time: Move ktime_t overflow checking into timespec_valid_strict
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define NVME_IO_TIMEOUT (5 * HZ)
50 #define ADMIN_TIMEOUT   (60 * HZ)
51
52 static int nvme_major;
53 module_param(nvme_major, int, 0);
54
55 static int use_threaded_interrupts;
56 module_param(use_threaded_interrupts, int, 0);
57
58 static DEFINE_SPINLOCK(dev_list_lock);
59 static LIST_HEAD(dev_list);
60 static struct task_struct *nvme_thread;
61
62 /*
63  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
64  */
65 struct nvme_dev {
66         struct list_head node;
67         struct nvme_queue **queues;
68         u32 __iomem *dbs;
69         struct pci_dev *pci_dev;
70         struct dma_pool *prp_page_pool;
71         struct dma_pool *prp_small_pool;
72         int instance;
73         int queue_count;
74         int db_stride;
75         u32 ctrl_config;
76         struct msix_entry *entry;
77         struct nvme_bar __iomem *bar;
78         struct list_head namespaces;
79         char serial[20];
80         char model[40];
81         char firmware_rev[8];
82 };
83
84 /*
85  * An NVM Express namespace is equivalent to a SCSI LUN
86  */
87 struct nvme_ns {
88         struct list_head list;
89
90         struct nvme_dev *dev;
91         struct request_queue *queue;
92         struct gendisk *disk;
93
94         int ns_id;
95         int lba_shift;
96 };
97
98 /*
99  * An NVM Express queue.  Each device has at least two (one for admin
100  * commands and one for I/O commands).
101  */
102 struct nvme_queue {
103         struct device *q_dmadev;
104         struct nvme_dev *dev;
105         spinlock_t q_lock;
106         struct nvme_command *sq_cmds;
107         volatile struct nvme_completion *cqes;
108         dma_addr_t sq_dma_addr;
109         dma_addr_t cq_dma_addr;
110         wait_queue_head_t sq_full;
111         wait_queue_t sq_cong_wait;
112         struct bio_list sq_cong;
113         u32 __iomem *q_db;
114         u16 q_depth;
115         u16 cq_vector;
116         u16 sq_head;
117         u16 sq_tail;
118         u16 cq_head;
119         u16 cq_phase;
120         unsigned long cmdid_data[];
121 };
122
123 /*
124  * Check we didin't inadvertently grow the command struct
125  */
126 static inline void _nvme_check_size(void)
127 {
128         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
140                                                 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143         nvme_completion_fn fn;
144         void *ctx;
145         unsigned long timeout;
146 };
147
148 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
149 {
150         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
151 }
152
153 /**
154  * alloc_cmdid() - Allocate a Command ID
155  * @nvmeq: The queue that will be used for this command
156  * @ctx: A pointer that will be passed to the handler
157  * @handler: The function to call on completion
158  *
159  * Allocate a Command ID for a queue.  The data passed in will
160  * be passed to the completion handler.  This is implemented by using
161  * the bottom two bits of the ctx pointer to store the handler ID.
162  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
163  * We can change this if it becomes a problem.
164  *
165  * May be called with local interrupts disabled and the q_lock held,
166  * or with interrupts enabled and no locks held.
167  */
168 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
169                                 nvme_completion_fn handler, unsigned timeout)
170 {
171         int depth = nvmeq->q_depth - 1;
172         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
173         int cmdid;
174
175         do {
176                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
177                 if (cmdid >= depth)
178                         return -EBUSY;
179         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
180
181         info[cmdid].fn = handler;
182         info[cmdid].ctx = ctx;
183         info[cmdid].timeout = jiffies + timeout;
184         return cmdid;
185 }
186
187 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
188                                 nvme_completion_fn handler, unsigned timeout)
189 {
190         int cmdid;
191         wait_event_killable(nvmeq->sq_full,
192                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
193         return (cmdid < 0) ? -EINTR : cmdid;
194 }
195
196 /* Special values must be less than 0x1000 */
197 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
198 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
199 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
200 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
201 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
202
203 static void special_completion(struct nvme_dev *dev, void *ctx,
204                                                 struct nvme_completion *cqe)
205 {
206         if (ctx == CMD_CTX_CANCELLED)
207                 return;
208         if (ctx == CMD_CTX_FLUSH)
209                 return;
210         if (ctx == CMD_CTX_COMPLETED) {
211                 dev_warn(&dev->pci_dev->dev,
212                                 "completed id %d twice on queue %d\n",
213                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
214                 return;
215         }
216         if (ctx == CMD_CTX_INVALID) {
217                 dev_warn(&dev->pci_dev->dev,
218                                 "invalid id %d completed on queue %d\n",
219                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
220                 return;
221         }
222
223         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
224 }
225
226 /*
227  * Called with local interrupts disabled and the q_lock held.  May not sleep.
228  */
229 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
230                                                 nvme_completion_fn *fn)
231 {
232         void *ctx;
233         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
234
235         if (cmdid >= nvmeq->q_depth) {
236                 *fn = special_completion;
237                 return CMD_CTX_INVALID;
238         }
239         *fn = info[cmdid].fn;
240         ctx = info[cmdid].ctx;
241         info[cmdid].fn = special_completion;
242         info[cmdid].ctx = CMD_CTX_COMPLETED;
243         clear_bit(cmdid, nvmeq->cmdid_data);
244         wake_up(&nvmeq->sq_full);
245         return ctx;
246 }
247
248 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
249                                                 nvme_completion_fn *fn)
250 {
251         void *ctx;
252         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
253         if (fn)
254                 *fn = info[cmdid].fn;
255         ctx = info[cmdid].ctx;
256         info[cmdid].fn = special_completion;
257         info[cmdid].ctx = CMD_CTX_CANCELLED;
258         return ctx;
259 }
260
261 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
262 {
263         return dev->queues[get_cpu() + 1];
264 }
265
266 static void put_nvmeq(struct nvme_queue *nvmeq)
267 {
268         put_cpu();
269 }
270
271 /**
272  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
273  * @nvmeq: The queue to use
274  * @cmd: The command to send
275  *
276  * Safe to use from interrupt context
277  */
278 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
279 {
280         unsigned long flags;
281         u16 tail;
282         spin_lock_irqsave(&nvmeq->q_lock, flags);
283         tail = nvmeq->sq_tail;
284         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
285         if (++tail == nvmeq->q_depth)
286                 tail = 0;
287         writel(tail, nvmeq->q_db);
288         nvmeq->sq_tail = tail;
289         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
290
291         return 0;
292 }
293
294 /*
295  * The nvme_iod describes the data in an I/O, including the list of PRP
296  * entries.  You can't see it in this data structure because C doesn't let
297  * me express that.  Use nvme_alloc_iod to ensure there's enough space
298  * allocated to store the PRP list.
