NVMe: Change get_nvmeq to take a dev instead of a namespace
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define IO_TIMEOUT      (5 * HZ)
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
63  */
64 struct nvme_dev {
65         struct list_head node;
66         struct nvme_queue **queues;
67         u32 __iomem *dbs;
68         struct pci_dev *pci_dev;
69         struct dma_pool *prp_page_pool;
70         struct dma_pool *prp_small_pool;
71         int instance;
72         int queue_count;
73         int db_stride;
74         u32 ctrl_config;
75         struct msix_entry *entry;
76         struct nvme_bar __iomem *bar;
77         struct list_head namespaces;
78         char serial[20];
79         char model[40];
80         char firmware_rev[8];
81 };
82
83 /*
84  * An NVM Express namespace is equivalent to a SCSI LUN
85  */
86 struct nvme_ns {
87         struct list_head list;
88
89         struct nvme_dev *dev;
90         struct request_queue *queue;
91         struct gendisk *disk;
92
93         int ns_id;
94         int lba_shift;
95 };
96
97 /*
98  * An NVM Express queue.  Each device has at least two (one for admin
99  * commands and one for I/O commands).
100  */
101 struct nvme_queue {
102         struct device *q_dmadev;
103         struct nvme_dev *dev;
104         spinlock_t q_lock;
105         struct nvme_command *sq_cmds;
106         volatile struct nvme_completion *cqes;
107         dma_addr_t sq_dma_addr;
108         dma_addr_t cq_dma_addr;
109         wait_queue_head_t sq_full;
110         wait_queue_t sq_cong_wait;
111         struct bio_list sq_cong;
112         u32 __iomem *q_db;
113         u16 q_depth;
114         u16 cq_vector;
115         u16 sq_head;
116         u16 sq_tail;
117         u16 cq_head;
118         u16 cq_phase;
119         unsigned long cmdid_data[];
120 };
121
122 /*
123  * Check we didin't inadvertently grow the command struct
124  */
125 static inline void _nvme_check_size(void)
126 {
127         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 }
137
138 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
139                                                 struct nvme_completion *);
140
141 struct nvme_cmd_info {
142         nvme_completion_fn fn;
143         void *ctx;
144         unsigned long timeout;
145 };
146
147 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
148 {
149         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
150 }
151
152 /**
153  * alloc_cmdid() - Allocate a Command ID
154  * @nvmeq: The queue that will be used for this command
155  * @ctx: A pointer that will be passed to the handler
156  * @handler: The function to call on completion
157  *
158  * Allocate a Command ID for a queue.  The data passed in will
159  * be passed to the completion handler.  This is implemented by using
160  * the bottom two bits of the ctx pointer to store the handler ID.
161  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
162  * We can change this if it becomes a problem.
163  *
164  * May be called with local interrupts disabled and the q_lock held,
165  * or with interrupts enabled and no locks held.
166  */
167 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
168                                 nvme_completion_fn handler, unsigned timeout)
169 {
170         int depth = nvmeq->q_depth - 1;
171         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
172         int cmdid;
173
174         do {
175                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
176                 if (cmdid >= depth)
177                         return -EBUSY;
178         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
179
180         info[cmdid].fn = handler;
181         info[cmdid].ctx = ctx;
182         info[cmdid].timeout = jiffies + timeout;
183         return cmdid;
184 }
185
186 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
187                                 nvme_completion_fn handler, unsigned timeout)
188 {
189         int cmdid;
190         wait_event_killable(nvmeq->sq_full,
191                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
192         return (cmdid < 0) ? -EINTR : cmdid;
193 }
194
195 /* Special values must be less than 0x1000 */
196 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201
202 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
203                                                 struct nvme_completion *cqe)
204 {
205         if (ctx == CMD_CTX_CANCELLED)
206                 return;
207         if (ctx == CMD_CTX_FLUSH)
208                 return;
209         if (ctx == CMD_CTX_COMPLETED) {
210                 dev_warn(nvmeq->q_dmadev,
211                                 "completed id %d twice on queue %d\n",
212                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
213                 return;
214         }
215         if (ctx == CMD_CTX_INVALID) {
216                 dev_warn(nvmeq->q_dmadev,
217                                 "invalid id %d completed on queue %d\n",
218                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
219                 return;
220         }
221
222         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
223 }
224
225 /*
226  * Called with local interrupts disabled and the q_lock held.  May not sleep.
