GFP_KERNEL);
1563         if (!dev->entry)
1564                 goto free;
1565         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1566                                                                 GFP_KERNEL);
1567         if (!dev->queues)
1568                 goto free;
1569
1570         if (pci_enable_device_mem(pdev))
1571                 goto free;
1572         pci_set_master(pdev);
1573         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1574         if (pci_request_selected_regions(pdev, bars, "nvme"))
1575                 goto disable;
1576
1577         INIT_LIST_HEAD(&dev->namespaces);
1578         dev->pci_dev = pdev;
1579         pci_set_drvdata(pdev, dev);
1580         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1581         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1582         nvme_set_instance(dev);
1583         dev->entry[0].vector = pdev->irq;
1584
1585         result = nvme_setup_prp_pools(dev);
1586         if (result)
1587                 goto disable_msix;
1588
1589         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1590         if (!dev->bar) {
1591                 result = -ENOMEM;
1592                 goto disable_msix;
1593         }
1594
1595         result = nvme_configure_admin_queue(dev);
1596         if (result)
1597                 goto unmap;
1598         dev->queue_count++;
1599
1600         spin_lock(&dev_list_lock);
1601         list_add(&dev->node, &dev_list);
1602         spin_unlock(&dev_list_lock);
1603
1604         result = nvme_dev_add(dev);
1605         if (result)
1606                 goto delete;
1607
1608         return 0;
1609
1610  delete:
1611         spin_lock(&dev_list_lock);
1612         list_del(&dev->node);
1613         spin_unlock(&dev_list_lock);
1614
1615         nvme_free_queues(dev);
1616  unmap:
1617         iounmap(dev->bar);
1618  disable_msix:
1619         pci_disable_msix(pdev);
1620         nvme_release_instance(dev);
1621         nvme_release_prp_pools(dev);
1622  disable:
1623         pci_disable_device(pdev);
1624         pci_release_regions(pdev);
1625  free:
1626         kfree(dev->queues);
1627         kfree(dev->entry);
1628         kfree(dev);
1629         return result;
1630 }
1631
1632 static void __devexit nvme_remove(struct pci_dev *pdev)
1633 {
1634         struct nvme_dev *dev = pci_get_drvdata(pdev);
1635         nvme_dev_remove(dev);
1636         pci_disable_msix(pdev);
1637         iounmap(dev->bar);
1638         nvme_release_instance(dev);
1639         nvme_release_prp_pools(dev);
1640         pci_disable_device(pdev);
1641         pci_release_regions(pdev);
1642         kfree(dev->queues);
1643         kfree(dev->entry);
1644         kfree(dev);
1645 }
1646
1647 /* These functions are yet to be implemented */
1648 #define nvme_error_detected NULL
1649 #define nvme_dump_registers NULL
1650 #define nvme_link_reset NULL
1651 #define nvme_slot_reset NULL
1652 #define nvme_error_resume NULL
1653 #define nvme_suspend NULL
1654 #define nvme_resume NULL
1655
1656 static struct pci_error_handlers nvme_err_handler = {
1657         .error_detected = nvme_error_detected,
1658         .mmio_enabled   = nvme_dump_registers,
1659         .link_reset     = nvme_link_reset,
1660         .slot_reset     = nvme_slot_reset,
1661         .resume         = nvme_error_resume,
1662 };
1663
1664 /* Move to pci_ids.h later */
1665 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1666
1667 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1668         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1669         { 0, }
1670 };
1671 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1672
1673 static struct pci_driver nvme_driver = {
1674         .name           = "nvme",
1675         .id_table       = nvme_id_table,
1676         .probe          = nvme_probe,
1677         .remove         = __devexit_p(nvme_remove),
1678         .suspend        = nvme_suspend,
1679         .resume         = nvme_resume,
1680         .err_handler    = &nvme_err_handler,
1681 };
1682
1683 static int __init nvme_init(void)
1684 {
1685         int result = -EBUSY;
1686
1687         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1688         if (IS_ERR(nvme_thread))
1689                 return PTR_ERR(nvme_thread);
1690
1691         nvme_major = register_blkdev(nvme_major, "nvme");
1692         if (nvme_major <= 0)
1693                 goto kill_kthread;
1694
1695         result = pci_register_driver(&nvme_driver);
1696         if (result)
1697                 goto unregister_blkdev;
1698         return 0;
1699
1700  unregister_blkdev:
1701         unregister_blkdev(nvme_major, "nvme");
1702  kill_kthread:
1703         kthread_stop(nvme_thread);
1704         return result;
1705 }
1706
1707 static void __exit nvme_exit(void)
1708 {
1709         pci_unregister_driver(&nvme_driver);
1710         unregister_blkdev(nvme_major, "nvme");
1711         kthread_stop(nvme_thread);
1712 }
1713
1714 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1715 MODULE_LICENSE("GPL");
1716 MODULE_VERSION("0.7");
1717 module_init(nvme_init);
1718 module_exit(nvme_exit);