NVMe: Allow fatal signals to interrupt I/O
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/types.h>
37 #include <linux/version.h>
38
39 #define NVME_Q_DEPTH 1024
40 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
41 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
42 #define NVME_MINORS 64
43
44 static int nvme_major;
45 module_param(nvme_major, int, 0);
46
47 /*
48  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
49  */
50 struct nvme_dev {
51         struct nvme_queue **queues;
52         u32 __iomem *dbs;
53         struct pci_dev *pci_dev;
54         int instance;
55         int queue_count;
56         u32 ctrl_config;
57         struct msix_entry *entry;
58         struct nvme_bar __iomem *bar;
59         struct list_head namespaces;
60         char serial[20];
61         char model[40];
62         char firmware_rev[8];
63 };
64
65 /*
66  * An NVM Express namespace is equivalent to a SCSI LUN
67  */
68 struct nvme_ns {
69         struct list_head list;
70
71         struct nvme_dev *dev;
72         struct request_queue *queue;
73         struct gendisk *disk;
74
75         int ns_id;
76         int lba_shift;
77 };
78
79 /*
80  * An NVM Express queue.  Each device has at least two (one for admin
81  * commands and one for I/O commands).
82  */
83 struct nvme_queue {
84         struct device *q_dmadev;
85         spinlock_t q_lock;
86         struct nvme_command *sq_cmds;
87         volatile struct nvme_completion *cqes;
88         dma_addr_t sq_dma_addr;
89         dma_addr_t cq_dma_addr;
90         wait_queue_head_t sq_full;
91         struct bio_list sq_cong;
92         u32 __iomem *q_db;
93         u16 q_depth;
94         u16 cq_vector;
95         u16 sq_head;
96         u16 sq_tail;
97         u16 cq_head;
98         u16 cq_phase;
99         unsigned long cmdid_data[];
100 };
101
102 /*
103  * Check we didin't inadvertently grow the command struct
104  */
105 static inline void _nvme_check_size(void)
106 {
107         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
108         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
109         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
110         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
111         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
112         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
113         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
114         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
115         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
116 }
117
118 /**
119  * alloc_cmdid - Allocate a Command ID
120  * @param nvmeq The queue that will be used for this command
121  * @param ctx A pointer that will be passed to the handler
122  * @param handler The ID of the handler to call
123  *
124  * Allocate a Command ID for a queue.  The data passed in will
125  * be passed to the completion handler.  This is implemented by using
126  * the bottom two bits of the ctx pointer to store the handler ID.
127  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128  * We can change this if it becomes a problem.
129  */
130 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
131 {
132         int depth = nvmeq->q_depth;
133         unsigned long data = (unsigned long)ctx | handler;
134         int cmdid;
135
136         BUG_ON((unsigned long)ctx & 3);
137
138         do {
139                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
140                 if (cmdid >= depth)
141                         return -EBUSY;
142         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
143
144         nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
145         return cmdid;
146 }
147
148 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
149                                                                 int handler)
150 {
151         int cmdid;
152         wait_event_killable(nvmeq->sq_full,
153                         (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
154         return (cmdid < 0) ? -EINTR : cmdid;
155 }
156
157 /* If you need more than four handlers, you'll need to change how
158  * alloc_cmdid and nvme_process_cq work.  Also, aborted commands take
159  * the sync_completion path (if they complete), so don't put anything
160  * else in slot zero.
