NVMe: Rename cancel_cmdid_data to cancel_cmdid
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/version.h>
40
41 #define NVME_Q_DEPTH 1024
42 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
43 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
44 #define NVME_MINORS 64
45 #define IO_TIMEOUT      (5 * HZ)
46 #define ADMIN_TIMEOUT   (60 * HZ)
47
48 static int nvme_major;
49 module_param(nvme_major, int, 0);
50
51 static int use_threaded_interrupts;
52 module_param(use_threaded_interrupts, int, 0);
53
54 static DEFINE_SPINLOCK(dev_list_lock);
55 static LIST_HEAD(dev_list);
56 static struct task_struct *nvme_thread;
57
58 /*
59  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
60  */
61 struct nvme_dev {
62         struct list_head node;
63         struct nvme_queue **queues;
64         u32 __iomem *dbs;
65         struct pci_dev *pci_dev;
66         struct dma_pool *prp_page_pool;
67         struct dma_pool *prp_small_pool;
68         int instance;
69         int queue_count;
70         u32 ctrl_config;
71         struct msix_entry *entry;
72         struct nvme_bar __iomem *bar;
73         struct list_head namespaces;
74         char serial[20];
75         char model[40];
76         char firmware_rev[8];
77 };
78
79 /*
80  * An NVM Express namespace is equivalent to a SCSI LUN
81  */
82 struct nvme_ns {
83         struct list_head list;
84
85         struct nvme_dev *dev;
86         struct request_queue *queue;
87         struct gendisk *disk;
88
89         int ns_id;
90         int lba_shift;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct device *q_dmadev;
99         struct nvme_dev *dev;
100         spinlock_t q_lock;
101         struct nvme_command *sq_cmds;
102         volatile struct nvme_completion *cqes;
103         dma_addr_t sq_dma_addr;
104         dma_addr_t cq_dma_addr;
105         wait_queue_head_t sq_full;
106         wait_queue_t sq_cong_wait;
107         struct bio_list sq_cong;
108         u32 __iomem *q_db;
109         u16 q_depth;
110         u16 cq_vector;
111         u16 sq_head;
112         u16 sq_tail;
113         u16 cq_head;
114         u16 cq_phase;
115         unsigned long cmdid_data[];
116 };
117
118 /*
119  * Check we didin't inadvertently grow the command struct
120  */
121 static inline void _nvme_check_size(void)
122 {
123         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132 }
133
134 struct nvme_cmd_info {
135         unsigned long ctx;
136         unsigned long timeout;
137 };
138
139 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140 {
141         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142 }
143
144 /**
145  * alloc_cmdid() - Allocate a Command ID
146  * @nvmeq: The queue that will be used for this command
147  * @ctx: A pointer that will be passed to the handler
148  * @handler: The ID of the handler to call
149  *
150  * Allocate a Command ID for a queue.  The data passed in will
151  * be passed to the completion handler.  This is implemented by using
152  * the bottom two bits of the ctx pointer to store the handler ID.
153  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154  * We can change this if it becomes a problem.
155  */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157                                                         unsigned timeout)
158 {
159         int depth = nvmeq->q_depth - 1;
160         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161         int cmdid;
162
163         BUG_ON((unsigned long)ctx & 3);
164
165         do {
166                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167                 if (cmdid >= depth)
168                         return -EBUSY;
169         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171         info[cmdid].ctx = (unsigned long)ctx | handler;
172         info[cmdid].timeout = jiffies + timeout;
173         return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177                                                 int handler, unsigned timeout)
178 {
179         int cmdid;
180         wait_event_killable(nvmeq->sq_full,
181                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182         return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /*
186  * If you need more than four handlers, you'll need to change how
187  * alloc_cmdid and nvme_process_cq work.  Consider using a special
188  * CMD_CTX value instead, if that works for your situation.
189  */
190 enum {
191         sync_completion_id = 0,
192         bio_completion_id,
193 };
194
195 /* Special values must be a multiple of 4, and less than 0x1000 */
196 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201
202 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
203 {
204         unsigned long data;
205         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
206
207         if (cmdid >= nvmeq->q_depth)
208                 return CMD_CTX_INVALID;
209         data = info[cmdid].ctx;
210         info[cmdid].ctx = CMD_CTX_COMPLETED;
211         clear_bit(cmdid, nvmeq->cmdid_data);
212         wake_up(&nvmeq->sq_full);
213         return data;
214 }
215
216 static unsigned long cancel_cmdid(struct nvme_queue *nvmeq, int cmdid)
217 {
218         unsigned long data;
219         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
220         data = info[cmdid].ctx;
221         info[cmdid].ctx = CMD_CTX_CANCELLED;
222         return data;
223 }
224
225 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
226 {
227         return ns->dev->queues[get_cpu() + 1];
228 }
229
230 static void put_nvmeq(struct nvme_queue *nvmeq)
231 {
232         put_cpu();
233 }
234
235 /**
236  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
237  * @nvmeq: The queue to use
238  * @cmd: The command to send
239  *
240  * Safe to use from interrupt context
241  */
242 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
243 {
244         unsigned long flags;
245         u16 tail;
246         spin_lock_irqsave(&nvmeq->q_lock, flags);
247         tail = nvmeq->sq_tail;
248         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
249         if (++tail == nvmeq->q_depth)
250                 tail = 0;
251         writel(tail, nvmeq->q_db);
252         nvmeq->sq_tail = tail;
253         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
254
255         return 0;
256 }
257
258 struct nvme_prps {
259         int npages;
260         dma_addr_t first_dma;
261         __le64 *list[0];
262 };
263
264 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
265 {
266         const int last_prp = PAGE_SIZE / 8 - 1;
267         int i;
268         dma_addr_t prp_dma;
269
270         if (!prps)
271                 return;
272
273         prp_dma = prps->first_dma;
274
275         if (prps->npages == 0)
276                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
