drbd: stop defining __KERNEL_SYSCALLS__
[platform/kernel/linux-starfive.git] / drivers / block / drbd / drbd_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3    drbd.c
4
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13
14
15  */
16
17 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #include <linux/unistd.h>
41 #include <linux/vmalloc.h>
42 #include <linux/sched/signal.h>
43
44 #include <linux/drbd_limits.h>
45 #include "drbd_int.h"
46 #include "drbd_protocol.h"
47 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
48 #include "drbd_vli.h"
49 #include "drbd_debugfs.h"
50
51 static DEFINE_MUTEX(drbd_main_mutex);
52 static int drbd_open(struct block_device *bdev, fmode_t mode);
53 static void drbd_release(struct gendisk *gd, fmode_t mode);
54 static void md_sync_timer_fn(struct timer_list *t);
55 static int w_bitmap_io(struct drbd_work *w, int unused);
56
57 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
58               "Lars Ellenberg <lars@linbit.com>");
59 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
60 MODULE_VERSION(REL_VERSION);
61 MODULE_LICENSE("GPL");
62 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
63                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
64 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
65
66 #include <linux/moduleparam.h>
67 /* thanks to these macros, if compiled into the kernel (not-module),
68  * these become boot parameters (e.g., drbd.minor_count) */
69
70 #ifdef CONFIG_DRBD_FAULT_INJECTION
71 int drbd_enable_faults;
72 int drbd_fault_rate;
73 static int drbd_fault_count;
74 static int drbd_fault_devs;
75 /* bitmap of enabled faults */
76 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
77 /* fault rate % value - applies to all enabled faults */
78 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
79 /* count of faults inserted */
80 module_param_named(fault_count, drbd_fault_count, int, 0664);
81 /* bitmap of devices to insert faults on */
82 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
83 #endif
84
85 /* module parameters we can keep static */
86 static bool drbd_allow_oos; /* allow_open_on_secondary */
87 static bool drbd_disable_sendpage;
88 MODULE_PARM_DESC(allow_oos, "DONT USE!");
89 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
90 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
91
92 /* module parameters we share */
93 int drbd_proc_details; /* Detail level in proc drbd*/
94 module_param_named(proc_details, drbd_proc_details, int, 0644);
95 /* module parameters shared with defaults */
96 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
97 /* Module parameter for setting the user mode helper program
98  * to run. Default is /sbin/drbdadm */
99 char drbd_usermode_helper[80] = "/sbin/drbdadm";
100 module_param_named(minor_count, drbd_minor_count, uint, 0444);
101 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
102
103 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
104  * as member "struct gendisk *vdisk;"
105  */
106 struct idr drbd_devices;
107 struct list_head drbd_resources;
108 struct mutex resources_mutex;
109
110 struct kmem_cache *drbd_request_cache;
111 struct kmem_cache *drbd_ee_cache;       /* peer requests */
112 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
113 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
114 mempool_t drbd_request_mempool;
115 mempool_t drbd_ee_mempool;
116 mempool_t drbd_md_io_page_pool;
117 struct bio_set drbd_md_io_bio_set;
118 struct bio_set drbd_io_bio_set;
119
120 /* I do not use a standard mempool, because:
121    1) I want to hand out the pre-allocated objects first.
122    2) I want to be able to interrupt sleeping allocation with a signal.
123    Note: This is a single linked list, the next pointer is the private
124          member of struct page.
125  */
126 struct page *drbd_pp_pool;
127 DEFINE_SPINLOCK(drbd_pp_lock);
128 int          drbd_pp_vacant;
129 wait_queue_head_t drbd_pp_wait;
130
131 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
132
133 static const struct block_device_operations drbd_ops = {
134         .owner          = THIS_MODULE,
135         .submit_bio     = drbd_submit_bio,
136         .open           = drbd_open,
137         .release        = drbd_release,
138 };
139
140 #ifdef __CHECKER__
141 /* When checking with sparse, and this is an inline function, sparse will
142    give tons of false positives. When this is a real functions sparse works.
