NVMe: Fix bug in error handling
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/version.h>
40
41 #define NVME_Q_DEPTH 1024
42 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
43 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
44 #define NVME_MINORS 64
45 #define IO_TIMEOUT      (5 * HZ)
46 #define ADMIN_TIMEOUT   (60 * HZ)
47
48 static int nvme_major;
49 module_param(nvme_major, int, 0);
50
51 static int use_threaded_interrupts;
52 module_param(use_threaded_interrupts, int, 0);
53
54 static DEFINE_SPINLOCK(dev_list_lock);
55 static LIST_HEAD(dev_list);
56 static struct task_struct *nvme_thread;
57
58 /*
59  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
60  */
61 struct nvme_dev {
62         struct list_head node;
63         struct nvme_queue **queues;
64         u32 __iomem *dbs;
65         struct pci_dev *pci_dev;
66         struct dma_pool *prp_page_pool;
67         struct dma_pool *prp_small_pool;
68         int instance;
69         int queue_count;
70         u32 ctrl_config;
71         struct msix_entry *entry;
72         struct nvme_bar __iomem *bar;
73         struct list_head namespaces;
74         char serial[20];
75         char model[40];
76         char firmware_rev[8];
77 };
78
79 /*
80  * An NVM Express namespace is equivalent to a SCSI LUN
81  */
82 struct nvme_ns {
83         struct list_head list;
84
85         struct nvme_dev *dev;
86         struct request_queue *queue;
87         struct gendisk *disk;
88
89         int ns_id;
90         int lba_shift;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct device *q_dmadev;
99         struct nvme_dev *dev;
100         spinlock_t q_lock;
101         struct nvme_command *sq_cmds;
102         volatile struct nvme_completion *cqes;
103         dma_addr_t sq_dma_addr;
104         dma_addr_t cq_dma_addr;
105         wait_queue_head_t sq_full;
106         wait_queue_t sq_cong_wait;
107         struct bio_list sq_cong;
108         u32 __iomem *q_db;
109         u16 q_depth;
110         u16 cq_vector;
111         u16 sq_head;
112         u16 sq_tail;
113         u16 cq_head;
114         u16 cq_phase;
115         unsigned long cmdid_data[];
116 };
117
118 /*
119  * Check we didin't inadvertently grow the command struct
120  */
121 static inline void _nvme_check_size(void)
122 {
123         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132 }
133
134 struct nvme_cmd_info {
135         unsigned long ctx;
136         unsigned long timeout;
137 };
138
139 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140 {
141         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142 }
143
144 /**
145  * alloc_cmdid() - Allocate a Command ID
146  * @nvmeq: The queue that will be used for this command
147  * @ctx: A pointer that will be passed to the handler
148  * @handler: The ID of the handler to call
149  *
150  * Allocate a Command ID for a queue.  The data passed in will
151  * be passed to the completion handler.  This is implemented by using
152  * the bottom two bits of the ctx pointer to store the handler ID.
153  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154  * We can change this if it becomes a problem.
155  */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157                                                         unsigned timeout)
158 {
159         int depth = nvmeq->q_depth - 1;
160         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161         int cmdid;
162
163         BUG_ON((unsigned long)ctx & 3);
164
165         do {
166                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167                 if (cmdid >= depth)
168                         return -EBUSY;
169         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171         info[cmdid].ctx = (unsigned long)ctx | handler;
172         info[cmdid].timeout = jiffies + timeout;
173         return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177                                                 int handler, unsigned timeout)
178 {
179         int cmdid;
180         wait_event_killable(nvmeq->sq_full,
181                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182         return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /*
186  * If you need more than four handlers, you'll need to change how
187  * alloc_cmdid and nvme_process_cq work.  Consider using a special
188  * CMD_CTX value instead, if that works for your situation.
189  */
190 enum {
191         sync_completion_id = 0,
192         bio_completion_id,
193 };
194
195 /* Special values must be a multiple of 4, and less than 0x1000 */
196 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201
202 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
203 {
204         unsigned long data;
205         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
206
207         if (cmdid >= nvmeq->q_depth)
208                 return CMD_CTX_INVALID;
209         data = info[cmdid].ctx;
210         info[cmdid].ctx = CMD_CTX_COMPLETED;
211         clear_bit(cmdid, nvmeq->cmdid_data);
212         wake_up(&nvmeq->sq_full);
213         return data;
214 }
215
216 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
217 {
218         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219         info[cmdid].ctx = CMD_CTX_CANCELLED;
220 }
221
222 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
223 {
224         return ns->dev->queues[get_cpu() + 1];
225 }
226
227 static void put_nvmeq(struct nvme_queue *nvmeq)
228 {
229         put_cpu();
230 }
231
232 /**
233  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
234  * @nvmeq: The queue to use
235  * @cmd: The command to send
236  *
237  * Safe to use from interrupt context
238  */
239 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
240 {
241         unsigned long flags;
242         u16 tail;
243         spin_lock_irqsave(&nvmeq->q_lock, flags);
244         tail = nvmeq->sq_tail;
245         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
246         if (++tail == nvmeq->q_depth)
247                 tail = 0;
248         writel(tail, nvmeq->q_db);
249         nvmeq->sq_tail = tail;
250         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
251
252         return 0;
253 }
254
255 struct nvme_prps {
256         int npages;
257         dma_addr_t first_dma;
258         __le64 *list[0];
259 };
260
261 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
262 {
263         const int last_prp = PAGE_SIZE / 8 - 1;
264         int i;
265         dma_addr_t prp_dma;
266
267         if (!prps)
268                 return;
269
270         prp_dma = prps->first_dma;
271
272         if (prps->npages == 0)
273                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
274         for (i = 0; i < prps->npages; i++) {