277         for (i = 0; i < prps->npages; i++) {
278                 __le64 *prp_list = prps->list[i];
279                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
280                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
281                 prp_dma = next_prp_dma;
282         }
283         kfree(prps);
284 }
285
286 struct nvme_bio {
287         struct bio *bio;
288         int nents;
289         struct nvme_prps *prps;
290         struct scatterlist sg[0];
291 };
292
293 /* XXX: use a mempool */
294 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
295 {
296         return kzalloc(sizeof(struct nvme_bio) +
297                         sizeof(struct scatterlist) * nseg, gfp);
298 }
299
300 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
301 {
302         nvme_free_prps(nvmeq->dev, nbio->prps);
303         kfree(nbio);
304 }
305
306 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
307                                                 struct nvme_completion *cqe)
308 {
309         struct nvme_bio *nbio = ctx;
310         struct bio *bio = nbio->bio;
311         u16 status = le16_to_cpup(&cqe->status) >> 1;
312
313         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
314                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
315         free_nbio(nvmeq, nbio);
316         if (status) {
317                 bio_endio(bio, -EIO);
318         } else if (bio->bi_vcnt > bio->bi_idx) {
319                 bio_list_add(&nvmeq->sq_cong, bio);
320                 wake_up_process(nvme_thread);
321         } else {
322                 bio_endio(bio, 0);
323         }
324 }
325
326 /* length is in bytes */
327 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
328                                         struct nvme_common_command *cmd,
329                                         struct scatterlist *sg, int length)
330 {
331         struct dma_pool *pool;
332         int dma_len = sg_dma_len(sg);
333         u64 dma_addr = sg_dma_address(sg);
334         int offset = offset_in_page(dma_addr);
335         __le64 *prp_list;
336         dma_addr_t prp_dma;
337         int nprps, npages, i, prp_page;
338         struct nvme_prps *prps = NULL;
339
340         cmd->prp1 = cpu_to_le64(dma_addr);
341         length -= (PAGE_SIZE - offset);
342         if (length <= 0)
343                 return prps;
344
345         dma_len -= (PAGE_SIZE - offset);
346         if (dma_len) {
347                 dma_addr += (PAGE_SIZE - offset);
348         } else {
349                 sg = sg_next(sg);
350                 dma_addr = sg_dma_address(sg);
351                 dma_len = sg_dma_len(sg);
352         }
353
354         if (length <= PAGE_SIZE) {
355                 cmd->prp2 = cpu_to_le64(dma_addr);
356                 return prps;
357         }
358
359         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
360         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
361         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
362         prp_page = 0;
363         if (nprps <= (256 / 8)) {
364                 pool = dev->prp_small_pool;
365                 prps->npages = 0;
366         } else {
367                 pool = dev->prp_page_pool;
368                 prps->npages = npages;
369         }
370
371         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
372         prps->list[prp_page++] = prp_list;
373         prps->first_dma = prp_dma;
374         cmd->prp2 = cpu_to_le64(prp_dma);
375         i = 0;
376         for (;;) {
377                 if (i == PAGE_SIZE / 8) {
378                         __le64 *old_prp_list = prp_list;
379                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
380                         prps->list[prp_page++] = prp_list;
381                         prp_list[0] = old_prp_list[i - 1];
382                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
383                         i = 1;
384                 }
385                 prp_list[i++] = cpu_to_le64(dma_addr);
386                 dma_len -= PAGE_SIZE;
387                 dma_addr += PAGE_SIZE;
388                 length -= PAGE_SIZE;
389                 if (length <= 0)
390                         break;
391                 if (dma_len > 0)
392                         continue;
393                 BUG_ON(dma_len < 0);
394                 sg = sg_next(sg);
395                 dma_addr = sg_dma_address(sg);
396                 dma_len = sg_dma_len(sg);
397         }
398
399         return prps;
400 }
401
402 /* NVMe scatterlists require no holes in the virtual address */
403 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
404                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
405
406 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
407                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
408 {
409         struct bio_vec *bvec, *bvprv = NULL;
410         struct scatterlist *sg = NULL;
411         int i, old_idx, length = 0, nsegs = 0;
412
413         sg_init_table(nbio->sg, psegs);
414         old_idx = bio->bi_idx;
415         bio_for_each_segment(bvec, bio, i) {
416                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
417                         sg->length += bvec->bv_len;
418                 } else {
419                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
420                                 break;
421                         sg = sg ? sg + 1 : nbio->sg;
422                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
423                                                         bvec->bv_offset);
424                         nsegs++;
425                 }
426                 length += bvec->bv_len;
427                 bvprv = bvec;
428         }
429         bio->bi_idx = i;
430         nbio->nents = nsegs;
431         sg_mark_end(sg);
432         if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
433                 bio->bi_idx = old_idx;
434                 return -ENOMEM;
435         }
436         return length;
437 }
438
439 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
440                                                                 int cmdid)
441 {
442         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
443
444         memset(cmnd, 0, sizeof(*cmnd));
445         cmnd->common.opcode = nvme_cmd_flush;
446         cmnd->common.command_id = cmdid;
447         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
448
449         if (++nvmeq->sq_tail == nvmeq->q_depth)
450                 nvmeq->sq_tail = 0;
451         writel(nvmeq->sq_tail, nvmeq->q_db);
452
453         return 0;
454 }
455
456 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
457 {
458         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