161  */
162 enum {
163         sync_completion_id = 0,
164         bio_completion_id,
165 };
166
167 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
168 {
169         unsigned long data;
170
171         data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
172         clear_bit(cmdid, nvmeq->cmdid_data);
173         wake_up(&nvmeq->sq_full);
174         return data;
175 }
176
177 static void clear_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
178 {
179         nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)] = 0;
180 }
181
182 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
183 {
184         int qid, cpu = get_cpu();
185         if (cpu < ns->dev->queue_count)
186                 qid = cpu + 1;
187         else
188                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
189         return ns->dev->queues[qid];
190 }
191
192 static void put_nvmeq(struct nvme_queue *nvmeq)
193 {
194         put_cpu();
195 }
196
197 /**
198  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
199  * @nvmeq: The queue to use
200  * @cmd: The command to send
201  *
202  * Safe to use from interrupt context
203  */
204 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
205 {
206         unsigned long flags;
207         u16 tail;
208         /* XXX: Need to check tail isn't going to overrun head */
209         spin_lock_irqsave(&nvmeq->q_lock, flags);
210         tail = nvmeq->sq_tail;
211         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
212         writel(tail, nvmeq->q_db);
213         if (++tail == nvmeq->q_depth)
214                 tail = 0;
215         nvmeq->sq_tail = tail;
216         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
217
218         return 0;
219 }
220
221 struct nvme_req_info {
222         struct bio *bio;
223         int nents;
224         struct scatterlist sg[0];
225 };
226
227 /* XXX: use a mempool */
228 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
229 {
230         return kmalloc(sizeof(struct nvme_req_info) +
231                         sizeof(struct scatterlist) * nseg, gfp);
232 }
233
234 static void free_info(struct nvme_req_info *info)
235 {
236         kfree(info);
237 }
238
239 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
240                                                 struct nvme_completion *cqe)
241 {
242         struct nvme_req_info *info = ctx;
243         struct bio *bio = info->bio;
244         u16 status = le16_to_cpup(&cqe->status) >> 1;
245
246         dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
247                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
248         free_info(info);
249         bio_endio(bio, status ? -EIO : 0);
250 }
251
252 /* length is in bytes */
253 static void nvme_setup_prps(struct nvme_common_command *cmd,
254                                         struct scatterlist *sg, int length)
255 {
256         int dma_len = sg_dma_len(sg);
257         u64 dma_addr = sg_dma_address(sg);
258         int offset = offset_in_page(dma_addr);
259
260         cmd->prp1 = cpu_to_le64(dma_addr);
261         length -= (PAGE_SIZE - offset);
262         if (length <= 0)
263                 return;
264
265         dma_len -= (PAGE_SIZE - offset);
266         if (dma_len) {
267                 dma_addr += (PAGE_SIZE - offset);
268         } else {
269                 sg = sg_next(sg);
270                 dma_addr = sg_dma_address(sg);
271                 dma_len = sg_dma_len(sg);
272         }
273
274         if (length <= PAGE_SIZE) {
275                 cmd->prp2 = cpu_to_le64(dma_addr);
276                 return;
277         }
278
279         /* XXX: support PRP lists */
280 }
281
282 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
283                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
284 {
285         struct bio_vec *bvec;
286         struct scatterlist *sg = info->sg;
287         int i, nsegs;
288
289         sg_init_table(sg, psegs);
290         bio_for_each_segment(bvec, bio, i) {
291                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
292                 /* XXX: handle non-mergable here */
293                 nsegs++;
294         }
295         info->nents = nsegs;
296
297         return dma_map_sg(dev, info->sg, info->nents, dma_dir);
298 }
299
300 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
301                                                                 struct bio *bio)
302 {
303         struct nvme_command *cmnd;
304         struct nvme_req_info *info;
305         enum dma_data_direction dma_dir;
306         int cmdid;
307         u16 control;
308         u32 dsmgmt;
309         unsigned long flags;
310         int psegs = bio_phys_segments(ns->queue, bio);
311
312         info = alloc_info(psegs, GFP_NOIO);
313         if (!info)
314                 goto congestion;
315         info->bio = bio;
316
317         cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
318         if (unlikely(cmdid < 0))
319                 goto free_info;
320
321         control = 0;
322         if (bio->bi_rw & REQ_FUA)
323                 control |= NVME_RW_FUA;
324         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
325                 control |= NVME_RW_LR;
326
327         dsmgmt = 0;
328         if (bio->bi_rw & REQ_RAHEAD)
329                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
330
331         spin_lock_irqsave(&nvmeq->q_lock, flags);
332         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
333
334         memset(cmnd, 0, sizeof(*cmnd));
335         if (bio_data_dir(bio)) {
336                 cmnd->rw.opcode = nvme_cmd_write;
337                 dma_dir = DMA_TO_DEVICE;
338         } else {
339                 cmnd->rw.opcode = nvme_cmd_read;
340                 dma_dir = DMA_FROM_DEVICE;
341         }
342
343         nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
344
345         cmnd->rw.flags = 1;
346         cmnd->rw.command_id = cmdid;
347         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
348         nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
349         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
350         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
351         cmnd->rw.control = cpu_to_le16(control);
352         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
353
354         writel(nvmeq->sq_tail, nvmeq->q_db);
355         if (++nvmeq->sq_tail == nvmeq->q_depth)
356                 nvmeq->sq_tail = 0;
357
358         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
359
360         return 0;
361
362  free_info:
363         free_info(info);
364  congestion:
365         return -EBUSY;
366 }
367
368 /*
369  * NB: return value of non-zero would mean that we were a stacking driver.
