2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
84 #include <linux/uaccess.h>
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
90 static int part_shift;
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
97 char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page) + loop_off;
110 key = lo->lo_encrypt_key;
111 keysize = lo->lo_encrypt_key_size;
112 for (i = 0; i < size; i++)
113 *out++ = *in++ ^ key[(i & 511) % keysize];
115 kunmap_atomic(loop_buf);
116 kunmap_atomic(raw_buf);
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
123 if (unlikely(info->lo_encrypt_key_size <= 0))
128 static struct loop_func_table none_funcs = {
129 .number = LO_CRYPT_NONE,
132 static struct loop_func_table xor_funcs = {
133 .number = LO_CRYPT_XOR,
134 .transfer = transfer_xor,
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
148 /* Compute loopsize in bytes */
149 loopsize = i_size_read(file->f_mapping->host);
152 /* offset is beyond i_size, weird but possible */
156 if (sizelimit > 0 && sizelimit < loopsize)
157 loopsize = sizelimit;
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
162 return loopsize >> 9;
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
167 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
172 struct file *file = lo->lo_backing_file;
173 struct address_space *mapping = file->f_mapping;
174 struct inode *inode = mapping->host;
175 unsigned short sb_bsize = 0;
176 unsigned dio_align = 0;
179 if (inode->i_sb->s_bdev) {
180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 dio_align = sb_bsize - 1;
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 !(lo->lo_offset & dio_align) &&
197 mapping->a_ops->direct_IO &&
206 if (lo->use_dio == use_dio)
209 /* flush dirty pages before changing direct IO */
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
217 if (lo->lo_state == Lo_bound)
218 blk_mq_freeze_queue(lo->lo_queue);
219 lo->use_dio = use_dio;
221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
227 if (lo->lo_state == Lo_bound)
228 blk_mq_unfreeze_queue(lo->lo_queue);
232 * loop_validate_block_size() - validates the passed in block size
233 * @bsize: size to validate
236 loop_validate_block_size(unsigned short bsize)
238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
245 * loop_set_size() - sets device size and notifies userspace
246 * @lo: struct loop_device to set the size for
247 * @size: new size of the loop device
249 * Callers must validate that the size passed into this function fits into
250 * a sector_t, eg using loop_validate_size()
252 static void loop_set_size(struct loop_device *lo, loff_t size)
254 if (!set_capacity_and_notify(lo->lo_disk, size))
255 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
259 lo_do_transfer(struct loop_device *lo, int cmd,
260 struct page *rpage, unsigned roffs,
261 struct page *lpage, unsigned loffs,
262 int size, sector_t rblock)
266 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
270 printk_ratelimited(KERN_ERR
271 "loop: Transfer error at byte offset %llu, length %i.\n",
272 (unsigned long long)rblock << 9, size);
276 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
281 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
283 file_start_write(file);
284 bw = vfs_iter_write(file, &i, ppos, 0);
285 file_end_write(file);
287 if (likely(bw == bvec->bv_len))
290 printk_ratelimited(KERN_ERR
291 "loop: Write error at byte offset %llu, length %i.\n",
292 (unsigned long long)*ppos, bvec->bv_len);
298 static int lo_write_simple(struct loop_device *lo, struct request *rq,
302 struct req_iterator iter;
305 rq_for_each_segment(bvec, rq, iter) {
306 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
316 * This is the slow, transforming version that needs to double buffer the
317 * data as it cannot do the transformations in place without having direct
318 * access to the destination pages of the backing file.
320 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
323 struct bio_vec bvec, b;
324 struct req_iterator iter;
328 page = alloc_page(GFP_NOIO);
332 rq_for_each_segment(bvec, rq, iter) {
333 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
334 bvec.bv_offset, bvec.bv_len, pos >> 9);
340 b.bv_len = bvec.bv_len;
341 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
350 static int lo_read_simple(struct loop_device *lo, struct request *rq,
354 struct req_iterator iter;
358 rq_for_each_segment(bvec, rq, iter) {
359 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
360 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
364 flush_dcache_page(bvec.bv_page);
366 if (len != bvec.bv_len) {
369 __rq_for_each_bio(bio, rq)
379 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
382 struct bio_vec bvec, b;
383 struct req_iterator iter;
389 page = alloc_page(GFP_NOIO);
393 rq_for_each_segment(bvec, rq, iter) {
398 b.bv_len = bvec.bv_len;
400 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
401 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
407 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
408 bvec.bv_offset, len, offset >> 9);
412 flush_dcache_page(bvec.bv_page);
414 if (len != bvec.bv_len) {
417 __rq_for_each_bio(bio, rq)
429 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
433 * We use fallocate to manipulate the space mappings used by the image
434 * a.k.a. discard/zerorange. However we do not support this if
435 * encryption is enabled, because it may give an attacker useful
438 struct file *file = lo->lo_backing_file;
439 struct request_queue *q = lo->lo_queue;
442 mode |= FALLOC_FL_KEEP_SIZE;
444 if (!blk_queue_discard(q)) {
449 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
450 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
456 static int lo_req_flush(struct loop_device *lo, struct request *rq)
458 struct file *file = lo->lo_backing_file;
459 int ret = vfs_fsync(file, 0);
460 if (unlikely(ret && ret != -EINVAL))
466 static void lo_complete_rq(struct request *rq)
468 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
469 blk_status_t ret = BLK_STS_OK;
471 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
472 req_op(rq) != REQ_OP_READ) {
474 ret = errno_to_blk_status(cmd->ret);
479 * Short READ - if we got some data, advance our request and
480 * retry it. If we got no data, end the rest with EIO.