459                                                 sync_completion_id, IO_TIMEOUT);
460         if (unlikely(cmdid < 0))
461                 return cmdid;
462
463         return nvme_submit_flush(nvmeq, ns, cmdid);
464 }
465
466 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
467                                                                 struct bio *bio)
468 {
469         struct nvme_command *cmnd;
470         struct nvme_bio *nbio;
471         enum dma_data_direction dma_dir;
472         int cmdid, length, result = -ENOMEM;
473         u16 control;
474         u32 dsmgmt;
475         int psegs = bio_phys_segments(ns->queue, bio);
476
477         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
478                 result = nvme_submit_flush_data(nvmeq, ns);
479                 if (result)
480                         return result;
481         }
482
483         nbio = alloc_nbio(psegs, GFP_ATOMIC);
484         if (!nbio)
485                 goto nomem;
486         nbio->bio = bio;
487
488         result = -EBUSY;
489         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
490         if (unlikely(cmdid < 0))
491                 goto free_nbio;
492
493         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
494                 return nvme_submit_flush(nvmeq, ns, cmdid);
495
496         control = 0;
497         if (bio->bi_rw & REQ_FUA)
498                 control |= NVME_RW_FUA;
499         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
500                 control |= NVME_RW_LR;
501
502         dsmgmt = 0;
503         if (bio->bi_rw & REQ_RAHEAD)
504                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
505
506         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
507
508         memset(cmnd, 0, sizeof(*cmnd));
509         if (bio_data_dir(bio)) {
510                 cmnd->rw.opcode = nvme_cmd_write;
511                 dma_dir = DMA_TO_DEVICE;
512         } else {
513                 cmnd->rw.opcode = nvme_cmd_read;
514                 dma_dir = DMA_FROM_DEVICE;
515         }
516
517         result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
518         if (result < 0)
519                 goto free_nbio;
520         length = result;
521
522         cmnd->rw.command_id = cmdid;
523         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
524         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
525                                                                 length);
526         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
527         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
528         cmnd->rw.control = cpu_to_le16(control);
529         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
530
531         bio->bi_sector += length >> 9;
532
533         if (++nvmeq->sq_tail == nvmeq->q_depth)
534                 nvmeq->sq_tail = 0;
535         writel(nvmeq->sq_tail, nvmeq->q_db);
536
537         return 0;
538
539  free_nbio:
540         free_nbio(nvmeq, nbio);
541  nomem:
542         return result;
543 }
544
545 /*
546  * NB: return value of non-zero would mean that we were a stacking driver.
547  * make_request must always succeed.
548  */
549 static int nvme_make_request(struct request_queue *q, struct bio *bio)
550 {
551         struct nvme_ns *ns = q->queuedata;
552         struct nvme_queue *nvmeq = get_nvmeq(ns);
553         int result = -EBUSY;
554
555         spin_lock_irq(&nvmeq->q_lock);
556         if (bio_list_empty(&nvmeq->sq_cong))
557                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
558         if (unlikely(result)) {
559                 if (bio_list_empty(&nvmeq->sq_cong))
560                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
561                 bio_list_add(&nvmeq->sq_cong, bio);
562         }
563
564         spin_unlock_irq(&nvmeq->q_lock);
565         put_nvmeq(nvmeq);
566
567         return 0;
568 }
569
570 struct sync_cmd_info {
571         struct task_struct *task;
572         u32 result;
573         int status;
574 };
575
576 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
577                                                 struct nvme_completion *cqe)
578 {
579         struct sync_cmd_info *cmdinfo = ctx;
580         if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
581                 return;
582         if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
583                 return;
584         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
585                 dev_warn(nvmeq->q_dmadev,
586                                 "completed id %d twice on queue %d\n",
587                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
588                 return;
589         }
590         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
591                 dev_warn(nvmeq->q_dmadev,
592                                 "invalid id %d completed on queue %d\n",
593                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
594                 return;
595         }
596         cmdinfo->result = le32_to_cpup(&cqe->result);
597         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
598         wake_up_process(cmdinfo->task);
599 }
600
601 typedef void (*completion_fn)(struct nvme_queue *, void *,
602                                                 struct nvme_completion *);
603
604 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
605 {
606         u16 head, phase;
607
608         static const completion_fn completions[4] = {
609                 [sync_completion_id] = sync_completion,
610                 [bio_completion_id]  = bio_completion,
611         };
612
613         head = nvmeq->cq_head;
614         phase = nvmeq->cq_phase;
615
616         for (;;) {
617                 unsigned long data;
618                 void *ptr;
619                 unsigned char handler;
620                 struct nvme_completion cqe = nvmeq->cqes[head];
621                 if ((le16_to_cpu(cqe.status) & 1) != phase)
622                         break;
623                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
624                 if (++head == nvmeq->q_depth) {
625                         head = 0;
626                         phase = !phase;
627                 }
628
629                 data = free_cmdid(nvmeq, cqe.command_id);
630                 handler = data & 3;
631                 ptr = (void *)(data & ~3UL);
632                 completions[handler](nvmeq, ptr, &cqe);
633         }
634
635         /* If the controller ignores the cq head doorbell and continuously
636          * writes to the queue, it is theoretically possible to wrap around
637          * the queue twice and mistakenly return IRQ_NONE.  Linux only
638          * requires that 0.1% of your interrupts are handled, so this isn't
639          * a big problem.
