Merge tag 'printk-for-6.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/print...
[platform/kernel/linux-starfive.git] / drivers / block / drbd / drbd_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3    drbd.c
4
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13
14
15  */
16
17 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #include <linux/unistd.h>
41 #include <linux/vmalloc.h>
42 #include <linux/sched/signal.h>
43
44 #include <linux/drbd_limits.h>
45 #include "drbd_int.h"
46 #include "drbd_protocol.h"
47 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
48 #include "drbd_vli.h"
49 #include "drbd_debugfs.h"
50
51 static DEFINE_MUTEX(drbd_main_mutex);
52 static int drbd_open(struct gendisk *disk, blk_mode_t mode);
53 static void drbd_release(struct gendisk *gd);
54 static void md_sync_timer_fn(struct timer_list *t);
55 static int w_bitmap_io(struct drbd_work *w, int unused);
56
57 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
58               "Lars Ellenberg <lars@linbit.com>");
59 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
60 MODULE_VERSION(REL_VERSION);
61 MODULE_LICENSE("GPL");
62 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
63                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
64 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
65
66 #include <linux/moduleparam.h>
67 /* thanks to these macros, if compiled into the kernel (not-module),
68  * these become boot parameters (e.g., drbd.minor_count) */
69
70 #ifdef CONFIG_DRBD_FAULT_INJECTION
71 int drbd_enable_faults;
72 int drbd_fault_rate;
73 static int drbd_fault_count;
74 static int drbd_fault_devs;
75 /* bitmap of enabled faults */
76 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
77 /* fault rate % value - applies to all enabled faults */
78 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
79 /* count of faults inserted */
80 module_param_named(fault_count, drbd_fault_count, int, 0664);
81 /* bitmap of devices to insert faults on */
82 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
83 #endif
84
85 /* module parameters we can keep static */
86 static bool drbd_allow_oos; /* allow_open_on_secondary */
87 static bool drbd_disable_sendpage;
88 MODULE_PARM_DESC(allow_oos, "DONT USE!");
89 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
90 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
91
92 /* module parameters we share */
93 int drbd_proc_details; /* Detail level in proc drbd*/
94 module_param_named(proc_details, drbd_proc_details, int, 0644);
95 /* module parameters shared with defaults */
96 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
97 /* Module parameter for setting the user mode helper program
98  * to run. Default is /sbin/drbdadm */
99 char drbd_usermode_helper[80] = "/sbin/drbdadm";
100 module_param_named(minor_count, drbd_minor_count, uint, 0444);
101 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
102
103 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
104  * as member "struct gendisk *vdisk;"
105  */
106 struct idr drbd_devices;
107 struct list_head drbd_resources;
108 struct mutex resources_mutex;
109
110 struct kmem_cache *drbd_request_cache;
111 struct kmem_cache *drbd_ee_cache;       /* peer requests */
112 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
113 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
114 mempool_t drbd_request_mempool;
115 mempool_t drbd_ee_mempool;
116 mempool_t drbd_md_io_page_pool;
117 struct bio_set drbd_md_io_bio_set;
118 struct bio_set drbd_io_bio_set;
119
120 /* I do not use a standard mempool, because:
121    1) I want to hand out the pre-allocated objects first.
122    2) I want to be able to interrupt sleeping allocation with a signal.
123    Note: This is a single linked list, the next pointer is the private
124          member of struct page.
125  */
126 struct page *drbd_pp_pool;
127 DEFINE_SPINLOCK(drbd_pp_lock);
128 int          drbd_pp_vacant;
129 wait_queue_head_t drbd_pp_wait;
130
131 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
132
133 static const struct block_device_operations drbd_ops = {
134         .owner          = THIS_MODULE,
135         .submit_bio     = drbd_submit_bio,
136         .open           = drbd_open,
137         .release        = drbd_release,
138 };
139
140 #ifdef __CHECKER__
141 /* When checking with sparse, and this is an inline function, sparse will
142    give tons of false positives. When this is a real functions sparse works.
143  */
144 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
145 {
146         int io_allowed;
147
148         atomic_inc(&device->local_cnt);
149         io_allowed = (device->state.disk >= mins);
150         if (!io_allowed) {
151                 if (atomic_dec_and_test(&device->local_cnt))
152                         wake_up(&device->misc_wait);
153         }
154         return io_allowed;
155 }
156
157 #endif
158
159 /**
160  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
161  * @connection: DRBD connection.
162  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
163  * @set_size:   Expected number of requests before that barrier.
164  *
165  * In case the passed barrier_nr or set_size does not match the oldest
166  * epoch of not yet barrier-acked requests, this function will cause a
167  * termination of the connection.
168  */
169 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
170                 unsigned int set_size)
171 {
172         struct drbd_request *r;
173         struct drbd_request *req = NULL, *tmp = NULL;
174         int expect_epoch = 0;
175         int expect_size = 0;
176
177         spin_lock_irq(&connection->resource->req_lock);
178
179         /* find oldest not yet barrier-acked write request,
180          * count writes in its epoch. */
181         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
182                 const unsigned s = r->rq_state;
183                 if (!req) {
184                         if (!(s & RQ_WRITE))
185                                 continue;
186                         if (!(s & RQ_NET_MASK))
187                                 continue;
188                         if (s & RQ_NET_DONE)
189                                 continue;
190                         req = r;
191                         expect_epoch = req->epoch;
192                         expect_size ++;
193                 } else {
194                         if (r->epoch != expect_epoch)
195                                 break;
196                         if (!(s & RQ_WRITE))
197                                 continue;
198                         /* if (s & RQ_DONE): not expected */
199                         /* if (!(s & RQ_NET_MASK)): not expected */
200                         expect_size++;
201                 }
202         }
203
204         /* first some paranoia code */
205         if (req == NULL) {
206                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
207                          barrier_nr);
208                 goto bail;
209         }
210         if (expect_epoch != barrier_nr) {
211                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
212                          barrier_nr, expect_epoch);
213                 goto bail;
214         }
215
216         if (expect_size != set_size) {
217                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
218                          barrier_nr, set_size, expect_size);
219                 goto bail;
220         }
221
222         /* Clean up list of requests processed during current epoch. */
223         /* this extra list walk restart is paranoia,
224          * to catch requests being barrier-acked "unexpectedly".
225          * It usually should find the same req again, or some READ preceding it. */
226         list_for_each_entry(req, &connection->transfer_log, tl_requests)
227                 if (req->epoch == expect_epoch) {
228                         tmp = req;
229                         break;
230                 }
231         req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
232         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
233                 struct drbd_peer_device *peer_device;
234                 if (req->epoch != expect_epoch)
235                         break;
236                 peer_device = conn_peer_device(connection, req->device->vnr);
237                 _req_mod(req, BARRIER_ACKED, peer_device);
238         }
239         spin_unlock_irq(&connection->resource->req_lock);
240
241         return;
242
243 bail:
244         spin_unlock_irq(&connection->resource->req_lock);
245         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
246 }
247
248
249 /**
250  * _tl_restart() - Walks the transfer log, and applies an action to all requests
251  * @connection: DRBD connection to operate on.
252  * @what:       The action/event to perform with all request objects
253  *
254  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
255  * RESTART_FROZEN_DISK_IO.
256  */
257 /* must hold resource->req_lock */
258 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
259 {
260         struct drbd_peer_device *peer_device;
261         struct drbd_request *req, *r;
262
263         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
264                 peer_device = conn_peer_device(connection, req->device->vnr);
265                 _req_mod(req, what, peer_device);
266         }
267 }
268
269 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
270 {
271         spin_lock_irq(&connection->resource->req_lock);
272         _tl_restart(connection, what);
273         spin_unlock_irq(&connection->resource->req_lock);
274 }
275
276 /**
277  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
278  * @connection: DRBD connection.
279  *
280  * This is called after the connection to the peer was lost. The storage covered
281  * by the requests on the transfer gets marked as our of sync. Called from the
282  * receiver thread and the worker thread.
283  */
284 void tl_clear(struct drbd_connection *connection)
285 {
286         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
287 }
288
289 /**
290  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
291  * @device:     DRBD device.
292  */
293 void tl_abort_disk_io(struct drbd_device *device)
294 {
295         struct drbd_connection *connection = first_peer_device(device)->connection;
296         struct drbd_request *req, *r;
297
298         spin_lock_irq(&connection->resource->req_lock);
299         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
300                 if (!(req->rq_state & RQ_LOCAL_PENDING))
301                         continue;
302                 if (req->device != device)
303                         continue;
304                 _req_mod(req, ABORT_DISK_IO, NULL);
305         }
306         spin_unlock_irq(&connection->resource->req_lock);
307 }
308
309 static int drbd_thread_setup(void *arg)
310 {
311         struct drbd_thread *thi = (struct drbd_thread *) arg;
312         struct drbd_resource *resource = thi->resource;
313         unsigned long flags;
314         int retval;
315
316         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
317                  thi->name[0],
318                  resource->name);
319
320         allow_kernel_signal(DRBD_SIGKILL);
321         allow_kernel_signal(SIGXCPU);
322 restart:
323         retval = thi->function(thi);
324
325         spin_lock_irqsave(&thi->t_lock, flags);
326
327         /* if the receiver has been "EXITING", the last thing it did
328          * was set the conn state to "StandAlone",
329          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
330          * and receiver thread will be "started".
331          * drbd_thread_start needs to set "RESTARTING" in that case.
332          * t_state check and assignment needs to be within the same spinlock,
333          * so either thread_start sees EXITING, and can remap to RESTARTING,
334          * or thread_start see NONE, and can proceed as normal.
335          */
336
337         if (thi->t_state == RESTARTING) {
338                 drbd_info(resource, "Restarting %s thread\n", thi->name);
339                 thi->t_state = RUNNING;
340                 spin_unlock_irqrestore(&thi->t_lock, flags);
341                 goto restart;
342         }
343
344         thi->task = NULL;
345         thi->t_state = NONE;
346         smp_mb();
347         complete_all(&thi->stop);
348         spin_unlock_irqrestore(&thi->t_lock, flags);
349
350         drbd_info(resource, "Terminating %s\n", current->comm);
351
352         /* Release mod reference taken when thread was started */
353
354         if (thi->connection)
355                 kref_put(&thi->connection->kref, drbd_destroy_connection);
356         kref_put(&resource->kref, drbd_destroy_resource);
357         module_put(THIS_MODULE);
358         return retval;
359 }
360
361 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
362                              int (*func) (struct drbd_thread *), const char *name)
363 {
364         spin_lock_init(&thi->t_lock);
365         thi->task    = NULL;
366         thi->t_state = NONE;
367         thi->function = func;
368         thi->resource = resource;
369         thi->connection = NULL;
370         thi->name = name;
371 }
372
373 int drbd_thread_start(struct drbd_thread *thi)
374 {
375         struct drbd_resource *resource = thi->resource;
376         struct task_struct *nt;
377         unsigned long flags;
378
379         /* is used from state engine doing drbd_thread_stop_nowait,
380          * while holding the req lock irqsave */
381         spin_lock_irqsave(&thi->t_lock, flags);
382
383         switch (thi->t_state) {
384         case NONE:
385                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
386                          thi->name, current->comm, current->pid);
387
388                 /* Get ref on module for thread - this is released when thread exits */
389                 if (!try_module_get(THIS_MODULE)) {
390                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
391                         spin_unlock_irqrestore(&thi->t_lock, flags);
392                         return false;
393                 }
394
395                 kref_get(&resource->kref);
396                 if (thi->connection)
397                         kref_get(&thi->connection->kref);
398
399                 init_completion(&thi->stop);
400                 thi->reset_cpu_mask = 1;
401                 thi->t_state = RUNNING;
402                 spin_unlock_irqrestore(&thi->t_lock, flags);
403                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
404
405                 nt = kthread_create(drbd_thread_setup, (void *) thi,
406                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
407
408                 if (IS_ERR(nt)) {
409                         drbd_err(resource, "Couldn't start thread\n");
410
411                         if (thi->connection)
412                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
413                         kref_put(&resource->kref, drbd_destroy_resource);
414                         module_put(THIS_MODULE);
415                         return false;
416                 }
417                 spin_lock_irqsave(&thi->t_lock, flags);
418                 thi->task = nt;
419                 thi->t_state = RUNNING;
420                 spin_unlock_irqrestore(&thi->t_lock, flags);
421                 wake_up_process(nt);
422                 break;
423         case EXITING:
424                 thi->t_state = RESTARTING;
425                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
426                                 thi->name, current->comm, current->pid);
427                 fallthrough;
428         case RUNNING:
429         case RESTARTING:
430         default:
431                 spin_unlock_irqrestore(&thi->t_lock, flags);
432                 break;
433         }
434
435         return true;
436 }
437
438
439 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
440 {
441         unsigned long flags;
442
443         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
444
445         /* may be called from state engine, holding the req lock irqsave */
446         spin_lock_irqsave(&thi->t_lock, flags);
447
448         if (thi->t_state == NONE) {
449                 spin_unlock_irqrestore(&thi->t_lock, flags);
450                 if (restart)
451                         drbd_thread_start(thi);
452                 return;
453         }
454
455         if (thi->t_state != ns) {
456                 if (thi->task == NULL) {
457                         spin_unlock_irqrestore(&thi->t_lock, flags);
458                         return;
459                 }
460
461                 thi->t_state = ns;
462                 smp_mb();
463                 init_completion(&thi->stop);
464                 if (thi->task != current)
465                         send_sig(DRBD_SIGKILL, thi->task, 1);
466         }
467
468         spin_unlock_irqrestore(&thi->t_lock, flags);
469
470         if (wait)
471                 wait_for_completion(&thi->stop);
472 }
473
474 int conn_lowest_minor(struct drbd_connection *connection)
475 {
476         struct drbd_peer_device *peer_device;
477         int vnr = 0, minor = -1;
478
479         rcu_read_lock();
480         peer_device = idr_get_next(&connection->peer_devices, &vnr);
481         if (peer_device)
482                 minor = device_to_minor(peer_device->device);
483         rcu_read_unlock();
484
485         return minor;
486 }
487
488 #ifdef CONFIG_SMP
489 /*
490  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
491  *
492  * Forces all threads of a resource onto the same CPU. This is beneficial for
493  * DRBD's performance. May be overwritten by user's configuration.