370  * make_request must always succeed.
371  */
372 static int nvme_make_request(struct request_queue *q, struct bio *bio)
373 {
374         struct nvme_ns *ns = q->queuedata;
375         struct nvme_queue *nvmeq = get_nvmeq(ns);
376
377         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
378                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
379                 bio_list_add(&nvmeq->sq_cong, bio);
380         }
381         put_nvmeq(nvmeq);
382
383         return 0;
384 }
385
386 struct sync_cmd_info {
387         struct task_struct *task;
388         u32 result;
389         int status;
390 };
391
392 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
393                                                 struct nvme_completion *cqe)
394 {
395         struct sync_cmd_info *cmdinfo = ctx;
396         if (!cmdinfo)
397                 return; /* Command aborted */
398         cmdinfo->result = le32_to_cpup(&cqe->result);
399         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
400         wake_up_process(cmdinfo->task);
401 }
402
403 typedef void (*completion_fn)(struct nvme_queue *, void *,
404                                                 struct nvme_completion *);
405
406 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
407 {
408         u16 head, phase;
409
410         static const completion_fn completions[4] = {
411                 [sync_completion_id] = sync_completion,
412                 [bio_completion_id]  = bio_completion,
413         };
414
415         head = nvmeq->cq_head;
416         phase = nvmeq->cq_phase;
417
418         for (;;) {
419                 unsigned long data;
420                 void *ptr;
421                 unsigned char handler;
422                 struct nvme_completion cqe = nvmeq->cqes[head];
423                 if ((le16_to_cpu(cqe.status) & 1) != phase)
424                         break;
425                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
426                 if (++head == nvmeq->q_depth) {
427                         head = 0;
428                         phase = !phase;
429                 }
430
431                 data = free_cmdid(nvmeq, cqe.command_id);
432                 handler = data & 3;
433                 ptr = (void *)(data & ~3UL);
434                 completions[handler](nvmeq, ptr, &cqe);
435         }
436
437         /* If the controller ignores the cq head doorbell and continuously
438          * writes to the queue, it is theoretically possible to wrap around
439          * the queue twice and mistakenly return IRQ_NONE.  Linux only
440          * requires that 0.1% of your interrupts are handled, so this isn't
441          * a big problem.
442          */
443         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
444                 return IRQ_NONE;
445
446         writel(head, nvmeq->q_db + 1);
447         nvmeq->cq_head = head;
448         nvmeq->cq_phase = phase;
449
450         return IRQ_HANDLED;
451 }
452
453 static irqreturn_t nvme_irq(int irq, void *data)
454 {
455         return nvme_process_cq(data);
456 }
457
458 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
459 {
460         spin_lock_irq(&nvmeq->q_lock);
461         clear_cmdid_data(nvmeq, cmdid);
462         spin_unlock_irq(&nvmeq->q_lock);
463 }
464
465 /*
466  * Returns 0 on success.  If the result is negative, it's a Linux error code;
467  * if the result is positive, it's an NVM Express status code
468  */
469 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
470                                         struct nvme_command *cmd, u32 *result)
471 {
472         int cmdid;
473         struct sync_cmd_info cmdinfo;
474
475         cmdinfo.task = current;
476         cmdinfo.status = -EINTR;
477
478         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id);
479         if (cmdid < 0)
480                 return cmdid;
481         cmd->common.command_id = cmdid;
482
483         set_current_state(TASK_KILLABLE);
484         nvme_submit_cmd(nvmeq, cmd);
485         schedule();
486
487         if (cmdinfo.status == -EINTR) {
488                 nvme_abort_command(nvmeq, cmdid);
489                 return -EINTR;
490         }
491
492         if (result)
493                 *result = cmdinfo.result;
494
495         return cmdinfo.status;
496 }
497
498 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
499                                                                 u32 *result)
500 {
501         return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
502 }
503
504 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
505 {
506         int status;
507         struct nvme_command c;
508
509         memset(&c, 0, sizeof(c));
510         c.delete_queue.opcode = opcode;
511         c.delete_queue.qid = cpu_to_le16(id);
512
513         status = nvme_submit_admin_cmd(dev, &c, NULL);
514         if (status)
515                 return -EIO;
516         return 0;
517 }
518
519 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
520                                                 struct nvme_queue *nvmeq)
521 {
522         int status;
523         struct nvme_command c;
524         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
525
526         memset(&c, 0, sizeof(c));
527         c.create_cq.opcode = nvme_admin_create_cq;
528         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