640          */
641         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
642                 return IRQ_NONE;
643
644         writel(head, nvmeq->q_db + 1);
645         nvmeq->cq_head = head;
646         nvmeq->cq_phase = phase;
647
648         return IRQ_HANDLED;
649 }
650
651 static irqreturn_t nvme_irq(int irq, void *data)
652 {
653         irqreturn_t result;
654         struct nvme_queue *nvmeq = data;
655         spin_lock(&nvmeq->q_lock);
656         result = nvme_process_cq(nvmeq);
657         spin_unlock(&nvmeq->q_lock);
658         return result;
659 }
660
661 static irqreturn_t nvme_irq_check(int irq, void *data)
662 {
663         struct nvme_queue *nvmeq = data;
664         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
665         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
666                 return IRQ_NONE;
667         return IRQ_WAKE_THREAD;
668 }
669
670 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
671 {
672         spin_lock_irq(&nvmeq->q_lock);
673         cancel_cmdid(nvmeq, cmdid);
674         spin_unlock_irq(&nvmeq->q_lock);
675 }
676
677 /*
678  * Returns 0 on success.  If the result is negative, it's a Linux error code;
679  * if the result is positive, it's an NVM Express status code
680  */
681 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
682                         struct nvme_command *cmd, u32 *result, unsigned timeout)
683 {
684         int cmdid;
685         struct sync_cmd_info cmdinfo;
686
687         cmdinfo.task = current;
688         cmdinfo.status = -EINTR;
689
690         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
691                                                                 timeout);
692         if (cmdid < 0)
693                 return cmdid;
694         cmd->common.command_id = cmdid;
695
696         set_current_state(TASK_KILLABLE);
697         nvme_submit_cmd(nvmeq, cmd);
698         schedule();
699
700         if (cmdinfo.status == -EINTR) {
701                 nvme_abort_command(nvmeq, cmdid);
702                 return -EINTR;
703         }
704
705         if (result)
706                 *result = cmdinfo.result;
707
708         return cmdinfo.status;
709 }
710
711 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
712                                                                 u32 *result)
713 {
714         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
715 }
716
717 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
718 {
719         int status;
720         struct nvme_command c;
721
722         memset(&c, 0, sizeof(c));
723         c.delete_queue.opcode = opcode;
724         c.delete_queue.qid = cpu_to_le16(id);
725
726         status = nvme_submit_admin_cmd(dev, &c, NULL);
727         if (status)
728                 return -EIO;
729         return 0;
730 }
731
732 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
733                                                 struct nvme_queue *nvmeq)
734 {
735         int status;
736         struct nvme_command c;
737         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
738
739         memset(&c, 0, sizeof(c));
740         c.create_cq.opcode = nvme_admin_create_cq;
741         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
742         c.create_cq.cqid = cpu_to_le16(qid);
743         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
744         c.create_cq.cq_flags = cpu_to_le16(flags);
745         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
746
747         status = nvme_submit_admin_cmd(dev, &c, NULL);
748         if (status)
749                 return -EIO;
750         return 0;
751 }
752
753 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
754                                                 struct nvme_queue *nvmeq)
755 {
756         int status;
757         struct nvme_command c;
758         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
759
760         memset(&c, 0, sizeof(c));
761         c.create_sq.opcode = nvme_admin_create_sq;
762         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
763         c.create_sq.sqid = cpu_to_le16(qid);
764         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
765         c.create_sq.sq_flags = cpu_to_le16(flags);
766         c.create_sq.cqid = cpu_to_le16(qid);
767
768         status = nvme_submit_admin_cmd(dev, &c, NULL);
769         if (status)
770                 return -EIO;
771         return 0;
772 }
773
774 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
775 {
776         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
777 }
778
779 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
780 {
781         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
782 }
783
784 static void nvme_free_queue(struct nvme_dev *dev, int qid)
785 {
786         struct nvme_queue *nvmeq = dev->queues[qid];
787         int vector = dev->entry[nvmeq->cq_vector].vector;
788
789         irq_set_affinity_hint(vector, NULL);
790         free_irq(vector, nvmeq);
791
792         /* Don't tell the adapter to delete the admin queue */
793         if (qid) {
794                 adapter_delete_sq(dev, qid);
795                 adapter_delete_cq(dev, qid);
796         }
797
798         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
799                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
800         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
801                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
802         kfree(nvmeq);
803 }
804
805 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
806                                                         int depth, int vector)
807 {
808         struct device *dmadev = &dev->pci_dev->dev;
809         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
810         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
811         if (!nvmeq)
812                 return NULL;
813
814         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
815                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
816         if (!nvmeq->cqes)
817                 goto free_nvmeq;
818         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
819
820         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
821                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
822         if (!nvmeq->sq_cmds)
823                 goto free_cqdma;
824
825         nvmeq->q_dmadev = dmadev;
826         nvmeq->dev = dev;
827         spin_lock_init(&nvmeq->q_lock);
828         nvmeq->cq_head = 0;
829         nvmeq->cq_phase = 1;
830         init_waitqueue_head(&nvmeq->sq_full);
831         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
832         bio_list_init(&nvmeq->sq_cong);
833         nvmeq->q_db = &dev->dbs[qid * 2];
834         nvmeq->q_depth = depth;
835         nvmeq->cq_vector = vector;
836
837         return nvmeq;
838
839  free_cqdma:
840         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
841                                                         nvmeq->cq_dma_addr);
842  free_nvmeq:
843         kfree(nvmeq);
844         return NULL;
845 }
846
847 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
848                                                         const char *name)
849 {
850         if (use_threaded_interrupts)
851                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
852                                         nvme_irq_check, nvme_irq,
853                                         IRQF_DISABLED | IRQF_SHARED,
854                                         name, nvmeq);
855         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
856                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
857 }
858
859 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
860                                         int qid, int cq_size, int vector)
861 {
862         int result;
863         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
864
865         if (!nvmeq)
866                 return NULL;
867
868         result = adapter_alloc_cq(dev, qid, nvmeq);
869         if (result < 0)