494  */
495 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
496 {
497         unsigned int *resources_per_cpu, min_index = ~0;
498
499         resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
500                                     GFP_KERNEL);
501         if (resources_per_cpu) {
502                 struct drbd_resource *resource;
503                 unsigned int cpu, min = ~0;
504
505                 rcu_read_lock();
506                 for_each_resource_rcu(resource, &drbd_resources) {
507                         for_each_cpu(cpu, resource->cpu_mask)
508                                 resources_per_cpu[cpu]++;
509                 }
510                 rcu_read_unlock();
511                 for_each_online_cpu(cpu) {
512                         if (resources_per_cpu[cpu] < min) {
513                                 min = resources_per_cpu[cpu];
514                                 min_index = cpu;
515                         }
516                 }
517                 kfree(resources_per_cpu);
518         }
519         if (min_index == ~0) {
520                 cpumask_setall(*cpu_mask);
521                 return;
522         }
523         cpumask_set_cpu(min_index, *cpu_mask);
524 }
525
526 /**
527  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
528  * @thi:        drbd_thread object
529  *
530  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
531  * prematurely.
532  */
533 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
534 {
535         struct drbd_resource *resource = thi->resource;
536         struct task_struct *p = current;
537
538         if (!thi->reset_cpu_mask)
539                 return;
540         thi->reset_cpu_mask = 0;
541         set_cpus_allowed_ptr(p, resource->cpu_mask);
542 }
543 #else
544 #define drbd_calc_cpu_mask(A) ({})
545 #endif
546
547 /*
548  * drbd_header_size  -  size of a packet header
549  *
550  * The header size is a multiple of 8, so any payload following the header is
551  * word aligned on 64-bit architectures.  (The bitmap send and receive code
552  * relies on this.)
553  */
554 unsigned int drbd_header_size(struct drbd_connection *connection)
555 {
556         if (connection->agreed_pro_version >= 100) {
557                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
558                 return sizeof(struct p_header100);
559         } else {
560                 BUILD_BUG_ON(sizeof(struct p_header80) !=
561                              sizeof(struct p_header95));
562                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
563                 return sizeof(struct p_header80);
564         }
565 }
566
567 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
568 {
569         h->magic   = cpu_to_be32(DRBD_MAGIC);
570         h->command = cpu_to_be16(cmd);
571         h->length  = cpu_to_be16(size);
572         return sizeof(struct p_header80);
573 }
574
575 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
576 {
577         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
578         h->command = cpu_to_be16(cmd);
579         h->length = cpu_to_be32(size);
580         return sizeof(struct p_header95);
581 }
582
583 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
584                                       int size, int vnr)
585 {
586         h->magic = cpu_to_be32(DRBD_MAGIC_100);
587         h->volume = cpu_to_be16(vnr);
588         h->command = cpu_to_be16(cmd);
589         h->length = cpu_to_be32(size);
590         h->pad = 0;
591         return sizeof(struct p_header100);
592 }
593
594 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
595                                    void *buffer, enum drbd_packet cmd, int size)
596 {
597         if (connection->agreed_pro_version >= 100)
598                 return prepare_header100(buffer, cmd, size, vnr);
599         else if (connection->agreed_pro_version >= 95 &&
600                  size > DRBD_MAX_SIZE_H80_PACKET)
601                 return prepare_header95(buffer, cmd, size);
602         else
603                 return prepare_header80(buffer, cmd, size);
604 }
605
606 static void *__conn_prepare_command(struct drbd_connection *connection,
607                                     struct drbd_socket *sock)
608 {
609         if (!sock->socket)
610                 return NULL;
611         return sock->sbuf + drbd_header_size(connection);
612 }
613
614 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
615 {
616         void *p;
617
618         mutex_lock(&sock->mutex);
619         p = __conn_prepare_command(connection, sock);
620         if (!p)
621                 mutex_unlock(&sock->mutex);
622
623         return p;
624 }
625
626 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
627 {
628         return conn_prepare_command(peer_device->connection, sock);
629 }
630
631 static int __send_command(struct drbd_connection *connection, int vnr,
632                           struct drbd_socket *sock, enum drbd_packet cmd,
633                           unsigned int header_size, void *data,
634                           unsigned int size)
635 {
636         int msg_flags;
637         int err;
638
639         /*
640          * Called with @data == NULL and the size of the data blocks in @size
641          * for commands that send data blocks.  For those commands, omit the
642          * MSG_MORE flag: this will increase the likelihood that data blocks
643          * which are page aligned on the sender will end up page aligned on the
644          * receiver.
645          */
646         msg_flags = data ? MSG_MORE : 0;
647
648         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
649                                       header_size + size);
650         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
651                             msg_flags);
652         if (data && !err)
653                 err = drbd_send_all(connection, sock->socket, data, size, 0);
654         /* DRBD protocol "pings" are latency critical.
655          * This is supposed to trigger tcp_push_pending_frames() */
656         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
657                 tcp_sock_set_nodelay(sock->socket->sk);
658
659         return err;
660 }
661
662 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
663                                enum drbd_packet cmd, unsigned int header_size,
664                                void *data, unsigned int size)
665 {
666         return __send_command(connection, 0, sock, cmd, header_size, data, size);
667 }
668
669 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670                       enum drbd_packet cmd, unsigned int header_size,
671                       void *data, unsigned int size)
672 {
673         int err;
674
675         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
676         mutex_unlock(&sock->mutex);
677         return err;
678 }
679
680 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
681                       enum drbd_packet cmd, unsigned int header_size,
682                       void *data, unsigned int size)
683 {
684         int err;
685
686         err = __send_command(peer_device->connection, peer_device->device->vnr,
687                              sock, cmd, header_size, data, size);
688         mutex_unlock(&sock->mutex);
689         return err;
690 }
691
692 int drbd_send_ping(struct drbd_connection *connection)
693 {
694         struct drbd_socket *sock;
695
696         sock = &connection->meta;
697         if (!conn_prepare_command(connection, sock))
698                 return -EIO;
699         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
700 }
701
702 int drbd_send_ping_ack(struct drbd_connection *connection)
703 {
704         struct drbd_socket *sock;
705
706         sock = &connection->meta;
707         if (!conn_prepare_command(connection, sock))
708                 return -EIO;
709         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
710 }
711
712 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
713 {
714         struct drbd_socket *sock;
715         struct p_rs_param_95 *p;
716         int size;
717         const int apv = peer_device->connection->agreed_pro_version;
718         enum drbd_packet cmd;
719         struct net_conf *nc;
720         struct disk_conf *dc;
721
722         sock = &peer_device->connection->data;
723         p = drbd_prepare_command(peer_device, sock);
724         if (!p)
725                 return -EIO;
726
727         rcu_read_lock();
728         nc = rcu_dereference(peer_device->connection->net_conf);
729
730         size = apv <= 87 ? sizeof(struct p_rs_param)
731                 : apv == 88 ? sizeof(struct p_rs_param)
732                         + strlen(nc->verify_alg) + 1
733                 : apv <= 94 ? sizeof(struct p_rs_param_89)
734                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
735
736         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
737
738         /* initialize verify_alg and csums_alg */
739         BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
740         memset(&p->algs, 0, sizeof(p->algs));
741
742         if (get_ldev(peer_device->device)) {
743                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
744                 p->resync_rate = cpu_to_be32(dc->resync_rate);
745                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
746                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
747                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
748                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
749                 put_ldev(peer_device->device);
750         } else {
751                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
752                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
753                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
754                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
755                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
756         }
757
758         if (apv >= 88)
759                 strcpy(p->verify_alg, nc->verify_alg);
760         if (apv >= 89)
761                 strcpy(p->csums_alg, nc->csums_alg);
762         rcu_read_unlock();
763
764         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
765 }
766
767 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
768 {
769         struct drbd_socket *sock;
770         struct p_protocol *p;
771         struct net_conf *nc;
772         int size, cf;
773
774         sock = &connection->data;
775         p = __conn_prepare_command(connection, sock);
776         if (!p)
777                 return -EIO;
778
779         rcu_read_lock();
780         nc = rcu_dereference(connection->net_conf);
781
782         if (nc->tentative && connection->agreed_pro_version < 92) {
783                 rcu_read_unlock();
784                 drbd_err(connection, "--dry-run is not supported by peer");
785                 return -EOPNOTSUPP;
786         }
787
788         size = sizeof(*p);
789         if (connection->agreed_pro_version >= 87)
790                 size += strlen(nc->integrity_alg) + 1;
791
792         p->protocol      = cpu_to_be32(nc->wire_protocol);
793         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
794         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
795         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
796         p->two_primaries = cpu_to_be32(nc->two_primaries);
797         cf = 0;
798         if (nc->discard_my_data)
799                 cf |= CF_DISCARD_MY_DATA;
800         if (nc->tentative)
801                 cf |= CF_DRY_RUN;
802         p->conn_flags    = cpu_to_be32(cf);
803
804         if (connection->agreed_pro_version >= 87)
805                 strcpy(p->integrity_alg, nc->integrity_alg);
806         rcu_read_unlock();
807
808         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
809 }
810
811 int drbd_send_protocol(struct drbd_connection *connection)
812 {
813         int err;
814
815         mutex_lock(&connection->data.mutex);
816         err = __drbd_send_protocol(connection, P_PROTOCOL);
817         mutex_unlock(&connection->data.mutex);
818
819         return err;
820 }
821
822 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
823 {
824         struct drbd_device *device = peer_device->device;
825         struct drbd_socket *sock;
826         struct p_uuids *p;
827         int i;
828
829         if (!get_ldev_if_state(device, D_NEGOTIATING))
830                 return 0;
831
832         sock = &peer_device->connection->data;
833         p = drbd_prepare_command(peer_device, sock);
834         if (!p) {
835                 put_ldev(device);
836                 return -EIO;
837         }
838         spin_lock_irq(&device->ldev->md.uuid_lock);
839         for (i = UI_CURRENT; i < UI_SIZE; i++)
840                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
841         spin_unlock_irq(&device->ldev->md.uuid_lock);
842
843         device->comm_bm_set = drbd_bm_total_weight(device);
844         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
845         rcu_read_lock();
846         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
847         rcu_read_unlock();
848         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
849         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
850         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
851
852         put_ldev(device);
853         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
854 }
855
856 int drbd_send_uuids(struct drbd_peer_device *peer_device)
857 {
858         return _drbd_send_uuids(peer_device, 0);
859 }
860
861 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
862 {
863         return _drbd_send_uuids(peer_device, 8);
864 }
865
866 void drbd_print_uuids(struct drbd_device *device, const char *text)
867 {
868         if (get_ldev_if_state(device, D_NEGOTIATING)) {
869                 u64 *uuid = device->ldev->md.uuid;
870                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
871                      text,
872                      (unsigned long long)uuid[UI_CURRENT],
873                      (unsigned long long)uuid[UI_BITMAP],
874                      (unsigned long long)uuid[UI_HISTORY_START],
875                      (unsigned long long)uuid[UI_HISTORY_END]);
876                 put_ldev(device);
877         } else {
878                 drbd_info(device, "%s effective data uuid: %016llX\n",
879                                 text,
880                                 (unsigned long long)device->ed_uuid);
881         }
882 }
883
884 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
885 {
886         struct drbd_device *device = peer_device->device;
887         struct drbd_socket *sock;
888         struct p_rs_uuid *p;
889         u64 uuid;
890
891         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
892
893         uuid = device->ldev->md.uuid[UI_BITMAP];
894         if (uuid && uuid != UUID_JUST_CREATED)
895                 uuid = uuid + UUID_NEW_BM_OFFSET;
896         else
897                 get_random_bytes(&uuid, sizeof(u64));
898         drbd_uuid_set(device, UI_BITMAP, uuid);
899         drbd_print_uuids(device, "updated sync UUID");
900         drbd_md_sync(device);
901
902         sock = &peer_device->connection->data;
903         p = drbd_prepare_command(peer_device, sock);
904         if (p) {
905                 p->uuid = cpu_to_be64(uuid);
906                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
907         }
908 }
909
910 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
911 {
912         struct drbd_device *device = peer_device->device;
913         struct drbd_socket *sock;
914         struct p_sizes *p;
915         sector_t d_size, u_size;
916         int q_order_type;
917         unsigned int max_bio_size;
918         unsigned int packet_size;
919
920         sock = &peer_device->connection->data;
921         p = drbd_prepare_command(peer_device, sock);
922         if (!p)
923                 return -EIO;
924
925         packet_size = sizeof(*p);
926         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
927                 packet_size += sizeof(p->qlim[0]);
928
929         memset(p, 0, packet_size);
930         if (get_ldev_if_state(device, D_NEGOTIATING)) {
931                 struct block_device *bdev = device->ldev->backing_bdev;
932                 struct request_queue *q = bdev_get_queue(bdev);
933
934                 d_size = drbd_get_max_capacity(device->ldev);
935                 rcu_read_lock();
936                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
937                 rcu_read_unlock();
938                 q_order_type = drbd_queue_order_type(device);
939                 max_bio_size = queue_max_hw_sectors(q) << 9;
940                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
941                 p->qlim->physical_block_size =
942                         cpu_to_be32(bdev_physical_block_size(bdev));
943                 p->qlim->logical_block_size =
944                         cpu_to_be32(bdev_logical_block_size(bdev));
945                 p->qlim->alignment_offset =
946                         cpu_to_be32(bdev_alignment_offset(bdev));
947                 p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev));
948                 p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev));
949                 p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev);
950                 put_ldev(device);
951         } else {
952                 struct request_queue *q = device->rq_queue;
953
954                 p->qlim->physical_block_size =
955                         cpu_to_be32(queue_physical_block_size(q));
956                 p->qlim->logical_block_size =
957                         cpu_to_be32(queue_logical_block_size(q));
958                 p->qlim->alignment_offset = 0;
959                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
960                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
961                 p->qlim->discard_enabled = 0;
962
963                 d_size = 0;
964                 u_size = 0;
965                 q_order_type = QUEUE_ORDERED_NONE;
966                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
967         }
968
969         if (peer_device->connection->agreed_pro_version <= 94)
970                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
971         else if (peer_device->connection->agreed_pro_version < 100)
972                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
973
974         p->d_size = cpu_to_be64(d_size);
975         p->u_size = cpu_to_be64(u_size);
976         if (trigger_reply)
977                 p->c_size = 0;
978         else
979                 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
980         p->max_bio_size = cpu_to_be32(max_bio_size);
981         p->queue_order_type = cpu_to_be16(q_order_type);
982         p->dds_flags = cpu_to_be16(flags);
983
984         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
985 }
986
987 /**
988  * drbd_send_current_state() - Sends the drbd state to the peer
989  * @peer_device:        DRBD peer device.