529         c.create_cq.cqid = cpu_to_le16(qid);
530         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
531         c.create_cq.cq_flags = cpu_to_le16(flags);
532         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
533
534         status = nvme_submit_admin_cmd(dev, &c, NULL);
535         if (status)
536                 return -EIO;
537         return 0;
538 }
539
540 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
541                                                 struct nvme_queue *nvmeq)
542 {
543         int status;
544         struct nvme_command c;
545         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
546
547         memset(&c, 0, sizeof(c));
548         c.create_sq.opcode = nvme_admin_create_sq;
549         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
550         c.create_sq.sqid = cpu_to_le16(qid);
551         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
552         c.create_sq.sq_flags = cpu_to_le16(flags);
553         c.create_sq.cqid = cpu_to_le16(qid);
554
555         status = nvme_submit_admin_cmd(dev, &c, NULL);
556         if (status)
557                 return -EIO;
558         return 0;
559 }
560
561 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
562 {
563         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
564 }
565
566 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
567 {
568         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
569 }
570
571 static void nvme_free_queue(struct nvme_dev *dev, int qid)
572 {
573         struct nvme_queue *nvmeq = dev->queues[qid];
574
575         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
576
577         /* Don't tell the adapter to delete the admin queue */
578         if (qid) {
579                 adapter_delete_sq(dev, qid);
580                 adapter_delete_cq(dev, qid);
581         }
582
583         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
584                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
585         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
586                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
587         kfree(nvmeq);
588 }
589
590 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
591                                                         int depth, int vector)
592 {
593         struct device *dmadev = &dev->pci_dev->dev;
594         unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
595         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
596         if (!nvmeq)
597                 return NULL;
598
599         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
600                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
601         if (!nvmeq->cqes)
602                 goto free_nvmeq;
603         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
604
605         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
606                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
607         if (!nvmeq->sq_cmds)
608                 goto free_cqdma;
609
610         nvmeq->q_dmadev = dmadev;
611         spin_lock_init(&nvmeq->q_lock);
612         nvmeq->cq_head = 0;
613         nvmeq->cq_phase = 1;
614         init_waitqueue_head(&nvmeq->sq_full);
615         bio_list_init(&nvmeq->sq_cong);
616         nvmeq->q_db = &dev->dbs[qid * 2];
617         nvmeq->q_depth = depth;
618         nvmeq->cq_vector = vector;
619
620         return nvmeq;
621
622  free_cqdma:
623         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
624                                                         nvmeq->cq_dma_addr);
625  free_nvmeq:
626         kfree(nvmeq);
627         return NULL;
628 }
629
630 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
631                                                         const char *name)
632 {
633         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
634                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
635 }
636
637 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
638                                         int qid, int cq_size, int vector)
639 {
640         int result;
641         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
642
643         if (!nvmeq)
644                 return NULL;
645
646         result = adapter_alloc_cq(dev, qid, nvmeq);
647         if (result < 0)
648                 goto free_nvmeq;
649
650         result = adapter_alloc_sq(dev, qid, nvmeq);
651         if (result < 0)
652                 goto release_cq;
653
654         result = queue_request_irq(dev, nvmeq, "nvme");
655         if (result < 0)
656                 goto release_sq;
657
658         return nvmeq;
659
660  release_sq:
661         adapter_delete_sq(dev, qid);
662  release_cq:
663         adapter_delete_cq(dev, qid);
664  free_nvmeq:
665         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
666                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
667         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
668                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
669         kfree(nvmeq);
670         return NULL;
671 }
672
673 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
674 {
675         int result;
676         u32 aqa;
677         struct nvme_queue *nvmeq;
678
679         dev->dbs = ((void __iomem *)dev->bar) + 4096;