870                 goto free_nvmeq;
871
872         result = adapter_alloc_sq(dev, qid, nvmeq);
873         if (result < 0)
874                 goto release_cq;
875
876         result = queue_request_irq(dev, nvmeq, "nvme");
877         if (result < 0)
878                 goto release_sq;
879
880         return nvmeq;
881
882  release_sq:
883         adapter_delete_sq(dev, qid);
884  release_cq:
885         adapter_delete_cq(dev, qid);
886  free_nvmeq:
887         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
888                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
889         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
890                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
891         kfree(nvmeq);
892         return NULL;
893 }
894
895 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
896 {
897         int result;
898         u32 aqa;
899         u64 cap;
900         unsigned long timeout;
901         struct nvme_queue *nvmeq;
902
903         dev->dbs = ((void __iomem *)dev->bar) + 4096;
904
905         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
906         if (!nvmeq)
907                 return -ENOMEM;
908
909         aqa = nvmeq->q_depth - 1;
910         aqa |= aqa << 16;
911
912         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
913         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
914         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
915         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
916
917         writel(0, &dev->bar->cc);
918         writel(aqa, &dev->bar->aqa);
919         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
920         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
921         writel(dev->ctrl_config, &dev->bar->cc);
922
923         cap = readq(&dev->bar->cap);
924         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
925
926         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
927                 msleep(100);
928                 if (fatal_signal_pending(current))
929                         return -EINTR;
930                 if (time_after(jiffies, timeout)) {
931                         dev_err(&dev->pci_dev->dev,
932                                 "Device not ready; aborting initialisation\n");
933                         return -ENODEV;
934                 }
935         }
936
937         result = queue_request_irq(dev, nvmeq, "nvme admin");
938         dev->queues[0] = nvmeq;
939         return result;
940 }
941
942 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
943                                 unsigned long addr, unsigned length,
944                                 struct scatterlist **sgp)
945 {
946         int i, err, count, nents, offset;
947         struct scatterlist *sg;
948         struct page **pages;
949
950         if (addr & 3)
951                 return -EINVAL;
952         if (!length)
953                 return -EINVAL;
954
955         offset = offset_in_page(addr);
956         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
957         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
958
959         err = get_user_pages_fast(addr, count, 1, pages);
960         if (err < count) {
961                 count = err;
962                 err = -EFAULT;
963                 goto put_pages;
964         }
965
966         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
967         sg_init_table(sg, count);
968         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
969         length -= (PAGE_SIZE - offset);
970         for (i = 1; i < count; i++) {
971                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
972                 length -= PAGE_SIZE;
973         }
974
975         err = -ENOMEM;
976         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
977                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
978         if (!nents)
979                 goto put_pages;
980
981         kfree(pages);
982         *sgp = sg;
983         return nents;
984
985  put_pages:
986         for (i = 0; i < count; i++)
987                 put_page(pages[i]);
988         kfree(pages);
989         return err;
990 }
991
992 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
993                                 unsigned long addr, int length,
994                                 struct scatterlist *sg, int nents)
995 {
996         int i, count;
997
998         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
999         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
1000
1001         for (i = 0; i < count; i++)
1002                 put_page(sg_page(&sg[i]));
1003 }
1004
1005 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
1006                                         unsigned long addr, unsigned length,
1007                                         struct nvme_command *cmd)
1008 {
1009         int err, nents;
1010         struct scatterlist *sg;
1011         struct nvme_prps *prps;
1012
1013         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1014         if (nents < 0)
1015                 return nents;
1016         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
1017         err = nvme_submit_admin_cmd(dev, cmd, NULL);
1018         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
1019         nvme_free_prps(dev, prps);
1020         return err ? -EIO : 0;
1021 }
1022
1023 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
1024 {
1025         struct nvme_command c;
1026
1027         memset(&c, 0, sizeof(c));
1028         c.identify.opcode = nvme_admin_identify;
1029         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1030         c.identify.cns = cpu_to_le32(cns);
1031
1032         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1033 }
1034
1035 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1036 {
1037         struct nvme_command c;
1038
1039         memset(&c, 0, sizeof(c));
1040         c.features.opcode = nvme_admin_get_features;
1041         c.features.nsid = cpu_to_le32(ns->ns_id);
1042         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1043
1044         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1045 }
1046
1047 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1048 {
1049         struct nvme_dev *dev = ns->dev;
1050         struct nvme_queue *nvmeq;
1051         struct nvme_user_io io;
1052         struct nvme_command c;
1053         unsigned length;
1054         int nents, status;
1055         struct scatterlist *sg;
1056         struct nvme_prps *prps;
1057
1058         if (copy_from_user(&io, uio, sizeof(io)))
1059                 return -EFAULT;
1060         length = (io.nblocks + 1) << ns->lba_shift;
1061
1062         switch (io.opcode) {
1063         case nvme_cmd_write:
1064         case nvme_cmd_read:
1065                 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1066                                                                 length, &sg);
1067         default:
1068                 return -EFAULT;
1069         }
1070
1071         if (nents < 0)
1072                 return nents;
1073
1074         memset(&c, 0, sizeof(c));
1075         c.rw.opcode = io.opcode;
1076         c.rw.flags = io.flags;
1077         c.rw.nsid = cpu_to_le32(ns->ns_id);
1078         c.rw.slba = cpu_to_le64(io.slba);
1079         c.rw.length = cpu_to_le16(io.nblocks);
1080         c.rw.control = cpu_to_le16(io.control);
1081         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1082         c.rw.reftag = io.reftag;
1083         c.rw.apptag = io.apptag;
1084         c.rw.appmask = io.appmask;
1085         /* XXX: metadata */
1086         prps = nvme_setup_prps(dev, &c.common, sg, length);
1087
1088         nvmeq = get_nvmeq(ns);
1089         /*
1090          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1091          * disabled.  We may be preempted at any point, and be rescheduled
1092          * to a different CPU.  That will cause cacheline bouncing, but no
1093          * additional races since q_lock already protects against other CPUs.