275                 __le64 *prp_list = prps->list[i];
276                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
277                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
278                 prp_dma = next_prp_dma;
279         }
280         kfree(prps);
281 }
282
283 struct nvme_bio {
284         struct bio *bio;
285         int nents;
286         struct nvme_prps *prps;
287         struct scatterlist sg[0];
288 };
289
290 /* XXX: use a mempool */
291 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
292 {
293         return kzalloc(sizeof(struct nvme_bio) +
294                         sizeof(struct scatterlist) * nseg, gfp);
295 }
296
297 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
298 {
299         nvme_free_prps(nvmeq->dev, nbio->prps);
300         kfree(nbio);
301 }
302
303 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
304                                                 struct nvme_completion *cqe)
305 {
306         struct nvme_bio *nbio = ctx;
307         struct bio *bio = nbio->bio;
308         u16 status = le16_to_cpup(&cqe->status) >> 1;
309
310         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
311                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
312         free_nbio(nvmeq, nbio);
313         if (status) {
314                 bio_endio(bio, -EIO);
315         } else if (bio->bi_vcnt > bio->bi_idx) {
316                 bio_list_add(&nvmeq->sq_cong, bio);
317                 wake_up_process(nvme_thread);
318         } else {
319                 bio_endio(bio, 0);
320         }
321 }
322
323 /* length is in bytes */
324 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
325                                         struct nvme_common_command *cmd,
326                                         struct scatterlist *sg, int length)
327 {
328         struct dma_pool *pool;
329         int dma_len = sg_dma_len(sg);
330         u64 dma_addr = sg_dma_address(sg);
331         int offset = offset_in_page(dma_addr);
332         __le64 *prp_list;
333         dma_addr_t prp_dma;
334         int nprps, npages, i, prp_page;
335         struct nvme_prps *prps = NULL;
336
337         cmd->prp1 = cpu_to_le64(dma_addr);
338         length -= (PAGE_SIZE - offset);
339         if (length <= 0)
340                 return prps;
341
342         dma_len -= (PAGE_SIZE - offset);
343         if (dma_len) {
344                 dma_addr += (PAGE_SIZE - offset);
345         } else {
346                 sg = sg_next(sg);
347                 dma_addr = sg_dma_address(sg);
348                 dma_len = sg_dma_len(sg);
349         }
350
351         if (length <= PAGE_SIZE) {
352                 cmd->prp2 = cpu_to_le64(dma_addr);
353                 return prps;
354         }
355
356         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
357         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
358         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
359         prp_page = 0;
360         if (nprps <= (256 / 8)) {
361                 pool = dev->prp_small_pool;
362                 prps->npages = 0;
363         } else {
364                 pool = dev->prp_page_pool;
365                 prps->npages = npages;
366         }
367
368         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
369         prps->list[prp_page++] = prp_list;
370         prps->first_dma = prp_dma;
371         cmd->prp2 = cpu_to_le64(prp_dma);
372         i = 0;
373         for (;;) {
374                 if (i == PAGE_SIZE / 8) {
375                         __le64 *old_prp_list = prp_list;
376                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
377                         prps->list[prp_page++] = prp_list;
378                         prp_list[0] = old_prp_list[i - 1];
379                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
380                         i = 1;
381                 }
382                 prp_list[i++] = cpu_to_le64(dma_addr);
383                 dma_len -= PAGE_SIZE;
384                 dma_addr += PAGE_SIZE;
385                 length -= PAGE_SIZE;
386                 if (length <= 0)
387                         break;
388                 if (dma_len > 0)
389                         continue;
390                 BUG_ON(dma_len < 0);
391                 sg = sg_next(sg);
392                 dma_addr = sg_dma_address(sg);
393                 dma_len = sg_dma_len(sg);
394         }
395
396         return prps;
397 }
398
399 /* NVMe scatterlists require no holes in the virtual address */
400 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
401                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
402
403 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
404                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
405 {
406         struct bio_vec *bvec, *bvprv = NULL;
407         struct scatterlist *sg = NULL;
408         int i, old_idx, length = 0, nsegs = 0;
409
410         sg_init_table(nbio->sg, psegs);
411         old_idx = bio->bi_idx;
412         bio_for_each_segment(bvec, bio, i) {
413                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
414                         sg->length += bvec->bv_len;
415                 } else {
416                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
417                                 break;
418                         sg = sg ? sg + 1 : nbio->sg;
419                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
420                                                         bvec->bv_offset);
421                         nsegs++;
422                 }
423                 length += bvec->bv_len;
424                 bvprv = bvec;
425         }
426         bio->bi_idx = i;
427         nbio->nents = nsegs;
428         sg_mark_end(sg);
429         if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
430                 bio->bi_idx = old_idx;
431                 return -ENOMEM;
432         }
433         return length;
434 }
435
436 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
437                                                                 int cmdid)
438 {
439         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
440
441         memset(cmnd, 0, sizeof(*cmnd));
442         cmnd->common.opcode = nvme_cmd_flush;
443         cmnd->common.command_id = cmdid;
444         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
445
446         if (++nvmeq->sq_tail == nvmeq->q_depth)
447                 nvmeq->sq_tail = 0;
448         writel(nvmeq->sq_tail, nvmeq->q_db);
449
450         return 0;
451 }
452
453 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
454 {
455         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
456                                                 sync_completion_id, IO_TIMEOUT);