143  */
144 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
145 {
146         int io_allowed;
147
148         atomic_inc(&device->local_cnt);
149         io_allowed = (device->state.disk >= mins);
150         if (!io_allowed) {
151                 if (atomic_dec_and_test(&device->local_cnt))
152                         wake_up(&device->misc_wait);
153         }
154         return io_allowed;
155 }
156
157 #endif
158
159 /**
160  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
161  * @connection: DRBD connection.
162  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
163  * @set_size:   Expected number of requests before that barrier.
164  *
165  * In case the passed barrier_nr or set_size does not match the oldest
166  * epoch of not yet barrier-acked requests, this function will cause a
167  * termination of the connection.
168  */
169 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
170                 unsigned int set_size)
171 {
172         struct drbd_request *r;
173         struct drbd_request *req = NULL, *tmp = NULL;
174         int expect_epoch = 0;
175         int expect_size = 0;
176
177         spin_lock_irq(&connection->resource->req_lock);
178
179         /* find oldest not yet barrier-acked write request,
180          * count writes in its epoch. */
181         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
182                 const unsigned s = r->rq_state;
183                 if (!req) {
184                         if (!(s & RQ_WRITE))
185                                 continue;
186                         if (!(s & RQ_NET_MASK))
187                                 continue;
188                         if (s & RQ_NET_DONE)
189                                 continue;
190                         req = r;
191                         expect_epoch = req->epoch;
192                         expect_size ++;
193                 } else {
194                         if (r->epoch != expect_epoch)
195                                 break;
196                         if (!(s & RQ_WRITE))
197                                 continue;
198                         /* if (s & RQ_DONE): not expected */
199                         /* if (!(s & RQ_NET_MASK)): not expected */
200                         expect_size++;
201                 }
202         }
203
204         /* first some paranoia code */
205         if (req == NULL) {
206                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
207                          barrier_nr);
208                 goto bail;
209         }
210         if (expect_epoch != barrier_nr) {
211                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
212                          barrier_nr, expect_epoch);
213                 goto bail;
214         }
215
216         if (expect_size != set_size) {
217                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
218                          barrier_nr, set_size, expect_size);
219                 goto bail;
220         }
221
222         /* Clean up list of requests processed during current epoch. */
223         /* this extra list walk restart is paranoia,
224          * to catch requests being barrier-acked "unexpectedly".
225          * It usually should find the same req again, or some READ preceding it. */
226         list_for_each_entry(req, &connection->transfer_log, tl_requests)
227                 if (req->epoch == expect_epoch) {
228                         tmp = req;
229                         break;
230                 }
231         req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
232         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
233                 struct drbd_peer_device *peer_device;
234                 if (req->epoch != expect_epoch)
235                         break;
236                 peer_device = conn_peer_device(connection, req->device->vnr);
237                 _req_mod(req, BARRIER_ACKED, peer_device);
238         }
239         spin_unlock_irq(&connection->resource->req_lock);
240
241         return;
242
243 bail:
244         spin_unlock_irq(&connection->resource->req_lock);
245         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
246 }
247
248
249 /**
250  * _tl_restart() - Walks the transfer log, and applies an action to all requests
251  * @connection: DRBD connection to operate on.
252  * @what:       The action/event to perform with all request objects
253  *
254  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
255  * RESTART_FROZEN_DISK_IO.
256  */
257 /* must hold resource->req_lock */
258 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
259 {
260         struct drbd_peer_device *peer_device;
261         struct drbd_request *req, *r;
262
263         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
264                 peer_device = conn_peer_device(connection, req->device->vnr);
265                 _req_mod(req, what, peer_device);
266         }
267 }
268
269 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
270 {
271         spin_lock_irq(&connection->resource->req_lock);
272         _tl_restart(connection, what);
273         spin_unlock_irq(&connection->resource->req_lock);
274 }
275
276 /**
277  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
278  * @connection: DRBD connection.