1094          */
1095         put_nvmeq(nvmeq);
1096         status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1097
1098         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1099         nvme_free_prps(dev, prps);
1100         return status;
1101 }
1102
1103 static int nvme_download_firmware(struct nvme_ns *ns,
1104                                                 struct nvme_dlfw __user *udlfw)
1105 {
1106         struct nvme_dev *dev = ns->dev;
1107         struct nvme_dlfw dlfw;
1108         struct nvme_command c;
1109         int nents, status;
1110         struct scatterlist *sg;
1111         struct nvme_prps *prps;
1112
1113         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1114                 return -EFAULT;
1115         if (dlfw.length >= (1 << 30))
1116                 return -EINVAL;
1117
1118         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1119         if (nents < 0)
1120                 return nents;
1121
1122         memset(&c, 0, sizeof(c));
1123         c.dlfw.opcode = nvme_admin_download_fw;
1124         c.dlfw.numd = cpu_to_le32(dlfw.length);
1125         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1126         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1127
1128         status = nvme_submit_admin_cmd(dev, &c, NULL);
1129         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1130         nvme_free_prps(dev, prps);
1131         return status;
1132 }
1133
1134 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1135 {
1136         struct nvme_dev *dev = ns->dev;
1137         struct nvme_command c;
1138
1139         memset(&c, 0, sizeof(c));
1140         c.common.opcode = nvme_admin_activate_fw;
1141         c.common.rsvd10[0] = cpu_to_le32(arg);
1142
1143         return nvme_submit_admin_cmd(dev, &c, NULL);
1144 }
1145
1146 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1147                                                         unsigned long arg)
1148 {
1149         struct nvme_ns *ns = bdev->bd_disk->private_data;
1150
1151         switch (cmd) {
1152         case NVME_IOCTL_IDENTIFY_NS:
1153                 return nvme_identify(ns, arg, 0);
1154         case NVME_IOCTL_IDENTIFY_CTRL:
1155                 return nvme_identify(ns, arg, 1);
1156         case NVME_IOCTL_GET_RANGE_TYPE:
1157                 return nvme_get_range_type(ns, arg);
1158         case NVME_IOCTL_SUBMIT_IO:
1159                 return nvme_submit_io(ns, (void __user *)arg);
1160         case NVME_IOCTL_DOWNLOAD_FW:
1161                 return nvme_download_firmware(ns, (void __user *)arg);
1162         case NVME_IOCTL_ACTIVATE_FW:
1163                 return nvme_activate_firmware(ns, arg);
1164         default:
1165                 return -ENOTTY;
1166         }
1167 }
1168
1169 static const struct block_device_operations nvme_fops = {
1170         .owner          = THIS_MODULE,
1171         .ioctl          = nvme_ioctl,
1172         .compat_ioctl   = nvme_ioctl,
1173 };
1174
1175 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1176 {
1177         while (bio_list_peek(&nvmeq->sq_cong)) {
1178                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1179                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1180                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1181                         bio_list_add_head(&nvmeq->sq_cong, bio);
1182                         break;
1183                 }
1184                 if (bio_list_empty(&nvmeq->sq_cong))
1185                         remove_wait_queue(&nvmeq->sq_full,
1186                                                         &nvmeq->sq_cong_wait);
1187         }
1188 }
1189
1190 static int nvme_kthread(void *data)
1191 {
1192         struct nvme_dev *dev;
1193
1194         while (!kthread_should_stop()) {
1195                 __set_current_state(TASK_RUNNING);
1196                 spin_lock(&dev_list_lock);
1197                 list_for_each_entry(dev, &dev_list, node) {
1198                         int i;
1199                         for (i = 0; i < dev->queue_count; i++) {
1200                                 struct nvme_queue *nvmeq = dev->queues[i];
1201                                 if (!nvmeq)
1202                                         continue;
1203                                 spin_lock_irq(&nvmeq->q_lock);
1204                                 if (nvme_process_cq(nvmeq))
1205                                         printk("process_cq did something\n");
1206                                 nvme_resubmit_bios(nvmeq);
1207                                 spin_unlock_irq(&nvmeq->q_lock);
1208                         }
1209                 }
1210                 spin_unlock(&dev_list_lock);
1211                 set_current_state(TASK_INTERRUPTIBLE);
1212                 schedule_timeout(HZ);
1213         }
1214         return 0;
1215 }
1216
1217 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1218                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1219 {
1220         struct nvme_ns *ns;
1221         struct gendisk *disk;
1222         int lbaf;
1223
1224         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1225                 return NULL;
1226
1227         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1228         if (!ns)
1229                 return NULL;
1230         ns->queue = blk_alloc_queue(GFP_KERNEL);
1231         if (!ns->queue)
1232                 goto out_free_ns;
1233         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1234                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1235         blk_queue_make_request(ns->queue, nvme_make_request);
1236         ns->dev = dev;
1237         ns->queue->queuedata = ns;
1238
1239         disk = alloc_disk(NVME_MINORS);
1240         if (!disk)
1241                 goto out_free_queue;
1242         ns->ns_id = index;
1243         ns->disk = disk;
1244         lbaf = id->flbas & 0xf;
1245         ns->lba_shift = id->lbaf[lbaf].ds;
1246
1247         disk->major = nvme_major;
1248         disk->minors = NVME_MINORS;
1249         disk->first_minor = NVME_MINORS * index;
1250         disk->fops = &nvme_fops;
1251         disk->private_data = ns;
1252         disk->queue = ns->queue;
1253         disk->driverfs_dev = &dev->pci_dev->dev;
1254         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1255         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1256
1257         return ns;
1258
1259  out_free_queue:
1260         blk_cleanup_queue(ns->queue);
1261  out_free_ns:
1262         kfree(ns);
1263         return NULL;
1264 }
1265
1266 static void nvme_ns_free(struct nvme_ns *ns)