483 blk_update_request(rq, BLK_STS_OK, cmd->ret);
485 blk_mq_requeue_request(rq, true);
488 struct bio *bio = rq->bio;
497 blk_mq_end_request(rq, ret);
501 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
503 struct request *rq = blk_mq_rq_from_pdu(cmd);
505 if (!atomic_dec_and_test(&cmd->ref))
509 if (likely(!blk_should_fake_timeout(rq->q)))
510 blk_mq_complete_request(rq);
513 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
515 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
520 lo_rw_aio_do_completion(cmd);
523 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
526 struct iov_iter iter;
527 struct req_iterator rq_iter;
528 struct bio_vec *bvec;
529 struct request *rq = blk_mq_rq_from_pdu(cmd);
530 struct bio *bio = rq->bio;
531 struct file *file = lo->lo_backing_file;
537 rq_for_each_bvec(tmp, rq, rq_iter)
540 if (rq->bio != rq->biotail) {
542 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
549 * The bios of the request may be started from the middle of
550 * the 'bvec' because of bio splitting, so we can't directly
551 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
552 * API will take care of all details for us.
554 rq_for_each_bvec(tmp, rq, rq_iter) {
562 * Same here, this bio may be started from the middle of the
563 * 'bvec' because of bio splitting, so offset from the bvec
564 * must be passed to iov iterator
566 offset = bio->bi_iter.bi_bvec_done;
567 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
569 atomic_set(&cmd->ref, 2);
571 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
572 iter.iov_offset = offset;
574 cmd->iocb.ki_pos = pos;
575 cmd->iocb.ki_filp = file;
576 cmd->iocb.ki_complete = lo_rw_aio_complete;
577 cmd->iocb.ki_flags = IOCB_DIRECT;
578 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
580 kthread_associate_blkcg(cmd->css);
583 ret = call_write_iter(file, &cmd->iocb, &iter);
585 ret = call_read_iter(file, &cmd->iocb, &iter);
587 lo_rw_aio_do_completion(cmd);
588 kthread_associate_blkcg(NULL);
590 if (ret != -EIOCBQUEUED)
591 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
595 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
597 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
598 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
601 * lo_write_simple and lo_read_simple should have been covered
602 * by io submit style function like lo_rw_aio(), one blocker
603 * is that lo_read_simple() need to call flush_dcache_page after
604 * the page is written from kernel, and it isn't easy to handle
605 * this in io submit style function which submits all segments
606 * of the req at one time. And direct read IO doesn't need to
607 * run flush_dcache_page().
609 switch (req_op(rq)) {
611 return lo_req_flush(lo, rq);
612 case REQ_OP_WRITE_ZEROES:
614 * If the caller doesn't want deallocation, call zeroout to
615 * write zeroes the range. Otherwise, punch them out.
617 return lo_fallocate(lo, rq, pos,
618 (rq->cmd_flags & REQ_NOUNMAP) ?
619 FALLOC_FL_ZERO_RANGE :
620 FALLOC_FL_PUNCH_HOLE);
622 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
625 return lo_write_transfer(lo, rq, pos);
626 else if (cmd->use_aio)
627 return lo_rw_aio(lo, cmd, pos, WRITE);
629 return lo_write_simple(lo, rq, pos);
632 return lo_read_transfer(lo, rq, pos);
633 else if (cmd->use_aio)
634 return lo_rw_aio(lo, cmd, pos, READ);
636 return lo_read_simple(lo, rq, pos);
643 static inline void loop_update_dio(struct loop_device *lo)
645 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
649 static void loop_reread_partitions(struct loop_device *lo,
650 struct block_device *bdev)
654 mutex_lock(&bdev->bd_mutex);
655 rc = bdev_disk_changed(bdev, false);
656 mutex_unlock(&bdev->bd_mutex);
658 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
659 __func__, lo->lo_number, lo->lo_file_name, rc);
662 static inline int is_loop_device(struct file *file)
664 struct inode *i = file->f_mapping->host;
666 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
669 static int loop_validate_file(struct file *file, struct block_device *bdev)
671 struct inode *inode = file->f_mapping->host;
672 struct file *f = file;
674 /* Avoid recursion */
675 while (is_loop_device(f)) {
676 struct loop_device *l;
678 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
681 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
682 if (l->lo_state != Lo_bound) {
685 f = l->lo_backing_file;
687 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
693 * loop_change_fd switched the backing store of a loopback device to
694 * a new file. This is useful for operating system installers to free up
695 * the original file and in High Availability environments to switch to
696 * an alternative location for the content in case of server meltdown.
697 * This can only work if the loop device is used read-only, and if the
698 * new backing store is the same size and type as the old backing store.
700 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
703 struct file *file = NULL, *old_file;
707 error = mutex_lock_killable(&lo->lo_mutex);
711 if (lo->lo_state != Lo_bound)
714 /* the loop device has to be read-only */
716 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
724 error = loop_validate_file(file, bdev);
728 old_file = lo->lo_backing_file;
732 /* size of the new backing store needs to be the same */
733 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
737 blk_mq_freeze_queue(lo->lo_queue);
738 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
739 lo->lo_backing_file = file;
740 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
741 mapping_set_gfp_mask(file->f_mapping,
742 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
744 blk_mq_unfreeze_queue(lo->lo_queue);
745 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
746 mutex_unlock(&lo->lo_mutex);
748 * We must drop file reference outside of lo_mutex as dropping
749 * the file ref can take bd_mutex which creates circular locking
754 loop_reread_partitions(lo, bdev);
758 mutex_unlock(&lo->lo_mutex);
764 /* loop sysfs attributes */
766 static ssize_t loop_attr_show(struct device *dev, char *page,
767 ssize_t (*callback)(struct loop_device *, char *))
769 struct gendisk *disk = dev_to_disk(dev);
770 struct loop_device *lo = disk->private_data;
772 return callback(lo, page);
775 #define LOOP_ATTR_RO(_name) \
776 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
777 static ssize_t loop_attr_do_show_##_name(struct device *d, \
778 struct device_attribute *attr, char *b) \
780 return loop_attr_show(d, b, loop_attr_##_name##_show); \
782 static struct device_attribute loop_attr_##_name = \
783 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
785 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
790 spin_lock_irq(&lo->lo_lock);
791 if (lo->lo_backing_file)
792 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
793 spin_unlock_irq(&lo->lo_lock);
795 if (IS_ERR_OR_NULL(p))
799 memmove(buf, p, ret);
807 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
809 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
812 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
814 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
817 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
819 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
821 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
824 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
826 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
828 return sprintf(buf, "%s\n", partscan ? "1" : "0");
831 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
833 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
835 return sprintf(buf, "%s\n", dio ? "1" : "0");
838 LOOP_ATTR_RO(backing_file);
839 LOOP_ATTR_RO(offset);
840 LOOP_ATTR_RO(sizelimit);
841 LOOP_ATTR_RO(autoclear);
842 LOOP_ATTR_RO(partscan);
845 static struct attribute *loop_attrs[] = {
846 &loop_attr_backing_file.attr,
847 &loop_attr_offset.attr,
848 &loop_attr_sizelimit.attr,
849 &loop_attr_autoclear.attr,
850 &loop_attr_partscan.attr,
855 static struct attribute_group loop_attribute_group = {
860 static void loop_sysfs_init(struct loop_device *lo)
862 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
863 &loop_attribute_group);
866 static void loop_sysfs_exit(struct loop_device *lo)
868 if (lo->sysfs_inited)
869 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
870 &loop_attribute_group);
873 static void loop_config_discard(struct loop_device *lo)
875 struct file *file = lo->lo_backing_file;
876 struct inode *inode = file->f_mapping->host;
877 struct request_queue *q = lo->lo_queue;
878 u32 granularity, max_discard_sectors;
881 * If the backing device is a block device, mirror its zeroing
882 * capability. Set the discard sectors to the block device's zeroing
883 * capabilities because loop discards result in blkdev_issue_zeroout(),
884 * not blkdev_issue_discard(). This maintains consistent behavior with
885 * file-backed loop devices: discarded regions read back as zero.