990  */
991 int drbd_send_current_state(struct drbd_peer_device *peer_device)
992 {
993         struct drbd_socket *sock;
994         struct p_state *p;
995
996         sock = &peer_device->connection->data;
997         p = drbd_prepare_command(peer_device, sock);
998         if (!p)
999                 return -EIO;
1000         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1001         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1002 }
1003
1004 /**
1005  * drbd_send_state() - After a state change, sends the new state to the peer
1006  * @peer_device:      DRBD peer device.
1007  * @state:     the state to send, not necessarily the current state.
1008  *
1009  * Each state change queues an "after_state_ch" work, which will eventually
1010  * send the resulting new state to the peer. If more state changes happen
1011  * between queuing and processing of the after_state_ch work, we still
1012  * want to send each intermediary state in the order it occurred.
1013  */
1014 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1015 {
1016         struct drbd_socket *sock;
1017         struct p_state *p;
1018
1019         sock = &peer_device->connection->data;
1020         p = drbd_prepare_command(peer_device, sock);
1021         if (!p)
1022                 return -EIO;
1023         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1024         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1025 }
1026
1027 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1028 {
1029         struct drbd_socket *sock;
1030         struct p_req_state *p;
1031
1032         sock = &peer_device->connection->data;
1033         p = drbd_prepare_command(peer_device, sock);
1034         if (!p)
1035                 return -EIO;
1036         p->mask = cpu_to_be32(mask.i);
1037         p->val = cpu_to_be32(val.i);
1038         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1039 }
1040
1041 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1042 {
1043         enum drbd_packet cmd;
1044         struct drbd_socket *sock;
1045         struct p_req_state *p;
1046
1047         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1048         sock = &connection->data;
1049         p = conn_prepare_command(connection, sock);
1050         if (!p)
1051                 return -EIO;
1052         p->mask = cpu_to_be32(mask.i);
1053         p->val = cpu_to_be32(val.i);
1054         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1055 }
1056
1057 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1058 {
1059         struct drbd_socket *sock;
1060         struct p_req_state_reply *p;
1061
1062         sock = &peer_device->connection->meta;
1063         p = drbd_prepare_command(peer_device, sock);
1064         if (p) {
1065                 p->retcode = cpu_to_be32(retcode);
1066                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1067         }
1068 }
1069
1070 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1071 {
1072         struct drbd_socket *sock;
1073         struct p_req_state_reply *p;
1074         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1075
1076         sock = &connection->meta;
1077         p = conn_prepare_command(connection, sock);
1078         if (p) {
1079                 p->retcode = cpu_to_be32(retcode);
1080                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1081         }
1082 }
1083
1084 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1085 {
1086         BUG_ON(code & ~0xf);
1087         p->encoding = (p->encoding & ~0xf) | code;
1088 }
1089
1090 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1091 {
1092         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1093 }
1094
1095 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1096 {
1097         BUG_ON(n & ~0x7);
1098         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1099 }
1100
1101 static int fill_bitmap_rle_bits(struct drbd_device *device,
1102                          struct p_compressed_bm *p,
1103                          unsigned int size,
1104                          struct bm_xfer_ctx *c)
1105 {
1106         struct bitstream bs;
1107         unsigned long plain_bits;
1108         unsigned long tmp;
1109         unsigned long rl;
1110         unsigned len;
1111         unsigned toggle;
1112         int bits, use_rle;
1113
1114         /* may we use this feature? */
1115         rcu_read_lock();
1116         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1117         rcu_read_unlock();
1118         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1119                 return 0;
1120
1121         if (c->bit_offset >= c->bm_bits)
1122                 return 0; /* nothing to do. */
1123
1124         /* use at most thus many bytes */
1125         bitstream_init(&bs, p->code, size, 0);
1126         memset(p->code, 0, size);
1127         /* plain bits covered in this code string */
1128         plain_bits = 0;
1129
1130         /* p->encoding & 0x80 stores whether the first run length is set.
1131          * bit offset is implicit.
1132          * start with toggle == 2 to be able to tell the first iteration */
1133         toggle = 2;
1134
1135         /* see how much plain bits we can stuff into one packet
1136          * using RLE and VLI. */
1137         do {
1138                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1139                                     : _drbd_bm_find_next(device, c->bit_offset);
1140                 if (tmp == -1UL)
1141                         tmp = c->bm_bits;
1142                 rl = tmp - c->bit_offset;
1143
1144                 if (toggle == 2) { /* first iteration */
1145                         if (rl == 0) {
1146                                 /* the first checked bit was set,
1147                                  * store start value, */
1148                                 dcbp_set_start(p, 1);
1149                                 /* but skip encoding of zero run length */
1150                                 toggle = !toggle;
1151                                 continue;
1152                         }
1153                         dcbp_set_start(p, 0);
1154                 }
1155
1156                 /* paranoia: catch zero runlength.
1157                  * can only happen if bitmap is modified while we scan it. */
1158                 if (rl == 0) {
1159                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1160                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1161                         return -1;
1162                 }
1163
1164                 bits = vli_encode_bits(&bs, rl);
1165                 if (bits == -ENOBUFS) /* buffer full */
1166                         break;
1167                 if (bits <= 0) {
1168                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1169                         return 0;
1170                 }
1171
1172                 toggle = !toggle;
1173                 plain_bits += rl;
1174                 c->bit_offset = tmp;
1175         } while (c->bit_offset < c->bm_bits);
1176
1177         len = bs.cur.b - p->code + !!bs.cur.bit;
1178
1179         if (plain_bits < (len << 3)) {
1180                 /* incompressible with this method.
1181                  * we need to rewind both word and bit position. */
1182                 c->bit_offset -= plain_bits;
1183                 bm_xfer_ctx_bit_to_word_offset(c);
1184                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1185                 return 0;
1186         }
1187
1188         /* RLE + VLI was able to compress it just fine.
1189          * update c->word_offset. */
1190         bm_xfer_ctx_bit_to_word_offset(c);
1191
1192         /* store pad_bits */
1193         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1194
1195         return len;
1196 }
1197
1198 /*
1199  * send_bitmap_rle_or_plain
1200  *
1201  * Return 0 when done, 1 when another iteration is needed, and a negative error
1202  * code upon failure.
1203  */
1204 static int
1205 send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c)
1206 {
1207         struct drbd_device *device = peer_device->device;
1208         struct drbd_socket *sock = &peer_device->connection->data;
1209         unsigned int header_size = drbd_header_size(peer_device->connection);
1210         struct p_compressed_bm *p = sock->sbuf + header_size;
1211         int len, err;
1212
1213         len = fill_bitmap_rle_bits(device, p,
1214                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1215         if (len < 0)
1216                 return -EIO;
1217
1218         if (len) {
1219                 dcbp_set_code(p, RLE_VLI_Bits);
1220                 err = __send_command(peer_device->connection, device->vnr, sock,
1221                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1222                                      NULL, 0);
1223                 c->packets[0]++;
1224                 c->bytes[0] += header_size + sizeof(*p) + len;
1225
1226                 if (c->bit_offset >= c->bm_bits)
1227                         len = 0; /* DONE */
1228         } else {
1229                 /* was not compressible.
1230                  * send a buffer full of plain text bits instead. */
1231                 unsigned int data_size;
1232                 unsigned long num_words;
1233                 unsigned long *p = sock->sbuf + header_size;
1234
1235                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1236                 num_words = min_t(size_t, data_size / sizeof(*p),
1237                                   c->bm_words - c->word_offset);
1238                 len = num_words * sizeof(*p);
1239                 if (len)
1240                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1241                 err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP,
1242                                      len, NULL, 0);
1243                 c->word_offset += num_words;
1244                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1245
1246                 c->packets[1]++;
1247                 c->bytes[1] += header_size + len;
1248
1249                 if (c->bit_offset > c->bm_bits)
1250                         c->bit_offset = c->bm_bits;
1251         }
1252         if (!err) {
1253                 if (len == 0) {
1254                         INFO_bm_xfer_stats(peer_device, "send", c);
1255                         return 0;
1256                 } else
1257                         return 1;
1258         }
1259         return -EIO;
1260 }
1261
1262 /* See the comment at receive_bitmap() */
1263 static int _drbd_send_bitmap(struct drbd_device *device,
1264                             struct drbd_peer_device *peer_device)
1265 {
1266         struct bm_xfer_ctx c;
1267         int err;
1268
1269         if (!expect(device, device->bitmap))
1270                 return false;
1271
1272         if (get_ldev(device)) {
1273                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1274                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1275                         drbd_bm_set_all(device);
1276                         if (drbd_bm_write(device, peer_device)) {
1277                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1278                                  * but otherwise process as per normal - need to tell other
1279                                  * side that a full resync is required! */
1280                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1281                         } else {
1282                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1283                                 drbd_md_sync(device);
1284                         }
1285                 }
1286                 put_ldev(device);
1287         }
1288
1289         c = (struct bm_xfer_ctx) {
1290                 .bm_bits = drbd_bm_bits(device),
1291                 .bm_words = drbd_bm_words(device),
1292         };
1293
1294         do {
1295                 err = send_bitmap_rle_or_plain(peer_device, &c);
1296         } while (err > 0);
1297
1298         return err == 0;
1299 }
1300
1301 int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device)
1302 {
1303         struct drbd_socket *sock = &peer_device->connection->data;
1304         int err = -1;
1305
1306         mutex_lock(&sock->mutex);
1307         if (sock->socket)
1308                 err = !_drbd_send_bitmap(device, peer_device);
1309         mutex_unlock(&sock->mutex);
1310         return err;
1311 }
1312
1313 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1314 {
1315         struct drbd_socket *sock;
1316         struct p_barrier_ack *p;
1317
1318         if (connection->cstate < C_WF_REPORT_PARAMS)
1319                 return;
1320
1321         sock = &connection->meta;
1322         p = conn_prepare_command(connection, sock);
1323         if (!p)
1324                 return;
1325         p->barrier = barrier_nr;
1326         p->set_size = cpu_to_be32(set_size);
1327         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1328 }
1329
1330 /**
1331  * _drbd_send_ack() - Sends an ack packet
1332  * @peer_device:        DRBD peer device.
1333  * @cmd:                Packet command code.
1334  * @sector:             sector, needs to be in big endian byte order
1335  * @blksize:            size in byte, needs to be in big endian byte order
1336  * @block_id:           Id, big endian byte order
1337  */
1338 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1339                           u64 sector, u32 blksize, u64 block_id)
1340 {
1341         struct drbd_socket *sock;
1342         struct p_block_ack *p;
1343
1344         if (peer_device->device->state.conn < C_CONNECTED)
1345                 return -EIO;
1346
1347         sock = &peer_device->connection->meta;
1348         p = drbd_prepare_command(peer_device, sock);
1349         if (!p)
1350                 return -EIO;
1351         p->sector = sector;
1352         p->block_id = block_id;
1353         p->blksize = blksize;
1354         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1355         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1356 }
1357
1358 /* dp->sector and dp->block_id already/still in network byte order,
1359  * data_size is payload size according to dp->head,
1360  * and may need to be corrected for digest size. */
1361 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1362                       struct p_data *dp, int data_size)
1363 {
1364         if (peer_device->connection->peer_integrity_tfm)
1365                 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1366         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1367                        dp->block_id);
1368 }
1369
1370 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1371                       struct p_block_req *rp)
1372 {
1373         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1374 }
1375
1376 /**
1377  * drbd_send_ack() - Sends an ack packet
1378  * @peer_device:        DRBD peer device
1379  * @cmd:                packet command code
1380  * @peer_req:           peer request
1381  */
1382 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1383                   struct drbd_peer_request *peer_req)
1384 {
1385         return _drbd_send_ack(peer_device, cmd,
1386                               cpu_to_be64(peer_req->i.sector),
1387                               cpu_to_be32(peer_req->i.size),
1388                               peer_req->block_id);
1389 }
1390
1391 /* This function misuses the block_id field to signal if the blocks
1392  * are is sync or not. */
1393 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1394                      sector_t sector, int blksize, u64 block_id)
1395 {
1396         return _drbd_send_ack(peer_device, cmd,
1397                               cpu_to_be64(sector),
1398                               cpu_to_be32(blksize),
1399                               cpu_to_be64(block_id));
1400 }
1401
1402 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1403                              struct drbd_peer_request *peer_req)
1404 {
1405         struct drbd_socket *sock;
1406         struct p_block_desc *p;
1407
1408         sock = &peer_device->connection->data;
1409         p = drbd_prepare_command(peer_device, sock);
1410         if (!p)
1411                 return -EIO;
1412         p->sector = cpu_to_be64(peer_req->i.sector);
1413         p->blksize = cpu_to_be32(peer_req->i.size);
1414         p->pad = 0;
1415         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1416 }
1417
1418 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1419                        sector_t sector, int size, u64 block_id)
1420 {
1421         struct drbd_socket *sock;
1422         struct p_block_req *p;
1423
1424         sock = &peer_device->connection->data;
1425         p = drbd_prepare_command(peer_device, sock);
1426         if (!p)
1427                 return -EIO;
1428         p->sector = cpu_to_be64(sector);
1429         p->block_id = block_id;
1430         p->blksize = cpu_to_be32(size);
1431         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1432 }
1433
1434 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1435                             void *digest, int digest_size, enum drbd_packet cmd)
1436 {
1437         struct drbd_socket *sock;
1438         struct p_block_req *p;
1439
1440         /* FIXME: Put the digest into the preallocated socket buffer.  */
1441
1442         sock = &peer_device->connection->data;
1443         p = drbd_prepare_command(peer_device, sock);
1444         if (!p)
1445                 return -EIO;
1446         p->sector = cpu_to_be64(sector);
1447         p->block_id = ID_SYNCER /* unused */;
1448         p->blksize = cpu_to_be32(size);
1449         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1450 }
1451
1452 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1453 {
1454         struct drbd_socket *sock;
1455         struct p_block_req *p;
1456
1457         sock = &peer_device->connection->data;
1458         p = drbd_prepare_command(peer_device, sock);
1459         if (!p)
1460                 return -EIO;
1461         p->sector = cpu_to_be64(sector);
1462         p->block_id = ID_SYNCER /* unused */;
1463         p->blksize = cpu_to_be32(size);
1464         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1465 }
1466
1467 /* called on sndtimeo
1468  * returns false if we should retry,
1469  * true if we think connection is dead
1470  */
1471 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1472 {
1473         int drop_it;
1474         /* long elapsed = (long)(jiffies - device->last_received); */
1475
1476         drop_it =   connection->meta.socket == sock
1477                 || !connection->ack_receiver.task
1478                 || get_t_state(&connection->ack_receiver) != RUNNING
1479                 || connection->cstate < C_WF_REPORT_PARAMS;
1480
1481         if (drop_it)
1482                 return true;
1483
1484         drop_it = !--connection->ko_count;
1485         if (!drop_it) {
1486                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1487                          current->comm, current->pid, connection->ko_count);
1488                 request_ping(connection);
1489         }
1490
1491         return drop_it; /* && (device->state == R_PRIMARY) */;
1492 }
1493
1494 static void drbd_update_congested(struct drbd_connection *connection)
1495 {
1496         struct sock *sk = connection->data.socket->sk;
1497         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1498                 set_bit(NET_CONGESTED, &connection->flags);
1499 }
1500
1501 /* The idea of sendpage seems to be to put some kind of reference
1502  * to the page into the skb, and to hand it over to the NIC. In
1503  * this process get_page() gets called.