1267 {
1268         put_disk(ns->disk);
1269         blk_cleanup_queue(ns->queue);
1270         kfree(ns);
1271 }
1272
1273 static int set_queue_count(struct nvme_dev *dev, int count)
1274 {
1275         int status;
1276         u32 result;
1277         struct nvme_command c;
1278         u32 q_count = (count - 1) | ((count - 1) << 16);
1279
1280         memset(&c, 0, sizeof(c));
1281         c.features.opcode = nvme_admin_get_features;
1282         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1283         c.features.dword11 = cpu_to_le32(q_count);
1284
1285         status = nvme_submit_admin_cmd(dev, &c, &result);
1286         if (status)
1287                 return -EIO;
1288         return min(result & 0xffff, result >> 16) + 1;
1289 }
1290
1291 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1292 {
1293         int result, cpu, i, nr_io_queues;
1294
1295         nr_io_queues = num_online_cpus();
1296         result = set_queue_count(dev, nr_io_queues);
1297         if (result < 0)
1298                 return result;
1299         if (result < nr_io_queues)
1300                 nr_io_queues = result;
1301
1302         /* Deregister the admin queue's interrupt */
1303         free_irq(dev->entry[0].vector, dev->queues[0]);
1304
1305         for (i = 0; i < nr_io_queues; i++)
1306                 dev->entry[i].entry = i;
1307         for (;;) {
1308                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1309                                                                 nr_io_queues);
1310                 if (result == 0) {
1311                         break;
1312                 } else if (result > 0) {
1313                         nr_io_queues = result;
1314                         continue;
1315                 } else {
1316                         nr_io_queues = 1;
1317                         break;
1318                 }
1319         }
1320
1321         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1322         /* XXX: handle failure here */
1323
1324         cpu = cpumask_first(cpu_online_mask);
1325         for (i = 0; i < nr_io_queues; i++) {
1326                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1327                 cpu = cpumask_next(cpu, cpu_online_mask);
1328         }
1329
1330         for (i = 0; i < nr_io_queues; i++) {
1331                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1332                                                         NVME_Q_DEPTH, i);
1333                 if (!dev->queues[i + 1])
1334                         return -ENOMEM;
1335                 dev->queue_count++;
1336         }
1337
1338         for (; i < num_possible_cpus(); i++) {
1339                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1340                 dev->queues[i + 1] = dev->queues[target + 1];
1341         }
1342
1343         return 0;
1344 }
1345
1346 static void nvme_free_queues(struct nvme_dev *dev)
1347 {
1348         int i;
1349
1350         for (i = dev->queue_count - 1; i >= 0; i--)
1351                 nvme_free_queue(dev, i);
1352 }
1353
1354 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1355 {
1356         int res, nn, i;
1357         struct nvme_ns *ns, *next;
1358         struct nvme_id_ctrl *ctrl;
1359         void *id;
1360         dma_addr_t dma_addr;
1361         struct nvme_command cid, crt;
1362
1363         res = nvme_setup_io_queues(dev);
1364         if (res)
1365                 return res;
1366
1367         /* XXX: Switch to a SG list once prp2 works */
1368         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1369                                                                 GFP_KERNEL);
1370
1371         memset(&cid, 0, sizeof(cid));
1372         cid.identify.opcode = nvme_admin_identify;
1373         cid.identify.nsid = 0;
1374         cid.identify.prp1 = cpu_to_le64(dma_addr);
1375         cid.identify.cns = cpu_to_le32(1);
1376
1377         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1378         if (res) {
1379                 res = -EIO;
1380                 goto out_free;
1381         }
1382
1383         ctrl = id;
1384         nn = le32_to_cpup(&ctrl->nn);
1385         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1386         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1387         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1388
1389         cid.identify.cns = 0;
1390         memset(&crt, 0, sizeof(crt));
1391         crt.features.opcode = nvme_admin_get_features;
1392         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1393         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1394
1395         for (i = 0; i <= nn; i++) {
1396                 cid.identify.nsid = cpu_to_le32(i);
1397                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1398                 if (res)
1399                         continue;
1400
1401                 if (((struct nvme_id_ns *)id)->ncap == 0)
1402                         continue;
1403
1404                 crt.features.nsid = cpu_to_le32(i);
1405                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1406                 if (res)
1407                         continue;
1408
1409                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1410                 if (ns)
1411                         list_add_tail(&ns->list, &dev->namespaces);
1412         }
1413         list_for_each_entry(ns, &dev->namespaces, list)
1414                 add_disk(ns->disk);
1415
1416         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1417         return 0;
1418
1419  out_free:
1420         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1421                 list_del(&ns->list);
1422                 nvme_ns_free(ns);
1423         }
1424
1425         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1426         return res;
1427 }
1428
1429 static int nvme_dev_remove(struct nvme_dev *dev)
1430 {
1431         struct nvme_ns *ns, *next;
1432
1433         spin_lock(&dev_list_lock);
1434         list_del(&dev->node);
1435         spin_unlock(&dev_list_lock);
1436
1437         /* TODO: wait all I/O finished or cancel them */
1438
1439         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1440                 list_del(&ns->list);
1441                 del_gendisk(ns->disk);
1442                 nvme_ns_free(ns);
1443         }
1444
1445         nvme_free_queues(dev);
1446
1447         return 0;
1448 }
1449
1450 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1451 {
1452         struct device *dmadev = &dev->pci_dev->dev;