457         if (unlikely(cmdid < 0))
458                 return cmdid;
459
460         return nvme_submit_flush(nvmeq, ns, cmdid);
461 }
462
463 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
464                                                                 struct bio *bio)
465 {
466         struct nvme_command *cmnd;
467         struct nvme_bio *nbio;
468         enum dma_data_direction dma_dir;
469         int cmdid, length, result = -ENOMEM;
470         u16 control;
471         u32 dsmgmt;
472         int psegs = bio_phys_segments(ns->queue, bio);
473
474         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
475                 result = nvme_submit_flush_data(nvmeq, ns);
476                 if (result)
477                         return result;
478         }
479
480         nbio = alloc_nbio(psegs, GFP_ATOMIC);
481         if (!nbio)
482                 goto nomem;
483         nbio->bio = bio;
484
485         result = -EBUSY;
486         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
487         if (unlikely(cmdid < 0))
488                 goto free_nbio;
489
490         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
491                 return nvme_submit_flush(nvmeq, ns, cmdid);
492
493         control = 0;
494         if (bio->bi_rw & REQ_FUA)
495                 control |= NVME_RW_FUA;
496         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
497                 control |= NVME_RW_LR;
498
499         dsmgmt = 0;
500         if (bio->bi_rw & REQ_RAHEAD)
501                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
502
503         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
504
505         memset(cmnd, 0, sizeof(*cmnd));
506         if (bio_data_dir(bio)) {
507                 cmnd->rw.opcode = nvme_cmd_write;
508                 dma_dir = DMA_TO_DEVICE;
509         } else {
510                 cmnd->rw.opcode = nvme_cmd_read;
511                 dma_dir = DMA_FROM_DEVICE;
512         }
513
514         result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
515         if (result < 0)
516                 goto free_nbio;
517         length = result;
518
519         cmnd->rw.command_id = cmdid;
520         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
521         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
522                                                                 length);
523         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
524         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
525         cmnd->rw.control = cpu_to_le16(control);
526         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
527
528         bio->bi_sector += length >> 9;
529
530         if (++nvmeq->sq_tail == nvmeq->q_depth)
531                 nvmeq->sq_tail = 0;
532         writel(nvmeq->sq_tail, nvmeq->q_db);
533
534         return 0;
535
536  free_nbio:
537         free_nbio(nvmeq, nbio);
538  nomem:
539         return result;
540 }
541
542 /*
543  * NB: return value of non-zero would mean that we were a stacking driver.
544  * make_request must always succeed.
545  */
546 static int nvme_make_request(struct request_queue *q, struct bio *bio)
547 {
548         struct nvme_ns *ns = q->queuedata;
549         struct nvme_queue *nvmeq = get_nvmeq(ns);
550         int result = -EBUSY;
551
552         spin_lock_irq(&nvmeq->q_lock);
553         if (bio_list_empty(&nvmeq->sq_cong))
554                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
555         if (unlikely(result)) {
556                 if (bio_list_empty(&nvmeq->sq_cong))
557                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
558                 bio_list_add(&nvmeq->sq_cong, bio);
559         }
560
561         spin_unlock_irq(&nvmeq->q_lock);
562         put_nvmeq(nvmeq);
563
564         return 0;
565 }
566
567 struct sync_cmd_info {
568         struct task_struct *task;
569         u32 result;
570         int status;
571 };
572
573 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
574                                                 struct nvme_completion *cqe)
575 {
576         struct sync_cmd_info *cmdinfo = ctx;
577         if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
578                 return;
579         if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
580                 return;
581         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
582                 dev_warn(nvmeq->q_dmadev,
583                                 "completed id %d twice on queue %d\n",
584                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
585                 return;
586         }
587         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
588                 dev_warn(nvmeq->q_dmadev,
589                                 "invalid id %d completed on queue %d\n",
590                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
591                 return;
592         }
593         cmdinfo->result = le32_to_cpup(&cqe->result);
594         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
595         wake_up_process(cmdinfo->task);
596 }
597
598 typedef void (*completion_fn)(struct nvme_queue *, void *,
599                                                 struct nvme_completion *);
600
601 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
602 {
603         u16 head, phase;
604
605         static const completion_fn completions[4] = {
606                 [sync_completion_id] = sync_completion,
607                 [bio_completion_id]  = bio_completion,
608         };
609
610         head = nvmeq->cq_head;
611         phase = nvmeq->cq_phase;
612
613         for (;;) {
614                 unsigned long data;
615                 void *ptr;
616                 unsigned char handler;
617                 struct nvme_completion cqe = nvmeq->cqes[head];
618                 if ((le16_to_cpu(cqe.status) & 1) != phase)
619                         break;
620                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
621                 if (++head == nvmeq->q_depth) {
622                         head = 0;
623                         phase = !phase;
624                 }
625
626                 data = free_cmdid(nvmeq, cqe.command_id);
627                 handler = data & 3;
628                 ptr = (void *)(data & ~3UL);
629                 completions[handler](nvmeq, ptr, &cqe);
630         }
631
632         /* If the controller ignores the cq head doorbell and continuously
633          * writes to the queue, it is theoretically possible to wrap around
634          * the queue twice and mistakenly return IRQ_NONE.  Linux only
635          * requires that 0.1% of your interrupts are handled, so this isn't
636          * a big problem.