887 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
888 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
890 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
891 granularity = backingq->limits.discard_granularity ?:
892 queue_physical_block_size(backingq);
895 * We use punch hole to reclaim the free space used by the
896 * image a.k.a. discard. However we do not support discard if
897 * encryption is enabled, because it may give an attacker
898 * useful information.
900 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
901 max_discard_sectors = 0;
905 max_discard_sectors = UINT_MAX >> 9;
906 granularity = inode->i_sb->s_blocksize;
909 if (max_discard_sectors) {
910 q->limits.discard_granularity = granularity;
911 blk_queue_max_discard_sectors(q, max_discard_sectors);
912 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
913 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
915 q->limits.discard_granularity = 0;
916 blk_queue_max_discard_sectors(q, 0);
917 blk_queue_max_write_zeroes_sectors(q, 0);
918 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
920 q->limits.discard_alignment = 0;
923 static void loop_unprepare_queue(struct loop_device *lo)
925 kthread_flush_worker(&lo->worker);
926 kthread_stop(lo->worker_task);
929 static int loop_kthread_worker_fn(void *worker_ptr)
931 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
932 return kthread_worker_fn(worker_ptr);
935 static int loop_prepare_queue(struct loop_device *lo)
937 kthread_init_worker(&lo->worker);
938 lo->worker_task = kthread_run(loop_kthread_worker_fn,
939 &lo->worker, "loop%d", lo->lo_number);
940 if (IS_ERR(lo->worker_task))
942 set_user_nice(lo->worker_task, MIN_NICE);
946 static void loop_update_rotational(struct loop_device *lo)
948 struct file *file = lo->lo_backing_file;
949 struct inode *file_inode = file->f_mapping->host;
950 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
951 struct request_queue *q = lo->lo_queue;
954 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
956 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
959 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
961 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
965 loop_release_xfer(struct loop_device *lo)
968 struct loop_func_table *xfer = lo->lo_encryption;
972 err = xfer->release(lo);
974 lo->lo_encryption = NULL;
975 module_put(xfer->owner);
981 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
982 const struct loop_info64 *i)
987 struct module *owner = xfer->owner;
989 if (!try_module_get(owner))
992 err = xfer->init(lo, i);
996 lo->lo_encryption = xfer;
1002 * loop_set_status_from_info - configure device from loop_info
1003 * @lo: struct loop_device to configure
1004 * @info: struct loop_info64 to configure the device with
1006 * Configures the loop device parameters according to the passed
1007 * in loop_info64 configuration.
1010 loop_set_status_from_info(struct loop_device *lo,
1011 const struct loop_info64 *info)
1014 struct loop_func_table *xfer;
1015 kuid_t uid = current_uid();
1017 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1020 err = loop_release_xfer(lo);
1024 if (info->lo_encrypt_type) {
1025 unsigned int type = info->lo_encrypt_type;
1027 if (type >= MAX_LO_CRYPT)
1029 xfer = xfer_funcs[type];
1035 err = loop_init_xfer(lo, xfer, info);
1039 lo->lo_offset = info->lo_offset;
1040 lo->lo_sizelimit = info->lo_sizelimit;
1041 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1042 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1043 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1044 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1048 lo->transfer = xfer->transfer;
1049 lo->ioctl = xfer->ioctl;
1051 lo->lo_flags = info->lo_flags;
1053 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1054 lo->lo_init[0] = info->lo_init[0];
1055 lo->lo_init[1] = info->lo_init[1];
1056 if (info->lo_encrypt_key_size) {
1057 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1058 info->lo_encrypt_key_size);
1059 lo->lo_key_owner = uid;
1065 static int loop_configure(struct loop_device *lo, fmode_t mode,
1066 struct block_device *bdev,
1067 const struct loop_config *config)
1070 struct inode *inode;
1071 struct address_space *mapping;
1075 unsigned short bsize;
1077 /* This is safe, since we have a reference from open(). */
1078 __module_get(THIS_MODULE);
1081 file = fget(config->fd);
1086 * If we don't hold exclusive handle for the device, upgrade to it
1087 * here to avoid changing device under exclusive owner.