1504  *
1505  * As soon as the page was really sent over the network put_page()
1506  * gets called by some part of the network layer. [ NIC driver? ]
1507  *
1508  * [ get_page() / put_page() increment/decrement the count. If count
1509  *   reaches 0 the page will be freed. ]
1510  *
1511  * This works nicely with pages from FSs.
1512  * But this means that in protocol A we might signal IO completion too early!
1513  *
1514  * In order not to corrupt data during a resync we must make sure
1515  * that we do not reuse our own buffer pages (EEs) to early, therefore
1516  * we have the net_ee list.
1517  *
1518  * XFS seems to have problems, still, it submits pages with page_count == 0!
1519  * As a workaround, we disable sendpage on pages
1520  * with page_count == 0 or PageSlab.
1521  */
1522 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1523                               int offset, size_t size, unsigned msg_flags)
1524 {
1525         struct socket *socket;
1526         void *addr;
1527         int err;
1528
1529         socket = peer_device->connection->data.socket;
1530         addr = kmap(page) + offset;
1531         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1532         kunmap(page);
1533         if (!err)
1534                 peer_device->device->send_cnt += size >> 9;
1535         return err;
1536 }
1537
1538 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1539                     int offset, size_t size, unsigned msg_flags)
1540 {
1541         struct socket *socket = peer_device->connection->data.socket;
1542         struct msghdr msg = { .msg_flags = msg_flags, };
1543         struct bio_vec bvec;
1544         int len = size;
1545         int err = -EIO;
1546
1547         /* e.g. XFS meta- & log-data is in slab pages, which have a
1548          * page_count of 0 and/or have PageSlab() set.
1549          * we cannot use send_page for those, as that does get_page();
1550          * put_page(); and would cause either a VM_BUG directly, or
1551          * __page_cache_release a page that would actually still be referenced
1552          * by someone, leading to some obscure delayed Oops somewhere else. */
1553         if (!drbd_disable_sendpage && sendpage_ok(page))
1554                 msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES;
1555
1556         drbd_update_congested(peer_device->connection);
1557         do {
1558                 int sent;
1559
1560                 bvec_set_page(&bvec, page, len, offset);
1561                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1562
1563                 sent = sock_sendmsg(socket, &msg);
1564                 if (sent <= 0) {
1565                         if (sent == -EAGAIN) {
1566                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1567                                         break;
1568                                 continue;
1569                         }
1570                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1571                              __func__, (int)size, len, sent);
1572                         if (sent < 0)
1573                                 err = sent;
1574                         break;
1575                 }
1576                 len    -= sent;
1577                 offset += sent;
1578         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1579         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1580
1581         if (len == 0) {
1582                 err = 0;
1583                 peer_device->device->send_cnt += size >> 9;
1584         }
1585         return err;
1586 }
1587
1588 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1589 {
1590         struct bio_vec bvec;
1591         struct bvec_iter iter;
1592
1593         /* hint all but last page with MSG_MORE */
1594         bio_for_each_segment(bvec, bio, iter) {
1595                 int err;
1596
1597                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1598                                          bvec.bv_offset, bvec.bv_len,
1599                                          bio_iter_last(bvec, iter)
1600                                          ? 0 : MSG_MORE);
1601                 if (err)
1602                         return err;
1603         }
1604         return 0;
1605 }
1606
1607 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1608 {
1609         struct bio_vec bvec;
1610         struct bvec_iter iter;
1611
1612         /* hint all but last page with MSG_MORE */
1613         bio_for_each_segment(bvec, bio, iter) {
1614                 int err;
1615
1616                 err = _drbd_send_page(peer_device, bvec.bv_page,
1617                                       bvec.bv_offset, bvec.bv_len,
1618                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1619                 if (err)
1620                         return err;
1621         }
1622         return 0;
1623 }
1624
1625 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1626                             struct drbd_peer_request *peer_req)
1627 {
1628         struct page *page = peer_req->pages;
1629         unsigned len = peer_req->i.size;
1630         int err;
1631
1632         /* hint all but last page with MSG_MORE */
1633         page_chain_for_each(page) {
1634                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1635
1636                 err = _drbd_send_page(peer_device, page, 0, l,
1637                                       page_chain_next(page) ? MSG_MORE : 0);
1638                 if (err)
1639                         return err;
1640                 len -= l;
1641         }
1642         return 0;
1643 }
1644
1645 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1646                              struct bio *bio)
1647 {
1648         if (connection->agreed_pro_version >= 95)
1649                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1650                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1651                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1652                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1653                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1654                           ((connection->agreed_features & DRBD_FF_WZEROES) ?
1655                            (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1656                            : DP_DISCARD)
1657                         : 0);
1658         else
1659                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1660 }
1661
1662 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1663  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1664  */
1665 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1666 {
1667         struct drbd_device *device = peer_device->device;
1668         struct drbd_socket *sock;
1669         struct p_data *p;
1670         void *digest_out;
1671         unsigned int dp_flags = 0;
1672         int digest_size;
1673         int err;
1674
1675         sock = &peer_device->connection->data;
1676         p = drbd_prepare_command(peer_device, sock);
1677         digest_size = peer_device->connection->integrity_tfm ?
1678                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1679
1680         if (!p)
1681                 return -EIO;
1682         p->sector = cpu_to_be64(req->i.sector);
1683         p->block_id = (unsigned long)req;
1684         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1685         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1686         if (device->state.conn >= C_SYNC_SOURCE &&
1687             device->state.conn <= C_PAUSED_SYNC_T)
1688                 dp_flags |= DP_MAY_SET_IN_SYNC;
1689         if (peer_device->connection->agreed_pro_version >= 100) {
1690                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1691                         dp_flags |= DP_SEND_RECEIVE_ACK;
1692                 /* During resync, request an explicit write ack,
1693                  * even in protocol != C */
1694                 if (req->rq_state & RQ_EXP_WRITE_ACK
1695                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1696                         dp_flags |= DP_SEND_WRITE_ACK;
1697         }
1698         p->dp_flags = cpu_to_be32(dp_flags);
1699
1700         if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1701                 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1702                 struct p_trim *t = (struct p_trim*)p;
1703                 t->size = cpu_to_be32(req->i.size);
1704                 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1705                 goto out;
1706         }
1707         digest_out = p + 1;
1708
1709         /* our digest is still only over the payload.
1710          * TRIM does not carry any payload. */
1711         if (digest_size)
1712                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1713         err = __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1714                              sizeof(*p) + digest_size, NULL, req->i.size);
1715         if (!err) {
1716                 /* For protocol A, we have to memcpy the payload into
1717                  * socket buffers, as we may complete right away
1718                  * as soon as we handed it over to tcp, at which point the data
1719                  * pages may become invalid.
1720                  *
1721                  * For data-integrity enabled, we copy it as well, so we can be
1722                  * sure that even if the bio pages may still be modified, it
1723                  * won't change the data on the wire, thus if the digest checks
1724                  * out ok after sending on this side, but does not fit on the
1725                  * receiving side, we sure have detected corruption elsewhere.
1726                  */
1727                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1728                         err = _drbd_send_bio(peer_device, req->master_bio);
1729                 else
1730                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1731
1732                 /* double check digest, sometimes buffers have been modified in flight. */
1733                 if (digest_size > 0 && digest_size <= 64) {
1734                         /* 64 byte, 512 bit, is the largest digest size
1735                          * currently supported in kernel crypto. */
1736                         unsigned char digest[64];
1737                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1738                         if (memcmp(p + 1, digest, digest_size)) {
1739                                 drbd_warn(device,
1740                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1741                                         (unsigned long long)req->i.sector, req->i.size);
1742                         }
1743                 } /* else if (digest_size > 64) {
1744                      ... Be noisy about digest too large ...
1745                 } */
1746         }
1747 out:
1748         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1749
1750         return err;
1751 }
1752
1753 /* answer packet, used to send data back for read requests:
1754  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1755  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1756  */
1757 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1758                     struct drbd_peer_request *peer_req)
1759 {
1760         struct drbd_device *device = peer_device->device;
1761         struct drbd_socket *sock;
1762         struct p_data *p;
1763         int err;
1764         int digest_size;
1765
1766         sock = &peer_device->connection->data;
1767         p = drbd_prepare_command(peer_device, sock);
1768
1769         digest_size = peer_device->connection->integrity_tfm ?
1770                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1771
1772         if (!p)
1773                 return -EIO;
1774         p->sector = cpu_to_be64(peer_req->i.sector);
1775         p->block_id = peer_req->block_id;
1776         p->seq_num = 0;  /* unused */
1777         p->dp_flags = 0;
1778         if (digest_size)
1779                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1780         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1781         if (!err)
1782                 err = _drbd_send_zc_ee(peer_device, peer_req);
1783         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1784
1785         return err;
1786 }
1787
1788 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1789 {
1790         struct drbd_socket *sock;
1791         struct p_block_desc *p;
1792
1793         sock = &peer_device->connection->data;
1794         p = drbd_prepare_command(peer_device, sock);
1795         if (!p)
1796                 return -EIO;
1797         p->sector = cpu_to_be64(req->i.sector);
1798         p->blksize = cpu_to_be32(req->i.size);
1799         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1800 }
1801
1802 /*
1803   drbd_send distinguishes two cases:
1804
1805   Packets sent via the data socket "sock"
1806   and packets sent via the meta data socket "msock"
1807
1808                     sock                      msock
1809   -----------------+-------------------------+------------------------------
1810   timeout           conf.timeout / 2          conf.timeout / 2
1811   timeout action    send a ping via msock     Abort communication
1812                                               and close all sockets
1813 */
1814
1815 /*
1816  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1817  */
1818 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1819               void *buf, size_t size, unsigned msg_flags)
1820 {
1821         struct kvec iov = {.iov_base = buf, .iov_len = size};
1822         struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1823         int rv, sent = 0;
1824
1825         if (!sock)
1826                 return -EBADR;
1827
1828         /* THINK  if (signal_pending) return ... ? */
1829
1830         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size);
1831
1832         if (sock == connection->data.socket) {
1833                 rcu_read_lock();
1834                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1835                 rcu_read_unlock();
1836                 drbd_update_congested(connection);
1837         }
1838         do {
1839                 rv = sock_sendmsg(sock, &msg);
1840                 if (rv == -EAGAIN) {
1841                         if (we_should_drop_the_connection(connection, sock))
1842                                 break;
1843                         else
1844                                 continue;
1845                 }
1846                 if (rv == -EINTR) {
1847                         flush_signals(current);
1848                         rv = 0;
1849                 }
1850                 if (rv < 0)
1851                         break;
1852                 sent += rv;
1853         } while (sent < size);
1854
1855         if (sock == connection->data.socket)
1856                 clear_bit(NET_CONGESTED, &connection->flags);
1857
1858         if (rv <= 0) {
1859                 if (rv != -EAGAIN) {
1860                         drbd_err(connection, "%s_sendmsg returned %d\n",
1861                                  sock == connection->meta.socket ? "msock" : "sock",
1862                                  rv);
1863                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1864                 } else
1865                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1866         }
1867
1868         return sent;
1869 }
1870
1871 /*
1872  * drbd_send_all  -  Send an entire buffer
1873  *
1874  * Returns 0 upon success and a negative error value otherwise.
1875  */
1876 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1877                   size_t size, unsigned msg_flags)
1878 {
1879         int err;
1880
1881         err = drbd_send(connection, sock, buffer, size, msg_flags);
1882         if (err < 0)
1883                 return err;
1884         if (err != size)
1885                 return -EIO;
1886         return 0;
1887 }
1888
1889 static int drbd_open(struct gendisk *disk, blk_mode_t mode)
1890 {
1891         struct drbd_device *device = disk->private_data;
1892         unsigned long flags;
1893         int rv = 0;
1894
1895         mutex_lock(&drbd_main_mutex);
1896         spin_lock_irqsave(&device->resource->req_lock, flags);
1897         /* to have a stable device->state.role
1898          * and no race with updating open_cnt */
1899
1900         if (device->state.role != R_PRIMARY) {
1901                 if (mode & BLK_OPEN_WRITE)
1902                         rv = -EROFS;
1903                 else if (!drbd_allow_oos)
1904                         rv = -EMEDIUMTYPE;
1905         }
1906
1907         if (!rv)
1908                 device->open_cnt++;
1909         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1910         mutex_unlock(&drbd_main_mutex);
1911
1912         return rv;
1913 }
1914
1915 static void drbd_release(struct gendisk *gd)
1916 {
1917         struct drbd_device *device = gd->private_data;
1918
1919         mutex_lock(&drbd_main_mutex);
1920         device->open_cnt--;
1921         mutex_unlock(&drbd_main_mutex);
1922 }
1923
1924 /* need to hold resource->req_lock */
1925 void drbd_queue_unplug(struct drbd_device *device)
1926 {
1927         if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1928                 D_ASSERT(device, device->state.role == R_PRIMARY);
1929                 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1930                         drbd_queue_work_if_unqueued(
1931                                 &first_peer_device(device)->connection->sender_work,
1932                                 &device->unplug_work);
1933                 }
1934         }
1935 }
1936
1937 static void drbd_set_defaults(struct drbd_device *device)
1938 {
1939         /* Beware! The actual layout differs
1940          * between big endian and little endian */
1941         device->state = (union drbd_dev_state) {
1942                 { .role = R_SECONDARY,
1943                   .peer = R_UNKNOWN,
1944                   .conn = C_STANDALONE,
1945                   .disk = D_DISKLESS,
1946                   .pdsk = D_UNKNOWN,
1947                 } };
1948 }
1949
1950 void drbd_init_set_defaults(struct drbd_device *device)
1951 {
1952         /* the memset(,0,) did most of this.