299  */
300 struct nvme_iod {
301         void *private;          /* For the use of the submitter of the I/O */
302         int npages;             /* In the PRP list. 0 means small pool in use */
303         int offset;             /* Of PRP list */
304         int nents;              /* Used in scatterlist */
305         int length;             /* Of data, in bytes */
306         dma_addr_t first_dma;
307         struct scatterlist sg[0];
308 };
309
310 static __le64 **iod_list(struct nvme_iod *iod)
311 {
312         return ((void *)iod) + iod->offset;
313 }
314
315 /*
316  * Will slightly overestimate the number of pages needed.  This is OK
317  * as it only leads to a small amount of wasted memory for the lifetime of
318  * the I/O.
319  */
320 static int nvme_npages(unsigned size)
321 {
322         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
323         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
324 }
325
326 static struct nvme_iod *
327 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
328 {
329         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
330                                 sizeof(__le64 *) * nvme_npages(nbytes) +
331                                 sizeof(struct scatterlist) * nseg, gfp);
332
333         if (iod) {
334                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
335                 iod->npages = -1;
336                 iod->length = nbytes;
337         }
338
339         return iod;
340 }
341
342 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
343 {
344         const int last_prp = PAGE_SIZE / 8 - 1;
345         int i;
346         __le64 **list = iod_list(iod);
347         dma_addr_t prp_dma = iod->first_dma;
348
349         if (iod->npages == 0)
350                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
351         for (i = 0; i < iod->npages; i++) {
352                 __le64 *prp_list = list[i];
353                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
354                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
355                 prp_dma = next_prp_dma;
356         }
357         kfree(iod);
358 }
359
360 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
361 {
362         struct nvme_queue *nvmeq = get_nvmeq(dev);
363         if (bio_list_empty(&nvmeq->sq_cong))
364                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
365         bio_list_add(&nvmeq->sq_cong, bio);
366         put_nvmeq(nvmeq);
367         wake_up_process(nvme_thread);
368 }
369
370 static void bio_completion(struct nvme_dev *dev, void *ctx,
371                                                 struct nvme_completion *cqe)
372 {
373         struct nvme_iod *iod = ctx;
374         struct bio *bio = iod->private;
375         u16 status = le16_to_cpup(&cqe->status) >> 1;
376
377         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
378                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
379         nvme_free_iod(dev, iod);
380         if (status) {
381                 bio_endio(bio, -EIO);
382         } else if (bio->bi_vcnt > bio->bi_idx) {
383                 requeue_bio(dev, bio);
384         } else {
385                 bio_endio(bio, 0);
386         }
387 }
388
389 /* length is in bytes.  gfp flags indicates whether we may sleep. */
390 static int nvme_setup_prps(struct nvme_dev *dev,
391                         struct nvme_common_command *cmd, struct nvme_iod *iod,
392                         int total_len, gfp_t gfp)
393 {
394         struct dma_pool *pool;
395         int length = total_len;
396         struct scatterlist *sg = iod->sg;
397         int dma_len = sg_dma_len(sg);
398         u64 dma_addr = sg_dma_address(sg);
399         int offset = offset_in_page(dma_addr);
400         __le64 *prp_list;
401         __le64 **list = iod_list(iod);
402         dma_addr_t prp_dma;
403         int nprps, i;
404
405         cmd->prp1 = cpu_to_le64(dma_addr);
406         length -= (PAGE_SIZE - offset);
407         if (length <= 0)
408                 return total_len;
409
410         dma_len -= (PAGE_SIZE - offset);
411         if (dma_len) {
412                 dma_addr += (PAGE_SIZE - offset);
413         } else {
414                 sg = sg_next(sg);
415                 dma_addr = sg_dma_address(sg);
416                 dma_len = sg_dma_len(sg);
417         }
418
419         if (length <= PAGE_SIZE) {
420                 cmd->prp2 = cpu_to_le64(dma_addr);
421                 return total_len;
422         }
423
424         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
425         if (nprps <= (256 / 8)) {
426                 pool = dev->prp_small_pool;
427                 iod->npages = 0;
428         } else {
429                 pool = dev->prp_page_pool;
430                 iod->npages = 1;
431         }
432
433         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
434         if (!prp_list) {
435                 cmd->prp2 = cpu_to_le64(dma_addr);
436                 iod->npages = -1;
437                 return (total_len - length) + PAGE_SIZE;
438         }
439         list[0] = prp_list;
440         iod->first_dma = prp_dma;
441         cmd->prp2 = cpu_to_le64(prp_dma);
442         i = 0;
443         for (;;) {
444                 if (i == PAGE_SIZE / 8) {
445                         __le64 *old_prp_list = prp_list;
446                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
447                         if (!prp_list)
448                                 return total_len - length;
449                         list[iod->npages++] = prp_list;
450                         prp_list[0] = old_prp_list[i - 1];
451                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
452                         i = 1;
453                 }
454                 prp_list[i++] = cpu_to_le64(dma_addr);
455                 dma_len -= PAGE_SIZE;
456                 dma_addr += PAGE_SIZE;
457                 length -= PAGE_SIZE;
458                 if (length <= 0)
459                         break;
460                 if (dma_len > 0)
461                         continue;
462                 BUG_ON(dma_len < 0);
463                 sg = sg_next(sg);
464                 dma_addr = sg_dma_address(sg);
465                 dma_len = sg_dma_len(sg);
466         }
467
468         return total_len;
469 }
470
471 /* NVMe scatterlists require no holes in the virtual address */
472 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
473                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
474
475 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
476                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
477 {
478         struct bio_vec *bvec, *bvprv = NULL;
479         struct scatterlist *sg = NULL;
480         int i, old_idx, length = 0, nsegs = 0;
481
482         sg_init_table(iod->sg, psegs);
483         old_idx = bio->bi_idx;
484         bio_for_each_segment(bvec, bio, i) {
485                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
486                         sg->length += bvec->bv_len;
487                 } else {
488                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
489                                 break;
490                         sg = sg ? sg + 1 : iod->sg;
491                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
492                                                         bvec->bv_offset);
493                         nsegs++;
494                 }
495                 length += bvec->bv_len;
496                 bvprv = bvec;
497         }
498         bio->bi_idx = i;
499         iod->nents = nsegs;
500         sg_mark_end(sg);
501         if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
502                 bio->bi_idx = old_idx;
503                 return -ENOMEM;
504         }
505         return length;
506 }
507
508 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
509                                                                 int cmdid)
510 {
511         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
512
513         memset(cmnd, 0, sizeof(*cmnd));
514         cmnd->common.opcode = nvme_cmd_flush;
515         cmnd->common.command_id = cmdid;
516         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
517
518         if (++nvmeq->sq_tail == nvmeq->q_depth)
519                 nvmeq->sq_tail = 0;
520         writel(nvmeq->sq_tail, nvmeq->q_db);
521
522         return 0;
523 }
524
525 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
526 {
527         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
528                                         special_completion, NVME_IO_TIMEOUT);
529         if (unlikely(cmdid < 0))
530                 return cmdid;
531
532         return nvme_submit_flush(nvmeq, ns, cmdid);
533 }
534
535 /*
536  * Called with local interrupts disabled and the q_lock held.  May not sleep.