637          */
638         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
639                 return IRQ_NONE;
640
641         writel(head, nvmeq->q_db + 1);
642         nvmeq->cq_head = head;
643         nvmeq->cq_phase = phase;
644
645         return IRQ_HANDLED;
646 }
647
648 static irqreturn_t nvme_irq(int irq, void *data)
649 {
650         irqreturn_t result;
651         struct nvme_queue *nvmeq = data;
652         spin_lock(&nvmeq->q_lock);
653         result = nvme_process_cq(nvmeq);
654         spin_unlock(&nvmeq->q_lock);
655         return result;
656 }
657
658 static irqreturn_t nvme_irq_check(int irq, void *data)
659 {
660         struct nvme_queue *nvmeq = data;
661         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
662         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
663                 return IRQ_NONE;
664         return IRQ_WAKE_THREAD;
665 }
666
667 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
668 {
669         spin_lock_irq(&nvmeq->q_lock);
670         cancel_cmdid_data(nvmeq, cmdid);
671         spin_unlock_irq(&nvmeq->q_lock);
672 }
673
674 /*
675  * Returns 0 on success.  If the result is negative, it's a Linux error code;
676  * if the result is positive, it's an NVM Express status code
677  */
678 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
679                         struct nvme_command *cmd, u32 *result, unsigned timeout)
680 {
681         int cmdid;
682         struct sync_cmd_info cmdinfo;
683
684         cmdinfo.task = current;
685         cmdinfo.status = -EINTR;
686
687         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
688                                                                 timeout);
689         if (cmdid < 0)
690                 return cmdid;
691         cmd->common.command_id = cmdid;
692
693         set_current_state(TASK_KILLABLE);
694         nvme_submit_cmd(nvmeq, cmd);
695         schedule();
696
697         if (cmdinfo.status == -EINTR) {
698                 nvme_abort_command(nvmeq, cmdid);
699                 return -EINTR;
700         }
701
702         if (result)
703                 *result = cmdinfo.result;
704
705         return cmdinfo.status;
706 }
707
708 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
709                                                                 u32 *result)
710 {
711         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
712 }
713
714 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
715 {
716         int status;
717         struct nvme_command c;
718
719         memset(&c, 0, sizeof(c));
720         c.delete_queue.opcode = opcode;
721         c.delete_queue.qid = cpu_to_le16(id);
722
723         status = nvme_submit_admin_cmd(dev, &c, NULL);
724         if (status)
725                 return -EIO;
726         return 0;
727 }
728
729 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
730                                                 struct nvme_queue *nvmeq)
731 {
732         int status;
733         struct nvme_command c;
734         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
735
736         memset(&c, 0, sizeof(c));
737         c.create_cq.opcode = nvme_admin_create_cq;
738         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
739         c.create_cq.cqid = cpu_to_le16(qid);
740         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
741         c.create_cq.cq_flags = cpu_to_le16(flags);
742         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
743
744         status = nvme_submit_admin_cmd(dev, &c, NULL);
745         if (status)
746                 return -EIO;
747         return 0;
748 }
749
750 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
751                                                 struct nvme_queue *nvmeq)
752 {
753         int status;
754         struct nvme_command c;
755         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
756
757         memset(&c, 0, sizeof(c));
758         c.create_sq.opcode = nvme_admin_create_sq;
759         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
760         c.create_sq.sqid = cpu_to_le16(qid);
761         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
762         c.create_sq.sq_flags = cpu_to_le16(flags);
763         c.create_sq.cqid = cpu_to_le16(qid);
764
765         status = nvme_submit_admin_cmd(dev, &c, NULL);
766         if (status)
767                 return -EIO;
768         return 0;
769 }
770
771 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
772 {
773         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
774 }
775
776 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
777 {
778         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
779 }
780
781 static void nvme_free_queue(struct nvme_dev *dev, int qid)
782 {
783         struct nvme_queue *nvmeq = dev->queues[qid];
784         int vector = dev->entry[nvmeq->cq_vector].vector;
785
786         irq_set_affinity_hint(vector, NULL);
787         free_irq(vector, nvmeq);
788
789         /* Don't tell the adapter to delete the admin queue */
790         if (qid) {
791                 adapter_delete_sq(dev, qid);
792                 adapter_delete_cq(dev, qid);
793         }
794
795         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
796                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
797         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
798                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
799         kfree(nvmeq);
800 }
801
802 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
803                                                         int depth, int vector)
804 {
805         struct device *dmadev = &dev->pci_dev->dev;
806         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
807         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
808         if (!nvmeq)
809                 return NULL;
810
811         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
812                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
813         if (!nvmeq->cqes)
814                 goto free_nvmeq;
815         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
816
817         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
818                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
819         if (!nvmeq->sq_cmds)
820                 goto free_cqdma;
821
822         nvmeq->q_dmadev = dmadev;
823         nvmeq->dev = dev;
824         spin_lock_init(&nvmeq->q_lock);
825         nvmeq->cq_head = 0;
826         nvmeq->cq_phase = 1;
827         init_waitqueue_head(&nvmeq->sq_full);
828         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
829         bio_list_init(&nvmeq->sq_cong);
830         nvmeq->q_db = &dev->dbs[qid * 2];
831         nvmeq->q_depth = depth;
832         nvmeq->cq_vector = vector;
833
834         return nvmeq;
835
836  free_cqdma:
837         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
838                                                         nvmeq->cq_dma_addr);
839  free_nvmeq:
840         kfree(nvmeq);
841         return NULL;
842 }
843
844 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
845                                                         const char *name)
846 {
847         if (use_threaded_interrupts)
848                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
849                                         nvme_irq_check, nvme_irq,
850                                         IRQF_DISABLED | IRQF_SHARED,
851                                         name, nvmeq);
852         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
853                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
854 }
855
856 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
857                                         int qid, int cq_size, int vector)
858 {
859         int result;
860         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
861
862         if (!nvmeq)
863                 return NULL;
864
865         result = adapter_alloc_cq(dev, qid, nvmeq);