1953          * note: only assignments, no allocation in here */
1954
1955         drbd_set_defaults(device);
1956
1957         atomic_set(&device->ap_bio_cnt, 0);
1958         atomic_set(&device->ap_actlog_cnt, 0);
1959         atomic_set(&device->ap_pending_cnt, 0);
1960         atomic_set(&device->rs_pending_cnt, 0);
1961         atomic_set(&device->unacked_cnt, 0);
1962         atomic_set(&device->local_cnt, 0);
1963         atomic_set(&device->pp_in_use_by_net, 0);
1964         atomic_set(&device->rs_sect_in, 0);
1965         atomic_set(&device->rs_sect_ev, 0);
1966         atomic_set(&device->ap_in_flight, 0);
1967         atomic_set(&device->md_io.in_use, 0);
1968
1969         mutex_init(&device->own_state_mutex);
1970         device->state_mutex = &device->own_state_mutex;
1971
1972         spin_lock_init(&device->al_lock);
1973         spin_lock_init(&device->peer_seq_lock);
1974
1975         INIT_LIST_HEAD(&device->active_ee);
1976         INIT_LIST_HEAD(&device->sync_ee);
1977         INIT_LIST_HEAD(&device->done_ee);
1978         INIT_LIST_HEAD(&device->read_ee);
1979         INIT_LIST_HEAD(&device->net_ee);
1980         INIT_LIST_HEAD(&device->resync_reads);
1981         INIT_LIST_HEAD(&device->resync_work.list);
1982         INIT_LIST_HEAD(&device->unplug_work.list);
1983         INIT_LIST_HEAD(&device->bm_io_work.w.list);
1984         INIT_LIST_HEAD(&device->pending_master_completion[0]);
1985         INIT_LIST_HEAD(&device->pending_master_completion[1]);
1986         INIT_LIST_HEAD(&device->pending_completion[0]);
1987         INIT_LIST_HEAD(&device->pending_completion[1]);
1988
1989         device->resync_work.cb  = w_resync_timer;
1990         device->unplug_work.cb  = w_send_write_hint;
1991         device->bm_io_work.w.cb = w_bitmap_io;
1992
1993         timer_setup(&device->resync_timer, resync_timer_fn, 0);
1994         timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1995         timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1996         timer_setup(&device->request_timer, request_timer_fn, 0);
1997
1998         init_waitqueue_head(&device->misc_wait);
1999         init_waitqueue_head(&device->state_wait);
2000         init_waitqueue_head(&device->ee_wait);
2001         init_waitqueue_head(&device->al_wait);
2002         init_waitqueue_head(&device->seq_wait);
2003
2004         device->resync_wenr = LC_FREE;
2005         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2006         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2007 }
2008
2009 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2010 {
2011         char ppb[10];
2012
2013         set_capacity_and_notify(device->vdisk, size);
2014
2015         drbd_info(device, "size = %s (%llu KB)\n",
2016                 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2017 }
2018
2019 void drbd_device_cleanup(struct drbd_device *device)
2020 {
2021         int i;
2022         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2023                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2024                                 first_peer_device(device)->connection->receiver.t_state);
2025
2026         device->al_writ_cnt  =
2027         device->bm_writ_cnt  =
2028         device->read_cnt     =
2029         device->recv_cnt     =
2030         device->send_cnt     =
2031         device->writ_cnt     =
2032         device->p_size       =
2033         device->rs_start     =
2034         device->rs_total     =
2035         device->rs_failed    = 0;
2036         device->rs_last_events = 0;
2037         device->rs_last_sect_ev = 0;
2038         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2039                 device->rs_mark_left[i] = 0;
2040                 device->rs_mark_time[i] = 0;
2041         }
2042         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2043
2044         set_capacity_and_notify(device->vdisk, 0);
2045         if (device->bitmap) {
2046                 /* maybe never allocated. */
2047                 drbd_bm_resize(device, 0, 1);
2048                 drbd_bm_cleanup(device);
2049         }
2050
2051         drbd_backing_dev_free(device, device->ldev);
2052         device->ldev = NULL;
2053
2054         clear_bit(AL_SUSPENDED, &device->flags);
2055
2056         D_ASSERT(device, list_empty(&device->active_ee));
2057         D_ASSERT(device, list_empty(&device->sync_ee));
2058         D_ASSERT(device, list_empty(&device->done_ee));
2059         D_ASSERT(device, list_empty(&device->read_ee));
2060         D_ASSERT(device, list_empty(&device->net_ee));
2061         D_ASSERT(device, list_empty(&device->resync_reads));
2062         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2063         D_ASSERT(device, list_empty(&device->resync_work.list));
2064         D_ASSERT(device, list_empty(&device->unplug_work.list));
2065
2066         drbd_set_defaults(device);
2067 }
2068
2069
2070 static void drbd_destroy_mempools(void)
2071 {
2072         struct page *page;
2073
2074         while (drbd_pp_pool) {
2075                 page = drbd_pp_pool;
2076                 drbd_pp_pool = (struct page *)page_private(page);
2077                 __free_page(page);
2078                 drbd_pp_vacant--;
2079         }
2080
2081         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2082
2083         bioset_exit(&drbd_io_bio_set);
2084         bioset_exit(&drbd_md_io_bio_set);
2085         mempool_exit(&drbd_md_io_page_pool);
2086         mempool_exit(&drbd_ee_mempool);
2087         mempool_exit(&drbd_request_mempool);
2088         kmem_cache_destroy(drbd_ee_cache);
2089         kmem_cache_destroy(drbd_request_cache);
2090         kmem_cache_destroy(drbd_bm_ext_cache);
2091         kmem_cache_destroy(drbd_al_ext_cache);
2092
2093         drbd_ee_cache        = NULL;
2094         drbd_request_cache   = NULL;
2095         drbd_bm_ext_cache    = NULL;
2096         drbd_al_ext_cache    = NULL;
2097
2098         return;
2099 }
2100
2101 static int drbd_create_mempools(void)
2102 {
2103         struct page *page;
2104         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2105         int i, ret;
2106
2107         /* caches */
2108         drbd_request_cache = kmem_cache_create(
2109                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2110         if (drbd_request_cache == NULL)
2111                 goto Enomem;
2112
2113         drbd_ee_cache = kmem_cache_create(
2114                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2115         if (drbd_ee_cache == NULL)
2116                 goto Enomem;
2117
2118         drbd_bm_ext_cache = kmem_cache_create(
2119                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2120         if (drbd_bm_ext_cache == NULL)
2121                 goto Enomem;
2122
2123         drbd_al_ext_cache = kmem_cache_create(
2124                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2125         if (drbd_al_ext_cache == NULL)
2126                 goto Enomem;
2127
2128         /* mempools */
2129         ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2130         if (ret)
2131                 goto Enomem;
2132
2133         ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2134                           BIOSET_NEED_BVECS);
2135         if (ret)
2136                 goto Enomem;
2137
2138         ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2139         if (ret)
2140                 goto Enomem;
2141
2142         ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2143                                      drbd_request_cache);
2144         if (ret)
2145                 goto Enomem;
2146
2147         ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2148         if (ret)
2149                 goto Enomem;
2150
2151         for (i = 0; i < number; i++) {
2152                 page = alloc_page(GFP_HIGHUSER);
2153                 if (!page)
2154                         goto Enomem;
2155                 set_page_private(page, (unsigned long)drbd_pp_pool);
2156                 drbd_pp_pool = page;
2157         }
2158         drbd_pp_vacant = number;
2159
2160         return 0;
2161
2162 Enomem:
2163         drbd_destroy_mempools(); /* in case we allocated some */
2164         return -ENOMEM;
2165 }
2166
2167 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2168 {
2169         int rr;
2170
2171         rr = drbd_free_peer_reqs(device, &device->active_ee);
2172         if (rr)
2173                 drbd_err(device, "%d EEs in active list found!\n", rr);
2174
2175         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2176         if (rr)
2177                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2178
2179         rr = drbd_free_peer_reqs(device, &device->read_ee);
2180         if (rr)
2181                 drbd_err(device, "%d EEs in read list found!\n", rr);
2182
2183         rr = drbd_free_peer_reqs(device, &device->done_ee);
2184         if (rr)
2185                 drbd_err(device, "%d EEs in done list found!\n", rr);
2186
2187         rr = drbd_free_peer_reqs(device, &device->net_ee);
2188         if (rr)
2189                 drbd_err(device, "%d EEs in net list found!\n", rr);
2190 }
2191
2192 /* caution. no locking. */
2193 void drbd_destroy_device(struct kref *kref)
2194 {
2195         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2196         struct drbd_resource *resource = device->resource;
2197         struct drbd_peer_device *peer_device, *tmp_peer_device;
2198
2199         timer_shutdown_sync(&device->request_timer);
2200
2201         /* paranoia asserts */
2202         D_ASSERT(device, device->open_cnt == 0);
2203         /* end paranoia asserts */
2204
2205         /* cleanup stuff that may have been allocated during
2206          * device (re-)configuration or state changes */
2207
2208         drbd_backing_dev_free(device, device->ldev);
2209         device->ldev = NULL;
2210
2211         drbd_release_all_peer_reqs(device);
2212
2213         lc_destroy(device->act_log);
2214         lc_destroy(device->resync);
2215
2216         kfree(device->p_uuid);
2217         /* device->p_uuid = NULL; */
2218
2219         if (device->bitmap) /* should no longer be there. */
2220                 drbd_bm_cleanup(device);
2221         __free_page(device->md_io.page);
2222         put_disk(device->vdisk);
2223         kfree(device->rs_plan_s);
2224
2225         /* not for_each_connection(connection, resource):
2226          * those may have been cleaned up and disassociated already.
2227          */
2228         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2229                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2230                 kfree(peer_device);
2231         }
2232         if (device->submit.wq)
2233                 destroy_workqueue(device->submit.wq);
2234         kfree(device);
2235         kref_put(&resource->kref, drbd_destroy_resource);
2236 }
2237
2238 /* One global retry thread, if we need to push back some bio and have it
2239  * reinserted through our make request function.
2240  */
2241 static struct retry_worker {
2242         struct workqueue_struct *wq;
2243         struct work_struct worker;
2244
2245         spinlock_t lock;
2246         struct list_head writes;
2247 } retry;
2248
2249 static void do_retry(struct work_struct *ws)
2250 {
2251         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2252         LIST_HEAD(writes);
2253         struct drbd_request *req, *tmp;
2254
2255         spin_lock_irq(&retry->lock);
2256         list_splice_init(&retry->writes, &writes);
2257         spin_unlock_irq(&retry->lock);
2258
2259         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2260                 struct drbd_device *device = req->device;
2261                 struct bio *bio = req->master_bio;
2262                 bool expected;
2263
2264                 expected =
2265                         expect(device, atomic_read(&req->completion_ref) == 0) &&
2266                         expect(device, req->rq_state & RQ_POSTPONED) &&
2267                         expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2268                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2269
2270                 if (!expected)
2271                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2272                                 req, atomic_read(&req->completion_ref),
2273                                 req->rq_state);
2274
2275                 /* We still need to put one kref associated with the
2276                  * "completion_ref" going zero in the code path that queued it
2277                  * here.  The request object may still be referenced by a
2278                  * frozen local req->private_bio, in case we force-detached.
2279                  */
2280                 kref_put(&req->kref, drbd_req_destroy);
2281
2282                 /* A single suspended or otherwise blocking device may stall
2283                  * all others as well.  Fortunately, this code path is to
2284                  * recover from a situation that "should not happen":
2285                  * concurrent writes in multi-primary setup.
2286                  * In a "normal" lifecycle, this workqueue is supposed to be
2287                  * destroyed without ever doing anything.
2288                  * If it turns out to be an issue anyways, we can do per
2289                  * resource (replication group) or per device (minor) retry
2290                  * workqueues instead.
2291                  */
2292
2293                 /* We are not just doing submit_bio_noacct(),
2294                  * as we want to keep the start_time information. */
2295                 inc_ap_bio(device);
2296                 __drbd_make_request(device, bio);
2297         }
2298 }
2299
2300 /* called via drbd_req_put_completion_ref(),
2301  * holds resource->req_lock */
2302 void drbd_restart_request(struct drbd_request *req)
2303 {
2304         unsigned long flags;
2305         spin_lock_irqsave(&retry.lock, flags);
2306         list_move_tail(&req->tl_requests, &retry.writes);
2307         spin_unlock_irqrestore(&retry.lock, flags);
2308
2309         /* Drop the extra reference that would otherwise
2310          * have been dropped by complete_master_bio.
2311          * do_retry() needs to grab a new one. */
2312         dec_ap_bio(req->device);
2313
2314         queue_work(retry.wq, &retry.worker);
2315 }
2316
2317 void drbd_destroy_resource(struct kref *kref)
2318 {
2319         struct drbd_resource *resource =
2320                 container_of(kref, struct drbd_resource, kref);
2321
2322         idr_destroy(&resource->devices);
2323         free_cpumask_var(resource->cpu_mask);
2324         kfree(resource->name);
2325         kfree(resource);
2326 }
2327
2328 void drbd_free_resource(struct drbd_resource *resource)
2329 {
2330         struct drbd_connection *connection, *tmp;
2331
2332         for_each_connection_safe(connection, tmp, resource) {
2333                 list_del(&connection->connections);
2334                 drbd_debugfs_connection_cleanup(connection);
2335                 kref_put(&connection->kref, drbd_destroy_connection);
2336         }
2337         drbd_debugfs_resource_cleanup(resource);
2338         kref_put(&resource->kref, drbd_destroy_resource);
2339 }
2340
2341 static void drbd_cleanup(void)
2342 {
2343         unsigned int i;
2344         struct drbd_device *device;
2345         struct drbd_resource *resource, *tmp;
2346
2347         /* first remove proc,
2348          * drbdsetup uses it's presence to detect
2349          * whether DRBD is loaded.
2350          * If we would get stuck in proc removal,
2351          * but have netlink already deregistered,
2352          * some drbdsetup commands may wait forever
2353          * for an answer.