227  */
228 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
229                                                 nvme_completion_fn *fn)
230 {
231         void *ctx;
232         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
233
234         if (cmdid >= nvmeq->q_depth) {
235                 *fn = special_completion;
236                 return CMD_CTX_INVALID;
237         }
238         *fn = info[cmdid].fn;
239         ctx = info[cmdid].ctx;
240         info[cmdid].fn = special_completion;
241         info[cmdid].ctx = CMD_CTX_COMPLETED;
242         clear_bit(cmdid, nvmeq->cmdid_data);
243         wake_up(&nvmeq->sq_full);
244         return ctx;
245 }
246
247 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
248                                                 nvme_completion_fn *fn)
249 {
250         void *ctx;
251         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
252         if (fn)
253                 *fn = info[cmdid].fn;
254         ctx = info[cmdid].ctx;
255         info[cmdid].fn = special_completion;
256         info[cmdid].ctx = CMD_CTX_CANCELLED;
257         return ctx;
258 }
259
260 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
261 {
262         return dev->queues[get_cpu() + 1];
263 }
264
265 static void put_nvmeq(struct nvme_queue *nvmeq)
266 {
267         put_cpu();
268 }
269
270 /**
271  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
272  * @nvmeq: The queue to use
273  * @cmd: The command to send
274  *
275  * Safe to use from interrupt context
276  */
277 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
278 {
279         unsigned long flags;
280         u16 tail;
281         spin_lock_irqsave(&nvmeq->q_lock, flags);
282         tail = nvmeq->sq_tail;
283         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
284         if (++tail == nvmeq->q_depth)
285                 tail = 0;
286         writel(tail, nvmeq->q_db);
287         nvmeq->sq_tail = tail;
288         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
289
290         return 0;
291 }
292
293 struct nvme_prps {
294         int npages;             /* 0 means small pool in use */
295         dma_addr_t first_dma;
296         __le64 *list[0];
297 };
298
299 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
300 {
301         const int last_prp = PAGE_SIZE / 8 - 1;
302         int i;
303         dma_addr_t prp_dma;
304
305         if (!prps)
306                 return;
307
308         prp_dma = prps->first_dma;
309
310         if (prps->npages == 0)
311                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
312         for (i = 0; i < prps->npages; i++) {
313                 __le64 *prp_list = prps->list[i];
314                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
315                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
316                 prp_dma = next_prp_dma;
317         }
318         kfree(prps);
319 }
320
321 struct nvme_bio {
322         struct bio *bio;
323         int nents;
324         struct nvme_prps *prps;
325         struct scatterlist sg[0];
326 };
327
328 /* XXX: use a mempool */
329 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
330 {
331         return kzalloc(sizeof(struct nvme_bio) +
332                         sizeof(struct scatterlist) * nseg, gfp);
333 }
334
335 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
336 {
337         nvme_free_prps(nvmeq->dev, nbio->prps);
338         kfree(nbio);
339 }
340
341 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
342                                                 struct nvme_completion *cqe)
343 {
344         struct nvme_bio *nbio = ctx;
345         struct bio *bio = nbio->bio;
346         u16 status = le16_to_cpup(&cqe->status) >> 1;
347
348         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
349                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
350         free_nbio(nvmeq, nbio);
351         if (status) {
352                 bio_endio(bio, -EIO);
353         } else if (bio->bi_vcnt > bio->bi_idx) {
354                 if (bio_list_empty(&nvmeq->sq_cong))
355                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
356                 bio_list_add(&nvmeq->sq_cong, bio);
357                 wake_up_process(nvme_thread);
358         } else {
359                 bio_endio(bio, 0);
360         }
361 }
362
363 /* length is in bytes.  gfp flags indicates whether we may sleep. */
364 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
365                                         struct nvme_common_command *cmd,
366                                         struct scatterlist *sg, int *len,
367                                         gfp_t gfp)
368 {
369         struct dma_pool *pool;
370         int length = *len;
371         int dma_len = sg_dma_len(sg);
372         u64 dma_addr = sg_dma_address(sg);
373         int offset = offset_in_page(dma_addr);
374         __le64 *prp_list;
375         dma_addr_t prp_dma;
376         int nprps, npages, i;
377         struct nvme_prps *prps = NULL;
378
379         cmd->prp1 = cpu_to_le64(dma_addr);
380         length -= (PAGE_SIZE - offset);
381         if (length <= 0)
382                 return prps;
383
384         dma_len -= (PAGE_SIZE - offset);
385         if (dma_len) {
386                 dma_addr += (PAGE_SIZE - offset);
387         } else {
388                 sg = sg_next(sg);
389                 dma_addr = sg_dma_address(sg);
390                 dma_len = sg_dma_len(sg);
391         }
392
393         if (length <= PAGE_SIZE) {
394                 cmd->prp2 = cpu_to_le64(dma_addr);
395                 return prps;
396         }
397
398         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
399         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
400         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
401         if (!prps) {
402                 cmd->prp2 = cpu_to_le64(dma_addr);
403                 *len = (*len - length) + PAGE_SIZE;
404                 return prps;
405         }
406
407         if (nprps <= (256 / 8)) {
408                 pool = dev->prp_small_pool;
409                 prps->npages = 0;
410         } else {
411                 pool = dev->prp_page_pool;
412                 prps->npages = 1;
413         }
414
415         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
416         if (!prp_list) {
417                 cmd->prp2 = cpu_to_le64(dma_addr);
418                 *len = (*len - length) + PAGE_SIZE;
419                 kfree(prps);
420                 return NULL;
421         }
422         prps->list[0] = prp_list;
423         prps->first_dma = prp_dma;
424         cmd->prp2 = cpu_to_le64(prp_dma);
425         i = 0;
426         for (;;) {
427                 if (i == PAGE_SIZE / 8) {
428                         __le64 *old_prp_list = prp_list;
429                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
430                         if (!prp_list) {
431                                 *len = (*len - length);
432                                 return prps;
433                         }
434                         prps->list[prps->npages++] = prp_list;
435                         prp_list[0] = old_prp_list[i - 1];
436                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
437                         i = 1;
438                 }
439                 prp_list[i++] = cpu_to_le64(dma_addr);
440                 dma_len -= PAGE_SIZE;
441                 dma_addr += PAGE_SIZE;
442                 length -= PAGE_SIZE;
443                 if (length <= 0)
444                         break;
445                 if (dma_len > 0)
446                         continue;
447                 BUG_ON(dma_len < 0);
448                 sg = sg_next(sg);
449                 dma_addr = sg_dma_address(sg);
450                 dma_len = sg_dma_len(sg);
451         }
452
453         return prps;
454 }
455
456 /* NVMe scatterlists require no holes in the virtual address */
457 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
458                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
459
460 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
461                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
462 {
463         struct bio_vec *bvec, *bvprv = NULL;
464         struct scatterlist *sg = NULL;
465         int i, old_idx, length = 0, nsegs = 0;
466
467         sg_init_table(nbio->sg, psegs);
468         old_idx = bio->bi_idx;
469         bio_for_each_segment(bvec, bio, i) {
470                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
471                         sg->length += bvec->bv_len;
472                 } else {
473                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
474                                 break;
475                         sg = sg ? sg + 1 : nbio->sg;
476                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
477                                                         bvec->bv_offset);
478                         nsegs++;
479                 }
480                 length += bvec->bv_len;
481                 bvprv = bvec;
482         }
483         bio->bi_idx = i;
484         nbio->nents = nsegs;
485         sg_mark_end(sg);
486         if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
487                 bio->bi_idx = old_idx;
488                 return -ENOMEM;
489         }
490         return length;
491 }
492
493 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
494                                                                 int cmdid)
495 {
496         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
497
498         memset(cmnd, 0, sizeof(*cmnd));
499         cmnd->common.opcode = nvme_cmd_flush;
500         cmnd->common.command_id = cmdid;
501         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
502
503         if (++nvmeq->sq_tail == nvmeq->q_depth)
504                 nvmeq->sq_tail = 0;
505         writel(nvmeq->sq_tail, nvmeq->q_db);
506
507         return 0;
508 }
509
510 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
511 {
512         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
513                                                 special_completion, IO_TIMEOUT);
514         if (unlikely(cmdid < 0))
515                 return cmdid;
516
517         return nvme_submit_flush(nvmeq, ns, cmdid);
518 }
519
520 /*
521  * Called with local interrupts disabled and the q_lock held.  May not sleep.