1089 if (!(mode & FMODE_EXCL)) {
1090 error = bd_prepare_to_claim(bdev, loop_configure);
1095 error = mutex_lock_killable(&lo->lo_mutex);
1100 if (lo->lo_state != Lo_unbound)
1103 error = loop_validate_file(file, bdev);
1107 mapping = file->f_mapping;
1108 inode = mapping->host;
1110 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1115 if (config->block_size) {
1116 error = loop_validate_block_size(config->block_size);
1121 error = loop_set_status_from_info(lo, &config->info);
1125 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1126 !file->f_op->write_iter)
1127 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1129 error = loop_prepare_queue(lo);
1133 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1135 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1136 lo->lo_device = bdev;
1137 lo->lo_backing_file = file;
1138 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1139 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1141 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1142 blk_queue_write_cache(lo->lo_queue, true, false);
1144 if (config->block_size)
1145 bsize = config->block_size;
1146 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1147 /* In case of direct I/O, match underlying block size */
1148 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1152 blk_queue_logical_block_size(lo->lo_queue, bsize);
1153 blk_queue_physical_block_size(lo->lo_queue, bsize);
1154 blk_queue_io_min(lo->lo_queue, bsize);
1156 loop_update_rotational(lo);
1157 loop_update_dio(lo);
1158 loop_sysfs_init(lo);
1160 size = get_loop_size(lo, file);
1161 loop_set_size(lo, size);
1163 lo->lo_state = Lo_bound;
1165 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1166 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1168 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1170 /* Grab the block_device to prevent its destruction after we
1171 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1174 mutex_unlock(&lo->lo_mutex);
1176 loop_reread_partitions(lo, bdev);
1177 if (!(mode & FMODE_EXCL))
1178 bd_abort_claiming(bdev, loop_configure);
1182 mutex_unlock(&lo->lo_mutex);
1184 if (!(mode & FMODE_EXCL))
1185 bd_abort_claiming(bdev, loop_configure);
1189 /* This is safe: open() is still holding a reference. */
1190 module_put(THIS_MODULE);
1194 static int __loop_clr_fd(struct loop_device *lo, bool release)
1196 struct file *filp = NULL;
1197 gfp_t gfp = lo->old_gfp_mask;
1198 struct block_device *bdev = lo->lo_device;
1200 bool partscan = false;
1203 mutex_lock(&lo->lo_mutex);
1204 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1209 filp = lo->lo_backing_file;
1215 /* freeze request queue during the transition */
1216 blk_mq_freeze_queue(lo->lo_queue);
1218 spin_lock_irq(&lo->lo_lock);
1219 lo->lo_backing_file = NULL;
1220 spin_unlock_irq(&lo->lo_lock);
1222 loop_release_xfer(lo);
1223 lo->transfer = NULL;
1225 lo->lo_device = NULL;
1226 lo->lo_encryption = NULL;
1228 lo->lo_sizelimit = 0;
1229 lo->lo_encrypt_key_size = 0;
1230 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1231 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1232 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1233 blk_queue_logical_block_size(lo->lo_queue, 512);
1234 blk_queue_physical_block_size(lo->lo_queue, 512);
1235 blk_queue_io_min(lo->lo_queue, 512);
1238 invalidate_bdev(bdev);
1239 bdev->bd_inode->i_mapping->wb_err = 0;
1241 set_capacity(lo->lo_disk, 0);
1242 loop_sysfs_exit(lo);
1244 /* let user-space know about this change */
1245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1247 mapping_set_gfp_mask(filp->f_mapping, gfp);
1248 /* This is safe: open() is still holding a reference. */
1249 module_put(THIS_MODULE);
1250 blk_mq_unfreeze_queue(lo->lo_queue);
1252 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1253 lo_number = lo->lo_number;
1254 loop_unprepare_queue(lo);
1256 mutex_unlock(&lo->lo_mutex);
1259 * bd_mutex has been held already in release path, so don't
1260 * acquire it if this function is called in such case.
1262 * If the reread partition isn't from release path, lo_refcnt
1263 * must be at least one and it can only become zero when the
1264 * current holder is released.
1267 mutex_lock(&bdev->bd_mutex);
1268 err = bdev_disk_changed(bdev, false);
1270 mutex_unlock(&bdev->bd_mutex);
1272 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1273 __func__, lo_number, err);
1274 /* Device is gone, no point in returning error */
1279 * lo->lo_state is set to Lo_unbound here after above partscan has
1282 * There cannot be anybody else entering __loop_clr_fd() as
1283 * lo->lo_backing_file is already cleared and Lo_rundown state
1284 * protects us from all the other places trying to change the 'lo'
1287 mutex_lock(&lo->lo_mutex);
1290 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1291 lo->lo_state = Lo_unbound;
1292 mutex_unlock(&lo->lo_mutex);
1295 * Need not hold lo_mutex to fput backing file. Calling fput holding
1296 * lo_mutex triggers a circular lock dependency possibility warning as
1297 * fput can take bd_mutex which is usually taken before lo_mutex.
1304 static int loop_clr_fd(struct loop_device *lo)
1308 err = mutex_lock_killable(&lo->lo_mutex);
1311 if (lo->lo_state != Lo_bound) {
1312 mutex_unlock(&lo->lo_mutex);
1316 * If we've explicitly asked to tear down the loop device,
1317 * and it has an elevated reference count, set it for auto-teardown when
1318 * the last reference goes away. This stops $!~#$@ udev from
1319 * preventing teardown because it decided that it needs to run blkid on
1320 * the loopback device whenever they appear. xfstests is notorious for
1321 * failing tests because blkid via udev races with a losetup
1322 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1323 * command to fail with EBUSY.