1453         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1454                                                 PAGE_SIZE, PAGE_SIZE, 0);
1455         if (!dev->prp_page_pool)
1456                 return -ENOMEM;
1457
1458         /* Optimisation for I/Os between 4k and 128k */
1459         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1460                                                 256, 256, 0);
1461         if (!dev->prp_small_pool) {
1462                 dma_pool_destroy(dev->prp_page_pool);
1463                 return -ENOMEM;
1464         }
1465         return 0;
1466 }
1467
1468 static void nvme_release_prp_pools(struct nvme_dev *dev)
1469 {
1470         dma_pool_destroy(dev->prp_page_pool);
1471         dma_pool_destroy(dev->prp_small_pool);
1472 }
1473
1474 /* XXX: Use an ida or something to let remove / add work correctly */
1475 static void nvme_set_instance(struct nvme_dev *dev)
1476 {
1477         static int instance;
1478         dev->instance = instance++;
1479 }
1480
1481 static void nvme_release_instance(struct nvme_dev *dev)
1482 {
1483 }
1484
1485 static int __devinit nvme_probe(struct pci_dev *pdev,
1486                                                 const struct pci_device_id *id)
1487 {
1488         int bars, result = -ENOMEM;
1489         struct nvme_dev *dev;
1490
1491         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1492         if (!dev)
1493                 return -ENOMEM;
1494         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1495                                                                 GFP_KERNEL);
1496         if (!dev->entry)
1497                 goto free;
1498         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1499                                                                 GFP_KERNEL);
1500         if (!dev->queues)
1501                 goto free;
1502
1503         if (pci_enable_device_mem(pdev))
1504                 goto free;
1505         pci_set_master(pdev);
1506         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1507         if (pci_request_selected_regions(pdev, bars, "nvme"))
1508                 goto disable;
1509
1510         INIT_LIST_HEAD(&dev->namespaces);
1511         dev->pci_dev = pdev;
1512         pci_set_drvdata(pdev, dev);
1513         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1514         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1515         nvme_set_instance(dev);
1516         dev->entry[0].vector = pdev->irq;
1517
1518         result = nvme_setup_prp_pools(dev);
1519         if (result)
1520                 goto disable_msix;
1521
1522         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1523         if (!dev->bar) {
1524                 result = -ENOMEM;
1525                 goto disable_msix;
1526         }
1527
1528         result = nvme_configure_admin_queue(dev);
1529         if (result)
1530                 goto unmap;
1531         dev->queue_count++;
1532
1533         spin_lock(&dev_list_lock);
1534         list_add(&dev->node, &dev_list);
1535         spin_unlock(&dev_list_lock);
1536
1537         result = nvme_dev_add(dev);
1538         if (result)
1539                 goto delete;
1540
1541         return 0;
1542
1543  delete:
1544         spin_lock(&dev_list_lock);
1545         list_del(&dev->node);
1546         spin_unlock(&dev_list_lock);
1547
1548         nvme_free_queues(dev);
1549  unmap:
1550         iounmap(dev->bar);
1551  disable_msix:
1552         pci_disable_msix(pdev);
1553         nvme_release_instance(dev);
1554         nvme_release_prp_pools(dev);
1555  disable:
1556         pci_disable_device(pdev);
1557         pci_release_regions(pdev);
1558  free:
1559         kfree(dev->queues);
1560         kfree(dev->entry);
1561         kfree(dev);
1562         return result;
1563 }
1564
1565 static void __devexit nvme_remove(struct pci_dev *pdev)
1566 {
1567         struct nvme_dev *dev = pci_get_drvdata(pdev);
1568         nvme_dev_remove(dev);
1569         pci_disable_msix(pdev);
1570         iounmap(dev->bar);
1571         nvme_release_instance(dev);
1572         nvme_release_prp_pools(dev);
1573         pci_disable_device(pdev);
1574         pci_release_regions(pdev);
1575         kfree(dev->queues);
1576         kfree(dev->entry);
1577         kfree(dev);
1578 }
1579
1580 /* These functions are yet to be implemented */
1581 #define nvme_error_detected NULL
1582 #define nvme_dump_registers NULL
1583 #define nvme_link_reset NULL
1584 #define nvme_slot_reset NULL
1585 #define nvme_error_resume NULL
1586 #define nvme_suspend NULL
1587 #define nvme_resume NULL
1588
1589 static struct pci_error_handlers nvme_err_handler = {
1590         .error_detected = nvme_error_detected,
1591         .mmio_enabled   = nvme_dump_registers,
1592         .link_reset     = nvme_link_reset,
1593         .slot_reset     = nvme_slot_reset,
1594         .resume         = nvme_error_resume,
1595 };
1596
1597 /* Move to pci_ids.h later */
1598 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1599
1600 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1601         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1602         { 0, }
1603 };
1604 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1605
1606 static struct pci_driver nvme_driver = {
1607         .name           = "nvme",
1608         .id_table       = nvme_id_table,
1609         .probe          = nvme_probe,
1610         .remove         = __devexit_p(nvme_remove),
1611         .suspend        = nvme_suspend,
1612         .resume         = nvme_resume,
1613         .err_handler    = &nvme_err_handler,
1614 };
1615
1616 static int __init nvme_init(void)
1617 {
1618         int result = -EBUSY;
1619
1620         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1621         if (IS_ERR(nvme_thread))
1622                 return PTR_ERR(nvme_thread);
1623
1624         nvme_major = register_blkdev(nvme_major, "nvme");
1625         if (nvme_major <= 0)
1626                 goto kill_kthread;
1627
1628         result = pci_register_driver(&nvme_driver);
1629         if (result)
1630                 goto unregister_blkdev;
1631         return 0;
1632
1633  unregister_blkdev:
1634         unregister_blkdev(nvme_major, "nvme");
1635  kill_kthread:
1636         kthread_stop(nvme_thread);
1637         return result;
1638 }
1639
1640 static void __exit nvme_exit(void)
1641 {
1642         pci_unregister_driver(&nvme_driver);
1643         unregister_blkdev(nvme_major, "nvme");
1644         kthread_stop(nvme_thread);
1645 }
1646
1647 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1648 MODULE_LICENSE("GPL");
1649 MODULE_VERSION("0.5");
1650 module_init(nvme_init);
1651 module_exit(nvme_exit);