680
681         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
682         if (!nvmeq)
683                 return -ENOMEM;
684
685         aqa = nvmeq->q_depth - 1;
686         aqa |= aqa << 16;
687
688         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
689         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
690         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
691
692         writel(0, &dev->bar->cc);
693         writel(aqa, &dev->bar->aqa);
694         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
695         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
696         writel(dev->ctrl_config, &dev->bar->cc);
697
698         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
699                 msleep(100);
700                 if (fatal_signal_pending(current))
701                         return -EINTR;
702         }
703
704         result = queue_request_irq(dev, nvmeq, "nvme admin");
705         dev->queues[0] = nvmeq;
706         return result;
707 }
708
709 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
710                                 unsigned long addr, unsigned length,
711                                 struct scatterlist **sgp)
712 {
713         int i, err, count, nents, offset;
714         struct scatterlist *sg;
715         struct page **pages;
716
717         if (addr & 3)
718                 return -EINVAL;
719         if (!length)
720                 return -EINVAL;
721
722         offset = offset_in_page(addr);
723         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
724         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
725
726         err = get_user_pages_fast(addr, count, 1, pages);
727         if (err < count) {
728                 count = err;
729                 err = -EFAULT;
730                 goto put_pages;
731         }
732
733         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
734         sg_init_table(sg, count);
735         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
736         length -= (PAGE_SIZE - offset);
737         for (i = 1; i < count; i++) {
738                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
739                 length -= PAGE_SIZE;
740         }
741
742         err = -ENOMEM;
743         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
744                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
745         if (!nents)
746                 goto put_pages;
747
748         kfree(pages);
749         *sgp = sg;
750         return nents;
751
752  put_pages:
753         for (i = 0; i < count; i++)
754                 put_page(pages[i]);
755         kfree(pages);
756         return err;
757 }
758
759 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
760                                 unsigned long addr, int length,
761                                 struct scatterlist *sg, int nents)
762 {
763         int i, count;
764
765         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
766         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
767
768         for (i = 0; i < count; i++)
769                 put_page(sg_page(&sg[i]));
770 }
771
772 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
773                                         unsigned long addr, unsigned length,
774                                         struct nvme_command *cmd)
775 {
776         int err, nents;
777         struct scatterlist *sg;
778
779         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
780         if (nents < 0)
781                 return nents;
782         nvme_setup_prps(&cmd->common, sg, length);
783         err = nvme_submit_admin_cmd(dev, cmd, NULL);
784         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
785         return err ? -EIO : 0;
786 }
787
788 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
789 {
790         struct nvme_command c;
791
792         memset(&c, 0, sizeof(c));
793         c.identify.opcode = nvme_admin_identify;
794         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
795         c.identify.cns = cpu_to_le32(cns);
796
797         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
798 }
799
800 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
801 {
802         struct nvme_command c;
803
804         memset(&c, 0, sizeof(c));
805         c.features.opcode = nvme_admin_get_features;
806         c.features.nsid = cpu_to_le32(ns->ns_id);
807         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
808
809         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
810 }
811
812 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
813 {
814         struct nvme_dev *dev = ns->dev;
815         struct nvme_queue *nvmeq;
816         struct nvme_user_io io;
817         struct nvme_command c;
818         unsigned length;
819         u32 result;
820         int nents, status;
821         struct scatterlist *sg;
822
823         if (copy_from_user(&io, uio, sizeof(io)))
824                 return -EFAULT;
825         length = io.nblocks << io.block_shift;
826         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
827         if (nents < 0)
828                 return nents;
829
830         memset(&c, 0, sizeof(c));
831         c.rw.opcode = io.opcode;
832         c.rw.flags = io.flags;
833         c.rw.nsid = cpu_to_le32(io.nsid);
