NVMe: Handle bios that contain non-virtually contiguous addresses
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/version.h>
40
41 #define NVME_Q_DEPTH 1024
42 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
43 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
44 #define NVME_MINORS 64
45 #define IO_TIMEOUT      (5 * HZ)
46 #define ADMIN_TIMEOUT   (60 * HZ)
47
48 static int nvme_major;
49 module_param(nvme_major, int, 0);
50
51 static int use_threaded_interrupts;
52 module_param(use_threaded_interrupts, int, 0);
53
54 static DEFINE_SPINLOCK(dev_list_lock);
55 static LIST_HEAD(dev_list);
56 static struct task_struct *nvme_thread;
57
58 /*
59  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
60  */
61 struct nvme_dev {
62         struct list_head node;
63         struct nvme_queue **queues;
64         u32 __iomem *dbs;
65         struct pci_dev *pci_dev;
66         struct dma_pool *prp_page_pool;
67         struct dma_pool *prp_small_pool;
68         int instance;
69         int queue_count;
70         u32 ctrl_config;
71         struct msix_entry *entry;
72         struct nvme_bar __iomem *bar;
73         struct list_head namespaces;
74         char serial[20];
75         char model[40];
76         char firmware_rev[8];
77 };
78
79 /*
80  * An NVM Express namespace is equivalent to a SCSI LUN
81  */
82 struct nvme_ns {
83         struct list_head list;
84
85         struct nvme_dev *dev;
86         struct request_queue *queue;
87         struct gendisk *disk;
88
89         int ns_id;
90         int lba_shift;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct device *q_dmadev;
99         struct nvme_dev *dev;
100         spinlock_t q_lock;
101         struct nvme_command *sq_cmds;
102         volatile struct nvme_completion *cqes;
103         dma_addr_t sq_dma_addr;
104         dma_addr_t cq_dma_addr;
105         wait_queue_head_t sq_full;
106         wait_queue_t sq_cong_wait;
107         struct bio_list sq_cong;
108         u32 __iomem *q_db;
109         u16 q_depth;
110         u16 cq_vector;
111         u16 sq_head;
112         u16 sq_tail;
113         u16 cq_head;
114         u16 cq_phase;
115         unsigned long cmdid_data[];
116 };
117
118 /*
119  * Check we didin't inadvertently grow the command struct
120  */
121 static inline void _nvme_check_size(void)
122 {
123         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132 }
133
134 struct nvme_cmd_info {
135         unsigned long ctx;
136         unsigned long timeout;
137 };
138
139 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140 {
141         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142 }
143
144 /**
145  * alloc_cmdid - Allocate a Command ID
146  * @param nvmeq The queue that will be used for this command
147  * @param ctx A pointer that will be passed to the handler
148  * @param handler The ID of the handler to call
149  *
150  * Allocate a Command ID for a queue.  The data passed in will
151  * be passed to the completion handler.  This is implemented by using
152  * the bottom two bits of the ctx pointer to store the handler ID.
153  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154  * We can change this if it becomes a problem.
155  */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157                                                         unsigned timeout)
158 {
159         int depth = nvmeq->q_depth;
160         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161         int cmdid;
162
163         BUG_ON((unsigned long)ctx & 3);
164
165         do {
166                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167                 if (cmdid >= depth)
168                         return -EBUSY;
169         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171         info[cmdid].ctx = (unsigned long)ctx | handler;
172         info[cmdid].timeout = jiffies + timeout;
173         return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177                                                 int handler, unsigned timeout)
178 {
179         int cmdid;
180         wait_event_killable(nvmeq->sq_full,
181                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182         return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /* If you need more than four handlers, you'll need to change how
186  * alloc_cmdid and nvme_process_cq work.  Consider using a special
187  * CMD_CTX value instead, if that works for your situation.
188  */
189 enum {
190         sync_completion_id = 0,
191         bio_completion_id,
192 };
193
194 /* Special values must be a multiple of 4, and less than 0x1000 */
195 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
196 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
197 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
198 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
199 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
200
201 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
202 {
203         unsigned long data;
204         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
205
206         if (cmdid >= nvmeq->q_depth)
207                 return CMD_CTX_INVALID;
208         data = info[cmdid].ctx;
209         info[cmdid].ctx = CMD_CTX_COMPLETED;
210         clear_bit(cmdid, nvmeq->cmdid_data);
211         wake_up(&nvmeq->sq_full);
212         return data;
213 }
214
215 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
216 {
217         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
218         info[cmdid].ctx = CMD_CTX_CANCELLED;
219 }
220
221 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
222 {
223         int qid, cpu = get_cpu();
224         if (cpu < ns->dev->queue_count)
225                 qid = cpu + 1;
226         else
227                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
228         return ns->dev->queues[qid];
229 }
230
231 static void put_nvmeq(struct nvme_queue *nvmeq)
232 {
233         put_cpu();
234 }
235
236 /**
237  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
238  * @nvmeq: The queue to use
239  * @cmd: The command to send
240  *
241  * Safe to use from interrupt context
242  */
243 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
244 {
245         unsigned long flags;
246         u16 tail;
247         /* XXX: Need to check tail isn't going to overrun head */
248         spin_lock_irqsave(&nvmeq->q_lock, flags);
249         tail = nvmeq->sq_tail;
250         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251         if (++tail == nvmeq->q_depth)
252                 tail = 0;
253         writel(tail, nvmeq->q_db);
254         nvmeq->sq_tail = tail;
255         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257         return 0;
258 }
259
260 struct nvme_prps {
261         int npages;
262         dma_addr_t first_dma;
263         __le64 *list[0];
264 };
265
266 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