2354          */
2355         if (drbd_proc)
2356                 remove_proc_entry("drbd", NULL);
2357
2358         if (retry.wq)
2359                 destroy_workqueue(retry.wq);
2360
2361         drbd_genl_unregister();
2362
2363         idr_for_each_entry(&drbd_devices, device, i)
2364                 drbd_delete_device(device);
2365
2366         /* not _rcu since, no other updater anymore. Genl already unregistered */
2367         for_each_resource_safe(resource, tmp, &drbd_resources) {
2368                 list_del(&resource->resources);
2369                 drbd_free_resource(resource);
2370         }
2371
2372         drbd_debugfs_cleanup();
2373
2374         drbd_destroy_mempools();
2375         unregister_blkdev(DRBD_MAJOR, "drbd");
2376
2377         idr_destroy(&drbd_devices);
2378
2379         pr_info("module cleanup done.\n");
2380 }
2381
2382 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2383 {
2384         spin_lock_init(&wq->q_lock);
2385         INIT_LIST_HEAD(&wq->q);
2386         init_waitqueue_head(&wq->q_wait);
2387 }
2388
2389 struct completion_work {
2390         struct drbd_work w;
2391         struct completion done;
2392 };
2393
2394 static int w_complete(struct drbd_work *w, int cancel)
2395 {
2396         struct completion_work *completion_work =
2397                 container_of(w, struct completion_work, w);
2398
2399         complete(&completion_work->done);
2400         return 0;
2401 }
2402
2403 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2404 {
2405         struct completion_work completion_work;
2406
2407         completion_work.w.cb = w_complete;
2408         init_completion(&completion_work.done);
2409         drbd_queue_work(work_queue, &completion_work.w);
2410         wait_for_completion(&completion_work.done);
2411 }
2412
2413 struct drbd_resource *drbd_find_resource(const char *name)
2414 {
2415         struct drbd_resource *resource;
2416
2417         if (!name || !name[0])
2418                 return NULL;
2419
2420         rcu_read_lock();
2421         for_each_resource_rcu(resource, &drbd_resources) {
2422                 if (!strcmp(resource->name, name)) {
2423                         kref_get(&resource->kref);
2424                         goto found;
2425                 }
2426         }
2427         resource = NULL;
2428 found:
2429         rcu_read_unlock();
2430         return resource;
2431 }
2432
2433 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2434                                      void *peer_addr, int peer_addr_len)
2435 {
2436         struct drbd_resource *resource;
2437         struct drbd_connection *connection;
2438
2439         rcu_read_lock();
2440         for_each_resource_rcu(resource, &drbd_resources) {
2441                 for_each_connection_rcu(connection, resource) {
2442                         if (connection->my_addr_len == my_addr_len &&
2443                             connection->peer_addr_len == peer_addr_len &&
2444                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2445                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2446                                 kref_get(&connection->kref);
2447                                 goto found;
2448                         }
2449                 }
2450         }
2451         connection = NULL;
2452 found:
2453         rcu_read_unlock();
2454         return connection;
2455 }
2456
2457 static int drbd_alloc_socket(struct drbd_socket *socket)
2458 {
2459         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2460         if (!socket->rbuf)
2461                 return -ENOMEM;
2462         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2463         if (!socket->sbuf)
2464                 return -ENOMEM;
2465         return 0;
2466 }
2467
2468 static void drbd_free_socket(struct drbd_socket *socket)
2469 {
2470         free_page((unsigned long) socket->sbuf);
2471         free_page((unsigned long) socket->rbuf);
2472 }
2473
2474 void conn_free_crypto(struct drbd_connection *connection)
2475 {
2476         drbd_free_sock(connection);
2477
2478         crypto_free_shash(connection->csums_tfm);
2479         crypto_free_shash(connection->verify_tfm);
2480         crypto_free_shash(connection->cram_hmac_tfm);
2481         crypto_free_shash(connection->integrity_tfm);
2482         crypto_free_shash(connection->peer_integrity_tfm);
2483         kfree(connection->int_dig_in);
2484         kfree(connection->int_dig_vv);
2485
2486         connection->csums_tfm = NULL;
2487         connection->verify_tfm = NULL;
2488         connection->cram_hmac_tfm = NULL;
2489         connection->integrity_tfm = NULL;
2490         connection->peer_integrity_tfm = NULL;
2491         connection->int_dig_in = NULL;
2492         connection->int_dig_vv = NULL;
2493 }
2494
2495 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2496 {
2497         struct drbd_connection *connection;
2498         cpumask_var_t new_cpu_mask;
2499         int err;
2500
2501         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2502                 return -ENOMEM;
2503
2504         /* silently ignore cpu mask on UP kernel */
2505         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2506                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2507                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2508                 if (err == -EOVERFLOW) {
2509                         /* So what. mask it out. */
2510                         cpumask_var_t tmp_cpu_mask;
2511                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2512                                 cpumask_setall(tmp_cpu_mask);
2513                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2514                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2515                                         res_opts->cpu_mask,
2516                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2517                                         nr_cpu_ids);
2518                                 free_cpumask_var(tmp_cpu_mask);
2519                                 err = 0;
2520                         }
2521                 }
2522                 if (err) {
2523                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2524                         /* retcode = ERR_CPU_MASK_PARSE; */
2525                         goto fail;
2526                 }
2527         }
2528         resource->res_opts = *res_opts;
2529         if (cpumask_empty(new_cpu_mask))
2530                 drbd_calc_cpu_mask(&new_cpu_mask);
2531         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2532                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2533                 for_each_connection_rcu(connection, resource) {
2534                         connection->receiver.reset_cpu_mask = 1;
2535                         connection->ack_receiver.reset_cpu_mask = 1;
2536                         connection->worker.reset_cpu_mask = 1;
2537                 }
2538         }
2539         err = 0;
2540
2541 fail:
2542         free_cpumask_var(new_cpu_mask);
2543         return err;
2544
2545 }
2546
2547 struct drbd_resource *drbd_create_resource(const char *name)
2548 {
2549         struct drbd_resource *resource;
2550
2551         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2552         if (!resource)
2553                 goto fail;
2554         resource->name = kstrdup(name, GFP_KERNEL);
2555         if (!resource->name)
2556                 goto fail_free_resource;
2557         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2558                 goto fail_free_name;
2559         kref_init(&resource->kref);
2560         idr_init(&resource->devices);
2561         INIT_LIST_HEAD(&resource->connections);
2562         resource->write_ordering = WO_BDEV_FLUSH;
2563         list_add_tail_rcu(&resource->resources, &drbd_resources);
2564         mutex_init(&resource->conf_update);
2565         mutex_init(&resource->adm_mutex);
2566         spin_lock_init(&resource->req_lock);
2567         drbd_debugfs_resource_add(resource);
2568         return resource;
2569
2570 fail_free_name:
2571         kfree(resource->name);
2572 fail_free_resource:
2573         kfree(resource);
2574 fail:
2575         return NULL;
2576 }
2577
2578 /* caller must be under adm_mutex */
2579 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2580 {
2581         struct drbd_resource *resource;
2582         struct drbd_connection *connection;
2583
2584         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2585         if (!connection)
2586                 return NULL;
2587
2588         if (drbd_alloc_socket(&connection->data))
2589                 goto fail;
2590         if (drbd_alloc_socket(&connection->meta))
2591                 goto fail;
2592
2593         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2594         if (!connection->current_epoch)
2595                 goto fail;
2596
2597         INIT_LIST_HEAD(&connection->transfer_log);
2598
2599         INIT_LIST_HEAD(&connection->current_epoch->list);
2600         connection->epochs = 1;
2601         spin_lock_init(&connection->epoch_lock);
2602
2603         connection->send.seen_any_write_yet = false;
2604         connection->send.current_epoch_nr = 0;
2605         connection->send.current_epoch_writes = 0;
2606
2607         resource = drbd_create_resource(name);
2608         if (!resource)
2609                 goto fail;
2610
2611         connection->cstate = C_STANDALONE;
2612         mutex_init(&connection->cstate_mutex);
2613         init_waitqueue_head(&connection->ping_wait);
2614         idr_init(&connection->peer_devices);
2615
2616         drbd_init_workqueue(&connection->sender_work);
2617         mutex_init(&connection->data.mutex);
2618         mutex_init(&connection->meta.mutex);
2619
2620         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2621         connection->receiver.connection = connection;
2622         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2623         connection->worker.connection = connection;
2624         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2625         connection->ack_receiver.connection = connection;
2626
2627         kref_init(&connection->kref);
2628
2629         connection->resource = resource;
2630
2631         if (set_resource_options(resource, res_opts))
2632                 goto fail_resource;
2633
2634         kref_get(&resource->kref);
2635         list_add_tail_rcu(&connection->connections, &resource->connections);
2636         drbd_debugfs_connection_add(connection);
2637         return connection;
2638
2639 fail_resource:
2640         list_del(&resource->resources);
2641         drbd_free_resource(resource);
2642 fail:
2643         kfree(connection->current_epoch);
2644         drbd_free_socket(&connection->meta);
2645         drbd_free_socket(&connection->data);
2646         kfree(connection);
2647         return NULL;
2648 }
2649
2650 void drbd_destroy_connection(struct kref *kref)
2651 {
2652         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2653         struct drbd_resource *resource = connection->resource;
2654
2655         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2656                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2657         kfree(connection->current_epoch);
2658
2659         idr_destroy(&connection->peer_devices);
2660
2661         drbd_free_socket(&connection->meta);
2662         drbd_free_socket(&connection->data);
2663         kfree(connection->int_dig_in);
2664         kfree(connection->int_dig_vv);
2665         kfree(connection);
2666         kref_put(&resource->kref, drbd_destroy_resource);
2667 }
2668
2669 static int init_submitter(struct drbd_device *device)
2670 {
2671         /* opencoded create_singlethread_workqueue(),
2672          * to be able to say "drbd%d", ..., minor */
2673         device->submit.wq =
2674                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2675         if (!device->submit.wq)
2676                 return -ENOMEM;
2677
2678         INIT_WORK(&device->submit.worker, do_submit);
2679         INIT_LIST_HEAD(&device->submit.writes);
2680         return 0;
2681 }
2682
2683 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2684 {
2685         struct drbd_resource *resource = adm_ctx->resource;
2686         struct drbd_connection *connection, *n;
2687         struct drbd_device *device;
2688         struct drbd_peer_device *peer_device, *tmp_peer_device;
2689         struct gendisk *disk;
2690         int id;
2691         int vnr = adm_ctx->volume;
2692         enum drbd_ret_code err = ERR_NOMEM;
2693
2694         device = minor_to_device(minor);
2695         if (device)
2696                 return ERR_MINOR_OR_VOLUME_EXISTS;
2697
2698         /* GFP_KERNEL, we are outside of all write-out paths */
2699         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2700         if (!device)
2701                 return ERR_NOMEM;
2702         kref_init(&device->kref);
2703
2704         kref_get(&resource->kref);
2705         device->resource = resource;
2706         device->minor = minor;
2707         device->vnr = vnr;
2708
2709         drbd_init_set_defaults(device);
2710
2711         disk = blk_alloc_disk(NUMA_NO_NODE);
2712         if (!disk)
2713                 goto out_no_disk;
2714
2715         device->vdisk = disk;
2716         device->rq_queue = disk->queue;
2717
2718         set_disk_ro(disk, true);
2719
2720         disk->major = DRBD_MAJOR;
2721         disk->first_minor = minor;
2722         disk->minors = 1;
2723         disk->fops = &drbd_ops;
2724         disk->flags |= GENHD_FL_NO_PART;
2725         sprintf(disk->disk_name, "drbd%d", minor);
2726         disk->private_data = device;
2727
2728         blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue);
2729         blk_queue_write_cache(disk->queue, true, true);
2730         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2731            This triggers a max_bio_size message upon first attach or connect */
2732         blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2733
2734         device->md_io.page = alloc_page(GFP_KERNEL);
2735         if (!device->md_io.page)
2736                 goto out_no_io_page;
2737
2738         if (drbd_bm_init(device))
2739                 goto out_no_bitmap;
2740         device->read_requests = RB_ROOT;
2741         device->write_requests = RB_ROOT;
2742
2743         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2744         if (id < 0) {
2745                 if (id == -ENOSPC)
2746                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2747                 goto out_no_minor_idr;
2748         }
2749         kref_get(&device->kref);
2750
2751         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2752         if (id < 0) {
2753                 if (id == -ENOSPC)
2754                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2755                 goto out_idr_remove_minor;
2756         }
2757         kref_get(&device->kref);
2758
2759         INIT_LIST_HEAD(&device->peer_devices);
2760         INIT_LIST_HEAD(&device->pending_bitmap_io);
2761         for_each_connection(connection, resource) {
2762                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2763                 if (!peer_device)
2764                         goto out_idr_remove_from_resource;
2765                 peer_device->connection = connection;
2766                 peer_device->device = device;
2767
2768                 list_add(&peer_device->peer_devices, &device->peer_devices);
2769                 kref_get(&device->kref);
2770
2771                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2772                 if (id < 0) {
2773                         if (id == -ENOSPC)
2774                                 err = ERR_INVALID_REQUEST;
2775                         goto out_idr_remove_from_resource;
2776                 }
2777                 kref_get(&connection->kref);
2778                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2779         }
2780
2781         if (init_submitter(device)) {
2782                 err = ERR_NOMEM;
2783                 goto out_idr_remove_from_resource;
2784         }
2785
2786         err = add_disk(disk);
2787         if (err)
2788                 goto out_destroy_workqueue;
2789
2790         /* inherit the connection state */
2791         device->state.conn = first_connection(resource)->cstate;
2792         if (device->state.conn == C_WF_REPORT_PARAMS) {
2793                 for_each_peer_device(peer_device, device)
2794                         drbd_connected(peer_device);
2795         }
2796         /* move to create_peer_device() */
2797         for_each_peer_device(peer_device, device)
2798                 drbd_debugfs_peer_device_add(peer_device);
2799         drbd_debugfs_device_add(device);
2800         return NO_ERROR;
2801
2802 out_destroy_workqueue:
2803         destroy_workqueue(device->submit.wq);
2804 out_idr_remove_from_resource:
2805         for_each_connection_safe(connection, n, resource) {
2806                 peer_device = idr_remove(&connection->peer_devices, vnr);
2807                 if (peer_device)
2808                         kref_put(&connection->kref, drbd_destroy_connection);
2809         }
2810         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2811                 list_del(&peer_device->peer_devices);
2812                 kfree(peer_device);
2813         }
2814         idr_remove(&resource->devices, vnr);
2815 out_idr_remove_minor:
2816         idr_remove(&drbd_devices, minor);
2817         synchronize_rcu();
2818 out_no_minor_idr:
2819         drbd_bm_cleanup(device);
2820 out_no_bitmap:
2821         __free_page(device->md_io.page);
2822 out_no_io_page:
2823         put_disk(disk);
2824 out_no_disk:
2825         kref_put(&resource->kref, drbd_destroy_resource);
2826         kfree(device);
2827         return err;
2828 }
2829
2830 void drbd_delete_device(struct drbd_device *device)
2831 {
2832         struct drbd_resource *resource = device->resource;
2833         struct drbd_connection *connection;
2834         struct drbd_peer_device *peer_device;
2835
2836         /* move to free_peer_device() */
2837         for_each_peer_device(peer_device, device)
2838                 drbd_debugfs_peer_device_cleanup(peer_device);
2839         drbd_debugfs_device_cleanup(device);
2840         for_each_connection(connection, resource) {
2841                 idr_remove(&connection->peer_devices, device->vnr);
2842                 kref_put(&device->kref, drbd_destroy_device);
2843         }
2844         idr_remove(&resource->devices, device->vnr);
2845         kref_put(&device->kref, drbd_destroy_device);
2846         idr_remove(&drbd_devices, device_to_minor(device));
2847         kref_put(&device->kref, drbd_destroy_device);
2848         del_gendisk(device->vdisk);
2849         synchronize_rcu();
2850         kref_put(&device->kref, drbd_destroy_device);
2851 }
2852
2853 static int __init drbd_init(void)
2854 {
2855         int err;
2856
2857         if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2858                 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2859 #ifdef MODULE
2860                 return -EINVAL;
2861 #else
2862                 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2863 #endif
2864         }
2865
2866         err = register_blkdev(DRBD_MAJOR, "drbd");