522  */
523 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
524                                                                 struct bio *bio)
525 {
526         struct nvme_command *cmnd;
527         struct nvme_bio *nbio;
528         enum dma_data_direction dma_dir;
529         int cmdid, length, result = -ENOMEM;
530         u16 control;
531         u32 dsmgmt;
532         int psegs = bio_phys_segments(ns->queue, bio);
533
534         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
535                 result = nvme_submit_flush_data(nvmeq, ns);
536                 if (result)
537                         return result;
538         }
539
540         nbio = alloc_nbio(psegs, GFP_ATOMIC);
541         if (!nbio)
542                 goto nomem;
543         nbio->bio = bio;
544
545         result = -EBUSY;
546         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion, IO_TIMEOUT);
547         if (unlikely(cmdid < 0))
548                 goto free_nbio;
549
550         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
551                 return nvme_submit_flush(nvmeq, ns, cmdid);
552
553         control = 0;
554         if (bio->bi_rw & REQ_FUA)
555                 control |= NVME_RW_FUA;
556         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
557                 control |= NVME_RW_LR;
558
559         dsmgmt = 0;
560         if (bio->bi_rw & REQ_RAHEAD)
561                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
562
563         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
564
565         memset(cmnd, 0, sizeof(*cmnd));
566         if (bio_data_dir(bio)) {
567                 cmnd->rw.opcode = nvme_cmd_write;
568                 dma_dir = DMA_TO_DEVICE;
569         } else {
570                 cmnd->rw.opcode = nvme_cmd_read;
571                 dma_dir = DMA_FROM_DEVICE;
572         }
573
574         result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
575         if (result < 0)
576                 goto free_nbio;
577         length = result;
578
579         cmnd->rw.command_id = cmdid;
580         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
581         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
582                                                         &length, GFP_ATOMIC);
583         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
584         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
585         cmnd->rw.control = cpu_to_le16(control);
586         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
587
588         bio->bi_sector += length >> 9;
589
590         if (++nvmeq->sq_tail == nvmeq->q_depth)
591                 nvmeq->sq_tail = 0;
592         writel(nvmeq->sq_tail, nvmeq->q_db);
593
594         return 0;
595
596  free_nbio:
597         free_nbio(nvmeq, nbio);
598  nomem:
599         return result;
600 }
601
602 /*
603  * NB: return value of non-zero would mean that we were a stacking driver.
604  * make_request must always succeed.
605  */
606 static int nvme_make_request(struct request_queue *q, struct bio *bio)
607 {
608         struct nvme_ns *ns = q->queuedata;
609         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
610         int result = -EBUSY;
611
612         spin_lock_irq(&nvmeq->q_lock);
613         if (bio_list_empty(&nvmeq->sq_cong))
614                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
615         if (unlikely(result)) {
616                 if (bio_list_empty(&nvmeq->sq_cong))
617                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
618                 bio_list_add(&nvmeq->sq_cong, bio);
619         }
620
621         spin_unlock_irq(&nvmeq->q_lock);
622         put_nvmeq(nvmeq);
623
624         return 0;
625 }
626
627 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
628 {
629         u16 head, phase;
630
631         head = nvmeq->cq_head;
632         phase = nvmeq->cq_phase;
633
634         for (;;) {
635                 void *ctx;
636                 nvme_completion_fn fn;
637                 struct nvme_completion cqe = nvmeq->cqes[head];
638                 if ((le16_to_cpu(cqe.status) & 1) != phase)
639                         break;
640                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
641                 if (++head == nvmeq->q_depth) {
642                         head = 0;
643                         phase = !phase;
644                 }
645
646                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
647                 fn(nvmeq, ctx, &cqe);
648         }
649
650         /* If the controller ignores the cq head doorbell and continuously
651          * writes to the queue, it is theoretically possible to wrap around
652          * the queue twice and mistakenly return IRQ_NONE.  Linux only
653          * requires that 0.1% of your interrupts are handled, so this isn't
654          * a big problem.