267 {
268         const int last_prp = PAGE_SIZE / 8 - 1;
269         int i;
270         dma_addr_t prp_dma;
271
272         if (!prps)
273                 return;
274
275         prp_dma = prps->first_dma;
276
277         if (prps->npages == 0)
278                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
279         for (i = 0; i < prps->npages; i++) {
280                 __le64 *prp_list = prps->list[i];
281                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
282                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
283                 prp_dma = next_prp_dma;
284         }
285         kfree(prps);
286 }
287
288 struct nvme_bio {
289         struct bio *bio;
290         int nents;
291         struct nvme_prps *prps;
292         struct scatterlist sg[0];
293 };
294
295 /* XXX: use a mempool */
296 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
297 {
298         return kzalloc(sizeof(struct nvme_bio) +
299                         sizeof(struct scatterlist) * nseg, gfp);
300 }
301
302 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
303 {
304         nvme_free_prps(nvmeq->dev, nbio->prps);
305         kfree(nbio);
306 }
307
308 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
309                                                 struct nvme_completion *cqe)
310 {
311         struct nvme_bio *nbio = ctx;
312         struct bio *bio = nbio->bio;
313         u16 status = le16_to_cpup(&cqe->status) >> 1;
314
315         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
316                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
317         free_nbio(nvmeq, nbio);
318         if (status)
319                 bio_endio(bio, -EIO);
320         if (bio->bi_vcnt > bio->bi_idx) {
321                 bio_list_add(&nvmeq->sq_cong, bio);
322                 wake_up_process(nvme_thread);
323         } else {
324                 bio_endio(bio, 0);
325         }
326 }
327
328 /* length is in bytes */
329 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
330                                         struct nvme_common_command *cmd,
331                                         struct scatterlist *sg, int length)
332 {
333         struct dma_pool *pool;
334         int dma_len = sg_dma_len(sg);
335         u64 dma_addr = sg_dma_address(sg);
336         int offset = offset_in_page(dma_addr);
337         __le64 *prp_list;
338         dma_addr_t prp_dma;
339         int nprps, npages, i, prp_page;
340         struct nvme_prps *prps = NULL;
341
342         cmd->prp1 = cpu_to_le64(dma_addr);
343         length -= (PAGE_SIZE - offset);
344         if (length <= 0)
345                 return prps;
346
347         dma_len -= (PAGE_SIZE - offset);
348         if (dma_len) {
349                 dma_addr += (PAGE_SIZE - offset);
350         } else {
351                 sg = sg_next(sg);
352                 dma_addr = sg_dma_address(sg);
353                 dma_len = sg_dma_len(sg);
354         }
355
356         if (length <= PAGE_SIZE) {
357                 cmd->prp2 = cpu_to_le64(dma_addr);
358                 return prps;
359         }
360
361         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
362         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
363         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
364         prp_page = 0;
365         if (nprps <= (256 / 8)) {
366                 pool = dev->prp_small_pool;
367                 prps->npages = 0;
368         } else {
369                 pool = dev->prp_page_pool;
370                 prps->npages = npages;
371         }
372
373         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
374         prps->list[prp_page++] = prp_list;
375         prps->first_dma = prp_dma;
376         cmd->prp2 = cpu_to_le64(prp_dma);
377         i = 0;
378         for (;;) {
379                 if (i == PAGE_SIZE / 8 - 1) {
380                         __le64 *old_prp_list = prp_list;
381                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
382                         prps->list[prp_page++] = prp_list;
383                         old_prp_list[i] = cpu_to_le64(prp_dma);
384                         i = 0;
385                 }
386                 prp_list[i++] = cpu_to_le64(dma_addr);
387                 dma_len -= PAGE_SIZE;
388                 dma_addr += PAGE_SIZE;
389                 length -= PAGE_SIZE;
390                 if (length <= 0)
391                         break;
392                 if (dma_len > 0)
393                         continue;
394                 BUG_ON(dma_len < 0);
395                 sg = sg_next(sg);
396                 dma_addr = sg_dma_address(sg);
397                 dma_len = sg_dma_len(sg);
398         }
399
400         return prps;
401 }
402
403 /* NVMe scatterlists require no holes in the virtual address */
404 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
405                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
406
407 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
408                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
409 {
410         struct bio_vec *bvec, *bvprv = NULL;
411         struct scatterlist *sg = NULL;
412         int i, old_idx, length = 0, nsegs = 0;
413
414         sg_init_table(nbio->sg, psegs);
415         old_idx = bio->bi_idx;
416         bio_for_each_segment(bvec, bio, i) {
417                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
418                         sg->length += bvec->bv_len;
419                 } else {
420                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
421                                 break;
422                         sg = sg ? sg + 1 : nbio->sg;
423                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
424                                                         bvec->bv_offset);
425                         nsegs++;
426                 }
427                 length += bvec->bv_len;
428                 bvprv = bvec;
429         }
430         bio->bi_idx = i;
431         nbio->nents = nsegs;
432         sg_mark_end(sg);
433         if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
434                 bio->bi_idx = old_idx;
435                 return -ENOMEM;
436         }
437         return length;
438 }
439
440 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
441                                                                 int cmdid)
442 {
443         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
444
445         memset(cmnd, 0, sizeof(*cmnd));
446         cmnd->common.opcode = nvme_cmd_flush;
447         cmnd->common.command_id = cmdid;
448         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
449
450         if (++nvmeq->sq_tail == nvmeq->q_depth)
451                 nvmeq->sq_tail = 0;
452         writel(nvmeq->sq_tail, nvmeq->q_db);
453
454         return 0;
455 }
456