537  */
538 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
539                                                                 struct bio *bio)
540 {
541         struct nvme_command *cmnd;
542         struct nvme_iod *iod;
543         enum dma_data_direction dma_dir;
544         int cmdid, length, result = -ENOMEM;
545         u16 control;
546         u32 dsmgmt;
547         int psegs = bio_phys_segments(ns->queue, bio);
548
549         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
550                 result = nvme_submit_flush_data(nvmeq, ns);
551                 if (result)
552                         return result;
553         }
554
555         iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
556         if (!iod)
557                 goto nomem;
558         iod->private = bio;
559
560         result = -EBUSY;
561         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
562         if (unlikely(cmdid < 0))
563                 goto free_iod;
564
565         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
566                 return nvme_submit_flush(nvmeq, ns, cmdid);
567
568         control = 0;
569         if (bio->bi_rw & REQ_FUA)
570                 control |= NVME_RW_FUA;
571         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
572                 control |= NVME_RW_LR;
573
574         dsmgmt = 0;
575         if (bio->bi_rw & REQ_RAHEAD)
576                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
577
578         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
579
580         memset(cmnd, 0, sizeof(*cmnd));
581         if (bio_data_dir(bio)) {
582                 cmnd->rw.opcode = nvme_cmd_write;
583                 dma_dir = DMA_TO_DEVICE;
584         } else {
585                 cmnd->rw.opcode = nvme_cmd_read;
586                 dma_dir = DMA_FROM_DEVICE;
587         }
588
589         result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
590         if (result < 0)
591                 goto free_iod;
592         length = result;
593
594         cmnd->rw.command_id = cmdid;
595         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
596         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
597                                                                 GFP_ATOMIC);
598         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
599         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
600         cmnd->rw.control = cpu_to_le16(control);
601         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
602
603         bio->bi_sector += length >> 9;
604
605         if (++nvmeq->sq_tail == nvmeq->q_depth)
606                 nvmeq->sq_tail = 0;
607         writel(nvmeq->sq_tail, nvmeq->q_db);
608
609         return 0;
610
611  free_iod:
612         nvme_free_iod(nvmeq->dev, iod);
613  nomem:
614         return result;
615 }
616
617 static void nvme_make_request(struct request_queue *q, struct bio *bio)
618 {
619         struct nvme_ns *ns = q->queuedata;
620         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
621         int result = -EBUSY;
622
623         spin_lock_irq(&nvmeq->q_lock);
624         if (bio_list_empty(&nvmeq->sq_cong))
625                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
626         if (unlikely(result)) {
627                 if (bio_list_empty(&nvmeq->sq_cong))
628                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
629                 bio_list_add(&nvmeq->sq_cong, bio);
630         }
631
632         spin_unlock_irq(&nvmeq->q_lock);
633         put_nvmeq(nvmeq);
634 }
635
636 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
637 {
638         u16 head, phase;
639
640         head = nvmeq->cq_head;
641         phase = nvmeq->cq_phase;
642
643         for (;;) {
644                 void *ctx;
645                 nvme_completion_fn fn;
646                 struct nvme_completion cqe = nvmeq->cqes[head];
647                 if ((le16_to_cpu(cqe.status) & 1) != phase)
648                         break;
649                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
650                 if (++head == nvmeq->q_depth) {
651                         head = 0;
652                         phase = !phase;
653                 }
654
655                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
656                 fn(nvmeq->dev, ctx, &cqe);
657         }
658
659         /* If the controller ignores the cq head doorbell and continuously
660          * writes to the queue, it is theoretically possible to wrap around
661          * the queue twice and mistakenly return IRQ_NONE.  Linux only
662          * requires that 0.1% of your interrupts are handled, so this isn't
663          * a big problem.