279  *
280  * This is called after the connection to the peer was lost. The storage covered
281  * by the requests on the transfer gets marked as our of sync. Called from the
282  * receiver thread and the worker thread.
283  */
284 void tl_clear(struct drbd_connection *connection)
285 {
286         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
287 }
288
289 /**
290  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
291  * @device:     DRBD device.
292  */
293 void tl_abort_disk_io(struct drbd_device *device)
294 {
295         struct drbd_connection *connection = first_peer_device(device)->connection;
296         struct drbd_request *req, *r;
297
298         spin_lock_irq(&connection->resource->req_lock);
299         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
300                 if (!(req->rq_state & RQ_LOCAL_PENDING))
301                         continue;
302                 if (req->device != device)
303                         continue;
304                 _req_mod(req, ABORT_DISK_IO, NULL);
305         }
306         spin_unlock_irq(&connection->resource->req_lock);
307 }
308
309 static int drbd_thread_setup(void *arg)
310 {
311         struct drbd_thread *thi = (struct drbd_thread *) arg;
312         struct drbd_resource *resource = thi->resource;
313         unsigned long flags;
314         int retval;
315
316         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
317                  thi->name[0],
318                  resource->name);
319
320         allow_kernel_signal(DRBD_SIGKILL);
321         allow_kernel_signal(SIGXCPU);
322 restart:
323         retval = thi->function(thi);
324
325         spin_lock_irqsave(&thi->t_lock, flags);
326
327         /* if the receiver has been "EXITING", the last thing it did
328          * was set the conn state to "StandAlone",
329          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
330          * and receiver thread will be "started".
331          * drbd_thread_start needs to set "RESTARTING" in that case.
332          * t_state check and assignment needs to be within the same spinlock,
333          * so either thread_start sees EXITING, and can remap to RESTARTING,
334          * or thread_start see NONE, and can proceed as normal.
335          */
336
337         if (thi->t_state == RESTARTING) {
338                 drbd_info(resource, "Restarting %s thread\n", thi->name);
339                 thi->t_state = RUNNING;
340                 spin_unlock_irqrestore(&thi->t_lock, flags);
341                 goto restart;
342         }
343
344         thi->task = NULL;
345         thi->t_state = NONE;
346         smp_mb();
347         complete_all(&thi->stop);
348         spin_unlock_irqrestore(&thi->t_lock, flags);
349
350         drbd_info(resource, "Terminating %s\n", current->comm);
351
352         /* Release mod reference taken when thread was started */
353
354         if (thi->connection)
355                 kref_put(&thi->connection->kref, drbd_destroy_connection);
356         kref_put(&resource->kref, drbd_destroy_resource);
357         module_put(THIS_MODULE);
358         return retval;
359 }
360
361 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
362                              int (*func) (struct drbd_thread *), const char *name)
363 {
364         spin_lock_init(&thi->t_lock);
365         thi->task    = NULL;
366         thi->t_state = NONE;
367         thi->function = func;
368         thi->resource = resource;
369         thi->connection = NULL;
370         thi->name = name;
371 }
372
373 int drbd_thread_start(struct drbd_thread *thi)
374 {
375         struct drbd_resource *resource = thi->resource;
376         struct task_struct *nt;
377         unsigned long flags;
378
379         /* is used from state engine doing drbd_thread_stop_nowait,
380          * while holding the req lock irqsave */
381         spin_lock_irqsave(&thi->t_lock, flags);
382
383         switch (thi->t_state) {
384         case NONE:
385                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
386                          thi->name, current->comm, current->pid);
387
388                 /* Get ref on module for thread - this is released when thread exits */
389                 if (!try_module_get(THIS_MODULE)) {
390                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
391                         spin_unlock_irqrestore(&thi->t_lock, flags);
392                         return false;
393                 }
394
395                 kref_get(&resource->kref);
396                 if (thi->connection)
397                         kref_get(&thi->connection->kref);
398
399                 init_completion(&thi->stop);
400                 thi->reset_cpu_mask = 1;