655          */
656         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
657                 return IRQ_NONE;
658
659         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
660         nvmeq->cq_head = head;
661         nvmeq->cq_phase = phase;
662
663         return IRQ_HANDLED;
664 }
665
666 static irqreturn_t nvme_irq(int irq, void *data)
667 {
668         irqreturn_t result;
669         struct nvme_queue *nvmeq = data;
670         spin_lock(&nvmeq->q_lock);
671         result = nvme_process_cq(nvmeq);
672         spin_unlock(&nvmeq->q_lock);
673         return result;
674 }
675
676 static irqreturn_t nvme_irq_check(int irq, void *data)
677 {
678         struct nvme_queue *nvmeq = data;
679         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
680         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
681                 return IRQ_NONE;
682         return IRQ_WAKE_THREAD;
683 }
684
685 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
686 {
687         spin_lock_irq(&nvmeq->q_lock);
688         cancel_cmdid(nvmeq, cmdid, NULL);
689         spin_unlock_irq(&nvmeq->q_lock);
690 }
691
692 struct sync_cmd_info {
693         struct task_struct *task;
694         u32 result;
695         int status;
696 };
697
698 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
699                                                 struct nvme_completion *cqe)
700 {
701         struct sync_cmd_info *cmdinfo = ctx;
702         cmdinfo->result = le32_to_cpup(&cqe->result);
703         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
704         wake_up_process(cmdinfo->task);
705 }
706
707 /*
708  * Returns 0 on success.  If the result is negative, it's a Linux error code;
709  * if the result is positive, it's an NVM Express status code
710  */
711 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
712                         struct nvme_command *cmd, u32 *result, unsigned timeout)
713 {
714         int cmdid;
715         struct sync_cmd_info cmdinfo;
716
717         cmdinfo.task = current;
718         cmdinfo.status = -EINTR;
719
720         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
721                                                                 timeout);
722         if (cmdid < 0)
723                 return cmdid;
724         cmd->common.command_id = cmdid;
725
726         set_current_state(TASK_KILLABLE);
727         nvme_submit_cmd(nvmeq, cmd);
728         schedule();
729
730         if (cmdinfo.status == -EINTR) {
731                 nvme_abort_command(nvmeq, cmdid);
732                 return -EINTR;
733         }
734
735         if (result)
736                 *result = cmdinfo.result;
737
738         return cmdinfo.status;
739 }
740
741 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
742                                                                 u32 *result)
743 {
744         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
745 }
746
747 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
748 {
749         int status;
750         struct nvme_command c;
751
752         memset(&c, 0, sizeof(c));
753         c.delete_queue.opcode = opcode;
754         c.delete_queue.qid = cpu_to_le16(id);
755
756         status = nvme_submit_admin_cmd(dev, &c, NULL);
757         if (status)
758                 return -EIO;
759         return 0;
760 }
761
762 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
763                                                 struct nvme_queue *nvmeq)
764 {
765         int status;
766         struct nvme_command c;
767         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
768
769         memset(&c, 0, sizeof(c));
770         c.create_cq.opcode = nvme_admin_create_cq;
771         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
772         c.create_cq.cqid = cpu_to_le16(qid);
773         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
774         c.create_cq.cq_flags = cpu_to_le16(flags);
775         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
776
777         status = nvme_submit_admin_cmd(dev, &c, NULL);
778         if (status)
779                 return -EIO;
780         return 0;
781 }
782
783 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
784                                                 struct nvme_queue *nvmeq)
785 {
786         int status;
787         struct nvme_command c;
788         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
789
790         memset(&c, 0, sizeof(c));
791         c.create_sq.opcode = nvme_admin_create_sq;
792         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
793         c.create_sq.sqid = cpu_to_le16(qid);
794         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
795         c.create_sq.sq_flags = cpu_to_le16(flags);
796         c.create_sq.cqid = cpu_to_le16(qid);
797
798         status = nvme_submit_admin_cmd(dev, &c, NULL);
799         if (status)
800                 return -EIO;
801         return 0;
802 }
803
804 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
805 {
806         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
807 }
808
809 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
810 {
811         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
812 }
813
814 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
815                                                         dma_addr_t dma_addr)
816 {
817         struct nvme_command c;
818
819         memset(&c, 0, sizeof(c));
820         c.identify.opcode = nvme_admin_identify;
821         c.identify.nsid = cpu_to_le32(nsid);
822         c.identify.prp1 = cpu_to_le64(dma_addr);
823         c.identify.cns = cpu_to_le32(cns);
824
825         return nvme_submit_admin_cmd(dev, &c, NULL);
826 }
827
828 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
829                         unsigned dword11, dma_addr_t dma_addr, u32 *result)
830 {
831         struct nvme_command c;
832
833         memset(&c, 0, sizeof(c));
834         c.features.opcode = nvme_admin_get_features;
835         c.features.prp1 = cpu_to_le64(dma_addr);
836         c.features.fid = cpu_to_le32(fid);
837         c.features.dword11 = cpu_to_le32(dword11);
838
839         return nvme_submit_admin_cmd(dev, &c, result);
840 }
841
842 static void nvme_free_queue(struct nvme_dev *dev, int qid)
843 {
844         struct nvme_queue *nvmeq = dev->queues[qid];
845         int vector = dev->entry[nvmeq->cq_vector].vector;
846
847         irq_set_affinity_hint(vector, NULL);
848         free_irq(vector, nvmeq);
849
850         /* Don't tell the adapter to delete the admin queue */
851         if (qid) {
852                 adapter_delete_sq(dev, qid);
853                 adapter_delete_cq(dev, qid);
854         }
855
856         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
857                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
858         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
859                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
860         kfree(nvmeq);
861 }
862
863 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
864                                                         int depth, int vector)
865 {
866         struct device *dmadev = &dev->pci_dev->dev;
867         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
868         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
869         if (!nvmeq)
870                 return NULL;
871
872         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
873                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
874         if (!nvmeq->cqes)
875                 goto free_nvmeq;
876         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
877
878         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
879                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
880         if (!nvmeq->sq_cmds)
881                 goto free_cqdma;
882
883         nvmeq->q_dmadev = dmadev;
884         nvmeq->dev = dev;
885         spin_lock_init(&nvmeq->q_lock);
886         nvmeq->cq_head = 0;
887         nvmeq->cq_phase = 1;
888         init_waitqueue_head(&nvmeq->sq_full);