457 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
458 {
459         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
460                                                 sync_completion_id, IO_TIMEOUT);
461         if (unlikely(cmdid < 0))
462                 return cmdid;
463
464         return nvme_submit_flush(nvmeq, ns, cmdid);
465 }
466
467 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
468                                                                 struct bio *bio)
469 {
470         struct nvme_command *cmnd;
471         struct nvme_bio *nbio;
472         enum dma_data_direction dma_dir;
473         int cmdid, length, result = -ENOMEM;
474         u16 control;
475         u32 dsmgmt;
476         int psegs = bio_phys_segments(ns->queue, bio);
477
478         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
479                 result = nvme_submit_flush_data(nvmeq, ns);
480                 if (result)
481                         return result;
482         }
483
484         nbio = alloc_nbio(psegs, GFP_ATOMIC);
485         if (!nbio)
486                 goto nomem;
487         nbio->bio = bio;
488
489         result = -EBUSY;
490         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
491         if (unlikely(cmdid < 0))
492                 goto free_nbio;
493
494         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
495                 return nvme_submit_flush(nvmeq, ns, cmdid);
496
497         control = 0;
498         if (bio->bi_rw & REQ_FUA)
499                 control |= NVME_RW_FUA;
500         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
501                 control |= NVME_RW_LR;
502
503         dsmgmt = 0;
504         if (bio->bi_rw & REQ_RAHEAD)
505                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
506
507         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
508
509         memset(cmnd, 0, sizeof(*cmnd));
510         if (bio_data_dir(bio)) {
511                 cmnd->rw.opcode = nvme_cmd_write;
512                 dma_dir = DMA_TO_DEVICE;
513         } else {
514                 cmnd->rw.opcode = nvme_cmd_read;
515                 dma_dir = DMA_FROM_DEVICE;
516         }
517
518         result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
519         if (result < 0)
520                 goto free_nbio;
521         length = result;
522
523         cmnd->rw.command_id = cmdid;
524         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
525         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
526                                                                 length);
527         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
528         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
529         cmnd->rw.control = cpu_to_le16(control);
530         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
531
532         if (++nvmeq->sq_tail == nvmeq->q_depth)
533                 nvmeq->sq_tail = 0;
534         writel(nvmeq->sq_tail, nvmeq->q_db);
535
536         return 0;
537
538  free_nbio:
539         free_nbio(nvmeq, nbio);
540  nomem:
541         return result;
542 }
543
544 /*
545  * NB: return value of non-zero would mean that we were a stacking driver.
546  * make_request must always succeed.
547  */
548 static int nvme_make_request(struct request_queue *q, struct bio *bio)
549 {
550         struct nvme_ns *ns = q->queuedata;
551         struct nvme_queue *nvmeq = get_nvmeq(ns);
552         int result = -EBUSY;
553
554         spin_lock_irq(&nvmeq->q_lock);
555         if (bio_list_empty(&nvmeq->sq_cong))
556                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
557         if (unlikely(result)) {
558                 if (bio_list_empty(&nvmeq->sq_cong))
559                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
560                 bio_list_add(&nvmeq->sq_cong, bio);
561         }
562
563         spin_unlock_irq(&nvmeq->q_lock);
564         put_nvmeq(nvmeq);
565
566         return 0;
567 }
568
569 struct sync_cmd_info {
570         struct task_struct *task;
571         u32 result;
572         int status;
573 };
574
575 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
576                                                 struct nvme_completion *cqe)
577 {
578         struct sync_cmd_info *cmdinfo = ctx;
579         if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
580                 return;
581         if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
582                 return;
583         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
584                 dev_warn(nvmeq->q_dmadev,
585                                 "completed id %d twice on queue %d\n",
586                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
587                 return;
588         }
589         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
590                 dev_warn(nvmeq->q_dmadev,
591                                 "invalid id %d completed on queue %d\n",
592                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
593                 return;
594         }
595         cmdinfo->result = le32_to_cpup(&cqe->result);
596         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
597         wake_up_process(cmdinfo->task);
598 }
599
600 typedef void (*completion_fn)(struct nvme_queue *, void *,
601                                                 struct nvme_completion *);
602
603 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
604 {
605         u16 head, phase;
606
607         static const completion_fn completions[4] = {
608                 [sync_completion_id] = sync_completion,
609                 [bio_completion_id]  = bio_completion,
610         };
611
612         head = nvmeq->cq_head;
613         phase = nvmeq->cq_phase;
614
615         for (;;) {
616                 unsigned long data;
617                 void *ptr;
618                 unsigned char handler;
619                 struct nvme_completion cqe = nvmeq->cqes[head];
620                 if ((le16_to_cpu(cqe.status) & 1) != phase)
621                         break;
622                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
623                 if (++head == nvmeq->q_depth) {
624                         head = 0;
625                         phase = !phase;
626                 }
627
628                 data = free_cmdid(nvmeq, cqe.command_id);
629                 handler = data & 3;
630                 ptr = (void *)(data & ~3UL);
631                 completions[handler](nvmeq, ptr, &cqe);
632         }
633
634         /* If the controller ignores the cq head doorbell and continuously
635          * writes to the queue, it is theoretically possible to wrap around
636          * the queue twice and mistakenly return IRQ_NONE.  Linux only
637          * requires that 0.1% of your interrupts are handled, so this isn't
638          * a big problem.