401                 thi->t_state = RUNNING;
402                 spin_unlock_irqrestore(&thi->t_lock, flags);
403                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
404
405                 nt = kthread_create(drbd_thread_setup, (void *) thi,
406                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
407
408                 if (IS_ERR(nt)) {
409                         drbd_err(resource, "Couldn't start thread\n");
410
411                         if (thi->connection)
412                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
413                         kref_put(&resource->kref, drbd_destroy_resource);
414                         module_put(THIS_MODULE);
415                         return false;
416                 }
417                 spin_lock_irqsave(&thi->t_lock, flags);
418                 thi->task = nt;
419                 thi->t_state = RUNNING;
420                 spin_unlock_irqrestore(&thi->t_lock, flags);
421                 wake_up_process(nt);
422                 break;
423         case EXITING:
424                 thi->t_state = RESTARTING;
425                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
426                                 thi->name, current->comm, current->pid);
427                 fallthrough;
428         case RUNNING:
429         case RESTARTING:
430         default:
431                 spin_unlock_irqrestore(&thi->t_lock, flags);
432                 break;
433         }
434
435         return true;
436 }
437
438
439 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
440 {
441         unsigned long flags;
442
443         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
444
445         /* may be called from state engine, holding the req lock irqsave */
446         spin_lock_irqsave(&thi->t_lock, flags);
447
448         if (thi->t_state == NONE) {
449                 spin_unlock_irqrestore(&thi->t_lock, flags);
450                 if (restart)
451                         drbd_thread_start(thi);
452                 return;
453         }
454
455         if (thi->t_state != ns) {
456                 if (thi->task == NULL) {
457                         spin_unlock_irqrestore(&thi->t_lock, flags);
458                         return;
459                 }
460
461                 thi->t_state = ns;
462                 smp_mb();
463                 init_completion(&thi->stop);
464                 if (thi->task != current)
465                         send_sig(DRBD_SIGKILL, thi->task, 1);
466         }
467
468         spin_unlock_irqrestore(&thi->t_lock, flags);
469
470         if (wait)
471                 wait_for_completion(&thi->stop);
472 }
473
474 int conn_lowest_minor(struct drbd_connection *connection)
475 {
476         struct drbd_peer_device *peer_device;
477         int vnr = 0, minor = -1;
478
479         rcu_read_lock();
480         peer_device = idr_get_next(&connection->peer_devices, &vnr);
481         if (peer_device)
482                 minor = device_to_minor(peer_device->device);
483         rcu_read_unlock();
484
485         return minor;
486 }
487
488 #ifdef CONFIG_SMP
489 /*
490  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
491  *
492  * Forces all threads of a resource onto the same CPU. This is beneficial for
493  * DRBD's performance. May be overwritten by user's configuration.
494  */
495 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
496 {
497         unsigned int *resources_per_cpu, min_index = ~0;
498
499         resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
500                                     GFP_KERNEL);
501         if (resources_per_cpu) {
502                 struct drbd_resource *resource;
503                 unsigned int cpu, min = ~0;
504
505                 rcu_read_lock();
506                 for_each_resource_rcu(resource, &drbd_resources) {
507                         for_each_cpu(cpu, resource->cpu_mask)
508                                 resources_per_cpu[cpu]++;
509                 }
510                 rcu_read_unlock();
511                 for_each_online_cpu(cpu) {
512                         if (resources_per_cpu[cpu] < min) {
513                                 min = resources_per_cpu[cpu];
514                                 min_index = cpu;
515                         }
516                 }
517                 kfree(resources_per_cpu);
518         }
519         if (min_index == ~0) {
520                 cpumask_setall(*cpu_mask);
521                 return;
522         }
523         cpumask_set_cpu(min_index, *cpu_mask);
524 }
525
526 /**
527  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
528  * @thi:        drbd_thread object
529  *
530  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
531  * prematurely.