866         if (result < 0)
867                 goto free_nvmeq;
868
869         result = adapter_alloc_sq(dev, qid, nvmeq);
870         if (result < 0)
871                 goto release_cq;
872
873         result = queue_request_irq(dev, nvmeq, "nvme");
874         if (result < 0)
875                 goto release_sq;
876
877         return nvmeq;
878
879  release_sq:
880         adapter_delete_sq(dev, qid);
881  release_cq:
882         adapter_delete_cq(dev, qid);
883  free_nvmeq:
884         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
885                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
886         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
887                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
888         kfree(nvmeq);
889         return NULL;
890 }
891
892 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
893 {
894         int result;
895         u32 aqa;
896         u64 cap;
897         unsigned long timeout;
898         struct nvme_queue *nvmeq;
899
900         dev->dbs = ((void __iomem *)dev->bar) + 4096;
901
902         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
903         if (!nvmeq)
904                 return -ENOMEM;
905
906         aqa = nvmeq->q_depth - 1;
907         aqa |= aqa << 16;
908
909         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
910         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
911         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
912         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
913
914         writel(0, &dev->bar->cc);
915         writel(aqa, &dev->bar->aqa);
916         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
917         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
918         writel(dev->ctrl_config, &dev->bar->cc);
919
920         cap = readq(&dev->bar->cap);
921         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
922
923         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
924                 msleep(100);
925                 if (fatal_signal_pending(current))
926                         return -EINTR;
927                 if (time_after(jiffies, timeout)) {
928                         dev_err(&dev->pci_dev->dev,
929                                 "Device not ready; aborting initialisation\n");
930                         return -ENODEV;
931                 }
932         }
933
934         result = queue_request_irq(dev, nvmeq, "nvme admin");
935         dev->queues[0] = nvmeq;
936         return result;
937 }
938
939 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
940                                 unsigned long addr, unsigned length,
941                                 struct scatterlist **sgp)
942 {
943         int i, err, count, nents, offset;
944         struct scatterlist *sg;
945         struct page **pages;
946
947         if (addr & 3)
948                 return -EINVAL;
949         if (!length)
950                 return -EINVAL;
951
952         offset = offset_in_page(addr);
953         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
954         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
955
956         err = get_user_pages_fast(addr, count, 1, pages);
957         if (err < count) {
958                 count = err;
959                 err = -EFAULT;
960                 goto put_pages;
961         }
962
963         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
964         sg_init_table(sg, count);
965         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
966         length -= (PAGE_SIZE - offset);
967         for (i = 1; i < count; i++) {
968                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
969                 length -= PAGE_SIZE;
970         }
971
972         err = -ENOMEM;
973         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
974                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
975         if (!nents)
976                 goto put_pages;
977
978         kfree(pages);
979         *sgp = sg;
980         return nents;
981
982  put_pages:
983         for (i = 0; i < count; i++)
984                 put_page(pages[i]);
985         kfree(pages);
986         return err;
987 }
988
989 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
990                                 unsigned long addr, int length,
991                                 struct scatterlist *sg, int nents)
992 {
993         int i, count;
994
995         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
996         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
997
998         for (i = 0; i < count; i++)
999                 put_page(sg_page(&sg[i]));
1000 }
1001
1002 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
1003                                         unsigned long addr, unsigned length,
1004                                         struct nvme_command *cmd)
1005 {
1006         int err, nents;
1007         struct scatterlist *sg;
1008         struct nvme_prps *prps;
1009
1010         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1011         if (nents < 0)
1012                 return nents;
1013         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
1014         err = nvme_submit_admin_cmd(dev, cmd, NULL);
1015         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
1016         nvme_free_prps(dev, prps);
1017         return err ? -EIO : 0;
1018 }
1019
1020 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
1021 {
1022         struct nvme_command c;
1023
1024         memset(&c, 0, sizeof(c));
1025         c.identify.opcode = nvme_admin_identify;
1026         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1027         c.identify.cns = cpu_to_le32(cns);
1028
1029         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1030 }
1031
1032 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1033 {
1034         struct nvme_command c;
1035
1036         memset(&c, 0, sizeof(c));
1037         c.features.opcode = nvme_admin_get_features;
1038         c.features.nsid = cpu_to_le32(ns->ns_id);
1039         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1040
1041         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1042 }
1043
1044 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1045 {
1046         struct nvme_dev *dev = ns->dev;
1047         struct nvme_queue *nvmeq;
1048         struct nvme_user_io io;
1049         struct nvme_command c;
1050         unsigned length;
1051         int nents, status;
1052         struct scatterlist *sg;
1053         struct nvme_prps *prps;
1054
1055         if (copy_from_user(&io, uio, sizeof(io)))
1056                 return -EFAULT;
1057         length = (io.nblocks + 1) << ns->lba_shift;
1058
1059         switch (io.opcode) {
1060         case nvme_cmd_write:
1061         case nvme_cmd_read:
1062                 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1063                                                                 length, &sg);
1064         default:
1065                 return -EFAULT;
1066         }
1067
1068         if (nents < 0)
1069                 return nents;
1070
1071         memset(&c, 0, sizeof(c));
1072         c.rw.opcode = io.opcode;
1073         c.rw.flags = io.flags;
1074         c.rw.nsid = cpu_to_le32(ns->ns_id);
1075         c.rw.slba = cpu_to_le64(io.slba);
1076         c.rw.length = cpu_to_le16(io.nblocks);
1077         c.rw.control = cpu_to_le16(io.control);
1078         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1079         c.rw.reftag = io.reftag;
1080         c.rw.apptag = io.apptag;
1081         c.rw.appmask = io.appmask;
1082         /* XXX: metadata */
1083         prps = nvme_setup_prps(dev, &c.common, sg, length);
1084
1085         nvmeq = get_nvmeq(ns);
1086         /*
1087          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1088          * disabled.  We may be preempted at any point, and be rescheduled
1089          * to a different CPU.  That will cause cacheline bouncing, but no
1090          * additional races since q_lock already protects against other CPUs.