639          */
640         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
641                 return IRQ_NONE;
642
643         writel(head, nvmeq->q_db + 1);
644         nvmeq->cq_head = head;
645         nvmeq->cq_phase = phase;
646
647         return IRQ_HANDLED;
648 }
649
650 static irqreturn_t nvme_irq(int irq, void *data)
651 {
652         irqreturn_t result;
653         struct nvme_queue *nvmeq = data;
654         spin_lock(&nvmeq->q_lock);
655         result = nvme_process_cq(nvmeq);
656         spin_unlock(&nvmeq->q_lock);
657         return result;
658 }
659
660 static irqreturn_t nvme_irq_check(int irq, void *data)
661 {
662         struct nvme_queue *nvmeq = data;
663         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
664         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
665                 return IRQ_NONE;
666         return IRQ_WAKE_THREAD;
667 }
668
669 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
670 {
671         spin_lock_irq(&nvmeq->q_lock);
672         cancel_cmdid_data(nvmeq, cmdid);
673         spin_unlock_irq(&nvmeq->q_lock);
674 }
675
676 /*
677  * Returns 0 on success.  If the result is negative, it's a Linux error code;
678  * if the result is positive, it's an NVM Express status code
679  */
680 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
681                         struct nvme_command *cmd, u32 *result, unsigned timeout)
682 {
683         int cmdid;
684         struct sync_cmd_info cmdinfo;
685
686         cmdinfo.task = current;
687         cmdinfo.status = -EINTR;
688
689         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
690                                                                 timeout);
691         if (cmdid < 0)
692                 return cmdid;
693         cmd->common.command_id = cmdid;
694
695         set_current_state(TASK_KILLABLE);
696         nvme_submit_cmd(nvmeq, cmd);
697         schedule();
698
699         if (cmdinfo.status == -EINTR) {
700                 nvme_abort_command(nvmeq, cmdid);
701                 return -EINTR;
702         }
703
704         if (result)
705                 *result = cmdinfo.result;
706
707         return cmdinfo.status;
708 }
709
710 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
711                                                                 u32 *result)
712 {
713         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
714 }
715
716 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
717 {
718         int status;
719         struct nvme_command c;
720
721         memset(&c, 0, sizeof(c));
722         c.delete_queue.opcode = opcode;
723         c.delete_queue.qid = cpu_to_le16(id);
724
725         status = nvme_submit_admin_cmd(dev, &c, NULL);
726         if (status)
727                 return -EIO;
728         return 0;
729 }
730
731 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
732                                                 struct nvme_queue *nvmeq)
733 {
734         int status;
735         struct nvme_command c;
736         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
737
738         memset(&c, 0, sizeof(c));
739         c.create_cq.opcode = nvme_admin_create_cq;
740         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
741         c.create_cq.cqid = cpu_to_le16(qid);
742         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
743         c.create_cq.cq_flags = cpu_to_le16(flags);
744         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
745
746         status = nvme_submit_admin_cmd(dev, &c, NULL);
747         if (status)
748                 return -EIO;
749         return 0;
750 }
751
752 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
753                                                 struct nvme_queue *nvmeq)
754 {
755         int status;
756         struct nvme_command c;
757         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
758
759         memset(&c, 0, sizeof(c));
760         c.create_sq.opcode = nvme_admin_create_sq;
761         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
762         c.create_sq.sqid = cpu_to_le16(qid);
763         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
764         c.create_sq.sq_flags = cpu_to_le16(flags);
765         c.create_sq.cqid = cpu_to_le16(qid);
766
767         status = nvme_submit_admin_cmd(dev, &c, NULL);
768         if (status)
769                 return -EIO;
770         return 0;
771 }
772
773 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
774 {
775         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
776 }
777
778 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
779 {
780         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
781 }
782
783 static void nvme_free_queue(struct nvme_dev *dev, int qid)
784 {
785         struct nvme_queue *nvmeq = dev->queues[qid];
786
787         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
788
789         /* Don't tell the adapter to delete the admin queue */
790         if (qid) {
791                 adapter_delete_sq(dev, qid);
792                 adapter_delete_cq(dev, qid);
793         }
794
795         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
796                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
797         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
798                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
799         kfree(nvmeq);
800 }
801
802 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
803                                                         int depth, int vector)
804 {
805         struct device *dmadev = &dev->pci_dev->dev;
806         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
807         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
808         if (!nvmeq)
809                 return NULL;
810
811         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
812                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
813         if (!nvmeq->cqes)
814                 goto free_nvmeq;
815         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
816
817         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
818                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
819         if (!nvmeq->sq_cmds)
820                 goto free_cqdma;
821
822         nvmeq->q_dmadev = dmadev;
823         nvmeq->dev = dev;
824         spin_lock_init(&nvmeq->q_lock);
825         nvmeq->cq_head = 0;
826         nvmeq->cq_phase = 1;
827         init_waitqueue_head(&nvmeq->sq_full);
828         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
829         bio_list_init(&nvmeq->sq_cong);
830         nvmeq->q_db = &dev->dbs[qid * 2];
831         nvmeq->q_depth = depth;
832         nvmeq->cq_vector = vector;
833
834         return nvmeq;
835
836  free_cqdma:
837         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
838                                                         nvmeq->cq_dma_addr);
839  free_nvmeq:
840         kfree(nvmeq);
841         return NULL;
842 }
843
844 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
845                                                         const char *name)
846 {
847         if (use_threaded_interrupts)
848                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
849                                         nvme_irq_check, nvme_irq,
850                                         IRQF_DISABLED | IRQF_SHARED,
851                                         name, nvmeq);
852         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
853                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
854 }
855
856 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