834         c.rw.slba = cpu_to_le64(io.slba);
835         c.rw.length = cpu_to_le16(io.nblocks - 1);
836         c.rw.control = cpu_to_le16(io.control);
837         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
838         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
839         c.rw.apptag = cpu_to_le16(io.apptag);
840         c.rw.appmask = cpu_to_le16(io.appmask);
841         /* XXX: metadata */
842         nvme_setup_prps(&c.common, sg, length);
843
844         nvmeq = get_nvmeq(ns);
845         status = nvme_submit_sync_cmd(nvmeq, &c, &result);
846         put_nvmeq(nvmeq);
847
848         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
849         put_user(result, &uio->result);
850         return status;
851 }
852
853 static int nvme_download_firmware(struct nvme_ns *ns,
854                                                 struct nvme_dlfw __user *udlfw)
855 {
856         struct nvme_dev *dev = ns->dev;
857         struct nvme_dlfw dlfw;
858         struct nvme_command c;
859         int nents, status;
860         struct scatterlist *sg;
861
862         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
863                 return -EFAULT;
864         if (dlfw.length >= (1 << 30))
865                 return -EINVAL;
866
867         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
868         if (nents < 0)
869                 return nents;
870
871         memset(&c, 0, sizeof(c));
872         c.dlfw.opcode = nvme_admin_download_fw;
873         c.dlfw.numd = cpu_to_le32(dlfw.length);
874         c.dlfw.offset = cpu_to_le32(dlfw.offset);
875         nvme_setup_prps(&c.common, sg, dlfw.length * 4);
876
877         status = nvme_submit_admin_cmd(dev, &c, NULL);
878         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
879         return status;
880 }
881
882 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
883 {
884         struct nvme_dev *dev = ns->dev;
885         struct nvme_command c;
886
887         memset(&c, 0, sizeof(c));
888         c.common.opcode = nvme_admin_activate_fw;
889         c.common.rsvd10[0] = cpu_to_le32(arg);
890
891         return nvme_submit_admin_cmd(dev, &c, NULL);
892 }
893
894 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
895                                                         unsigned long arg)
896 {
897         struct nvme_ns *ns = bdev->bd_disk->private_data;
898
899         switch (cmd) {
900         case NVME_IOCTL_IDENTIFY_NS:
901                 return nvme_identify(ns, arg, 0);
902         case NVME_IOCTL_IDENTIFY_CTRL:
903                 return nvme_identify(ns, arg, 1);
904         case NVME_IOCTL_GET_RANGE_TYPE:
905                 return nvme_get_range_type(ns, arg);
906         case NVME_IOCTL_SUBMIT_IO:
907                 return nvme_submit_io(ns, (void __user *)arg);
908         case NVME_IOCTL_DOWNLOAD_FW:
909                 return nvme_download_firmware(ns, (void __user *)arg);
910         case NVME_IOCTL_ACTIVATE_FW:
911                 return nvme_activate_firmware(ns, arg);
912         default:
913                 return -ENOTTY;
914         }
915 }
916
917 static const struct block_device_operations nvme_fops = {
918         .owner          = THIS_MODULE,
919         .ioctl          = nvme_ioctl,
920 };
921
922 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
923                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
924 {
925         struct nvme_ns *ns;
926         struct gendisk *disk;
927         int lbaf;
928
929         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
930                 return NULL;
931
932         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
933         if (!ns)
934                 return NULL;
935         ns->queue = blk_alloc_queue(GFP_KERNEL);
936         if (!ns->queue)
937                 goto out_free_ns;
938         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
939                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
940         blk_queue_make_request(ns->queue, nvme_make_request);
941         ns->dev = dev;
942         ns->queue->queuedata = ns;
943
944         disk = alloc_disk(NVME_MINORS);
945         if (!disk)
946                 goto out_free_queue;
947         ns->ns_id = index;
948         ns->disk = disk;
949         lbaf = id->flbas & 0xf;
950         ns->lba_shift = id->lbaf[lbaf].ds;
951
952         disk->major = nvme_major;
953         disk->minors = NVME_MINORS;
954         disk->first_minor = NVME_MINORS * index;
955         disk->fops = &nvme_fops;
956         disk->private_data = ns;
957         disk->queue = ns->queue;
958         disk->driverfs_dev = &dev->pci_dev->dev;
959         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
960         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
961
962         return ns;
963
964  out_free_queue:
965         blk_cleanup_queue(ns->queue);
966  out_free_ns:
967         kfree(ns);
968         return NULL;
969 }
970
971 static void nvme_ns_free(struct nvme_ns *ns)
972 {
973         put_disk(ns->disk);
974         blk_cleanup_queue(ns->queue);
975         kfree(ns);
976 }
977
978 static int set_queue_count(struct nvme_dev *dev, int count)
979 {
980         int status;
981         u32 result;
982         struct nvme_command c;
983         u32 q_count = (count - 1) | ((count - 1) << 16);
984
985         memset(&c, 0, sizeof(c));