1325 if (atomic_read(&lo->lo_refcnt) > 1) {
1326 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1327 mutex_unlock(&lo->lo_mutex);
1330 lo->lo_state = Lo_rundown;
1331 mutex_unlock(&lo->lo_mutex);
1333 return __loop_clr_fd(lo, false);
1337 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1340 struct block_device *bdev;
1341 kuid_t uid = current_uid();
1343 bool partscan = false;
1344 bool size_changed = false;
1346 err = mutex_lock_killable(&lo->lo_mutex);
1349 if (lo->lo_encrypt_key_size &&
1350 !uid_eq(lo->lo_key_owner, uid) &&
1351 !capable(CAP_SYS_ADMIN)) {
1355 if (lo->lo_state != Lo_bound) {
1360 if (lo->lo_offset != info->lo_offset ||
1361 lo->lo_sizelimit != info->lo_sizelimit) {
1362 size_changed = true;
1363 sync_blockdev(lo->lo_device);
1364 invalidate_bdev(lo->lo_device);
1367 /* I/O need to be drained during transfer transition */
1368 blk_mq_freeze_queue(lo->lo_queue);
1370 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1371 /* If any pages were dirtied after invalidate_bdev(), try again */
1373 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1374 __func__, lo->lo_number, lo->lo_file_name,
1375 lo->lo_device->bd_inode->i_mapping->nrpages);
1379 prev_lo_flags = lo->lo_flags;
1381 err = loop_set_status_from_info(lo, info);
1385 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1386 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1387 /* For those flags, use the previous values instead */
1388 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1389 /* For flags that can't be cleared, use previous values too */
1390 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1393 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1394 lo->lo_backing_file);
1395 loop_set_size(lo, new_size);
1398 loop_config_discard(lo);
1400 /* update dio if lo_offset or transfer is changed */
1401 __loop_update_dio(lo, lo->use_dio);
1404 blk_mq_unfreeze_queue(lo->lo_queue);
1406 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1407 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1408 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1409 bdev = lo->lo_device;
1413 mutex_unlock(&lo->lo_mutex);
1415 loop_reread_partitions(lo, bdev);
1421 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1427 ret = mutex_lock_killable(&lo->lo_mutex);
1430 if (lo->lo_state != Lo_bound) {
1431 mutex_unlock(&lo->lo_mutex);
1435 memset(info, 0, sizeof(*info));
1436 info->lo_number = lo->lo_number;
1437 info->lo_offset = lo->lo_offset;
1438 info->lo_sizelimit = lo->lo_sizelimit;
1439 info->lo_flags = lo->lo_flags;
1440 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1441 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1442 info->lo_encrypt_type =
1443 lo->lo_encryption ? lo->lo_encryption->number : 0;
1444 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1445 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1446 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1447 lo->lo_encrypt_key_size);
1450 /* Drop lo_mutex while we call into the filesystem. */
1451 path = lo->lo_backing_file->f_path;
1453 mutex_unlock(&lo->lo_mutex);
1454 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1456 info->lo_device = huge_encode_dev(stat.dev);
1457 info->lo_inode = stat.ino;
1458 info->lo_rdevice = huge_encode_dev(stat.rdev);
1465 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1467 memset(info64, 0, sizeof(*info64));
1468 info64->lo_number = info->lo_number;
1469 info64->lo_device = info->lo_device;
1470 info64->lo_inode = info->lo_inode;
1471 info64->lo_rdevice = info->lo_rdevice;
1472 info64->lo_offset = info->lo_offset;
1473 info64->lo_sizelimit = 0;
1474 info64->lo_encrypt_type = info->lo_encrypt_type;
1475 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1476 info64->lo_flags = info->lo_flags;
1477 info64->lo_init[0] = info->lo_init[0];
1478 info64->lo_init[1] = info->lo_init[1];
1479 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1480 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1482 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1483 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1487 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1489 memset(info, 0, sizeof(*info));
1490 info->lo_number = info64->lo_number;
1491 info->lo_device = info64->lo_device;
1492 info->lo_inode = info64->lo_inode;
1493 info->lo_rdevice = info64->lo_rdevice;
1494 info->lo_offset = info64->lo_offset;
1495 info->lo_encrypt_type = info64->lo_encrypt_type;
1496 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1497 info->lo_flags = info64->lo_flags;
1498 info->lo_init[0] = info64->lo_init[0];
1499 info->lo_init[1] = info64->lo_init[1];
1500 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1501 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1503 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1504 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1506 /* error in case values were truncated */
1507 if (info->lo_device != info64->lo_device ||
1508 info->lo_rdevice != info64->lo_rdevice ||
1509 info->lo_inode != info64->lo_inode ||
1510 info->lo_offset != info64->lo_offset)
1517 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1519 struct loop_info info;
1520 struct loop_info64 info64;
1522 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1524 loop_info64_from_old(&info, &info64);
1525 return loop_set_status(lo, &info64);
1529 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1531 struct loop_info64 info64;
1533 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1535 return loop_set_status(lo, &info64);
1539 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1540 struct loop_info info;
1541 struct loop_info64 info64;
1546 err = loop_get_status(lo, &info64);
1548 err = loop_info64_to_old(&info64, &info);
1549 if (!err && copy_to_user(arg, &info, sizeof(info)))
1556 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1557 struct loop_info64 info64;
1562 err = loop_get_status(lo, &info64);
1563 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1569 static int loop_set_capacity(struct loop_device *lo)
1573 if (unlikely(lo->lo_state != Lo_bound))
1576 size = get_loop_size(lo, lo->lo_backing_file);
1577 loop_set_size(lo, size);
1582 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1585 if (lo->lo_state != Lo_bound)
1588 __loop_update_dio(lo, !!arg);
1589 if (lo->use_dio == !!arg)
1596 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1600 if (lo->lo_state != Lo_bound)
1603 err = loop_validate_block_size(arg);
1607 if (lo->lo_queue->limits.logical_block_size == arg)
1610 sync_blockdev(lo->lo_device);
1611 invalidate_bdev(lo->lo_device);
1613 blk_mq_freeze_queue(lo->lo_queue);
1615 /* invalidate_bdev should have truncated all the pages */
1616 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1618 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1619 __func__, lo->lo_number, lo->lo_file_name,
1620 lo->lo_device->bd_inode->i_mapping->nrpages);
1624 blk_queue_logical_block_size(lo->lo_queue, arg);
1625 blk_queue_physical_block_size(lo->lo_queue, arg);
1626 blk_queue_io_min(lo->lo_queue, arg);
1627 loop_update_dio(lo);
1629 blk_mq_unfreeze_queue(lo->lo_queue);
1634 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1639 err = mutex_lock_killable(&lo->lo_mutex);
1643 case LOOP_SET_CAPACITY:
1644 err = loop_set_capacity(lo);
1646 case LOOP_SET_DIRECT_IO:
1647 err = loop_set_dio(lo, arg);
1649 case LOOP_SET_BLOCK_SIZE:
1650 err = loop_set_block_size(lo, arg);
1653 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1655 mutex_unlock(&lo->lo_mutex);
1659 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1660 unsigned int cmd, unsigned long arg)
1662 struct loop_device *lo = bdev->bd_disk->private_data;
1663 void __user *argp = (void __user *) arg;
1669 * Legacy case - pass in a zeroed out struct loop_config with
1670 * only the file descriptor set , which corresponds with the
1671 * default parameters we'd have used otherwise.