857                                         int qid, int cq_size, int vector)
858 {
859         int result;
860         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
861
862         if (!nvmeq)
863                 return NULL;
864
865         result = adapter_alloc_cq(dev, qid, nvmeq);
866         if (result < 0)
867                 goto free_nvmeq;
868
869         result = adapter_alloc_sq(dev, qid, nvmeq);
870         if (result < 0)
871                 goto release_cq;
872
873         result = queue_request_irq(dev, nvmeq, "nvme");
874         if (result < 0)
875                 goto release_sq;
876
877         return nvmeq;
878
879  release_sq:
880         adapter_delete_sq(dev, qid);
881  release_cq:
882         adapter_delete_cq(dev, qid);
883  free_nvmeq:
884         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
885                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
886         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
887                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
888         kfree(nvmeq);
889         return NULL;
890 }
891
892 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
893 {
894         int result;
895         u32 aqa;
896         struct nvme_queue *nvmeq;
897
898         dev->dbs = ((void __iomem *)dev->bar) + 4096;
899
900         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
901         if (!nvmeq)
902                 return -ENOMEM;
903
904         aqa = nvmeq->q_depth - 1;
905         aqa |= aqa << 16;
906
907         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
908         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
909         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
910
911         writel(0, &dev->bar->cc);
912         writel(aqa, &dev->bar->aqa);
913         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
914         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
915         writel(dev->ctrl_config, &dev->bar->cc);
916
917         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
918                 msleep(100);
919                 if (fatal_signal_pending(current))
920                         return -EINTR;
921         }
922
923         result = queue_request_irq(dev, nvmeq, "nvme admin");
924         dev->queues[0] = nvmeq;
925         return result;
926 }
927
928 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
929                                 unsigned long addr, unsigned length,
930                                 struct scatterlist **sgp)
931 {
932         int i, err, count, nents, offset;
933         struct scatterlist *sg;
934         struct page **pages;
935
936         if (addr & 3)
937                 return -EINVAL;
938         if (!length)
939                 return -EINVAL;
940
941         offset = offset_in_page(addr);
942         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
943         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
944
945         err = get_user_pages_fast(addr, count, 1, pages);
946         if (err < count) {
947                 count = err;
948                 err = -EFAULT;
949                 goto put_pages;
950         }
951
952         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
953         sg_init_table(sg, count);
954         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
955         length -= (PAGE_SIZE - offset);
956         for (i = 1; i < count; i++) {
957                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
958                 length -= PAGE_SIZE;
959         }
960
961         err = -ENOMEM;
962         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
963                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
964         if (!nents)
965                 goto put_pages;
966
967         kfree(pages);
968         *sgp = sg;
969         return nents;
970
971  put_pages:
972         for (i = 0; i < count; i++)
973                 put_page(pages[i]);
974         kfree(pages);
975         return err;
976 }
977
978 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
979                                 unsigned long addr, int length,
980                                 struct scatterlist *sg, int nents)
981 {
982         int i, count;
983
984         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
985         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
986
987         for (i = 0; i < count; i++)
988                 put_page(sg_page(&sg[i]));
989 }
990
991 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
992                                         unsigned long addr, unsigned length,
993                                         struct nvme_command *cmd)
994 {
995         int err, nents;
996         struct scatterlist *sg;
997         struct nvme_prps *prps;
998
999         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1000         if (nents < 0)
1001                 return nents;
1002         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
1003         err = nvme_submit_admin_cmd(dev, cmd, NULL);
1004         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
1005         nvme_free_prps(dev, prps);
1006         return err ? -EIO : 0;
1007 }
1008
1009 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
1010 {
1011         struct nvme_command c;
1012
1013         memset(&c, 0, sizeof(c));
1014         c.identify.opcode = nvme_admin_identify;
1015         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1016         c.identify.cns = cpu_to_le32(cns);
1017
1018         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1019 }
1020
1021 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1022 {
1023         struct nvme_command c;
1024
1025         memset(&c, 0, sizeof(c));
1026         c.features.opcode = nvme_admin_get_features;
1027         c.features.nsid = cpu_to_le32(ns->ns_id);
1028         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1029
1030         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1031 }
1032
1033 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1034 {
1035         struct nvme_dev *dev = ns->dev;
1036         struct nvme_queue *nvmeq;
1037         struct nvme_user_io io;
1038         struct nvme_command c;
1039         unsigned length;
1040         u32 result;
1041         int nents, status;
1042         struct scatterlist *sg;
1043         struct nvme_prps *prps;
1044
1045         if (copy_from_user(&io, uio, sizeof(io)))
1046                 return -EFAULT;
1047         length = io.nblocks << io.block_shift;
1048         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
1049         if (nents < 0)
1050                 return nents;
1051
1052         memset(&c, 0, sizeof(c));
1053         c.rw.opcode = io.opcode;
1054         c.rw.flags = io.flags;
1055         c.rw.nsid = cpu_to_le32(io.nsid);
1056         c.rw.slba = cpu_to_le64(io.slba);
1057         c.rw.length = cpu_to_le16(io.nblocks - 1);
1058         c.rw.control = cpu_to_le16(io.control);
1059         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1060         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
1061         c.rw.apptag = cpu_to_le16(io.apptag);
1062         c.rw.appmask = cpu_to_le16(io.appmask);
1063         /* XXX: metadata */
1064         prps = nvme_setup_prps(dev, &c.common, sg, length);
1065
1066         nvmeq = get_nvmeq(ns);
1067         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1068          * disabled.  We may be preempted at any point, and be rescheduled
1069          * to a different CPU.  That will cause cacheline bouncing, but no
1070          * additional races since q_lock already protects against other CPUs.