2867         if (err) {
2868                 pr_err("unable to register block device major %d\n",
2869                        DRBD_MAJOR);
2870                 return err;
2871         }
2872
2873         /*
2874          * allocate all necessary structs
2875          */
2876         init_waitqueue_head(&drbd_pp_wait);
2877
2878         drbd_proc = NULL; /* play safe for drbd_cleanup */
2879         idr_init(&drbd_devices);
2880
2881         mutex_init(&resources_mutex);
2882         INIT_LIST_HEAD(&drbd_resources);
2883
2884         err = drbd_genl_register();
2885         if (err) {
2886                 pr_err("unable to register generic netlink family\n");
2887                 goto fail;
2888         }
2889
2890         err = drbd_create_mempools();
2891         if (err)
2892                 goto fail;
2893
2894         err = -ENOMEM;
2895         drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2896         if (!drbd_proc) {
2897                 pr_err("unable to register proc file\n");
2898                 goto fail;
2899         }
2900
2901         retry.wq = create_singlethread_workqueue("drbd-reissue");
2902         if (!retry.wq) {
2903                 pr_err("unable to create retry workqueue\n");
2904                 goto fail;
2905         }
2906         INIT_WORK(&retry.worker, do_retry);
2907         spin_lock_init(&retry.lock);
2908         INIT_LIST_HEAD(&retry.writes);
2909
2910         drbd_debugfs_init();
2911
2912         pr_info("initialized. "
2913                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2914                GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2915         pr_info("%s\n", drbd_buildtag());
2916         pr_info("registered as block device major %d\n", DRBD_MAJOR);
2917         return 0; /* Success! */
2918
2919 fail:
2920         drbd_cleanup();
2921         if (err == -ENOMEM)
2922                 pr_err("ran out of memory\n");
2923         else
2924                 pr_err("initialization failure\n");
2925         return err;
2926 }
2927
2928 static void drbd_free_one_sock(struct drbd_socket *ds)
2929 {
2930         struct socket *s;
2931         mutex_lock(&ds->mutex);
2932         s = ds->socket;
2933         ds->socket = NULL;
2934         mutex_unlock(&ds->mutex);
2935         if (s) {
2936                 /* so debugfs does not need to mutex_lock() */
2937                 synchronize_rcu();
2938                 kernel_sock_shutdown(s, SHUT_RDWR);
2939                 sock_release(s);
2940         }
2941 }
2942
2943 void drbd_free_sock(struct drbd_connection *connection)
2944 {
2945         if (connection->data.socket)
2946                 drbd_free_one_sock(&connection->data);
2947         if (connection->meta.socket)
2948                 drbd_free_one_sock(&connection->meta);
2949 }
2950
2951 /* meta data management */
2952
2953 void conn_md_sync(struct drbd_connection *connection)
2954 {
2955         struct drbd_peer_device *peer_device;
2956         int vnr;
2957
2958         rcu_read_lock();
2959         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2960                 struct drbd_device *device = peer_device->device;
2961
2962                 kref_get(&device->kref);
2963                 rcu_read_unlock();
2964                 drbd_md_sync(device);
2965                 kref_put(&device->kref, drbd_destroy_device);
2966                 rcu_read_lock();
2967         }
2968         rcu_read_unlock();
2969 }
2970
2971 /* aligned 4kByte */
2972 struct meta_data_on_disk {
2973         u64 la_size_sect;      /* last agreed size. */
2974         u64 uuid[UI_SIZE];   /* UUIDs. */
2975         u64 device_uuid;
2976         u64 reserved_u64_1;
2977         u32 flags;             /* MDF */
2978         u32 magic;
2979         u32 md_size_sect;
2980         u32 al_offset;         /* offset to this block */
2981         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2982               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2983         u32 bm_offset;         /* offset to the bitmap, from here */
2984         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2985         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2986
2987         /* see al_tr_number_to_on_disk_sector() */
2988         u32 al_stripes;
2989         u32 al_stripe_size_4k;
2990
2991         u8 reserved_u8[4096 - (7*8 + 10*4)];
2992 } __packed;
2993
2994
2995
2996 void drbd_md_write(struct drbd_device *device, void *b)
2997 {
2998         struct meta_data_on_disk *buffer = b;
2999         sector_t sector;
3000         int i;
3001
3002         memset(buffer, 0, sizeof(*buffer));
3003
3004         buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3005         for (i = UI_CURRENT; i < UI_SIZE; i++)
3006                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3007         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3008         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3009
3010         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3011         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3012         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3013         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3014         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3015
3016         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3017         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3018
3019         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3020         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3021
3022         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3023         sector = device->ldev->md.md_offset;
3024
3025         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3026                 /* this was a try anyways ... */
3027                 drbd_err(device, "meta data update failed!\n");
3028                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3029         }
3030 }
3031
3032 /**
3033  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3034  * @device:     DRBD device.
3035  */
3036 void drbd_md_sync(struct drbd_device *device)
3037 {
3038         struct meta_data_on_disk *buffer;
3039
3040         /* Don't accidentally change the DRBD meta data layout. */
3041         BUILD_BUG_ON(UI_SIZE != 4);
3042         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3043
3044         del_timer(&device->md_sync_timer);
3045         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3046         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3047                 return;
3048
3049         /* We use here D_FAILED and not D_ATTACHING because we try to write
3050          * metadata even if we detach due to a disk failure! */
3051         if (!get_ldev_if_state(device, D_FAILED))
3052                 return;
3053
3054         buffer = drbd_md_get_buffer(device, __func__);
3055         if (!buffer)
3056                 goto out;
3057
3058         drbd_md_write(device, buffer);
3059
3060         /* Update device->ldev->md.la_size_sect,
3061          * since we updated it on metadata. */
3062         device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3063
3064         drbd_md_put_buffer(device);
3065 out:
3066         put_ldev(device);
3067 }
3068
3069 static int check_activity_log_stripe_size(struct drbd_device *device,
3070                 struct meta_data_on_disk *on_disk,
3071                 struct drbd_md *in_core)
3072 {
3073         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3074         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3075         u64 al_size_4k;
3076
3077         /* both not set: default to old fixed size activity log */
3078         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3079                 al_stripes = 1;
3080                 al_stripe_size_4k = MD_32kB_SECT/8;
3081         }
3082
3083         /* some paranoia plausibility checks */
3084
3085         /* we need both values to be set */
3086         if (al_stripes == 0 || al_stripe_size_4k == 0)
3087                 goto err;
3088
3089         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3090
3091         /* Upper limit of activity log area, to avoid potential overflow
3092          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3093          * than 72 * 4k blocks total only increases the amount of history,
3094          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3095         if (al_size_4k > (16 * 1024 * 1024/4))
3096                 goto err;
3097
3098         /* Lower limit: we need at least 8 transaction slots (32kB)
3099          * to not break existing setups */
3100         if (al_size_4k < MD_32kB_SECT/8)
3101                 goto err;
3102
3103         in_core->al_stripe_size_4k = al_stripe_size_4k;
3104         in_core->al_stripes = al_stripes;
3105         in_core->al_size_4k = al_size_4k;
3106
3107         return 0;
3108 err:
3109         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3110                         al_stripes, al_stripe_size_4k);
3111         return -EINVAL;
3112 }
3113
3114 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3115 {
3116         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3117         struct drbd_md *in_core = &bdev->md;
3118         s32 on_disk_al_sect;
3119         s32 on_disk_bm_sect;
3120
3121         /* The on-disk size of the activity log, calculated from offsets, and
3122          * the size of the activity log calculated from the stripe settings,
3123          * should match.
3124          * Though we could relax this a bit: it is ok, if the striped activity log
3125          * fits in the available on-disk activity log size.
3126          * Right now, that would break how resize is implemented.
3127          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3128          * of possible unused padding space in the on disk layout. */
3129         if (in_core->al_offset < 0) {
3130                 if (in_core->bm_offset > in_core->al_offset)
3131                         goto err;
3132                 on_disk_al_sect = -in_core->al_offset;
3133                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3134         } else {
3135                 if (in_core->al_offset != MD_4kB_SECT)
3136                         goto err;
3137                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3138                         goto err;
3139
3140                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3141                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3142         }
3143
3144         /* old fixed size meta data is exactly that: fixed. */
3145         if (in_core->meta_dev_idx >= 0) {
3146                 if (in_core->md_size_sect != MD_128MB_SECT
3147                 ||  in_core->al_offset != MD_4kB_SECT
3148                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3149                 ||  in_core->al_stripes != 1
3150                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3151                         goto err;
3152         }
3153
3154         if (capacity < in_core->md_size_sect)
3155                 goto err;
3156         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3157                 goto err;
3158
3159         /* should be aligned, and at least 32k */
3160         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3161                 goto err;
3162
3163         /* should fit (for now: exactly) into the available on-disk space;
3164          * overflow prevention is in check_activity_log_stripe_size() above. */
3165         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3166                 goto err;
3167
3168         /* again, should be aligned */
3169         if (in_core->bm_offset & 7)
3170                 goto err;
3171
3172         /* FIXME check for device grow with flex external meta data? */
3173
3174         /* can the available bitmap space cover the last agreed device size? */
3175         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3176                 goto err;
3177
3178         return 0;
3179
3180 err:
3181         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3182                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3183                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3184                         in_core->meta_dev_idx,
3185                         in_core->al_stripes, in_core->al_stripe_size_4k,
3186                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3187                         (unsigned long long)in_core->la_size_sect,
3188                         (unsigned long long)capacity);
3189
3190         return -EINVAL;
3191 }
3192
3193
3194 /**
3195  * drbd_md_read() - Reads in the meta data super block
3196  * @device:     DRBD device.
3197  * @bdev:       Device from which the meta data should be read in.
3198  *
3199  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3200  * something goes wrong.
3201  *
3202  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3203  * even before @bdev is assigned to @device->ldev.
3204  */
3205 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3206 {
3207         struct meta_data_on_disk *buffer;
3208         u32 magic, flags;
3209         int i, rv = NO_ERROR;
3210
3211         if (device->state.disk != D_DISKLESS)
3212                 return ERR_DISK_CONFIGURED;
3213
3214         buffer = drbd_md_get_buffer(device, __func__);
3215         if (!buffer)
3216                 return ERR_NOMEM;
3217
3218         /* First, figure out where our meta data superblock is located,
3219          * and read it. */
3220         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3221         bdev->md.md_offset = drbd_md_ss(bdev);
3222         /* Even for (flexible or indexed) external meta data,
3223          * initially restrict us to the 4k superblock for now.
3224          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3225         bdev->md.md_size_sect = 8;
3226
3227         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3228                                  REQ_OP_READ)) {
3229                 /* NOTE: can't do normal error processing here as this is
3230                    called BEFORE disk is attached */
3231                 drbd_err(device, "Error while reading metadata.\n");
3232                 rv = ERR_IO_MD_DISK;
3233                 goto err;
3234         }
3235
3236         magic = be32_to_cpu(buffer->magic);
3237         flags = be32_to_cpu(buffer->flags);
3238         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3239             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3240                         /* btw: that's Activity Log clean, not "all" clean. */
3241                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3242                 rv = ERR_MD_UNCLEAN;
3243                 goto err;
3244         }
3245
3246         rv = ERR_MD_INVALID;
3247         if (magic != DRBD_MD_MAGIC_08) {
3248                 if (magic == DRBD_MD_MAGIC_07)
3249                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3250                 else
3251                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3252                 goto err;
3253         }
3254
3255         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3256                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3257                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3258                 goto err;
3259         }
3260
3261
3262         /* convert to in_core endian */
3263         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3264         for (i = UI_CURRENT; i < UI_SIZE; i++)
3265                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3266         bdev->md.flags = be32_to_cpu(buffer->flags);
3267         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3268
3269         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3270         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3271         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3272
3273         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3274                 goto err;
3275         if (check_offsets_and_sizes(device, bdev))
3276                 goto err;
3277
3278         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3279                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3280                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3281                 goto err;
3282         }
3283         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3284                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3285                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3286                 goto err;
3287         }
3288
3289         rv = NO_ERROR;
3290
3291         spin_lock_irq(&device->resource->req_lock);
3292         if (device->state.conn < C_CONNECTED) {
3293                 unsigned int peer;
3294                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3295                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3296                 device->peer_max_bio_size = peer;
3297         }
3298         spin_unlock_irq(&device->resource->req_lock);
3299
3300  err:
3301         drbd_md_put_buffer(device);
3302
3303         return rv;
3304 }
3305
3306 /**
3307  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3308  * @device:     DRBD device.
3309  *
3310  * Call this function if you change anything that should be written to
3311  * the meta-data super block. This function sets MD_DIRTY, and starts a
3312  * timer that ensures that within five seconds you have to call drbd_md_sync().
3313  */
3314 void drbd_md_mark_dirty(struct drbd_device *device)
3315 {
3316         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3317                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3318 }
3319
3320 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3321 {
3322         int i;
3323
3324         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3325                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3326 }
3327
3328 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3329 {
3330         if (idx == UI_CURRENT) {
3331                 if (device->state.role == R_PRIMARY)
3332                         val |= 1;
3333                 else
3334                         val &= ~((u64)1);
3335
3336                 drbd_set_ed_uuid(device, val);
3337         }
3338
3339         device->ldev->md.uuid[idx] = val;
3340         drbd_md_mark_dirty(device);
3341 }
3342
3343 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3344 {
3345         unsigned long flags;
3346         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3347         __drbd_uuid_set(device, idx, val);
3348         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3349 }
3350
3351 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3352 {
3353         unsigned long flags;
3354         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3355         if (device->ldev->md.uuid[idx]) {
3356                 drbd_uuid_move_history(device);
3357                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3358         }
3359         __drbd_uuid_set(device, idx, val);
3360         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3361 }
3362
3363 /**
3364  * drbd_uuid_new_current() - Creates a new current UUID
3365  * @device:     DRBD device.