664          */
665         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
666                 return IRQ_NONE;
667
668         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
669         nvmeq->cq_head = head;
670         nvmeq->cq_phase = phase;
671
672         return IRQ_HANDLED;
673 }
674
675 static irqreturn_t nvme_irq(int irq, void *data)
676 {
677         irqreturn_t result;
678         struct nvme_queue *nvmeq = data;
679         spin_lock(&nvmeq->q_lock);
680         result = nvme_process_cq(nvmeq);
681         spin_unlock(&nvmeq->q_lock);
682         return result;
683 }
684
685 static irqreturn_t nvme_irq_check(int irq, void *data)
686 {
687         struct nvme_queue *nvmeq = data;
688         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
689         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
690                 return IRQ_NONE;
691         return IRQ_WAKE_THREAD;
692 }
693
694 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
695 {
696         spin_lock_irq(&nvmeq->q_lock);
697         cancel_cmdid(nvmeq, cmdid, NULL);
698         spin_unlock_irq(&nvmeq->q_lock);
699 }
700
701 struct sync_cmd_info {
702         struct task_struct *task;
703         u32 result;
704         int status;
705 };
706
707 static void sync_completion(struct nvme_dev *dev, void *ctx,
708                                                 struct nvme_completion *cqe)
709 {
710         struct sync_cmd_info *cmdinfo = ctx;
711         cmdinfo->result = le32_to_cpup(&cqe->result);
712         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
713         wake_up_process(cmdinfo->task);
714 }
715
716 /*
717  * Returns 0 on success.  If the result is negative, it's a Linux error code;
718  * if the result is positive, it's an NVM Express status code
719  */
720 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
721                         struct nvme_command *cmd, u32 *result, unsigned timeout)
722 {
723         int cmdid;
724         struct sync_cmd_info cmdinfo;
725
726         cmdinfo.task = current;
727         cmdinfo.status = -EINTR;
728
729         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
730                                                                 timeout);
731         if (cmdid < 0)
732                 return cmdid;
733         cmd->common.command_id = cmdid;
734
735         set_current_state(TASK_KILLABLE);
736         nvme_submit_cmd(nvmeq, cmd);
737         schedule();
738
739         if (cmdinfo.status == -EINTR) {
740                 nvme_abort_command(nvmeq, cmdid);
741                 return -EINTR;
742         }
743
744         if (result)
745                 *result = cmdinfo.result;
746
747         return cmdinfo.status;
748 }
749
750 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
751                                                                 u32 *result)
752 {
753         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
754 }
755
756 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
757 {
758         int status;
759         struct nvme_command c;
760
761         memset(&c, 0, sizeof(c));
762         c.delete_queue.opcode = opcode;
763         c.delete_queue.qid = cpu_to_le16(id);
764
765         status = nvme_submit_admin_cmd(dev, &c, NULL);
766         if (status)
767                 return -EIO;
768         return 0;
769 }
770
771 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
772                                                 struct nvme_queue *nvmeq)
773 {
774         int status;
775         struct nvme_command c;
776         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
777
778         memset(&c, 0, sizeof(c));
779         c.create_cq.opcode = nvme_admin_create_cq;
780         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
781         c.create_cq.cqid = cpu_to_le16(qid);
782         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
783         c.create_cq.cq_flags = cpu_to_le16(flags);
784         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
785
786         status = nvme_submit_admin_cmd(dev, &c, NULL);
787         if (status)
788                 return -EIO;
789         return 0;
790 }
791
792 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
793                                                 struct nvme_queue *nvmeq)
794 {
795         int status;
796         struct nvme_command c;
797         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
798
799         memset(&c, 0, sizeof(c));
800         c.create_sq.opcode = nvme_admin_create_sq;
801         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
802         c.create_sq.sqid = cpu_to_le16(qid);
803         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
804         c.create_sq.sq_flags = cpu_to_le16(flags);
805         c.create_sq.cqid = cpu_to_le16(qid);
806
807         status = nvme_submit_admin_cmd(dev, &c, NULL);
808         if (status)
809                 return -EIO;
810         return 0;
811 }
812
813 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
814 {
815         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
816 }
817
818 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
819 {
820         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
821 }
822
823 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
824                                                         dma_addr_t dma_addr)
825 {
826         struct nvme_command c;
827
828         memset(&c, 0, sizeof(c));
829         c.identify.opcode = nvme_admin_identify;
830         c.identify.nsid = cpu_to_le32(nsid);
831         c.identify.prp1 = cpu_to_le64(dma_addr);
832         c.identify.cns = cpu_to_le32(cns);
833
834         return nvme_submit_admin_cmd(dev, &c, NULL);
835 }
836
837 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
838                                 unsigned dword11, dma_addr_t dma_addr)
839 {
840         struct nvme_command c;
841
842         memset(&c, 0, sizeof(c));
843         c.features.opcode = nvme_admin_get_features;
844         c.features.prp1 = cpu_to_le64(dma_addr);
845         c.features.fid = cpu_to_le32(fid);
846         c.features.dword11 = cpu_to_le32(dword11);
847
848         return nvme_submit_admin_cmd(dev, &c, NULL);
849 }
850
851 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
852                         unsigned dword11, dma_addr_t dma_addr, u32 *result)
853 {
854         struct nvme_command c;
855
856         memset(&c, 0, sizeof(c));
857         c.features.opcode = nvme_admin_set_features;
858         c.features.prp1 = cpu_to_le64(dma_addr);
859         c.features.fid = cpu_to_le32(fid);
860         c.features.dword11 = cpu_to_le32(dword11);
861
862         return nvme_submit_admin_cmd(dev, &c, result);
863 }
864
865 static void nvme_free_queue(struct nvme_dev *dev, int qid)
866 {
867         struct nvme_queue *nvmeq = dev->queues[qid];
868         int vector = dev->entry[nvmeq->cq_vector].vector;
869
870         irq_set_affinity_hint(vector, NULL);
871         free_irq(vector, nvmeq);
872
873         /* Don't tell the adapter to delete the admin queue */
874         if (qid) {
875                 adapter_delete_sq(dev, qid);
876                 adapter_delete_cq(dev, qid);
877         }
878
879         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
880                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
881         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
882                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
883         kfree(nvmeq);
884 }
885
886 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
887                                                         int depth, int vector)
888 {
889         struct device *dmadev = &dev->pci_dev->dev;
890         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
891         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
892         if (!nvmeq)
893                 return NULL;
894
895         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
896                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
897         if (!nvmeq->cqes)
898                 goto free_nvmeq;
899         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
900
901         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
902                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
903         if (!nvmeq->sq_cmds)
904                 goto free_cqdma;