1071          */
1072         put_nvmeq(nvmeq);
1073         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1074
1075         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1076         nvme_free_prps(dev, prps);
1077         put_user(result, &uio->result);
1078         return status;
1079 }
1080
1081 static int nvme_download_firmware(struct nvme_ns *ns,
1082                                                 struct nvme_dlfw __user *udlfw)
1083 {
1084         struct nvme_dev *dev = ns->dev;
1085         struct nvme_dlfw dlfw;
1086         struct nvme_command c;
1087         int nents, status;
1088         struct scatterlist *sg;
1089         struct nvme_prps *prps;
1090
1091         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1092                 return -EFAULT;
1093         if (dlfw.length >= (1 << 30))
1094                 return -EINVAL;
1095
1096         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1097         if (nents < 0)
1098                 return nents;
1099
1100         memset(&c, 0, sizeof(c));
1101         c.dlfw.opcode = nvme_admin_download_fw;
1102         c.dlfw.numd = cpu_to_le32(dlfw.length);
1103         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1104         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1105
1106         status = nvme_submit_admin_cmd(dev, &c, NULL);
1107         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1108         nvme_free_prps(dev, prps);
1109         return status;
1110 }
1111
1112 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1113 {
1114         struct nvme_dev *dev = ns->dev;
1115         struct nvme_command c;
1116
1117         memset(&c, 0, sizeof(c));
1118         c.common.opcode = nvme_admin_activate_fw;
1119         c.common.rsvd10[0] = cpu_to_le32(arg);
1120
1121         return nvme_submit_admin_cmd(dev, &c, NULL);
1122 }
1123
1124 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1125                                                         unsigned long arg)
1126 {
1127         struct nvme_ns *ns = bdev->bd_disk->private_data;
1128
1129         switch (cmd) {
1130         case NVME_IOCTL_IDENTIFY_NS:
1131                 return nvme_identify(ns, arg, 0);
1132         case NVME_IOCTL_IDENTIFY_CTRL:
1133                 return nvme_identify(ns, arg, 1);
1134         case NVME_IOCTL_GET_RANGE_TYPE:
1135                 return nvme_get_range_type(ns, arg);
1136         case NVME_IOCTL_SUBMIT_IO:
1137                 return nvme_submit_io(ns, (void __user *)arg);
1138         case NVME_IOCTL_DOWNLOAD_FW:
1139                 return nvme_download_firmware(ns, (void __user *)arg);
1140         case NVME_IOCTL_ACTIVATE_FW:
1141                 return nvme_activate_firmware(ns, arg);
1142         default:
1143                 return -ENOTTY;
1144         }
1145 }
1146
1147 static const struct block_device_operations nvme_fops = {
1148         .owner          = THIS_MODULE,
1149         .ioctl          = nvme_ioctl,
1150 };
1151
1152 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1153 {
1154         while (bio_list_peek(&nvmeq->sq_cong)) {
1155                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1156                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1157                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1158                         bio_list_add_head(&nvmeq->sq_cong, bio);
1159                         break;
1160                 }
1161         }
1162 }
1163
1164 static int nvme_kthread(void *data)
1165 {
1166         struct nvme_dev *dev;
1167
1168         while (!kthread_should_stop()) {
1169                 __set_current_state(TASK_RUNNING);
1170                 spin_lock(&dev_list_lock);
1171                 list_for_each_entry(dev, &dev_list, node) {
1172                         int i;
1173                         for (i = 0; i < dev->queue_count; i++) {
1174                                 struct nvme_queue *nvmeq = dev->queues[i];
1175                                 if (!nvmeq)
1176                                         continue;
1177                                 spin_lock_irq(&nvmeq->q_lock);
1178                                 if (nvme_process_cq(nvmeq))
1179                                         printk("process_cq did something\n");
1180                                 nvme_resubmit_bios(nvmeq);
1181                                 spin_unlock_irq(&nvmeq->q_lock);
1182                         }
1183                 }
1184                 spin_unlock(&dev_list_lock);
1185                 set_current_state(TASK_INTERRUPTIBLE);
1186                 schedule_timeout(HZ);
1187         }
1188         return 0;
1189 }
1190
1191 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1192                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1193 {
1194         struct nvme_ns *ns;
1195         struct gendisk *disk;
1196         int lbaf;
1197
1198         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1199                 return NULL;
1200
1201         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1202         if (!ns)
1203                 return NULL;
1204         ns->queue = blk_alloc_queue(GFP_KERNEL);
1205         if (!ns->queue)
1206                 goto out_free_ns;
1207         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1208                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1209         blk_queue_make_request(ns->queue, nvme_make_request);
1210         ns->dev = dev;
1211         ns->queue->queuedata = ns;
1212
1213         disk = alloc_disk(NVME_MINORS);
1214         if (!disk)
1215                 goto out_free_queue;
1216         ns->ns_id = index;
1217         ns->disk = disk;
1218         lbaf = id->flbas & 0xf;
1219         ns->lba_shift = id->lbaf[lbaf].ds;
1220
1221         disk->major = nvme_major;
1222         disk->minors = NVME_MINORS;
1223         disk->first_minor = NVME_MINORS * index;
1224         disk->fops = &nvme_fops;
1225         disk->private_data = ns;
1226         disk->queue = ns->queue;
1227         disk->driverfs_dev = &dev->pci_dev->dev;
1228         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1229         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1230
1231         return ns;
1232
1233  out_free_queue:
1234         blk_cleanup_queue(ns->queue);
1235  out_free_ns:
1236         kfree(ns);
1237         return NULL;
1238 }
1239
1240 static void nvme_ns_free(struct nvme_ns *ns)
1241 {
1242         put_disk(ns->disk);