889         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
890         bio_list_init(&nvmeq->sq_cong);
891         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
892         nvmeq->q_depth = depth;
893         nvmeq->cq_vector = vector;
894
895         return nvmeq;
896
897  free_cqdma:
898         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
899                                                         nvmeq->cq_dma_addr);
900  free_nvmeq:
901         kfree(nvmeq);
902         return NULL;
903 }
904
905 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
906                                                         const char *name)
907 {
908         if (use_threaded_interrupts)
909                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
910                                         nvme_irq_check, nvme_irq,
911                                         IRQF_DISABLED | IRQF_SHARED,
912                                         name, nvmeq);
913         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
914                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
915 }
916
917 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
918                                         int qid, int cq_size, int vector)
919 {
920         int result;
921         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
922
923         if (!nvmeq)
924                 return ERR_PTR(-ENOMEM);
925
926         result = adapter_alloc_cq(dev, qid, nvmeq);
927         if (result < 0)
928                 goto free_nvmeq;
929
930         result = adapter_alloc_sq(dev, qid, nvmeq);
931         if (result < 0)
932                 goto release_cq;
933
934         result = queue_request_irq(dev, nvmeq, "nvme");
935         if (result < 0)
936                 goto release_sq;
937
938         return nvmeq;
939
940  release_sq:
941         adapter_delete_sq(dev, qid);
942  release_cq:
943         adapter_delete_cq(dev, qid);
944  free_nvmeq:
945         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
946                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
947         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
948                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
949         kfree(nvmeq);
950         return ERR_PTR(result);
951 }
952
953 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
954 {
955         int result;
956         u32 aqa;
957         u64 cap;
958         unsigned long timeout;
959         struct nvme_queue *nvmeq;
960
961         dev->dbs = ((void __iomem *)dev->bar) + 4096;
962
963         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
964         if (!nvmeq)
965                 return -ENOMEM;
966
967         aqa = nvmeq->q_depth - 1;
968         aqa |= aqa << 16;
969
970         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
971         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
972         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
973         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
974
975         writel(0, &dev->bar->cc);
976         writel(aqa, &dev->bar->aqa);
977         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
978         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
979         writel(dev->ctrl_config, &dev->bar->cc);
980
981         cap = readq(&dev->bar->cap);
982         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
983         dev->db_stride = NVME_CAP_STRIDE(cap);
984
985         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
986                 msleep(100);
987                 if (fatal_signal_pending(current))
988                         return -EINTR;
989                 if (time_after(jiffies, timeout)) {
990                         dev_err(&dev->pci_dev->dev,
991                                 "Device not ready; aborting initialisation\n");
992                         return -ENODEV;
993                 }
994         }
995
996         result = queue_request_irq(dev, nvmeq, "nvme admin");
997         dev->queues[0] = nvmeq;
998         return result;
999 }
1000
1001 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
1002                                 unsigned long addr, unsigned length,
1003                                 struct scatterlist **sgp)
1004 {
1005         int i, err, count, nents, offset;
1006         struct scatterlist *sg;
1007         struct page **pages;
1008
1009         if (addr & 3)
1010                 return -EINVAL;
1011         if (!length)
1012                 return -EINVAL;
1013
1014         offset = offset_in_page(addr);
1015         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1016         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1017
1018         err = get_user_pages_fast(addr, count, 1, pages);
1019         if (err < count) {
1020                 count = err;
1021                 err = -EFAULT;
1022                 goto put_pages;
1023         }
1024
1025         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
1026         sg_init_table(sg, count);
1027         for (i = 0; i < count; i++) {
1028                 sg_set_page(&sg[i], pages[i],
1029                                 min_t(int, length, PAGE_SIZE - offset), offset);
1030                 length -= (PAGE_SIZE - offset);
1031                 offset = 0;
1032         }
1033
1034         err = -ENOMEM;
1035         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1036                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1037         if (!nents)
1038                 goto put_pages;
1039
1040         kfree(pages);
1041         *sgp = sg;
1042         return nents;
1043
1044  put_pages:
1045         for (i = 0; i < count; i++)
1046                 put_page(pages[i]);
1047         kfree(pages);
1048         return err;
1049 }
1050
1051 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1052                         unsigned long addr, int length, struct scatterlist *sg)
1053 {
1054         int i, count;
1055
1056         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
1057         dma_unmap_sg(&dev->pci_dev->dev, sg, count, DMA_FROM_DEVICE);
1058
1059         for (i = 0; i < count; i++)
1060                 put_page(sg_page(&sg[i]));
1061 }
1062
1063 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1064 {
1065         struct nvme_dev *dev = ns->dev;
1066         struct nvme_queue *nvmeq;
1067         struct nvme_user_io io;
1068         struct nvme_command c;
1069         unsigned length;
1070         int nents, status;
1071         struct scatterlist *sg;
1072         struct nvme_prps *prps;
1073
1074         if (copy_from_user(&io, uio, sizeof(io)))
1075                 return -EFAULT;
1076         length = (io.nblocks + 1) << ns->lba_shift;
1077
1078         switch (io.opcode) {
1079         case nvme_cmd_write:
1080         case nvme_cmd_read:
1081         case nvme_cmd_compare:
1082                 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1083                                                                 length, &sg);
1084                 break;
1085         default:
1086                 return -EINVAL;
1087         }
1088
1089         if (nents < 0)
1090                 return nents;
1091
1092         memset(&c, 0, sizeof(c));
1093         c.rw.opcode = io.opcode;
1094         c.rw.flags = io.flags;
1095         c.rw.nsid = cpu_to_le32(ns->ns_id);
1096         c.rw.slba = cpu_to_le64(io.slba);
1097         c.rw.length = cpu_to_le16(io.nblocks);
1098         c.rw.control = cpu_to_le16(io.control);
1099         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1100         c.rw.reftag = io.reftag;
1101         c.rw.apptag = io.apptag;
1102         c.rw.appmask = io.appmask;
1103         /* XXX: metadata */
1104         prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1105
1106         nvmeq = get_nvmeq(dev);
1107         /*
1108          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1109          * disabled.  We may be preempted at any point, and be rescheduled
1110          * to a different CPU.  That will cause cacheline bouncing, but no
1111          * additional races since q_lock already protects against other CPUs.