1673 struct loop_config config;
1675 memset(&config, 0, sizeof(config));
1678 return loop_configure(lo, mode, bdev, &config);
1680 case LOOP_CONFIGURE: {
1681 struct loop_config config;
1683 if (copy_from_user(&config, argp, sizeof(config)))
1686 return loop_configure(lo, mode, bdev, &config);
1688 case LOOP_CHANGE_FD:
1689 return loop_change_fd(lo, bdev, arg);
1691 return loop_clr_fd(lo);
1692 case LOOP_SET_STATUS:
1694 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1695 err = loop_set_status_old(lo, argp);
1698 case LOOP_GET_STATUS:
1699 return loop_get_status_old(lo, argp);
1700 case LOOP_SET_STATUS64:
1702 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1703 err = loop_set_status64(lo, argp);
1706 case LOOP_GET_STATUS64:
1707 return loop_get_status64(lo, argp);
1708 case LOOP_SET_CAPACITY:
1709 case LOOP_SET_DIRECT_IO:
1710 case LOOP_SET_BLOCK_SIZE:
1711 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1715 err = lo_simple_ioctl(lo, cmd, arg);
1722 #ifdef CONFIG_COMPAT
1723 struct compat_loop_info {
1724 compat_int_t lo_number; /* ioctl r/o */
1725 compat_dev_t lo_device; /* ioctl r/o */
1726 compat_ulong_t lo_inode; /* ioctl r/o */
1727 compat_dev_t lo_rdevice; /* ioctl r/o */
1728 compat_int_t lo_offset;
1729 compat_int_t lo_encrypt_type;
1730 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1731 compat_int_t lo_flags; /* ioctl r/o */
1732 char lo_name[LO_NAME_SIZE];
1733 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1734 compat_ulong_t lo_init[2];
1739 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1740 * - noinlined to reduce stack space usage in main part of driver
1743 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1744 struct loop_info64 *info64)
1746 struct compat_loop_info info;
1748 if (copy_from_user(&info, arg, sizeof(info)))
1751 memset(info64, 0, sizeof(*info64));
1752 info64->lo_number = info.lo_number;
1753 info64->lo_device = info.lo_device;
1754 info64->lo_inode = info.lo_inode;
1755 info64->lo_rdevice = info.lo_rdevice;
1756 info64->lo_offset = info.lo_offset;
1757 info64->lo_sizelimit = 0;
1758 info64->lo_encrypt_type = info.lo_encrypt_type;
1759 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1760 info64->lo_flags = info.lo_flags;
1761 info64->lo_init[0] = info.lo_init[0];
1762 info64->lo_init[1] = info.lo_init[1];
1763 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1764 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1766 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1767 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1772 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1773 * - noinlined to reduce stack space usage in main part of driver
1776 loop_info64_to_compat(const struct loop_info64 *info64,
1777 struct compat_loop_info __user *arg)
1779 struct compat_loop_info info;
1781 memset(&info, 0, sizeof(info));
1782 info.lo_number = info64->lo_number;
1783 info.lo_device = info64->lo_device;
1784 info.lo_inode = info64->lo_inode;
1785 info.lo_rdevice = info64->lo_rdevice;
1786 info.lo_offset = info64->lo_offset;
1787 info.lo_encrypt_type = info64->lo_encrypt_type;
1788 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1789 info.lo_flags = info64->lo_flags;
1790 info.lo_init[0] = info64->lo_init[0];
1791 info.lo_init[1] = info64->lo_init[1];
1792 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1793 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1795 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1796 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1798 /* error in case values were truncated */
1799 if (info.lo_device != info64->lo_device ||
1800 info.lo_rdevice != info64->lo_rdevice ||
1801 info.lo_inode != info64->lo_inode ||
1802 info.lo_offset != info64->lo_offset ||
1803 info.lo_init[0] != info64->lo_init[0] ||
1804 info.lo_init[1] != info64->lo_init[1])
1807 if (copy_to_user(arg, &info, sizeof(info)))
1813 loop_set_status_compat(struct loop_device *lo,
1814 const struct compat_loop_info __user *arg)
1816 struct loop_info64 info64;
1819 ret = loop_info64_from_compat(arg, &info64);
1822 return loop_set_status(lo, &info64);
1826 loop_get_status_compat(struct loop_device *lo,
1827 struct compat_loop_info __user *arg)
1829 struct loop_info64 info64;
1834 err = loop_get_status(lo, &info64);
1836 err = loop_info64_to_compat(&info64, arg);
1840 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1841 unsigned int cmd, unsigned long arg)
1843 struct loop_device *lo = bdev->bd_disk->private_data;
1847 case LOOP_SET_STATUS:
1848 err = loop_set_status_compat(lo,
1849 (const struct compat_loop_info __user *)arg);
1851 case LOOP_GET_STATUS:
1852 err = loop_get_status_compat(lo,
1853 (struct compat_loop_info __user *)arg);
1855 case LOOP_SET_CAPACITY:
1857 case LOOP_GET_STATUS64:
1858 case LOOP_SET_STATUS64:
1859 case LOOP_CONFIGURE:
1860 arg = (unsigned long) compat_ptr(arg);
1863 case LOOP_CHANGE_FD:
1864 case LOOP_SET_BLOCK_SIZE:
1865 case LOOP_SET_DIRECT_IO:
1866 err = lo_ioctl(bdev, mode, cmd, arg);
1876 static int lo_open(struct block_device *bdev, fmode_t mode)
1878 struct loop_device *lo;
1882 * take loop_ctl_mutex to protect lo pointer from race with
1883 * loop_control_ioctl(LOOP_CTL_REMOVE), however, to reduce contention
1884 * release it prior to updating lo->lo_refcnt.