905
906         nvmeq->q_dmadev = dmadev;
907         nvmeq->dev = dev;
908         spin_lock_init(&nvmeq->q_lock);
909         nvmeq->cq_head = 0;
910         nvmeq->cq_phase = 1;
911         init_waitqueue_head(&nvmeq->sq_full);
912         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
913         bio_list_init(&nvmeq->sq_cong);
914         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
915         nvmeq->q_depth = depth;
916         nvmeq->cq_vector = vector;
917
918         return nvmeq;
919
920  free_cqdma:
921         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
922                                                         nvmeq->cq_dma_addr);
923  free_nvmeq:
924         kfree(nvmeq);
925         return NULL;
926 }
927
928 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
929                                                         const char *name)
930 {
931         if (use_threaded_interrupts)
932                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
933                                         nvme_irq_check, nvme_irq,
934                                         IRQF_DISABLED | IRQF_SHARED,
935                                         name, nvmeq);
936         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
937                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
938 }
939
940 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
941                                         int qid, int cq_size, int vector)
942 {
943         int result;
944         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
945
946         if (!nvmeq)
947                 return ERR_PTR(-ENOMEM);
948
949         result = adapter_alloc_cq(dev, qid, nvmeq);
950         if (result < 0)
951                 goto free_nvmeq;
952
953         result = adapter_alloc_sq(dev, qid, nvmeq);
954         if (result < 0)
955                 goto release_cq;
956
957         result = queue_request_irq(dev, nvmeq, "nvme");
958         if (result < 0)
959                 goto release_sq;
960
961         return nvmeq;
962
963  release_sq:
964         adapter_delete_sq(dev, qid);
965  release_cq:
966         adapter_delete_cq(dev, qid);
967  free_nvmeq:
968         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
969                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
970         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
971                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
972         kfree(nvmeq);
973         return ERR_PTR(result);
974 }
975
976 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
977 {
978         int result;
979         u32 aqa;
980         u64 cap;
981         unsigned long timeout;
982         struct nvme_queue *nvmeq;
983
984         dev->dbs = ((void __iomem *)dev->bar) + 4096;
985
986         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
987         if (!nvmeq)
988                 return -ENOMEM;
989
990         aqa = nvmeq->q_depth - 1;
991         aqa |= aqa << 16;
992
993         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
994         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
995         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
996         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
997
998         writel(0, &dev->bar->cc);
999         writel(aqa, &dev->bar->aqa);
1000         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1001         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1002         writel(dev->ctrl_config, &dev->bar->cc);
1003
1004         cap = readq(&dev->bar->cap);
1005         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1006         dev->db_stride = NVME_CAP_STRIDE(cap);
1007
1008         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1009                 msleep(100);
1010                 if (fatal_signal_pending(current))
1011                         return -EINTR;
1012                 if (time_after(jiffies, timeout)) {
1013                         dev_err(&dev->pci_dev->dev,
1014                                 "Device not ready; aborting initialisation\n");
1015                         return -ENODEV;
1016                 }
1017         }
1018
1019         result = queue_request_irq(dev, nvmeq, "nvme admin");
1020         dev->queues[0] = nvmeq;
1021         return result;
1022 }
1023
1024 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1025                                 unsigned long addr, unsigned length)
1026 {
1027         int i, err, count, nents, offset;
1028         struct scatterlist *sg;
1029         struct page **pages;
1030         struct nvme_iod *iod;
1031
1032         if (addr & 3)
1033                 return ERR_PTR(-EINVAL);
1034         if (!length)
1035                 return ERR_PTR(-EINVAL);
1036
1037         offset = offset_in_page(addr);
1038         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1039         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1040
1041         err = get_user_pages_fast(addr, count, 1, pages);
1042         if (err < count) {
1043                 count = err;
1044                 err = -EFAULT;
1045                 goto put_pages;
1046         }
1047
1048         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1049         sg = iod->sg;
1050         sg_init_table(sg, count);
1051         for (i = 0; i < count; i++) {
1052                 sg_set_page(&sg[i], pages[i],
1053                                 min_t(int, length, PAGE_SIZE - offset), offset);
1054                 length -= (PAGE_SIZE - offset);
1055                 offset = 0;
1056         }
1057         sg_mark_end(&sg[i - 1]);
1058         iod->nents = count;
1059
1060         err = -ENOMEM;
1061         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1062                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1063         if (!nents)
1064                 goto free_iod;
1065
1066         kfree(pages);
1067         return iod;
1068
1069  free_iod:
1070         kfree(iod);
1071  put_pages:
1072         for (i = 0; i < count; i++)
1073                 put_page(pages[i]);
1074         kfree(pages);
1075         return ERR_PTR(err);
1076 }
1077
1078 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1079                         struct nvme_iod *iod)
1080 {
1081         int i;
1082
1083         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1084                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1085
1086         for (i = 0; i < iod->nents; i++)
1087                 put_page(sg_page(&iod->sg[i]));
1088 }
1089
1090 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1091 {
1092         struct nvme_dev *dev = ns->dev;
1093         struct nvme_queue *nvmeq;
1094         struct nvme_user_io io;
1095         struct nvme_command c;
1096         unsigned length;
1097         int status;
1098         struct nvme_iod *iod;
1099
1100         if (copy_from_user(&io, uio, sizeof(io)))
1101                 return -EFAULT;
1102         length = (io.nblocks + 1) << ns->lba_shift;
1103
1104         switch (io.opcode) {
1105         case nvme_cmd_write:
1106         case nvme_cmd_read:
1107         case nvme_cmd_compare:
1108                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1109                 break;
1110         default:
1111                 return -EINVAL;
1112         }
1113
1114         if (IS_ERR(iod))
1115                 return PTR_ERR(iod);
1116
1117         memset(&c, 0, sizeof(c));
1118         c.rw.opcode = io.opcode;
1119         c.rw.flags = io.flags;
1120         c.rw.nsid = cpu_to_le32(ns->ns_id);
1121         c.rw.slba = cpu_to_le64(io.slba);
1122         c.rw.length = cpu_to_le16(io.nblocks);
1123         c.rw.control = cpu_to_le16(io.control);
1124         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1125         c.rw.reftag = io.reftag;
1126         c.rw.apptag = io.apptag;
1127         c.rw.appmask = io.appmask;
1128         /* XXX: metadata */
1129         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1130
1131         nvmeq = get_nvmeq(dev);
1132         /*
1133          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1134          * disabled.  We may be preempted at any point, and be rescheduled
1135          * to a different CPU.  That will cause cacheline bouncing, but no
1136          * additional races since q_lock already protects against other CPUs.