1112          */
1113         put_nvmeq(nvmeq);
1114         if (length != (io.nblocks + 1) << ns->lba_shift)
1115                 status = -ENOMEM;
1116         else
1117                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1118
1119         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg);
1120         nvme_free_prps(dev, prps);
1121         return status;
1122 }
1123
1124 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1125                                         struct nvme_admin_cmd __user *ucmd)
1126 {
1127         struct nvme_dev *dev = ns->dev;
1128         struct nvme_admin_cmd cmd;
1129         struct nvme_command c;
1130         int status, length, nents = 0;
1131         struct scatterlist *sg;
1132         struct nvme_prps *prps = NULL;
1133
1134         if (!capable(CAP_SYS_ADMIN))
1135                 return -EACCES;
1136         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1137                 return -EFAULT;
1138
1139         memset(&c, 0, sizeof(c));
1140         c.common.opcode = cmd.opcode;
1141         c.common.flags = cmd.flags;
1142         c.common.nsid = cpu_to_le32(cmd.nsid);
1143         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1144         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1145         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1146         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1147         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1148         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1149         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1150         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1151
1152         length = cmd.data_len;
1153         if (cmd.data_len) {
1154                 nents = nvme_map_user_pages(dev, 1, cmd.addr, length, &sg);
1155                 if (nents < 0)
1156                         return nents;
1157                 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1158         }
1159
1160         if (length != cmd.data_len)
1161                 status = -ENOMEM;
1162         else
1163                 status = nvme_submit_admin_cmd(dev, &c, NULL);
1164         if (cmd.data_len) {
1165                 nvme_unmap_user_pages(dev, 0, cmd.addr, cmd.data_len, sg);
1166                 nvme_free_prps(dev, prps);
1167         }
1168         return status;
1169 }
1170
1171 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1172                                                         unsigned long arg)
1173 {
1174         struct nvme_ns *ns = bdev->bd_disk->private_data;
1175
1176         switch (cmd) {
1177         case NVME_IOCTL_ID:
1178                 return ns->ns_id;
1179         case NVME_IOCTL_ADMIN_CMD:
1180                 return nvme_user_admin_cmd(ns, (void __user *)arg);
1181         case NVME_IOCTL_SUBMIT_IO:
1182                 return nvme_submit_io(ns, (void __user *)arg);
1183         default:
1184                 return -ENOTTY;
1185         }
1186 }
1187
1188 static const struct block_device_operations nvme_fops = {
1189         .owner          = THIS_MODULE,
1190         .ioctl          = nvme_ioctl,
1191         .compat_ioctl   = nvme_ioctl,
1192 };
1193
1194 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1195 {
1196         int depth = nvmeq->q_depth - 1;
1197         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1198         unsigned long now = jiffies;
1199         int cmdid;
1200
1201         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1202                 void *ctx;
1203                 nvme_completion_fn fn;
1204                 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1205
1206                 if (!time_after(now, info[cmdid].timeout))
1207                         continue;
1208                 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1209                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1210                 fn(nvmeq, ctx, &cqe);
1211         }
1212 }
1213
1214 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1215 {
1216         while (bio_list_peek(&nvmeq->sq_cong)) {
1217                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1218                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1219                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1220                         bio_list_add_head(&nvmeq->sq_cong, bio);
1221                         break;
1222                 }
1223                 if (bio_list_empty(&nvmeq->sq_cong))
1224                         remove_wait_queue(&nvmeq->sq_full,
1225                                                         &nvmeq->sq_cong_wait);
1226         }
1227 }
1228
1229 static int nvme_kthread(void *data)
1230 {
1231         struct nvme_dev *dev;
1232
1233         while (!kthread_should_stop()) {
1234                 __set_current_state(TASK_RUNNING);
1235                 spin_lock(&dev_list_lock);
1236                 list_for_each_entry(dev, &dev_list, node) {
1237                         int i;
1238                         for (i = 0; i < dev->queue_count; i++) {
1239                                 struct nvme_queue *nvmeq = dev->queues[i];
1240                                 if (!nvmeq)
1241                                         continue;
1242                                 spin_lock_irq(&nvmeq->q_lock);
1243                                 if (nvme_process_cq(nvmeq))
1244                                         printk("process_cq did something\n");
1245                                 nvme_timeout_ios(nvmeq);
1246                                 nvme_resubmit_bios(nvmeq);
1247                                 spin_unlock_irq(&nvmeq->q_lock);
1248                         }
1249                 }
1250                 spin_unlock(&dev_list_lock);
1251                 set_current_state(TASK_INTERRUPTIBLE);
1252                 schedule_timeout(HZ);
1253         }
1254         return 0;
1255 }
1256
1257 static DEFINE_IDA(nvme_index_ida);
1258
1259 static int nvme_get_ns_idx(void)
1260 {
1261         int index, error;
1262
1263         do {
1264                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1265                         return -1;
1266
1267                 spin_lock(&dev_list_lock);
1268                 error = ida_get_new(&nvme_index_ida, &index);
1269                 spin_unlock(&dev_list_lock);
1270         } while (error == -EAGAIN);
1271
1272         if (error)
1273                 index = -1;
1274         return index;
1275 }
1276
1277 static void nvme_put_ns_idx(int index)
1278 {
1279         spin_lock(&dev_list_lock);
1280         ida_remove(&nvme_index_ida, index);
1281         spin_unlock(&dev_list_lock);
1282 }
1283
1284 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1285                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1286 {
1287         struct nvme_ns *ns;
1288         struct gendisk *disk;
1289         int lbaf;
1290
1291         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1292                 return NULL;
1293
1294         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1295         if (!ns)
1296                 return NULL;