1091          */
1092         put_nvmeq(nvmeq);
1093         status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1094
1095         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1096         nvme_free_prps(dev, prps);
1097         return status;
1098 }
1099
1100 static int nvme_download_firmware(struct nvme_ns *ns,
1101                                                 struct nvme_dlfw __user *udlfw)
1102 {
1103         struct nvme_dev *dev = ns->dev;
1104         struct nvme_dlfw dlfw;
1105         struct nvme_command c;
1106         int nents, status;
1107         struct scatterlist *sg;
1108         struct nvme_prps *prps;
1109
1110         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1111                 return -EFAULT;
1112         if (dlfw.length >= (1 << 30))
1113                 return -EINVAL;
1114
1115         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1116         if (nents < 0)
1117                 return nents;
1118
1119         memset(&c, 0, sizeof(c));
1120         c.dlfw.opcode = nvme_admin_download_fw;
1121         c.dlfw.numd = cpu_to_le32(dlfw.length);
1122         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1123         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1124
1125         status = nvme_submit_admin_cmd(dev, &c, NULL);
1126         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1127         nvme_free_prps(dev, prps);
1128         return status;
1129 }
1130
1131 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1132 {
1133         struct nvme_dev *dev = ns->dev;
1134         struct nvme_command c;
1135
1136         memset(&c, 0, sizeof(c));
1137         c.common.opcode = nvme_admin_activate_fw;
1138         c.common.rsvd10[0] = cpu_to_le32(arg);
1139
1140         return nvme_submit_admin_cmd(dev, &c, NULL);
1141 }
1142
1143 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1144                                                         unsigned long arg)
1145 {
1146         struct nvme_ns *ns = bdev->bd_disk->private_data;
1147
1148         switch (cmd) {
1149         case NVME_IOCTL_IDENTIFY_NS:
1150                 return nvme_identify(ns, arg, 0);
1151         case NVME_IOCTL_IDENTIFY_CTRL:
1152                 return nvme_identify(ns, arg, 1);
1153         case NVME_IOCTL_GET_RANGE_TYPE:
1154                 return nvme_get_range_type(ns, arg);
1155         case NVME_IOCTL_SUBMIT_IO:
1156                 return nvme_submit_io(ns, (void __user *)arg);
1157         case NVME_IOCTL_DOWNLOAD_FW:
1158                 return nvme_download_firmware(ns, (void __user *)arg);
1159         case NVME_IOCTL_ACTIVATE_FW:
1160                 return nvme_activate_firmware(ns, arg);
1161         default:
1162                 return -ENOTTY;
1163         }
1164 }
1165
1166 static const struct block_device_operations nvme_fops = {
1167         .owner          = THIS_MODULE,
1168         .ioctl          = nvme_ioctl,
1169         .compat_ioctl   = nvme_ioctl,
1170 };
1171
1172 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1173 {
1174         while (bio_list_peek(&nvmeq->sq_cong)) {
1175                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1176                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1177                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1178                         bio_list_add_head(&nvmeq->sq_cong, bio);
1179                         break;
1180                 }
1181                 if (bio_list_empty(&nvmeq->sq_cong))
1182                         remove_wait_queue(&nvmeq->sq_full,
1183                                                         &nvmeq->sq_cong_wait);
1184         }
1185 }
1186
1187 static int nvme_kthread(void *data)
1188 {
1189         struct nvme_dev *dev;
1190
1191         while (!kthread_should_stop()) {
1192                 __set_current_state(TASK_RUNNING);
1193                 spin_lock(&dev_list_lock);
1194                 list_for_each_entry(dev, &dev_list, node) {
1195                         int i;
1196                         for (i = 0; i < dev->queue_count; i++) {
1197                                 struct nvme_queue *nvmeq = dev->queues[i];
1198                                 if (!nvmeq)
1199                                         continue;
1200                                 spin_lock_irq(&nvmeq->q_lock);
1201                                 if (nvme_process_cq(nvmeq))
1202                                         printk("process_cq did something\n");
1203                                 nvme_resubmit_bios(nvmeq);
1204                                 spin_unlock_irq(&nvmeq->q_lock);
1205                         }
1206                 }
1207                 spin_unlock(&dev_list_lock);
1208                 set_current_state(TASK_INTERRUPTIBLE);
1209                 schedule_timeout(HZ);
1210         }
1211         return 0;
1212 }
1213
1214 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1215                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1216 {
1217         struct nvme_ns *ns;
1218         struct gendisk *disk;
1219         int lbaf;
1220
1221         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1222                 return NULL;
1223
1224         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1225         if (!ns)
1226                 return NULL;
1227         ns->queue = blk_alloc_queue(GFP_KERNEL);
1228         if (!ns->queue)
1229                 goto out_free_ns;
1230         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1231                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1232         blk_queue_make_request(ns->queue, nvme_make_request);
1233         ns->dev = dev;
1234         ns->queue->queuedata = ns;
1235
1236         disk = alloc_disk(NVME_MINORS);
1237         if (!disk)
1238                 goto out_free_queue;
1239         ns->ns_id = index;
1240         ns->disk = disk;
1241         lbaf = id->flbas & 0xf;
1242         ns->lba_shift = id->lbaf[lbaf].ds;
1243
1244         disk->major = nvme_major;
1245         disk->minors = NVME_MINORS;
1246         disk->first_minor = NVME_MINORS * index;
1247         disk->fops = &nvme_fops;
1248         disk->private_data = ns;
1249         disk->queue = ns->queue;
1250         disk->driverfs_dev = &dev->pci_dev->dev;
1251         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1252         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1253
1254         return ns;
1255
1256  out_free_queue:
1257         blk_cleanup_queue(ns->queue);
1258  out_free_ns:
1259         kfree(ns);
1260         return NULL;
1261 }
1262
1263 static void nvme_ns_free(struct nvme_ns *ns)