1886 err = mutex_lock_killable(&loop_ctl_mutex);
1889 lo = bdev->bd_disk->private_data;
1891 mutex_unlock(&loop_ctl_mutex);
1894 err = mutex_lock_killable(&lo->lo_mutex);
1895 mutex_unlock(&loop_ctl_mutex);
1898 atomic_inc(&lo->lo_refcnt);
1899 mutex_unlock(&lo->lo_mutex);
1903 static void lo_release(struct gendisk *disk, fmode_t mode)
1905 struct loop_device *lo = disk->private_data;
1907 mutex_lock(&lo->lo_mutex);
1908 if (atomic_dec_return(&lo->lo_refcnt))
1911 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1912 if (lo->lo_state != Lo_bound)
1914 lo->lo_state = Lo_rundown;
1915 mutex_unlock(&lo->lo_mutex);
1917 * In autoclear mode, stop the loop thread
1918 * and remove configuration after last close.
1920 __loop_clr_fd(lo, true);
1922 } else if (lo->lo_state == Lo_bound) {
1924 * Otherwise keep thread (if running) and config,
1925 * but flush possible ongoing bios in thread.
1927 blk_mq_freeze_queue(lo->lo_queue);
1928 blk_mq_unfreeze_queue(lo->lo_queue);
1932 mutex_unlock(&lo->lo_mutex);
1935 static const struct block_device_operations lo_fops = {
1936 .owner = THIS_MODULE,
1938 .release = lo_release,
1940 #ifdef CONFIG_COMPAT
1941 .compat_ioctl = lo_compat_ioctl,
1946 * And now the modules code and kernel interface.
1948 static int max_loop;
1949 module_param(max_loop, int, 0444);
1950 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1951 module_param(max_part, int, 0444);
1952 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1953 MODULE_LICENSE("GPL");
1954 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1956 int loop_register_transfer(struct loop_func_table *funcs)
1958 unsigned int n = funcs->number;
1960 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1962 xfer_funcs[n] = funcs;
1966 static int unregister_transfer_cb(int id, void *ptr, void *data)
1968 struct loop_device *lo = ptr;
1969 struct loop_func_table *xfer = data;
1971 mutex_lock(&lo->lo_mutex);
1972 if (lo->lo_encryption == xfer)
1973 loop_release_xfer(lo);
1974 mutex_unlock(&lo->lo_mutex);
1978 int loop_unregister_transfer(int number)
1980 unsigned int n = number;
1981 struct loop_func_table *xfer;
1983 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1986 xfer_funcs[n] = NULL;
1987 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1991 EXPORT_SYMBOL(loop_register_transfer);
1992 EXPORT_SYMBOL(loop_unregister_transfer);
1994 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1995 const struct blk_mq_queue_data *bd)
1997 struct request *rq = bd->rq;
1998 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1999 struct loop_device *lo = rq->q->queuedata;
2001 blk_mq_start_request(rq);
2003 if (lo->lo_state != Lo_bound)
2004 return BLK_STS_IOERR;
2006 switch (req_op(rq)) {
2008 case REQ_OP_DISCARD:
2009 case REQ_OP_WRITE_ZEROES:
2010 cmd->use_aio = false;
2013 cmd->use_aio = lo->use_dio;
2017 /* always use the first bio's css */
2018 #ifdef CONFIG_BLK_CGROUP
2019 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2020 cmd->css = &bio_blkcg(rq->bio)->css;
2025 kthread_queue_work(&lo->worker, &cmd->work);
2030 static void loop_handle_cmd(struct loop_cmd *cmd)
2032 struct request *rq = blk_mq_rq_from_pdu(cmd);
2033 const bool write = op_is_write(req_op(rq));
2034 struct loop_device *lo = rq->q->queuedata;
2037 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2042 ret = do_req_filebacked(lo, rq);
2044 /* complete non-aio request */
2045 if (!cmd->use_aio || ret) {
2046 if (ret == -EOPNOTSUPP)
2049 cmd->ret = ret ? -EIO : 0;
2050 if (likely(!blk_should_fake_timeout(rq->q)))
2051 blk_mq_complete_request(rq);
2055 static void loop_queue_work(struct kthread_work *work)
2057 struct loop_cmd *cmd =
2058 container_of(work, struct loop_cmd, work);
2060 loop_handle_cmd(cmd);
2063 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2064 unsigned int hctx_idx, unsigned int numa_node)
2066 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2068 kthread_init_work(&cmd->work, loop_queue_work);
2072 static const struct blk_mq_ops loop_mq_ops = {
2073 .queue_rq = loop_queue_rq,
2074 .init_request = loop_init_request,
2075 .complete = lo_complete_rq,
2078 static int loop_add(struct loop_device **l, int i)
2080 struct loop_device *lo;
2081 struct gendisk *disk;
2085 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2089 lo->lo_state = Lo_unbound;
2091 /* allocate id, if @id >= 0, we're requesting that specific id */
2093 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2097 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2104 lo->tag_set.ops = &loop_mq_ops;
2105 lo->tag_set.nr_hw_queues = 1;
2106 lo->tag_set.queue_depth = 128;
2107 lo->tag_set.numa_node = NUMA_NO_NODE;
2108 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2109 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2110 lo->tag_set.driver_data = lo;
2112 err = blk_mq_alloc_tag_set(&lo->tag_set);
2116 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2117 if (IS_ERR(lo->lo_queue)) {
2118 err = PTR_ERR(lo->lo_queue);
2119 goto out_cleanup_tags;
2121 lo->lo_queue->queuedata = lo;
2123 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2126 * By default, we do buffer IO, so it doesn't make sense to enable
2127 * merge because the I/O submitted to backing file is handled page by
2128 * page. For directio mode, merge does help to dispatch bigger request
2129 * to underlayer disk. We will enable merge once directio is enabled.