1297         ns->queue = blk_alloc_queue(GFP_KERNEL);
1298         if (!ns->queue)
1299                 goto out_free_ns;
1300         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1301                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1302         blk_queue_make_request(ns->queue, nvme_make_request);
1303         ns->dev = dev;
1304         ns->queue->queuedata = ns;
1305
1306         disk = alloc_disk(NVME_MINORS);
1307         if (!disk)
1308                 goto out_free_queue;
1309         ns->ns_id = nsid;
1310         ns->disk = disk;
1311         lbaf = id->flbas & 0xf;
1312         ns->lba_shift = id->lbaf[lbaf].ds;
1313
1314         disk->major = nvme_major;
1315         disk->minors = NVME_MINORS;
1316         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1317         disk->fops = &nvme_fops;
1318         disk->private_data = ns;
1319         disk->queue = ns->queue;
1320         disk->driverfs_dev = &dev->pci_dev->dev;
1321         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1322         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1323
1324         return ns;
1325
1326  out_free_queue:
1327         blk_cleanup_queue(ns->queue);
1328  out_free_ns:
1329         kfree(ns);
1330         return NULL;
1331 }
1332
1333 static void nvme_ns_free(struct nvme_ns *ns)
1334 {
1335         int index = ns->disk->first_minor / NVME_MINORS;
1336         put_disk(ns->disk);
1337         nvme_put_ns_idx(index);
1338         blk_cleanup_queue(ns->queue);
1339         kfree(ns);
1340 }
1341
1342 static int set_queue_count(struct nvme_dev *dev, int count)
1343 {
1344         int status;
1345         u32 result;
1346         u32 q_count = (count - 1) | ((count - 1) << 16);
1347
1348         status = nvme_get_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1349                                                                 &result);
1350         if (status)
1351                 return -EIO;
1352         return min(result & 0xffff, result >> 16) + 1;
1353 }
1354
1355 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1356 {
1357         int result, cpu, i, nr_io_queues, db_bar_size;
1358
1359         nr_io_queues = num_online_cpus();
1360         result = set_queue_count(dev, nr_io_queues);
1361         if (result < 0)
1362                 return result;
1363         if (result < nr_io_queues)
1364                 nr_io_queues = result;
1365
1366         /* Deregister the admin queue's interrupt */
1367         free_irq(dev->entry[0].vector, dev->queues[0]);
1368
1369         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1370         if (db_bar_size > 8192) {
1371                 iounmap(dev->bar);
1372                 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1373                                                                 db_bar_size);
1374                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1375                 dev->queues[0]->q_db = dev->dbs;
1376         }
1377
1378         for (i = 0; i < nr_io_queues; i++)
1379                 dev->entry[i].entry = i;
1380         for (;;) {
1381                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1382                                                                 nr_io_queues);
1383                 if (result == 0) {
1384                         break;
1385                 } else if (result > 0) {
1386                         nr_io_queues = result;
1387                         continue;
1388                 } else {
1389                         nr_io_queues = 1;
1390                         break;
1391                 }
1392         }
1393
1394         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1395         /* XXX: handle failure here */
1396
1397         cpu = cpumask_first(cpu_online_mask);
1398         for (i = 0; i < nr_io_queues; i++) {
1399                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1400                 cpu = cpumask_next(cpu, cpu_online_mask);
1401         }
1402
1403         for (i = 0; i < nr_io_queues; i++) {
1404                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1405                                                         NVME_Q_DEPTH, i);
1406                 if (IS_ERR(dev->queues[i + 1]))
1407                         return PTR_ERR(dev->queues[i + 1]);
1408                 dev->queue_count++;
1409         }
1410
1411         for (; i < num_possible_cpus(); i++) {
1412                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1413                 dev->queues[i + 1] = dev->queues[target + 1];
1414         }
1415
1416         return 0;
1417 }
1418
1419 static void nvme_free_queues(struct nvme_dev *dev)
1420 {
1421         int i;
1422
1423         for (i = dev->queue_count - 1; i >= 0; i--)
1424                 nvme_free_queue(dev, i);
1425 }
1426
1427 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1428 {
1429         int res, nn, i;
1430         struct nvme_ns *ns, *next;
1431         struct nvme_id_ctrl *ctrl;
1432         struct nvme_id_ns *id_ns;
1433         void *mem;
1434         dma_addr_t dma_addr;
1435
1436         res = nvme_setup_io_queues(dev);
1437         if (res)
1438                 return res;
1439
1440         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1441                                                                 GFP_KERNEL);
1442
1443         res = nvme_identify(dev, 0, 1, dma_addr);
1444         if (res) {
1445                 res = -EIO;
1446                 goto out_free;
1447         }
1448
1449         ctrl = mem;
1450         nn = le32_to_cpup(&ctrl->nn);
1451         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1452         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1453         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1454
1455         id_ns = mem;
1456         for (i = 1; i <= nn; i++) {
1457                 res = nvme_identify(dev, i, 0, dma_addr);
1458                 if (res)
1459                         continue;
1460
1461                 if (id_ns->ncap == 0)
1462                         continue;
1463
1464                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1465                                                         dma_addr + 4096, NULL);
1466                 if (res)
1467                         continue;
1468
1469                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1470                 if (ns)
1471                         list_add_tail(&ns->list, &dev->namespaces);
1472         }
1473         list_for_each_entry(ns, &dev->namespaces, list)
1474                 add_disk(ns->disk);
1475
1476         goto out;
1477
1478  out_free:
1479         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1480                 list_del(&ns->list);
1481                 nvme_ns_free(ns);
1482         }
1483
1484  out:
1485         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1486         return res;
1487 }
1488
1489 static int nvme_dev_remove(struct nvme_dev *dev)
1490 {
1491         struct nvme_ns *ns, *next;
1492
1493         spin_lock(&dev_list_lock);
1494         list_del(&dev->node);
1495         spin_unlock(&dev_list_lock);
1496
