2 * Faraday FTIDE020 ATA Controller (AHB)
4 * (C) Copyright 2011 Andes Technology
5 * Greentime Hu <greentime@andestech.com>
6 * Macpaul Lin <macpaul@andestech.com>
7 * Kuo-Wei Chou <kwchou@andestech.com>
9 * SPDX-License-Identifier: GPL-2.0+
11 /* ftide020.c - ide support functions for the FTIDE020_S controller */
18 #include <api_public.h>
23 #define FTIDE_BASE CONFIG_SYS_ATA_BASE_ADDR
26 * data address - The CMD and DATA use the same FIFO in FTIDE020_S
27 * FTIDE_DATA = CONFIG_SYS_ATA_BASE_ADDR + CONFIG_SYS_ATA_DATA_OFFSET
28 * = &ftide020->rw_fifo
30 #define FTIDE_DATA (&ftide020->rw_fifo)
32 /* command and data I/O macros */
34 #define WRITE_DATA(x) outl((x), &ftide020->rw_fifo) /* 0x00 */
35 #define READ_DATA() inl(&ftide020->rw_fifo) /* 0x00 */
36 /* 0x04 - R: Status Reg, W: CMD_FIFO */
37 #define WRITE_CMD(x) outl((x), &ftide020->cmd_fifo) /* 0x04 */
38 #define READ_STATUS() inl(&ftide020->cmd_fifo) /* 0x04 */
40 void ftide_set_device(int cx8, int dev)
42 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
44 WRITE_CMD(SET_DEV_CMD | IDE_SET_CX8(cx8) | dev);
47 unsigned char ide_read_register(int dev, unsigned int port)
49 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
51 ftide_set_device(0, dev);
52 WRITE_CMD(READ_REG_CMD | IDE_REG_CS_READ(CONFIG_IDE_REG_CS) |
53 IDE_REG_DA_WRITE(port));
55 return READ_DATA() & 0xff;
58 void ide_write_register(int dev, unsigned int port, unsigned char val)
60 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
62 ftide_set_device(0, dev);
63 WRITE_CMD(WRITE_REG_CMD | IDE_REG_CS_WRITE(CONFIG_IDE_REG_CS) |
64 IDE_REG_DA_WRITE(port) | val);
67 void ide_write_data(int dev, const ulong *sect_buf, int words)
69 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
71 ftide_set_device(0, dev);
72 WRITE_CMD(WRITE_DATA_CMD | ((words << 2) - 1));
75 outsl(FTIDE_DATA, sect_buf, words);
78 void ide_read_data(int dev, ulong *sect_buf, int words)
80 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
82 ftide_set_device(0, dev);
83 WRITE_CMD(READ_DATA_CMD | ((words << 2) - 1));
86 insl(FTIDE_DATA, sect_buf, words);
89 void ftide_dfifo_ready(ulong *time)
91 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
93 while (!(READ_STATUS() & STATUS_RFE)) {
101 extern ulong ide_bus_offset[CONFIG_SYS_IDE_MAXBUS];
103 /* Reset_IDE_controller */
104 static void reset_ide_controller(void)
106 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
109 val = inl(&ftide020->cr);
112 outl(val, &ftide020->cr);
114 /* wait until reset OK, this is poor HW design */
116 val &= ~(CONTROL_RST);
117 outl(val, &ftide020->cr);
121 outl(val, &ftide020->cr);
123 /* wait until reset OK, this is poor HW design */
125 val &= ~(CONTROL_SRST);
126 outl(val, &ftide020->cr);
128 /* IORDY enable for PIO, for 2 device */
129 val |= (CONTROL_IRE0 | CONTROL_IRE1);
130 outl(val, &ftide020->cr);
133 /* IDE clock frequence */
134 uint ftide_clock_freq(void)
137 * todo: To aquire dynamic system frequency is dependend on the power
138 * management unit which the ftide020 is connected to. In current,
139 * there are only few PMU supports in u-boot.
140 * So this function is wait for future enhancement.
145 /* Calculate Timing Registers */
146 static unsigned int timing_cal(u16 t0, u16 t1, u16 t2, u16 t4)
148 unsigned int val, ahb_ns = 8;
151 T1 = (u8) (t1 / ahb_ns);
152 if ((T1 * ahb_ns) == t1)
155 T2 = (u8) (t2 / ahb_ns);
156 if ((T2 * ahb_ns) == t2)
159 T4 = (u8) (t4 / ahb_ns);
160 if ((T4 * ahb_ns) == t4)
163 TEOC = (u8) (t0 / ahb_ns);
164 if ((TEOC * ahb_ns) == t0)
167 TEOC = ((TEOC > (T1 + T2 + T4)) ? (TEOC - (T1 + T2 + T4)) : 0);
170 * Here the fields in data timing registers in PIO mode
171 * is accessed the same way as command timing registers.