532  */
533 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
534 {
535         struct drbd_resource *resource = thi->resource;
536         struct task_struct *p = current;
537
538         if (!thi->reset_cpu_mask)
539                 return;
540         thi->reset_cpu_mask = 0;
541         set_cpus_allowed_ptr(p, resource->cpu_mask);
542 }
543 #else
544 #define drbd_calc_cpu_mask(A) ({})
545 #endif
546
547 /*
548  * drbd_header_size  -  size of a packet header
549  *
550  * The header size is a multiple of 8, so any payload following the header is
551  * word aligned on 64-bit architectures.  (The bitmap send and receive code
552  * relies on this.)
553  */
554 unsigned int drbd_header_size(struct drbd_connection *connection)
555 {
556         if (connection->agreed_pro_version >= 100) {
557                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
558                 return sizeof(struct p_header100);
559         } else {
560                 BUILD_BUG_ON(sizeof(struct p_header80) !=
561                              sizeof(struct p_header95));
562                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
563                 return sizeof(struct p_header80);
564         }
565 }
566
567 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
568 {
569         h->magic   = cpu_to_be32(DRBD_MAGIC);
570         h->command = cpu_to_be16(cmd);
571         h->length  = cpu_to_be16(size);
572         return sizeof(struct p_header80);
573 }
574
575 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
576 {
577         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
578         h->command = cpu_to_be16(cmd);
579         h->length = cpu_to_be32(size);
580         return sizeof(struct p_header95);
581 }
582
583 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
584                                       int size, int vnr)
585 {
586         h->magic = cpu_to_be32(DRBD_MAGIC_100);
587         h->volume = cpu_to_be16(vnr);
588         h->command = cpu_to_be16(cmd);
589         h->length = cpu_to_be32(size);
590         h->pad = 0;
591         return sizeof(struct p_header100);
592 }
593
594 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
595                                    void *buffer, enum drbd_packet cmd, int size)
596 {
597         if (connection->agreed_pro_version >= 100)
598                 return prepare_header100(buffer, cmd, size, vnr);
599         else if (connection->agreed_pro_version >= 95 &&
600                  size > DRBD_MAX_SIZE_H80_PACKET)
601                 return prepare_header95(buffer, cmd, size);
602         else
603                 return prepare_header80(buffer, cmd, size);
604 }
605
606 static void *__conn_prepare_command(struct drbd_connection *connection,
607                                     struct drbd_socket *sock)
608 {
609         if (!sock->socket)
610                 return NULL;
611         return sock->sbuf + drbd_header_size(connection);
612 }
613
614 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
615 {
616         void *p;
617
618         mutex_lock(&sock->mutex);
619         p = __conn_prepare_command(connection, sock);
620         if (!p)
621                 mutex_unlock(&sock->mutex);
622
623         return p;
624 }
625
626 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
627 {
628         return conn_prepare_command(peer_device->connection, sock);
629 }
630
631 static int __send_command(struct drbd_connection *connection, int vnr,
632                           struct drbd_socket *sock, enum drbd_packet cmd,
633                           unsigned int header_size, void *data,
634                           unsigned int size)
635 {
636         int msg_flags;
637         int err;
638
639         /*
640          * Called with @data == NULL and the size of the data blocks in @size
641          * for commands that send data blocks.  For those commands, omit the
642          * MSG_MORE flag: this will increase the likelihood that data blocks
643          * which are page aligned on the sender will end up page aligned on the
644          * receiver.
645          */
646         msg_flags = data ? MSG_MORE : 0;
647
648         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
649                                       header_size + size);
650         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
651                             msg_flags);
652         if (data && !err)
653                 err = drbd_send_all(connection, sock->socket, data, size, 0);
654         /* DRBD protocol "pings" are latency critical.