1497         /* TODO: wait all I/O finished or cancel them */
1498
1499         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1500                 list_del(&ns->list);
1501                 del_gendisk(ns->disk);
1502                 nvme_ns_free(ns);
1503         }
1504
1505         nvme_free_queues(dev);
1506
1507         return 0;
1508 }
1509
1510 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1511 {
1512         struct device *dmadev = &dev->pci_dev->dev;
1513         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1514                                                 PAGE_SIZE, PAGE_SIZE, 0);
1515         if (!dev->prp_page_pool)
1516                 return -ENOMEM;
1517
1518         /* Optimisation for I/Os between 4k and 128k */
1519         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1520                                                 256, 256, 0);
1521         if (!dev->prp_small_pool) {
1522                 dma_pool_destroy(dev->prp_page_pool);
1523                 return -ENOMEM;
1524         }
1525         return 0;
1526 }
1527
1528 static void nvme_release_prp_pools(struct nvme_dev *dev)
1529 {
1530         dma_pool_destroy(dev->prp_page_pool);
1531         dma_pool_destroy(dev->prp_small_pool);
1532 }
1533
1534 /* XXX: Use an ida or something to let remove / add work correctly */
1535 static void nvme_set_instance(struct nvme_dev *dev)
1536 {
1537         static int instance;
1538         dev->instance = instance++;
1539 }
1540
1541 static void nvme_release_instance(struct nvme_dev *dev)
1542 {
1543 }
1544
1545 static int __devinit nvme_probe(struct pci_dev *pdev,
1546                                                 const struct pci_device_id *id)
1547 {
1548         int bars, result = -ENOMEM;
1549         struct nvme_dev *dev;
1550
1551         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1552         if (!dev)
1553                 return -ENOMEM;
1554         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1555                                                                 GFP_KERNEL);
1556         if (!dev->entry)
1557                 goto free;
1558         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1559                                                                 GFP_KERNEL);
1560         if (!dev->queues)
1561                 goto free;
1562
1563         if (pci_enable_device_mem(pdev))
1564                 goto free;
1565         pci_set_master(pdev);
1566         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1567         if (pci_request_selected_regions(pdev, bars, "nvme"))
1568                 goto disable;
1569
1570         INIT_LIST_HEAD(&dev->namespaces);
1571         dev->pci_dev = pdev;
1572         pci_set_drvdata(pdev, dev);
1573         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1574         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1575         nvme_set_instance(dev);
1576         dev->entry[0].vector = pdev->irq;
1577
1578         result = nvme_setup_prp_pools(dev);
1579         if (result)
1580                 goto disable_msix;
1581
1582         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1583         if (!dev->bar) {
1584                 result = -ENOMEM;
1585                 goto disable_msix;
1586         }
1587
1588         result = nvme_configure_admin_queue(dev);
1589         if (result)
1590                 goto unmap;
1591         dev->queue_count++;
1592
1593         spin_lock(&dev_list_lock);
1594         list_add(&dev->node, &dev_list);
1595         spin_unlock(&dev_list_lock);
1596
1597         result = nvme_dev_add(dev);
1598         if (result)
1599                 goto delete;
1600
1601         return 0;
1602
1603  delete:
1604         spin_lock(&dev_list_lock);
1605         list_del(&dev->node);
1606         spin_unlock(&dev_list_lock);
1607
1608         nvme_free_queues(dev);
1609  unmap:
1610         iounmap(dev->bar);
1611  disable_msix:
1612         pci_disable_msix(pdev);
1613         nvme_release_instance(dev);
1614         nvme_release_prp_pools(dev);
1615  disable:
1616         pci_disable_device(pdev);
1617         pci_release_regions(pdev);
1618  free:
1619         kfree(dev->queues);
1620         kfree(dev->entry);
1621         kfree(dev);
1622         return result;
1623 }
1624
1625 static void __devexit nvme_remove(struct pci_dev *pdev)
1626 {
1627         struct nvme_dev *dev = pci_get_drvdata(pdev);
1628         nvme_dev_remove(dev);
1629         pci_disable_msix(pdev);
1630         iounmap(dev->bar);
1631         nvme_release_instance(dev);
1632         nvme_release_prp_pools(dev);
1633         pci_disable_device(pdev);
1634         pci_release_regions(pdev);
1635         kfree(dev->queues);
1636         kfree(dev->entry);
1637         kfree(dev);
1638 }
1639
1640 /* These functions are yet to be implemented */
1641 #define nvme_error_detected NULL
1642 #define nvme_dump_registers NULL
1643 #define nvme_link_reset NULL
1644 #define nvme_slot_reset NULL
1645 #define nvme_error_resume NULL
1646 #define nvme_suspend NULL
1647 #define nvme_resume NULL
1648
1649 static struct pci_error_handlers nvme_err_handler = {
1650         .error_detected = nvme_error_detected,
1651         .mmio_enabled   = nvme_dump_registers,
1652         .link_reset     = nvme_link_reset,
1653         .slot_reset     = nvme_slot_reset,
1654         .resume         = nvme_error_resume,
1655 };
1656
1657 /* Move to pci_ids.h later */
1658 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1659
1660 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1661         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1662         { 0, }
1663 };
1664 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1665
1666 static struct pci_driver nvme_driver = {
1667         .name           = "nvme",
1668         .id_table       = nvme_id_table,
1669         .probe          = nvme_probe,
1670         .remove         = __devexit_p(nvme_remove),
1671         .suspend        = nvme_suspend,
1672         .resume         = nvme_resume,
1673         .err_handler    = &nvme_err_handler,
1674 };
1675
1676 static int __init nvme_init(void)
1677 {
1678         int result = -EBUSY;
1679
1680         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1681         if (IS_ERR(nvme_thread))
1682                 return PTR_ERR(nvme_thread);
1683
1684         nvme_major = register_blkdev(nvme_major, "nvme");
1685         if (nvme_major <= 0)
1686                 goto kill_kthread;
1687
1688         result = pci_register_driver(&nvme_driver);
1689         if (result)
1690                 goto unregister_blkdev;
1691         return 0;
1692
1693  unregister_blkdev:
1694         unregister_blkdev(nvme_major, "nvme");
1695  kill_kthread:
1696         kthread_stop(nvme_thread);
1697         return result;
1698 }
1699
1700 static void __exit nvme_exit(void)
1701 {
1702         pci_unregister_driver(&nvme_driver);
1703         unregister_blkdev(nvme_major, "nvme");
1704         kthread_stop(nvme_thread);
1705 }
1706
1707 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1708 MODULE_LICENSE("GPL");
1709 MODULE_VERSION("0.7");
1710 module_init(nvme_init);
1711 module_exit(nvme_exit);