1137          */
1138         put_nvmeq(nvmeq);
1139         if (length != (io.nblocks + 1) << ns->lba_shift)
1140                 status = -ENOMEM;
1141         else
1142                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1143
1144         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1145         nvme_free_iod(dev, iod);
1146         return status;
1147 }
1148
1149 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1150                                         struct nvme_admin_cmd __user *ucmd)
1151 {
1152         struct nvme_dev *dev = ns->dev;
1153         struct nvme_admin_cmd cmd;
1154         struct nvme_command c;
1155         int status, length;
1156         struct nvme_iod *iod;
1157
1158         if (!capable(CAP_SYS_ADMIN))
1159                 return -EACCES;
1160         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1161                 return -EFAULT;
1162
1163         memset(&c, 0, sizeof(c));
1164         c.common.opcode = cmd.opcode;
1165         c.common.flags = cmd.flags;
1166         c.common.nsid = cpu_to_le32(cmd.nsid);
1167         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1168         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1169         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1170         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1171         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1172         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1173         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1174         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1175
1176         length = cmd.data_len;
1177         if (cmd.data_len) {
1178                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1179                                                                 length);
1180                 if (IS_ERR(iod))
1181                         return PTR_ERR(iod);
1182                 length = nvme_setup_prps(dev, &c.common, iod, length,
1183                                                                 GFP_KERNEL);
1184         }
1185
1186         if (length != cmd.data_len)
1187                 status = -ENOMEM;
1188         else
1189                 status = nvme_submit_admin_cmd(dev, &c, NULL);
1190
1191         if (cmd.data_len) {
1192                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1193                 nvme_free_iod(dev, iod);
1194         }
1195         return status;
1196 }
1197
1198 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1199                                                         unsigned long arg)
1200 {
1201         struct nvme_ns *ns = bdev->bd_disk->private_data;
1202
1203         switch (cmd) {
1204         case NVME_IOCTL_ID:
1205                 return ns->ns_id;
1206         case NVME_IOCTL_ADMIN_CMD:
1207                 return nvme_user_admin_cmd(ns, (void __user *)arg);
1208         case NVME_IOCTL_SUBMIT_IO:
1209                 return nvme_submit_io(ns, (void __user *)arg);
1210         default:
1211                 return -ENOTTY;
1212         }
1213 }
1214
1215 static const struct block_device_operations nvme_fops = {
1216         .owner          = THIS_MODULE,
1217         .ioctl          = nvme_ioctl,
1218         .compat_ioctl   = nvme_ioctl,
1219 };
1220
1221 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1222 {
1223         int depth = nvmeq->q_depth - 1;
1224         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1225         unsigned long now = jiffies;
1226         int cmdid;
1227
1228         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1229                 void *ctx;
1230                 nvme_completion_fn fn;
1231                 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1232
1233                 if (!time_after(now, info[cmdid].timeout))
1234                         continue;
1235                 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1236                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1237                 fn(nvmeq->dev, ctx, &cqe);
1238         }
1239 }
1240
1241 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1242 {
1243         while (bio_list_peek(&nvmeq->sq_cong)) {
1244                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1245                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1246                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1247                         bio_list_add_head(&nvmeq->sq_cong, bio);
1248                         break;
1249                 }
1250                 if (bio_list_empty(&nvmeq->sq_cong))
1251                         remove_wait_queue(&nvmeq->sq_full,
1252                                                         &nvmeq->sq_cong_wait);
1253         }
1254 }
1255
1256 static int nvme_kthread(void *data)
1257 {
1258         struct nvme_dev *dev;
1259
1260         while (!kthread_should_stop()) {
1261                 __set_current_state(TASK_RUNNING);
1262                 spin_lock(&dev_list_lock);
1263                 list_for_each_entry(dev, &dev_list, node) {
1264                         int i;
1265                         for (i = 0; i < dev->queue_count; i++) {
1266                                 struct nvme_queue *nvmeq = dev->queues[i];
1267                                 if (!nvmeq)
1268                                         continue;
1269                                 spin_lock_irq(&nvmeq->q_lock);
1270                                 if (nvme_process_cq(nvmeq))
1271                                         printk("process_cq did something\n");
1272                                 nvme_timeout_ios(nvmeq);
1273                                 nvme_resubmit_bios(nvmeq);
1274                                 spin_unlock_irq(&nvmeq->q_lock);
1275                         }
1276                 }
1277                 spin_unlock(&dev_list_lock);
1278                 set_current_state(TASK_INTERRUPTIBLE);
1279                 schedule_timeout(HZ);
1280         }
1281         return 0;
1282 }
1283
1284 static DEFINE_IDA(nvme_index_ida);
1285
1286 static int nvme_get_ns_idx(void)
1287 {
1288         int index, error;
1289
1290         do {
1291                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1292                         return -1;
1293
1294                 spin_lock(&dev_list_lock);
1295                 error = ida_get_new(&nvme_index_ida, &index);
1296                 spin_unlock(&dev_list_lock);
1297         } while (error == -EAGAIN);
1298
1299         if (error)
1300                 index = -1;
1301         return index;
1302 }
1303
1304 static void nvme_put_ns_idx(int index)
1305 {
1306         spin_lock(&dev_list_lock);
1307         ida_remove(&nvme_index_ida, index);
1308         spin_unlock(&dev_list_lock);
1309 }
1310
1311 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1312                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1313 {
1314         struct nvme_ns *ns;
1315         struct gendisk *disk;
1316         int lbaf;
1317
1318         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1319                 return NULL;
1320
1321         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1322         if (!ns)