1243         blk_cleanup_queue(ns->queue);
1244         kfree(ns);
1245 }
1246
1247 static int set_queue_count(struct nvme_dev *dev, int count)
1248 {
1249         int status;
1250         u32 result;
1251         struct nvme_command c;
1252         u32 q_count = (count - 1) | ((count - 1) << 16);
1253
1254         memset(&c, 0, sizeof(c));
1255         c.features.opcode = nvme_admin_get_features;
1256         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1257         c.features.dword11 = cpu_to_le32(q_count);
1258
1259         status = nvme_submit_admin_cmd(dev, &c, &result);
1260         if (status)
1261                 return -EIO;
1262         return min(result & 0xffff, result >> 16) + 1;
1263 }
1264
1265 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1266 {
1267         int result, cpu, i, nr_io_queues;
1268
1269         nr_io_queues = num_online_cpus();
1270         result = set_queue_count(dev, nr_io_queues);
1271         if (result < 0)
1272                 return result;
1273         if (result < nr_io_queues)
1274                 nr_io_queues = result;
1275
1276         /* Deregister the admin queue's interrupt */
1277         free_irq(dev->entry[0].vector, dev->queues[0]);
1278
1279         for (i = 0; i < nr_io_queues; i++)
1280                 dev->entry[i].entry = i;
1281         for (;;) {
1282                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1283                                                                 nr_io_queues);
1284                 if (result == 0) {
1285                         break;
1286                 } else if (result > 0) {
1287                         nr_io_queues = result;
1288                         continue;
1289                 } else {
1290                         nr_io_queues = 1;
1291                         break;
1292                 }
1293         }
1294
1295         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1296         /* XXX: handle failure here */
1297
1298         cpu = cpumask_first(cpu_online_mask);
1299         for (i = 0; i < nr_io_queues; i++) {
1300                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1301                 cpu = cpumask_next(cpu, cpu_online_mask);
1302         }
1303
1304         for (i = 0; i < nr_io_queues; i++) {
1305                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1306                                                         NVME_Q_DEPTH, i);
1307                 if (!dev->queues[i + 1])
1308                         return -ENOMEM;
1309                 dev->queue_count++;
1310         }
1311
1312         return 0;
1313 }
1314
1315 static void nvme_free_queues(struct nvme_dev *dev)
1316 {
1317         int i;
1318
1319         for (i = dev->queue_count - 1; i >= 0; i--)
1320                 nvme_free_queue(dev, i);
1321 }
1322
1323 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1324 {
1325         int res, nn, i;
1326         struct nvme_ns *ns, *next;
1327         struct nvme_id_ctrl *ctrl;
1328         void *id;
1329         dma_addr_t dma_addr;
1330         struct nvme_command cid, crt;
1331
1332         res = nvme_setup_io_queues(dev);
1333         if (res)
1334                 return res;
1335
1336         /* XXX: Switch to a SG list once prp2 works */
1337         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1338                                                                 GFP_KERNEL);
1339
1340         memset(&cid, 0, sizeof(cid));
1341         cid.identify.opcode = nvme_admin_identify;
1342         cid.identify.nsid = 0;
1343         cid.identify.prp1 = cpu_to_le64(dma_addr);
1344         cid.identify.cns = cpu_to_le32(1);
1345
1346         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1347         if (res) {
1348                 res = -EIO;
1349                 goto out_free;
1350         }
1351
1352         ctrl = id;
1353         nn = le32_to_cpup(&ctrl->nn);
1354         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1355         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1356         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1357
1358         cid.identify.cns = 0;
1359         memset(&crt, 0, sizeof(crt));
1360         crt.features.opcode = nvme_admin_get_features;
1361         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1362         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1363
1364         for (i = 0; i < nn; i++) {
1365                 cid.identify.nsid = cpu_to_le32(i);
1366                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1367                 if (res)
1368                         continue;
1369
1370                 if (((struct nvme_id_ns *)id)->ncap == 0)
1371                         continue;
1372
1373                 crt.features.nsid = cpu_to_le32(i);
1374                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1375                 if (res)
1376                         continue;
1377
1378                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1379                 if (ns)
1380                         list_add_tail(&ns->list, &dev->namespaces);
1381         }
1382         list_for_each_entry(ns, &dev->namespaces, list)
1383                 add_disk(ns->disk);
1384
1385         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1386         return 0;
1387
1388  out_free:
1389         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1390                 list_del(&ns->list);
1391                 nvme_ns_free(ns);
1392         }
1393
1394         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1395         return res;
1396 }
1397
1398 static int nvme_dev_remove(struct nvme_dev *dev)
1399 {
1400         struct nvme_ns *ns, *next;
1401
1402         spin_lock(&dev_list_lock);
1403         list_del(&dev->node);
1404         spin_unlock(&dev_list_lock);
1405
1406         /* TODO: wait all I/O finished or cancel them */
1407
1408         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1409                 list_del(&ns->list);
1410                 del_gendisk(ns->disk);
1411                 nvme_ns_free(ns);
1412         }
1413
1414         nvme_free_queues(dev);
1415
1416         return 0;
1417 }
1418
1419 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1420 {
1421         struct device *dmadev = &dev->pci_dev->dev;
1422         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1423                                                 PAGE_SIZE, PAGE_SIZE, 0);
1424         if (!dev->prp_page_pool)
1425                 return -ENOMEM;