3366  *
3367  * Creates a new current UUID, and rotates the old current UUID into
3368  * the bitmap slot. Causes an incremental resync upon next connect.
3369  */
3370 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3371 {
3372         u64 val;
3373         unsigned long long bm_uuid;
3374
3375         get_random_bytes(&val, sizeof(u64));
3376
3377         spin_lock_irq(&device->ldev->md.uuid_lock);
3378         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3379
3380         if (bm_uuid)
3381                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3382
3383         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3384         __drbd_uuid_set(device, UI_CURRENT, val);
3385         spin_unlock_irq(&device->ldev->md.uuid_lock);
3386
3387         drbd_print_uuids(device, "new current UUID");
3388         /* get it to stable storage _now_ */
3389         drbd_md_sync(device);
3390 }
3391
3392 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3393 {
3394         unsigned long flags;
3395         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3396                 return;
3397
3398         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3399         if (val == 0) {
3400                 drbd_uuid_move_history(device);
3401                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3402                 device->ldev->md.uuid[UI_BITMAP] = 0;
3403         } else {
3404                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3405                 if (bm_uuid)
3406                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3407
3408                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3409         }
3410         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3411
3412         drbd_md_mark_dirty(device);
3413 }
3414
3415 /**
3416  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3417  * @device:     DRBD device.
3418  *
3419  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3420  */
3421 int drbd_bmio_set_n_write(struct drbd_device *device,
3422                           struct drbd_peer_device *peer_device) __must_hold(local)
3423
3424 {
3425         int rv = -EIO;
3426
3427         drbd_md_set_flag(device, MDF_FULL_SYNC);
3428         drbd_md_sync(device);
3429         drbd_bm_set_all(device);
3430
3431         rv = drbd_bm_write(device, peer_device);
3432
3433         if (!rv) {
3434                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3435                 drbd_md_sync(device);
3436         }
3437
3438         return rv;
3439 }
3440
3441 /**
3442  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3443  * @device:     DRBD device.
3444  *
3445  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3446  */
3447 int drbd_bmio_clear_n_write(struct drbd_device *device,
3448                           struct drbd_peer_device *peer_device) __must_hold(local)
3449
3450 {
3451         drbd_resume_al(device);
3452         drbd_bm_clear_all(device);
3453         return drbd_bm_write(device, peer_device);
3454 }
3455
3456 static int w_bitmap_io(struct drbd_work *w, int unused)
3457 {
3458         struct drbd_device *device =
3459                 container_of(w, struct drbd_device, bm_io_work.w);
3460         struct bm_io_work *work = &device->bm_io_work;
3461         int rv = -EIO;
3462
3463         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3464                 int cnt = atomic_read(&device->ap_bio_cnt);
3465                 if (cnt)
3466                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3467                                         cnt, work->why);
3468         }
3469
3470         if (get_ldev(device)) {
3471                 drbd_bm_lock(device, work->why, work->flags);
3472                 rv = work->io_fn(device, work->peer_device);
3473                 drbd_bm_unlock(device);
3474                 put_ldev(device);
3475         }
3476
3477         clear_bit_unlock(BITMAP_IO, &device->flags);
3478         wake_up(&device->misc_wait);
3479
3480         if (work->done)
3481                 work->done(device, rv);
3482
3483         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3484         work->why = NULL;
3485         work->flags = 0;
3486
3487         return 0;
3488 }
3489
3490 /**
3491  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3492  * @device:     DRBD device.
3493  * @io_fn:      IO callback to be called when bitmap IO is possible
3494  * @done:       callback to be called after the bitmap IO was performed
3495  * @why:        Descriptive text of the reason for doing the IO
3496  * @flags:      Bitmap flags
3497  *
3498  * While IO on the bitmap happens we freeze application IO thus we ensure
3499  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3500  * called from worker context. It MUST NOT be used while a previous such
3501  * work is still pending!
3502  *
3503  * Its worker function encloses the call of io_fn() by get_ldev() and
3504  * put_ldev().
3505  */
3506 void drbd_queue_bitmap_io(struct drbd_device *device,
3507                           int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3508                           void (*done)(struct drbd_device *, int),
3509                           char *why, enum bm_flag flags,
3510                           struct drbd_peer_device *peer_device)
3511 {
3512         D_ASSERT(device, current == peer_device->connection->worker.task);
3513
3514         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3515         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3516         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3517         if (device->bm_io_work.why)
3518                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3519                         why, device->bm_io_work.why);
3520
3521         device->bm_io_work.peer_device = peer_device;
3522         device->bm_io_work.io_fn = io_fn;
3523         device->bm_io_work.done = done;
3524         device->bm_io_work.why = why;
3525         device->bm_io_work.flags = flags;
3526
3527         spin_lock_irq(&device->resource->req_lock);
3528         set_bit(BITMAP_IO, &device->flags);
3529         /* don't wait for pending application IO if the caller indicates that
3530          * application IO does not conflict anyways. */
3531         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3532                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3533                         drbd_queue_work(&peer_device->connection->sender_work,
3534                                         &device->bm_io_work.w);
3535         }
3536         spin_unlock_irq(&device->resource->req_lock);
3537 }
3538
3539 /**
3540  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3541  * @device:     DRBD device.
3542  * @io_fn:      IO callback to be called when bitmap IO is possible
3543  * @why:        Descriptive text of the reason for doing the IO
3544  * @flags:      Bitmap flags
3545  *
3546  * freezes application IO while that the actual IO operations runs. This
3547  * functions MAY NOT be called from worker context.
3548  */
3549 int drbd_bitmap_io(struct drbd_device *device,
3550                 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3551                 char *why, enum bm_flag flags,
3552                 struct drbd_peer_device *peer_device)
3553 {
3554         /* Only suspend io, if some operation is supposed to be locked out */
3555         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3556         int rv;
3557
3558         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3559
3560         if (do_suspend_io)
3561                 drbd_suspend_io(device);
3562
3563         drbd_bm_lock(device, why, flags);
3564         rv = io_fn(device, peer_device);
3565         drbd_bm_unlock(device);
3566
3567         if (do_suspend_io)
3568                 drbd_resume_io(device);
3569
3570         return rv;
3571 }
3572
3573 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3574 {
3575         if ((device->ldev->md.flags & flag) != flag) {
3576                 drbd_md_mark_dirty(device);
3577                 device->ldev->md.flags |= flag;
3578         }
3579 }
3580
3581 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3582 {
3583         if ((device->ldev->md.flags & flag) != 0) {
3584                 drbd_md_mark_dirty(device);
3585                 device->ldev->md.flags &= ~flag;
3586         }
3587 }
3588 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3589 {
3590         return (bdev->md.flags & flag) != 0;
3591 }
3592
3593 static void md_sync_timer_fn(struct timer_list *t)
3594 {
3595         struct drbd_device *device = from_timer(device, t, md_sync_timer);
3596         drbd_device_post_work(device, MD_SYNC);
3597 }
3598
3599 const char *cmdname(enum drbd_packet cmd)
3600 {
3601         /* THINK may need to become several global tables
3602          * when we want to support more than
3603          * one PRO_VERSION */
3604         static const char *cmdnames[] = {
3605
3606                 [P_DATA]                = "Data",
3607                 [P_DATA_REPLY]          = "DataReply",
3608                 [P_RS_DATA_REPLY]       = "RSDataReply",
3609                 [P_BARRIER]             = "Barrier",
3610                 [P_BITMAP]              = "ReportBitMap",
3611                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3612                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3613                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3614                 [P_DATA_REQUEST]        = "DataRequest",
3615                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3616                 [P_SYNC_PARAM]          = "SyncParam",
3617                 [P_PROTOCOL]            = "ReportProtocol",
3618                 [P_UUIDS]               = "ReportUUIDs",
3619                 [P_SIZES]               = "ReportSizes",
3620                 [P_STATE]               = "ReportState",
3621                 [P_SYNC_UUID]           = "ReportSyncUUID",
3622                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3623                 [P_AUTH_RESPONSE]       = "AuthResponse",
3624                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3625                 [P_PING]                = "Ping",
3626                 [P_PING_ACK]            = "PingAck",
3627                 [P_RECV_ACK]            = "RecvAck",
3628                 [P_WRITE_ACK]           = "WriteAck",
3629                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3630                 [P_SUPERSEDED]          = "Superseded",
3631                 [P_NEG_ACK]             = "NegAck",
3632                 [P_NEG_DREPLY]          = "NegDReply",
3633                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3634                 [P_BARRIER_ACK]         = "BarrierAck",
3635                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3636                 [P_OV_REQUEST]          = "OVRequest",
3637                 [P_OV_REPLY]            = "OVReply",
3638                 [P_OV_RESULT]           = "OVResult",
3639                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3640                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3641                 [P_SYNC_PARAM89]        = "SyncParam89",
3642                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3643                 [P_DELAY_PROBE]         = "DelayProbe",
3644                 [P_OUT_OF_SYNC]         = "OutOfSync",
3645                 [P_RS_CANCEL]           = "RSCancel",
3646                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3647                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3648                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3649                 [P_TRIM]                = "Trim",
3650                 [P_RS_THIN_REQ]         = "rs_thin_req",
3651                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3652                 [P_WSAME]               = "WriteSame",
3653                 [P_ZEROES]              = "Zeroes",
3654
3655                 /* enum drbd_packet, but not commands - obsoleted flags:
3656                  *      P_MAY_IGNORE
3657                  *      P_MAX_OPT_CMD
3658                  */
3659         };
3660
3661         /* too big for the array: 0xfffX */
3662         if (cmd == P_INITIAL_META)
3663                 return "InitialMeta";
3664         if (cmd == P_INITIAL_DATA)
3665                 return "InitialData";
3666         if (cmd == P_CONNECTION_FEATURES)
3667                 return "ConnectionFeatures";
3668         if (cmd >= ARRAY_SIZE(cmdnames))
3669                 return "Unknown";
3670         return cmdnames[cmd];
3671 }
3672
3673 /**
3674  * drbd_wait_misc  -  wait for a request to make progress
3675  * @device:     device associated with the request
3676  * @i:          the struct drbd_interval embedded in struct drbd_request or
3677  *              struct drbd_peer_request
3678  */
3679 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3680 {
3681         struct net_conf *nc;
3682         DEFINE_WAIT(wait);
3683         long timeout;
3684
3685         rcu_read_lock();
3686         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3687         if (!nc) {
3688                 rcu_read_unlock();
3689                 return -ETIMEDOUT;
3690         }
3691         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3692         rcu_read_unlock();
3693
3694         /* Indicate to wake up device->misc_wait on progress.  */
3695         i->waiting = true;
3696         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3697         spin_unlock_irq(&device->resource->req_lock);
3698         timeout = schedule_timeout(timeout);
3699         finish_wait(&device->misc_wait, &wait);
3700         spin_lock_irq(&device->resource->req_lock);
3701         if (!timeout || device->state.conn < C_CONNECTED)
3702                 return -ETIMEDOUT;
3703         if (signal_pending(current))
3704                 return -ERESTARTSYS;
3705         return 0;
3706 }
3707
3708 void lock_all_resources(void)
3709 {
3710         struct drbd_resource *resource;
3711         int __maybe_unused i = 0;
3712
3713         mutex_lock(&resources_mutex);
3714         local_irq_disable();
3715         for_each_resource(resource, &drbd_resources)
3716                 spin_lock_nested(&resource->req_lock, i++);
3717 }
3718
3719 void unlock_all_resources(void)
3720 {
3721         struct drbd_resource *resource;
3722
3723         for_each_resource(resource, &drbd_resources)
3724                 spin_unlock(&resource->req_lock);
3725         local_irq_enable();
3726         mutex_unlock(&resources_mutex);
3727 }
3728
3729 #ifdef CONFIG_DRBD_FAULT_INJECTION
3730 /* Fault insertion support including random number generator shamelessly
3731  * stolen from kernel/rcutorture.c */
3732 struct fault_random_state {
3733         unsigned long state;
3734         unsigned long count;
3735 };
3736
3737 #define FAULT_RANDOM_MULT 39916801  /* prime */
3738 #define FAULT_RANDOM_ADD        479001701 /* prime */
3739 #define FAULT_RANDOM_REFRESH 10000
3740
3741 /*
3742  * Crude but fast random-number generator.  Uses a linear congruential
3743  * generator, with occasional help from get_random_bytes().
3744  */
3745 static unsigned long
3746 _drbd_fault_random(struct fault_random_state *rsp)
3747 {
3748         long refresh;
3749
3750         if (!rsp->count--) {
3751                 get_random_bytes(&refresh, sizeof(refresh));
3752                 rsp->state += refresh;
3753                 rsp->count = FAULT_RANDOM_REFRESH;
3754         }
3755         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3756         return swahw32(rsp->state);
3757 }
3758
3759 static char *
3760 _drbd_fault_str(unsigned int type) {
3761         static char *_faults[] = {
3762                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3763                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3764                 [DRBD_FAULT_RS_WR] = "Resync write",
3765                 [DRBD_FAULT_RS_RD] = "Resync read",
3766                 [DRBD_FAULT_DT_WR] = "Data write",
3767                 [DRBD_FAULT_DT_RD] = "Data read",
3768                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3769                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3770                 [DRBD_FAULT_AL_EE] = "EE allocation",
3771                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3772         };
3773
3774         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3775 }
3776
3777 unsigned int
3778 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3779 {
3780         static struct fault_random_state rrs = {0, 0};
3781
3782         unsigned int ret = (
3783                 (drbd_fault_devs == 0 ||
3784                         ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3785                 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3786
3787         if (ret) {
3788                 drbd_fault_count++;
3789
3790                 if (drbd_ratelimit())
3791                         drbd_warn(device, "***Simulating %s failure\n",
3792                                 _drbd_fault_str(type));
3793         }
3794
3795         return ret;
3796 }
3797 #endif
3798
3799 module_init(drbd_init)
3800 module_exit(drbd_cleanup)
3801
3802 EXPORT_SYMBOL(drbd_conn_str);
3803 EXPORT_SYMBOL(drbd_role_str);
3804 EXPORT_SYMBOL(drbd_disk_str);
3805 EXPORT_SYMBOL(drbd_set_st_err_str);