2131 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2134 disk = lo->lo_disk = alloc_disk(1 << part_shift);
2136 goto out_free_queue;
2139 * Disable partition scanning by default. The in-kernel partition
2140 * scanning can be requested individually per-device during its
2141 * setup. Userspace can always add and remove partitions from all
2142 * devices. The needed partition minors are allocated from the
2143 * extended minor space, the main loop device numbers will continue
2144 * to match the loop minors, regardless of the number of partitions
2147 * If max_part is given, partition scanning is globally enabled for
2148 * all loop devices. The minors for the main loop devices will be
2149 * multiples of max_part.
2151 * Note: Global-for-all-devices, set-only-at-init, read-only module
2152 * parameteters like 'max_loop' and 'max_part' make things needlessly
2153 * complicated, are too static, inflexible and may surprise
2154 * userspace tools. Parameters like this in general should be avoided.
2157 disk->flags |= GENHD_FL_NO_PART_SCAN;
2158 disk->flags |= GENHD_FL_EXT_DEVT;
2159 atomic_set(&lo->lo_refcnt, 0);
2160 mutex_init(&lo->lo_mutex);
2162 spin_lock_init(&lo->lo_lock);
2163 disk->major = LOOP_MAJOR;
2164 disk->first_minor = i << part_shift;
2165 disk->fops = &lo_fops;
2166 disk->private_data = lo;
2167 disk->queue = lo->lo_queue;
2168 sprintf(disk->disk_name, "loop%d", i);
2171 return lo->lo_number;
2174 blk_cleanup_queue(lo->lo_queue);
2176 blk_mq_free_tag_set(&lo->tag_set);
2178 idr_remove(&loop_index_idr, i);
2185 static void loop_remove(struct loop_device *lo)
2187 del_gendisk(lo->lo_disk);
2188 blk_cleanup_queue(lo->lo_queue);
2189 blk_mq_free_tag_set(&lo->tag_set);
2190 put_disk(lo->lo_disk);
2191 mutex_destroy(&lo->lo_mutex);
2195 static int find_free_cb(int id, void *ptr, void *data)
2197 struct loop_device *lo = ptr;
2198 struct loop_device **l = data;
2200 if (lo->lo_state == Lo_unbound) {
2207 static int loop_lookup(struct loop_device **l, int i)
2209 struct loop_device *lo;
2215 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2218 ret = lo->lo_number;
2223 /* lookup and return a specific i */
2224 lo = idr_find(&loop_index_idr, i);
2227 ret = lo->lo_number;
2233 static void loop_probe(dev_t dev)
2235 int idx = MINOR(dev) >> part_shift;
2236 struct loop_device *lo;
2238 if (max_loop && idx >= max_loop)
2241 mutex_lock(&loop_ctl_mutex);
2242 if (loop_lookup(&lo, idx) < 0)
2244 mutex_unlock(&loop_ctl_mutex);
2247 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2250 struct loop_device *lo;
2253 ret = mutex_lock_killable(&loop_ctl_mutex);
2260 ret = loop_lookup(&lo, parm);
2265 ret = loop_add(&lo, parm);
2267 case LOOP_CTL_REMOVE:
2268 ret = loop_lookup(&lo, parm);
2271 ret = mutex_lock_killable(&lo->lo_mutex);
2274 if (lo->lo_state != Lo_unbound) {
2276 mutex_unlock(&lo->lo_mutex);
2279 if (atomic_read(&lo->lo_refcnt) > 0) {
2281 mutex_unlock(&lo->lo_mutex);
2284 lo->lo_disk->private_data = NULL;
2285 mutex_unlock(&lo->lo_mutex);
2286 idr_remove(&loop_index_idr, lo->lo_number);
2289 case LOOP_CTL_GET_FREE:
2290 ret = loop_lookup(&lo, -1);
2293 ret = loop_add(&lo, -1);
2295 mutex_unlock(&loop_ctl_mutex);
2300 static const struct file_operations loop_ctl_fops = {
2301 .open = nonseekable_open,
2302 .unlocked_ioctl = loop_control_ioctl,
2303 .compat_ioctl = loop_control_ioctl,
2304 .owner = THIS_MODULE,
2305 .llseek = noop_llseek,
2308 static struct miscdevice loop_misc = {
2309 .minor = LOOP_CTRL_MINOR,
2310 .name = "loop-control",
2311 .fops = &loop_ctl_fops,
2314 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2315 MODULE_ALIAS("devname:loop-control");
2317 static int __init loop_init(void)
2320 struct loop_device *lo;
2325 part_shift = fls(max_part);
2328 * Adjust max_part according to part_shift as it is exported
2329 * to user space so that user can decide correct minor number
2330 * if [s]he want to create more devices.
2332 * Note that -1 is required because partition 0 is reserved
2333 * for the whole disk.
2335 max_part = (1UL << part_shift) - 1;
2338 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2343 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2349 * If max_loop is specified, create that many devices upfront.
2350 * This also becomes a hard limit. If max_loop is not specified,
2351 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2352 * init time. Loop devices can be requested on-demand with the
2353 * /dev/loop-control interface, or be instantiated by accessing
2354 * a 'dead' device node.
2359 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2361 err = misc_register(&loop_misc);
2366 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2371 /* pre-create number of devices given by config or max_loop */
2372 mutex_lock(&loop_ctl_mutex);
2373 for (i = 0; i < nr; i++)
2375 mutex_unlock(&loop_ctl_mutex);
2377 printk(KERN_INFO "loop: module loaded\n");
2381 misc_deregister(&loop_misc);
2386 static int loop_exit_cb(int id, void *ptr, void *data)
2388 struct loop_device *lo = ptr;
2394 static void __exit loop_exit(void)
2396 mutex_lock(&loop_ctl_mutex);
2398 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2399 idr_destroy(&loop_index_idr);
2401 unregister_blkdev(LOOP_MAJOR, "loop");
2403 misc_deregister(&loop_misc);
2405 mutex_unlock(&loop_ctl_mutex);
2408 module_init(loop_init);
2409 module_exit(loop_exit);
2412 static int __init max_loop_setup(char *str)
2414 max_loop = simple_strtol(str, NULL, 0);
2418 __setup("max_loop=", max_loop_setup);