986         c.features.opcode = nvme_admin_get_features;
987         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
988         c.features.dword11 = cpu_to_le32(q_count);
989
990         status = nvme_submit_admin_cmd(dev, &c, &result);
991         if (status)
992                 return -EIO;
993         return min(result & 0xffff, result >> 16) + 1;
994 }
995
996 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
997 {
998         int result, cpu, i, nr_queues;
999
1000         nr_queues = num_online_cpus();
1001         result = set_queue_count(dev, nr_queues);
1002         if (result < 0)
1003                 return result;
1004         if (result < nr_queues)
1005                 nr_queues = result;
1006
1007         /* Deregister the admin queue's interrupt */
1008         free_irq(dev->entry[0].vector, dev->queues[0]);
1009
1010         for (i = 0; i < nr_queues; i++)
1011                 dev->entry[i].entry = i;
1012         for (;;) {
1013                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1014                 if (result == 0) {
1015                         break;
1016                 } else if (result > 0) {
1017                         nr_queues = result;
1018                         continue;
1019                 } else {
1020                         nr_queues = 1;
1021                         break;
1022                 }
1023         }
1024
1025         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1026         /* XXX: handle failure here */
1027
1028         cpu = cpumask_first(cpu_online_mask);
1029         for (i = 0; i < nr_queues; i++) {
1030                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1031                 cpu = cpumask_next(cpu, cpu_online_mask);
1032         }
1033
1034         for (i = 0; i < nr_queues; i++) {
1035                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1036                                                         NVME_Q_DEPTH, i);
1037                 if (!dev->queues[i + 1])
1038                         return -ENOMEM;
1039                 dev->queue_count++;
1040         }
1041
1042         return 0;
1043 }
1044
1045 static void nvme_free_queues(struct nvme_dev *dev)
1046 {
1047         int i;
1048
1049         for (i = dev->queue_count - 1; i >= 0; i--)
1050                 nvme_free_queue(dev, i);
1051 }
1052
1053 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1054 {
1055         int res, nn, i;
1056         struct nvme_ns *ns, *next;
1057         struct nvme_id_ctrl *ctrl;
1058         void *id;
1059         dma_addr_t dma_addr;
1060         struct nvme_command cid, crt;
1061
1062         res = nvme_setup_io_queues(dev);
1063         if (res)
1064                 return res;
1065
1066         /* XXX: Switch to a SG list once prp2 works */
1067         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1068                                                                 GFP_KERNEL);
1069
1070         memset(&cid, 0, sizeof(cid));
1071         cid.identify.opcode = nvme_admin_identify;
1072         cid.identify.nsid = 0;
1073         cid.identify.prp1 = cpu_to_le64(dma_addr);
1074         cid.identify.cns = cpu_to_le32(1);
1075
1076         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1077         if (res) {
1078                 res = -EIO;
1079                 goto out_free;
1080         }
1081
1082         ctrl = id;
1083         nn = le32_to_cpup(&ctrl->nn);
1084         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1085         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1086         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1087
1088         cid.identify.cns = 0;
1089         memset(&crt, 0, sizeof(crt));
1090         crt.features.opcode = nvme_admin_get_features;
1091         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1092         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1093
1094         for (i = 0; i < nn; i++) {
1095                 cid.identify.nsid = cpu_to_le32(i);
1096                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1097                 if (res)
1098                         continue;
1099
1100                 if (((struct nvme_id_ns *)id)->ncap == 0)
1101                         continue;
1102
1103                 crt.features.nsid = cpu_to_le32(i);
1104                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1105                 if (res)
1106                         continue;
1107
1108                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1109                 if (ns)
1110                         list_add_tail(&ns->list, &dev->namespaces);
1111         }
1112         list_for_each_entry(ns, &dev->namespaces, list)
1113                 add_disk(ns->disk);
1114
1115         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1116         return 0;
1117
1118  out_free:
1119         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1120                 list_del(&ns->list);
1121                 nvme_ns_free(ns);
1122         }
1123
1124         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1125         return res;
1126 }
1127
1128 static int nvme_dev_remove(struct nvme_dev *dev)
1129 {
1130         struct nvme_ns *ns, *next;
1131
1132         /* TODO: wait all I/O finished or cancel them */
1133