1264 {
1265         put_disk(ns->disk);
1266         blk_cleanup_queue(ns->queue);
1267         kfree(ns);
1268 }
1269
1270 static int set_queue_count(struct nvme_dev *dev, int count)
1271 {
1272         int status;
1273         u32 result;
1274         struct nvme_command c;
1275         u32 q_count = (count - 1) | ((count - 1) << 16);
1276
1277         memset(&c, 0, sizeof(c));
1278         c.features.opcode = nvme_admin_get_features;
1279         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1280         c.features.dword11 = cpu_to_le32(q_count);
1281
1282         status = nvme_submit_admin_cmd(dev, &c, &result);
1283         if (status)
1284                 return -EIO;
1285         return min(result & 0xffff, result >> 16) + 1;
1286 }
1287
1288 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1289 {
1290         int result, cpu, i, nr_io_queues;
1291
1292         nr_io_queues = num_online_cpus();
1293         result = set_queue_count(dev, nr_io_queues);
1294         if (result < 0)
1295                 return result;
1296         if (result < nr_io_queues)
1297                 nr_io_queues = result;
1298
1299         /* Deregister the admin queue's interrupt */
1300         free_irq(dev->entry[0].vector, dev->queues[0]);
1301
1302         for (i = 0; i < nr_io_queues; i++)
1303                 dev->entry[i].entry = i;
1304         for (;;) {
1305                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1306                                                                 nr_io_queues);
1307                 if (result == 0) {
1308                         break;
1309                 } else if (result > 0) {
1310                         nr_io_queues = result;
1311                         continue;
1312                 } else {
1313                         nr_io_queues = 1;
1314                         break;
1315                 }
1316         }
1317
1318         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1319         /* XXX: handle failure here */
1320
1321         cpu = cpumask_first(cpu_online_mask);
1322         for (i = 0; i < nr_io_queues; i++) {
1323                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1324                 cpu = cpumask_next(cpu, cpu_online_mask);
1325         }
1326
1327         for (i = 0; i < nr_io_queues; i++) {
1328                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1329                                                         NVME_Q_DEPTH, i);
1330                 if (!dev->queues[i + 1])
1331                         return -ENOMEM;
1332                 dev->queue_count++;
1333         }
1334
1335         for (; i < num_possible_cpus(); i++) {
1336                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1337                 dev->queues[i + 1] = dev->queues[target + 1];
1338         }
1339
1340         return 0;
1341 }
1342
1343 static void nvme_free_queues(struct nvme_dev *dev)
1344 {
1345         int i;
1346
1347         for (i = dev->queue_count - 1; i >= 0; i--)
1348                 nvme_free_queue(dev, i);
1349 }
1350
1351 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1352 {
1353         int res, nn, i;
1354         struct nvme_ns *ns, *next;
1355         struct nvme_id_ctrl *ctrl;
1356         void *id;
1357         dma_addr_t dma_addr;
1358         struct nvme_command cid, crt;
1359
1360         res = nvme_setup_io_queues(dev);
1361         if (res)
1362                 return res;
1363
1364         /* XXX: Switch to a SG list once prp2 works */
1365         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1366                                                                 GFP_KERNEL);
1367
1368         memset(&cid, 0, sizeof(cid));
1369         cid.identify.opcode = nvme_admin_identify;
1370         cid.identify.nsid = 0;
1371         cid.identify.prp1 = cpu_to_le64(dma_addr);
1372         cid.identify.cns = cpu_to_le32(1);
1373
1374         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1375         if (res) {
1376                 res = -EIO;
1377                 goto out_free;
1378         }
1379
1380         ctrl = id;
1381         nn = le32_to_cpup(&ctrl->nn);
1382         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1383         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1384         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1385
1386         cid.identify.cns = 0;
1387         memset(&crt, 0, sizeof(crt));
1388         crt.features.opcode = nvme_admin_get_features;
1389         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1390         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1391
1392         for (i = 0; i <= nn; i++) {
1393                 cid.identify.nsid = cpu_to_le32(i);
1394                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1395                 if (res)
1396                         continue;
1397
1398                 if (((struct nvme_id_ns *)id)->ncap == 0)
1399                         continue;
1400
1401                 crt.features.nsid = cpu_to_le32(i);
1402                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1403                 if (res)
1404                         continue;
1405
1406                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1407                 if (ns)
1408                         list_add_tail(&ns->list, &dev->namespaces);
1409         }
1410         list_for_each_entry(ns, &dev->namespaces, list)
1411                 add_disk(ns->disk);
1412
1413         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1414         return 0;
1415
1416  out_free:
1417         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1418                 list_del(&ns->list);
1419                 nvme_ns_free(ns);
1420         }
1421
1422         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1423         return res;
1424 }
1425
1426 static int nvme_dev_remove(struct nvme_dev *dev)
1427 {
1428         struct nvme_ns *ns, *next;
1429
1430         spin_lock(&dev_list_lock);
1431         list_del(&dev->node);
1432         spin_unlock(&dev_list_lock);
1433
1434         /* TODO: wait all I/O finished or cancel them */
1435
1436         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1437                 list_del(&ns->list);
1438                 del_gendisk(ns->disk);
1439                 nvme_ns_free(ns);
1440         }
1441
1442         nvme_free_queues(dev);
1443
1444         return 0;
1445 }
1446
1447 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1448 {
1449         struct device *dmadev = &dev->pci_dev->dev;