1323                 return NULL;
1324         ns->queue = blk_alloc_queue(GFP_KERNEL);
1325         if (!ns->queue)
1326                 goto out_free_ns;
1327         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1328         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1329         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1330 /*      queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1331         blk_queue_make_request(ns->queue, nvme_make_request);
1332         ns->dev = dev;
1333         ns->queue->queuedata = ns;
1334
1335         disk = alloc_disk(NVME_MINORS);
1336         if (!disk)
1337                 goto out_free_queue;
1338         ns->ns_id = nsid;
1339         ns->disk = disk;
1340         lbaf = id->flbas & 0xf;
1341         ns->lba_shift = id->lbaf[lbaf].ds;
1342
1343         disk->major = nvme_major;
1344         disk->minors = NVME_MINORS;
1345         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1346         disk->fops = &nvme_fops;
1347         disk->private_data = ns;
1348         disk->queue = ns->queue;
1349         disk->driverfs_dev = &dev->pci_dev->dev;
1350         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1351         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1352
1353         return ns;
1354
1355  out_free_queue:
1356         blk_cleanup_queue(ns->queue);
1357  out_free_ns:
1358         kfree(ns);
1359         return NULL;
1360 }
1361
1362 static void nvme_ns_free(struct nvme_ns *ns)
1363 {
1364         int index = ns->disk->first_minor / NVME_MINORS;
1365         put_disk(ns->disk);
1366         nvme_put_ns_idx(index);
1367         blk_cleanup_queue(ns->queue);
1368         kfree(ns);
1369 }
1370
1371 static int set_queue_count(struct nvme_dev *dev, int count)
1372 {
1373         int status;
1374         u32 result;
1375         u32 q_count = (count - 1) | ((count - 1) << 16);
1376
1377         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1378                                                                 &result);
1379         if (status)
1380                 return -EIO;
1381         return min(result & 0xffff, result >> 16) + 1;
1382 }
1383
1384 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1385 {
1386         int result, cpu, i, nr_io_queues, db_bar_size;
1387
1388         nr_io_queues = num_online_cpus();
1389         result = set_queue_count(dev, nr_io_queues);
1390         if (result < 0)
1391                 return result;
1392         if (result < nr_io_queues)
1393                 nr_io_queues = result;
1394
1395         /* Deregister the admin queue's interrupt */
1396         free_irq(dev->entry[0].vector, dev->queues[0]);
1397
1398         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1399         if (db_bar_size > 8192) {
1400                 iounmap(dev->bar);
1401                 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1402                                                                 db_bar_size);
1403                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1404                 dev->queues[0]->q_db = dev->dbs;
1405         }
1406
1407         for (i = 0; i < nr_io_queues; i++)
1408                 dev->entry[i].entry = i;
1409         for (;;) {
1410                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1411                                                                 nr_io_queues);
1412                 if (result == 0) {
1413                         break;
1414                 } else if (result > 0) {
1415                         nr_io_queues = result;
1416                         continue;
1417                 } else {
1418                         nr_io_queues = 1;
1419                         break;
1420                 }
1421         }
1422
1423         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1424         /* XXX: handle failure here */
1425
1426         cpu = cpumask_first(cpu_online_mask);
1427         for (i = 0; i < nr_io_queues; i++) {
1428                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1429                 cpu = cpumask_next(cpu, cpu_online_mask);
1430         }
1431
1432         for (i = 0; i < nr_io_queues; i++) {
1433                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1434                                                         NVME_Q_DEPTH, i);
1435                 if (IS_ERR(dev->queues[i + 1]))
1436                         return PTR_ERR(dev->queues[i + 1]);
1437                 dev->queue_count++;
1438         }
1439
1440         for (; i < num_possible_cpus(); i++) {
1441                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1442                 dev->queues[i + 1] = dev->queues[target + 1];
1443         }
1444
1445         return 0;
1446 }
1447
1448 static void nvme_free_queues(struct nvme_dev *dev)
1449 {
1450         int i;
1451
1452         for (i = dev->queue_count - 1; i >= 0; i--)
1453                 nvme_free_queue(dev, i);
1454 }
1455
1456 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1457 {
1458         int res, nn, i;
1459         struct nvme_ns *ns, *next;
1460         struct nvme_id_ctrl *ctrl;
1461         struct nvme_id_ns *id_ns;
1462         void *mem;
1463         dma_addr_t dma_addr;
1464
1465         res = nvme_setup_io_queues(dev);
1466         if (res)
1467                 return res;
1468
1469         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1470                                                                 GFP_KERNEL);
1471
1472         res = nvme_identify(dev, 0, 1, dma_addr);
1473         if (res) {
1474                 res = -EIO;
1475                 goto out_free;
1476         }
1477
1478         ctrl = mem;
1479         nn = le32_to_cpup(&ctrl->nn);
1480         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1481         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1482         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1483
1484         id_ns = mem;
1485         for (i = 1; i <= nn; i++) {
1486                 res = nvme_identify(dev, i, 0, dma_addr);
1487                 if (res)
1488                         continue;
1489
1490                 if (id_ns->ncap == 0)
1491                         continue;
1492
1493                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1494                                                         dma_addr + 4096);
1495                 if (res)
1496                         continue;
1497
1498                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1499                 if (ns)
1500                         list_add_tail(&ns->list, &dev->namespaces);
1501         }
1502         list_for_each_entry(ns, &dev->namespaces, list)
1503                 add_disk(ns->disk);
1504
1505         goto out;
1506
1507  out_free:
1508         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1509                 list_del(&ns->list);
1510                 nvme_ns_free(ns);
1511         }
1512
1513  out:
1514         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1515         return res;
1516 }
1517
1518 static int nvme_dev_remove(struct nvme_dev *dev)
1519 {
1520         struct nvme_ns *ns, *next;
1521
1522         spin_lock(&dev_list_lock);
1523         list_del(&dev->node);