1134         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1135                 list_del(&ns->list);
1136                 del_gendisk(ns->disk);
1137                 nvme_ns_free(ns);
1138         }
1139
1140         nvme_free_queues(dev);
1141
1142         return 0;
1143 }
1144
1145 /* XXX: Use an ida or something to let remove / add work correctly */
1146 static void nvme_set_instance(struct nvme_dev *dev)
1147 {
1148         static int instance;
1149         dev->instance = instance++;
1150 }
1151
1152 static void nvme_release_instance(struct nvme_dev *dev)
1153 {
1154 }
1155
1156 static int __devinit nvme_probe(struct pci_dev *pdev,
1157                                                 const struct pci_device_id *id)
1158 {
1159         int bars, result = -ENOMEM;
1160         struct nvme_dev *dev;
1161
1162         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1163         if (!dev)
1164                 return -ENOMEM;
1165         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1166                                                                 GFP_KERNEL);
1167         if (!dev->entry)
1168                 goto free;
1169         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1170                                                                 GFP_KERNEL);
1171         if (!dev->queues)
1172                 goto free;
1173
1174         if (pci_enable_device_mem(pdev))
1175                 goto free;
1176         pci_set_master(pdev);
1177         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1178         if (pci_request_selected_regions(pdev, bars, "nvme"))
1179                 goto disable;
1180
1181         INIT_LIST_HEAD(&dev->namespaces);
1182         dev->pci_dev = pdev;
1183         pci_set_drvdata(pdev, dev);
1184         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1185         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1186         nvme_set_instance(dev);
1187         dev->entry[0].vector = pdev->irq;
1188
1189         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1190         if (!dev->bar) {
1191                 result = -ENOMEM;
1192                 goto disable_msix;
1193         }
1194
1195         result = nvme_configure_admin_queue(dev);
1196         if (result)
1197                 goto unmap;
1198         dev->queue_count++;
1199
1200         result = nvme_dev_add(dev);
1201         if (result)
1202                 goto delete;
1203         return 0;
1204
1205  delete:
1206         nvme_free_queues(dev);
1207  unmap:
1208         iounmap(dev->bar);
1209  disable_msix:
1210         pci_disable_msix(pdev);
1211         nvme_release_instance(dev);
1212  disable:
1213         pci_disable_device(pdev);
1214         pci_release_regions(pdev);
1215  free:
1216         kfree(dev->queues);
1217         kfree(dev->entry);
1218         kfree(dev);
1219         return result;
1220 }
1221
1222 static void __devexit nvme_remove(struct pci_dev *pdev)
1223 {
1224         struct nvme_dev *dev = pci_get_drvdata(pdev);
1225         nvme_dev_remove(dev);
1226         pci_disable_msix(pdev);
1227         iounmap(dev->bar);
1228         nvme_release_instance(dev);
1229         pci_disable_device(pdev);
1230         pci_release_regions(pdev);
1231         kfree(dev->queues);
1232         kfree(dev->entry);
1233         kfree(dev);
1234 }
1235
1236 /* These functions are yet to be implemented */
1237 #define nvme_error_detected NULL
1238 #define nvme_dump_registers NULL
1239 #define nvme_link_reset NULL
1240 #define nvme_slot_reset NULL
1241 #define nvme_error_resume NULL
1242 #define nvme_suspend NULL
1243 #define nvme_resume NULL
1244
1245 static struct pci_error_handlers nvme_err_handler = {
1246         .error_detected = nvme_error_detected,
1247         .mmio_enabled   = nvme_dump_registers,
1248         .link_reset     = nvme_link_reset,
1249         .slot_reset     = nvme_slot_reset,
1250         .resume         = nvme_error_resume,
1251 };
1252
1253 /* Move to pci_ids.h later */
1254 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1255
1256 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1257         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1258         { 0, }
1259 };
1260 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1261
1262 static struct pci_driver nvme_driver = {
1263         .name           = "nvme",
1264         .id_table       = nvme_id_table,
1265         .probe          = nvme_probe,
1266         .remove         = __devexit_p(nvme_remove),
1267         .suspend        = nvme_suspend,
1268         .resume         = nvme_resume,
1269         .err_handler    = &nvme_err_handler,
1270 };
1271
1272 static int __init nvme_init(void)
1273 {
1274         int result;
1275
1276         nvme_major = register_blkdev(nvme_major, "nvme");
1277         if (nvme_major <= 0)
1278                 return -EBUSY;
1279
1280         result = pci_register_driver(&nvme_driver);
1281         if (!result)
1282                 return 0;
1283
1284         unregister_blkdev(nvme_major, "nvme");
1285         return result;
1286 }
1287
1288 static void __exit nvme_exit(void)
1289 {
1290         pci_unregister_driver(&nvme_driver);
1291         unregister_blkdev(nvme_major, "nvme");
1292 }
1293
1294 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1295 MODULE_LICENSE("GPL");
1296 MODULE_VERSION("0.2");
1297 module_init(nvme_init);
1298 module_exit(nvme_exit);