1426
1427         /* Optimisation for I/Os between 4k and 128k */
1428         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1429                                                 256, 256, 0);
1430         if (!dev->prp_small_pool) {
1431                 dma_pool_destroy(dev->prp_page_pool);
1432                 return -ENOMEM;
1433         }
1434         return 0;
1435 }
1436
1437 static void nvme_release_prp_pools(struct nvme_dev *dev)
1438 {
1439         dma_pool_destroy(dev->prp_page_pool);
1440         dma_pool_destroy(dev->prp_small_pool);
1441 }
1442
1443 /* XXX: Use an ida or something to let remove / add work correctly */
1444 static void nvme_set_instance(struct nvme_dev *dev)
1445 {
1446         static int instance;
1447         dev->instance = instance++;
1448 }
1449
1450 static void nvme_release_instance(struct nvme_dev *dev)
1451 {
1452 }
1453
1454 static int __devinit nvme_probe(struct pci_dev *pdev,
1455                                                 const struct pci_device_id *id)
1456 {
1457         int bars, result = -ENOMEM;
1458         struct nvme_dev *dev;
1459
1460         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1461         if (!dev)
1462                 return -ENOMEM;
1463         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1464                                                                 GFP_KERNEL);
1465         if (!dev->entry)
1466                 goto free;
1467         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1468                                                                 GFP_KERNEL);
1469         if (!dev->queues)
1470                 goto free;
1471
1472         if (pci_enable_device_mem(pdev))
1473                 goto free;
1474         pci_set_master(pdev);
1475         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1476         if (pci_request_selected_regions(pdev, bars, "nvme"))
1477                 goto disable;
1478
1479         INIT_LIST_HEAD(&dev->namespaces);
1480         dev->pci_dev = pdev;
1481         pci_set_drvdata(pdev, dev);
1482         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1483         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1484         nvme_set_instance(dev);
1485         dev->entry[0].vector = pdev->irq;
1486
1487         result = nvme_setup_prp_pools(dev);
1488         if (result)
1489                 goto disable_msix;
1490
1491         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1492         if (!dev->bar) {
1493                 result = -ENOMEM;
1494                 goto disable_msix;
1495         }
1496
1497         result = nvme_configure_admin_queue(dev);
1498         if (result)
1499                 goto unmap;
1500         dev->queue_count++;
1501
1502         spin_lock(&dev_list_lock);
1503         list_add(&dev->node, &dev_list);
1504         spin_unlock(&dev_list_lock);
1505
1506         result = nvme_dev_add(dev);
1507         if (result)
1508                 goto delete;
1509
1510         return 0;
1511
1512  delete:
1513         spin_lock(&dev_list_lock);
1514         list_del(&dev->node);
1515         spin_unlock(&dev_list_lock);
1516
1517         nvme_free_queues(dev);
1518  unmap:
1519         iounmap(dev->bar);
1520  disable_msix:
1521         pci_disable_msix(pdev);
1522         nvme_release_instance(dev);
1523         nvme_release_prp_pools(dev);
1524  disable:
1525         pci_disable_device(pdev);
1526         pci_release_regions(pdev);
1527  free:
1528         kfree(dev->queues);
1529         kfree(dev->entry);
1530         kfree(dev);
1531         return result;
1532 }
1533
1534 static void __devexit nvme_remove(struct pci_dev *pdev)
1535 {
1536         struct nvme_dev *dev = pci_get_drvdata(pdev);
1537         nvme_dev_remove(dev);
1538         pci_disable_msix(pdev);
1539         iounmap(dev->bar);
1540         nvme_release_instance(dev);
1541         nvme_release_prp_pools(dev);
1542         pci_disable_device(pdev);
1543         pci_release_regions(pdev);
1544         kfree(dev->queues);
1545         kfree(dev->entry);
1546         kfree(dev);
1547 }
1548
1549 /* These functions are yet to be implemented */
1550 #define nvme_error_detected NULL
1551 #define nvme_dump_registers NULL
1552 #define nvme_link_reset NULL
1553 #define nvme_slot_reset NULL
1554 #define nvme_error_resume NULL
1555 #define nvme_suspend NULL
1556 #define nvme_resume NULL
1557
1558 static struct pci_error_handlers nvme_err_handler = {
1559         .error_detected = nvme_error_detected,
1560         .mmio_enabled   = nvme_dump_registers,
1561         .link_reset     = nvme_link_reset,
1562         .slot_reset     = nvme_slot_reset,
1563         .resume         = nvme_error_resume,
1564 };
1565
1566 /* Move to pci_ids.h later */
1567 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1568
1569 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1570         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1571         { 0, }
1572 };
1573 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1574
1575 static struct pci_driver nvme_driver = {
1576         .name           = "nvme",
1577         .id_table       = nvme_id_table,
1578         .probe          = nvme_probe,
1579         .remove         = __devexit_p(nvme_remove),
1580         .suspend        = nvme_suspend,
1581         .resume         = nvme_resume,
1582         .err_handler    = &nvme_err_handler,
1583 };
1584
1585 static int __init nvme_init(void)
1586 {
1587         int result = -EBUSY;
1588
1589         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1590         if (IS_ERR(nvme_thread))
1591                 return PTR_ERR(nvme_thread);
1592
1593         nvme_major = register_blkdev(nvme_major, "nvme");
1594         if (nvme_major <= 0)
1595                 goto kill_kthread;
1596
1597         result = pci_register_driver(&nvme_driver);
1598         if (result)
1599                 goto unregister_blkdev;
1600         return 0;
1601
1602  unregister_blkdev:
1603         unregister_blkdev(nvme_major, "nvme");
1604  kill_kthread:
1605         kthread_stop(nvme_thread);
1606         return result;
1607 }
1608
1609 static void __exit nvme_exit(void)
1610 {
1611         pci_unregister_driver(&nvme_driver);
1612         unregister_blkdev(nvme_major, "nvme");
1613         kthread_stop(nvme_thread);
1614 }
1615
1616 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1617 MODULE_LICENSE("GPL");
1618 MODULE_VERSION("0.3");
1619 module_init(nvme_init);
1620 module_exit(nvme_exit);