1450         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1451                                                 PAGE_SIZE, PAGE_SIZE, 0);
1452         if (!dev->prp_page_pool)
1453                 return -ENOMEM;
1454
1455         /* Optimisation for I/Os between 4k and 128k */
1456         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1457                                                 256, 256, 0);
1458         if (!dev->prp_small_pool) {
1459                 dma_pool_destroy(dev->prp_page_pool);
1460                 return -ENOMEM;
1461         }
1462         return 0;
1463 }
1464
1465 static void nvme_release_prp_pools(struct nvme_dev *dev)
1466 {
1467         dma_pool_destroy(dev->prp_page_pool);
1468         dma_pool_destroy(dev->prp_small_pool);
1469 }
1470
1471 /* XXX: Use an ida or something to let remove / add work correctly */
1472 static void nvme_set_instance(struct nvme_dev *dev)
1473 {
1474         static int instance;
1475         dev->instance = instance++;
1476 }
1477
1478 static void nvme_release_instance(struct nvme_dev *dev)
1479 {
1480 }
1481
1482 static int __devinit nvme_probe(struct pci_dev *pdev,
1483                                                 const struct pci_device_id *id)
1484 {
1485         int bars, result = -ENOMEM;
1486         struct nvme_dev *dev;
1487
1488         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1489         if (!dev)
1490                 return -ENOMEM;
1491         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1492                                                                 GFP_KERNEL);
1493         if (!dev->entry)
1494                 goto free;
1495         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1496                                                                 GFP_KERNEL);
1497         if (!dev->queues)
1498                 goto free;
1499
1500         if (pci_enable_device_mem(pdev))
1501                 goto free;
1502         pci_set_master(pdev);
1503         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1504         if (pci_request_selected_regions(pdev, bars, "nvme"))
1505                 goto disable;
1506
1507         INIT_LIST_HEAD(&dev->namespaces);
1508         dev->pci_dev = pdev;
1509         pci_set_drvdata(pdev, dev);
1510         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1511         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1512         nvme_set_instance(dev);
1513         dev->entry[0].vector = pdev->irq;
1514
1515         result = nvme_setup_prp_pools(dev);
1516         if (result)
1517                 goto disable_msix;
1518
1519         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1520         if (!dev->bar) {
1521                 result = -ENOMEM;
1522                 goto disable_msix;
1523         }
1524
1525         result = nvme_configure_admin_queue(dev);
1526         if (result)
1527                 goto unmap;
1528         dev->queue_count++;
1529
1530         spin_lock(&dev_list_lock);
1531         list_add(&dev->node, &dev_list);
1532         spin_unlock(&dev_list_lock);
1533
1534         result = nvme_dev_add(dev);
1535         if (result)
1536                 goto delete;
1537
1538         return 0;
1539
1540  delete:
1541         spin_lock(&dev_list_lock);
1542         list_del(&dev->node);
1543         spin_unlock(&dev_list_lock);
1544
1545         nvme_free_queues(dev);
1546  unmap:
1547         iounmap(dev->bar);
1548  disable_msix:
1549         pci_disable_msix(pdev);
1550         nvme_release_instance(dev);
1551         nvme_release_prp_pools(dev);
1552  disable:
1553         pci_disable_device(pdev);
1554         pci_release_regions(pdev);
1555  free:
1556         kfree(dev->queues);
1557         kfree(dev->entry);
1558         kfree(dev);
1559         return result;
1560 }
1561
1562 static void __devexit nvme_remove(struct pci_dev *pdev)
1563 {
1564         struct nvme_dev *dev = pci_get_drvdata(pdev);
1565         nvme_dev_remove(dev);
1566         pci_disable_msix(pdev);
1567         iounmap(dev->bar);
1568         nvme_release_instance(dev);
1569         nvme_release_prp_pools(dev);
1570         pci_disable_device(pdev);
1571         pci_release_regions(pdev);
1572         kfree(dev->queues);
1573         kfree(dev->entry);
1574         kfree(dev);
1575 }
1576
1577 /* These functions are yet to be implemented */
1578 #define nvme_error_detected NULL
1579 #define nvme_dump_registers NULL
1580 #define nvme_link_reset NULL
1581 #define nvme_slot_reset NULL
1582 #define nvme_error_resume NULL
1583 #define nvme_suspend NULL
1584 #define nvme_resume NULL
1585
1586 static struct pci_error_handlers nvme_err_handler = {
1587         .error_detected = nvme_error_detected,
1588         .mmio_enabled   = nvme_dump_registers,
1589         .link_reset     = nvme_link_reset,
1590         .slot_reset     = nvme_slot_reset,
1591         .resume         = nvme_error_resume,
1592 };
1593
1594 /* Move to pci_ids.h later */
1595 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1596
1597 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1598         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1599         { 0, }
1600 };
1601 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1602
1603 static struct pci_driver nvme_driver = {
1604         .name           = "nvme",
1605         .id_table       = nvme_id_table,
1606         .probe          = nvme_probe,
1607         .remove         = __devexit_p(nvme_remove),
1608         .suspend        = nvme_suspend,
1609         .resume         = nvme_resume,
1610         .err_handler    = &nvme_err_handler,
1611 };
1612
1613 static int __init nvme_init(void)
1614 {
1615         int result = -EBUSY;
1616
1617         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1618         if (IS_ERR(nvme_thread))
1619                 return PTR_ERR(nvme_thread);
1620
1621         nvme_major = register_blkdev(nvme_major, "nvme");
1622         if (nvme_major <= 0)
1623                 goto kill_kthread;
1624
1625         result = pci_register_driver(&nvme_driver);
1626         if (result)
1627                 goto unregister_blkdev;
1628         return 0;
1629
1630  unregister_blkdev:
1631         unregister_blkdev(nvme_major, "nvme");
1632  kill_kthread:
1633         kthread_stop(nvme_thread);
1634         return result;
1635 }
1636
1637 static void __exit nvme_exit(void)
1638 {
1639         pci_unregister_driver(&nvme_driver);
1640         unregister_blkdev(nvme_major, "nvme");
1641         kthread_stop(nvme_thread);
1642 }
1643
1644 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1645 MODULE_LICENSE("GPL");
1646 MODULE_VERSION("0.5");
1647 module_init(nvme_init);
1648 module_exit(nvme_exit);