1524         spin_unlock(&dev_list_lock);
1525
1526         /* TODO: wait all I/O finished or cancel them */
1527
1528         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1529                 list_del(&ns->list);
1530                 del_gendisk(ns->disk);
1531                 nvme_ns_free(ns);
1532         }
1533
1534         nvme_free_queues(dev);
1535
1536         return 0;
1537 }
1538
1539 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1540 {
1541         struct device *dmadev = &dev->pci_dev->dev;
1542         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1543                                                 PAGE_SIZE, PAGE_SIZE, 0);
1544         if (!dev->prp_page_pool)
1545                 return -ENOMEM;
1546
1547         /* Optimisation for I/Os between 4k and 128k */
1548         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1549                                                 256, 256, 0);
1550         if (!dev->prp_small_pool) {
1551                 dma_pool_destroy(dev->prp_page_pool);
1552                 return -ENOMEM;
1553         }
1554         return 0;
1555 }
1556
1557 static void nvme_release_prp_pools(struct nvme_dev *dev)
1558 {
1559         dma_pool_destroy(dev->prp_page_pool);
1560         dma_pool_destroy(dev->prp_small_pool);
1561 }
1562
1563 /* XXX: Use an ida or something to let remove / add work correctly */
1564 static void nvme_set_instance(struct nvme_dev *dev)
1565 {
1566         static int instance;
1567         dev->instance = instance++;
1568 }
1569
1570 static void nvme_release_instance(struct nvme_dev *dev)
1571 {
1572 }
1573
1574 static int __devinit nvme_probe(struct pci_dev *pdev,
1575                                                 const struct pci_device_id *id)
1576 {
1577         int bars, result = -ENOMEM;
1578         struct nvme_dev *dev;
1579
1580         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1581         if (!dev)
1582                 return -ENOMEM;
1583         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1584                                                                 GFP_KERNEL);
1585         if (!dev->entry)
1586                 goto free;
1587         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1588                                                                 GFP_KERNEL);
1589         if (!dev->queues)
1590                 goto free;
1591
1592         if (pci_enable_device_mem(pdev))
1593                 goto free;
1594         pci_set_master(pdev);
1595         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1596         if (pci_request_selected_regions(pdev, bars, "nvme"))
1597                 goto disable;
1598
1599         INIT_LIST_HEAD(&dev->namespaces);
1600         dev->pci_dev = pdev;
1601         pci_set_drvdata(pdev, dev);
1602         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1603         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1604         nvme_set_instance(dev);
1605         dev->entry[0].vector = pdev->irq;
1606
1607         result = nvme_setup_prp_pools(dev);
1608         if (result)
1609                 goto disable_msix;
1610
1611         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1612         if (!dev->bar) {
1613                 result = -ENOMEM;
1614                 goto disable_msix;
1615         }
1616
1617         result = nvme_configure_admin_queue(dev);
1618         if (result)
1619                 goto unmap;
1620         dev->queue_count++;
1621
1622         spin_lock(&dev_list_lock);
1623         list_add(&dev->node, &dev_list);
1624         spin_unlock(&dev_list_lock);
1625
1626         result = nvme_dev_add(dev);
1627         if (result)
1628                 goto delete;
1629
1630         return 0;
1631
1632  delete:
1633         spin_lock(&dev_list_lock);
1634         list_del(&dev->node);
1635         spin_unlock(&dev_list_lock);
1636
1637         nvme_free_queues(dev);
1638  unmap:
1639         iounmap(dev->bar);
1640  disable_msix:
1641         pci_disable_msix(pdev);
1642         nvme_release_instance(dev);
1643         nvme_release_prp_pools(dev);
1644  disable:
1645         pci_disable_device(pdev);
1646         pci_release_regions(pdev);
1647  free:
1648         kfree(dev->queues);
1649         kfree(dev->entry);
1650         kfree(dev);
1651         return result;
1652 }
1653
1654 static void __devexit nvme_remove(struct pci_dev *pdev)
1655 {
1656         struct nvme_dev *dev = pci_get_drvdata(pdev);
1657         nvme_dev_remove(dev);
1658         pci_disable_msix(pdev);
1659         iounmap(dev->bar);
1660         nvme_release_instance(dev);
1661         nvme_release_prp_pools(dev);
1662         pci_disable_device(pdev);
1663         pci_release_regions(pdev);
1664         kfree(dev->queues);
1665         kfree(dev->entry);
1666         kfree(dev);
1667 }
1668
1669 /* These functions are yet to be implemented */
1670 #define nvme_error_detected NULL
1671 #define nvme_dump_registers NULL
1672 #define nvme_link_reset NULL
1673 #define nvme_slot_reset NULL
1674 #define nvme_error_resume NULL
1675 #define nvme_suspend NULL
1676 #define nvme_resume NULL
1677
1678 static struct pci_error_handlers nvme_err_handler = {
1679         .error_detected = nvme_error_detected,
1680         .mmio_enabled   = nvme_dump_registers,
1681         .link_reset     = nvme_link_reset,
1682         .slot_reset     = nvme_slot_reset,
1683         .resume         = nvme_error_resume,
1684 };
1685
1686 /* Move to pci_ids.h later */
1687 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1688
1689 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1690         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1691         { 0, }
1692 };
1693 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1694
1695 static struct pci_driver nvme_driver = {
1696         .name           = "nvme",
1697         .id_table       = nvme_id_table,
1698         .probe          = nvme_probe,
1699         .remove         = __devexit_p(nvme_remove),
1700         .suspend        = nvme_suspend,
1701         .resume         = nvme_resume,
1702         .err_handler    = &nvme_err_handler,
1703 };
1704
1705 static int __init nvme_init(void)
1706 {
1707         int result = -EBUSY;
1708
1709         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1710         if (IS_ERR(nvme_thread))
1711                 return PTR_ERR(nvme_thread);
1712
1713         nvme_major = register_blkdev(nvme_major, "nvme");
1714         if (nvme_major <= 0)
1715                 goto kill_kthread;
1716
1717         result = pci_register_driver(&nvme_driver);
1718         if (result)
1719                 goto unregister_blkdev;
1720         return 0;
1721
1722  unregister_blkdev:
1723         unregister_blkdev(nvme_major, "nvme");
1724  kill_kthread:
1725         kthread_stop(nvme_thread);
1726         return result;
1727 }
1728
1729 static void __exit nvme_exit(void)
1730 {
1731         pci_unregister_driver(&nvme_driver);
1732         unregister_blkdev(nvme_major, "nvme");
1733         kthread_stop(nvme_thread);
1734 }
1735
1736 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1737 MODULE_LICENSE("GPL");
1738 MODULE_VERSION("0.8");
1739 module_init(nvme_init);
1740 module_exit(nvme_exit);