173 val = DT_REG_PIO_T1(T1) |
176 DT_REG_PIO_TEOC(TEOC);
181 /* Set Timing Register */
182 static unsigned int set_mode_timing(u8 dev, u8 id, u8 mode)
184 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
186 u8 tcyc, tcvs, tmli, tenv, tack, trp;
187 unsigned int val, sysclk = 8;
189 if (id >= TATOL_TIMING)
192 sysclk = ftide_clock_freq();
195 if (mode < REG_MODE) {
196 t0 = REG_ACCESS_TIMING[REG_T0][mode];
197 t1 = REG_ACCESS_TIMING[REG_T1][mode];
198 t2 = REG_ACCESS_TIMING[REG_T2][mode];
199 t4 = REG_ACCESS_TIMING[REG_T4][mode];
201 val = timing_cal(t0, t1, t2, t4);
202 outl(val, (dev ? &ftide020->ctrd1 : &ftide020->ctrd0));
207 if (mode < PIO_MODE) {
208 t0 = PIO_ACCESS_TIMING[PIO_T0][mode];
209 t1 = PIO_ACCESS_TIMING[PIO_T1][mode];
210 t2 = PIO_ACCESS_TIMING[PIO_T2][mode];
211 t4 = PIO_ACCESS_TIMING[PIO_T4][mode];
213 val = timing_cal(t0, t1, t2, t4);
215 outl(val, (dev ? &ftide020->dtrd1 : &ftide020->dtrd0));
220 if (mode < UDMA_MODE) {
223 * for tcyc, tcvs, tmli, tenv, trp, tack
225 tcyc = (u8) (((UDMA_ACCESS_TIMING[UDMA_TCYC][mode] \
226 * sysclk) + 9990) / 10000);
227 tcvs = (u8) (((UDMA_ACCESS_TIMING[UDMA_TCVS][mode] \
228 * sysclk) + 9990) / 10000);
229 tmli = (u8) (((UDMA_ACCESS_TIMING[UDMA_TMLI][mode] \
230 * sysclk) + 9990) / 10000);
231 tenv = (u8) (((UDMA_ACCESS_TIMING[UDMA_TENV][mode] \
232 * sysclk) + 9990) / 10000);
233 trp = (u8) (((UDMA_ACCESS_TIMING[UDMA_TRP][mode] \
234 * sysclk) + 9990) / 10000);
235 tack = (u8) (((UDMA_ACCESS_TIMING[UDMA_TACK][mode] \
236 * sysclk) + 9990) / 10000);
238 val = DT_REG_UDMA_TENV((tenv > 0) ? (tenv - 1) : 0) |
239 DT_REG_UDMA_TMLI((tmli > 0) ? (tmli - 1) : 0) |
240 DT_REG_UDMA_TCYC((tcyc > 0) ? (tcyc - 1) : 0) |
241 DT_REG_UDMA_TACK((tack > 0) ? (tack - 1) : 0) |
242 DT_REG_UDMA_TCVS((tcvs > 0) ? (tcvs - 1) : 0) |
243 DT_REG_UDMA_TRP((trp > 0) ? (trp - 1) : 0);
245 outl(val, (dev ? &ftide020->dtrd1 : &ftide020->dtrd0));
254 static void ftide_read_hwrev(void)
256 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
259 rev = inl(&ftide020->revision);
262 static int ftide_controller_probe(void)
264 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
267 bak = inl(&ftide020->ctrd1);
269 /* probing by using shorter setup time */
270 outl(CONFIG_CTRD1_PROBE_T1, &ftide020->ctrd1);
271 if ((inl(&ftide020->ctrd1) & 0xff) != CONFIG_CTRD1_PROBE_T1) {
272 outl(bak, &ftide020->ctrd1);
276 /* probing by using longer setup time */
277 outl(CONFIG_CTRD1_PROBE_T2, &ftide020->ctrd1);
278 if ((inl(&ftide020->ctrd1) & 0xff) != CONFIG_CTRD1_PROBE_T2) {
279 outl(bak, &ftide020->ctrd1);
283 outl(bak, &ftide020->ctrd1);
288 /* ide_preinit() was migrated from linux driver ide_probe_for_ftide() */
289 int ide_preinit(void)
291 static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
297 for (i = 0; i < CONFIG_SYS_IDE_MAXBUS; i++)
298 ide_bus_offset[i] = -ATA_STATUS;
300 /* auto-detect IDE controller */
301 if (ftide_controller_probe()) {
302 printf("FTIDE020_S\n");
304 printf("FTIDE020_S ATA controller not found.\n");
308 /* check HW IP revision */
311 /* set FIFO threshold */
312 outl(((WRITE_FIFO - RX_THRESH) << 16) | RX_THRESH, &ftide020->dmatirr);
314 /* set Device_0 PIO_4 timing */
315 set_mode_timing(0, CMD_TIMING, REG_MODE4);
316 set_mode_timing(0, PIO_TIMING, PIO_MODE4);
318 /* set Device_1 PIO_4 timing */
319 set_mode_timing(1, CMD_TIMING, REG_MODE4);
320 set_mode_timing(1, PIO_TIMING, PIO_MODE4);
324 outl(0x0, &ftide020->cr);
327 outl(0x0fff0fff, &ftide020->ahbtr);
330 /* Enable controller Interrupt */
331 val = inl(&ftide020->cr);
333 /* Enable: IDE IRQ, IDE Terminate ERROR IRQ, AHB Timeout error IRQ */
334 val |= (CONTROL_IIE | CONTROL_TERIE | CONTROL_AERIE);
335 outl(val, &ftide020->cr);
342 void ide_set_reset(int flag)
344 debug("ide_set_reset()\n");
345 reset_ide_controller();