655          * This is supposed to trigger tcp_push_pending_frames() */
656         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
657                 tcp_sock_set_nodelay(sock->socket->sk);
658
659         return err;
660 }
661
662 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
663                                enum drbd_packet cmd, unsigned int header_size,
664                                void *data, unsigned int size)
665 {
666         return __send_command(connection, 0, sock, cmd, header_size, data, size);
667 }
668
669 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670                       enum drbd_packet cmd, unsigned int header_size,
671                       void *data, unsigned int size)
672 {
673         int err;
674
675         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
676         mutex_unlock(&sock->mutex);
677         return err;
678 }
679
680 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
681                       enum drbd_packet cmd, unsigned int header_size,
682                       void *data, unsigned int size)
683 {
684         int err;
685
686         err = __send_command(peer_device->connection, peer_device->device->vnr,
687                              sock, cmd, header_size, data, size);
688         mutex_unlock(&sock->mutex);
689         return err;
690 }
691
692 int drbd_send_ping(struct drbd_connection *connection)
693 {
694         struct drbd_socket *sock;
695
696         sock = &connection->meta;
697         if (!conn_prepare_command(connection, sock))
698                 return -EIO;
699         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
700 }
701
702 int drbd_send_ping_ack(struct drbd_connection *connection)
703 {
704         struct drbd_socket *sock;
705
706         sock = &connection->meta;
707         if (!conn_prepare_command(connection, sock))
708                 return -EIO;
709         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
710 }
711
712 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
713 {
714         struct drbd_socket *sock;
715         struct p_rs_param_95 *p;
716         int size;
717         const int apv = peer_device->connection->agreed_pro_version;
718         enum drbd_packet cmd;
719         struct net_conf *nc;
720         struct disk_conf *dc;
721
722         sock = &peer_device->connection->data;
723         p = drbd_prepare_command(peer_device, sock);
724         if (!p)
725                 return -EIO;
726
727         rcu_read_lock();
728         nc = rcu_dereference(peer_device->connection->net_conf);
729
730         size = apv <= 87 ? sizeof(struct p_rs_param)
731                 : apv == 88 ? sizeof(struct p_rs_param)
732                         + strlen(nc->verify_alg) + 1
733                 : apv <= 94 ? sizeof(struct p_rs_param_89)
734                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
735
736         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
737
738         /* initialize verify_alg and csums_alg */
739         BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
740         memset(&p->algs, 0, sizeof(p->algs));
741
742         if (get_ldev(peer_device->device)) {
743                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
744                 p->resync_rate = cpu_to_be32(dc->resync_rate);
745                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
746                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
747                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
748                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
749                 put_ldev(peer_device->device);
750         } else {
751                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
752                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
753                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
754                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
755                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
756         }
757
758         if (apv >= 88)
759                 strcpy(p->verify_alg, nc->verify_alg);
760         if (apv >= 89)
761                 strcpy(p->csums_alg, nc->csums_alg);
762         rcu_read_unlock();
763
764         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
765 }
766
767 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
768 {
769         struct drbd_socket *sock;
770         struct p_protocol *p;
771         struct net_conf *nc;
772         int size, cf;
773
774         sock = &connection->data;
775         p = __conn_prepare_command(connection, sock);
776         if (!p)
777                 return -EIO;
778
779         rcu_read_lock();
780         nc = rcu_dereference(connection->net_conf);
781
782         if (nc->tentative && connection->agreed_pro_version < 92) {
783                 rcu_read_unlock();
784                 drbd_err(connection, "--dry-run is not supported by peer");
785                 return -EOPNOTSUPP;
786         }
787
788         size = sizeof(*p);
789         if (connection->agreed_pro_version >= 87)
790                 size += strlen(nc->integrity_alg) + 1;
791
792         p->protocol      = cpu_to_be32(nc->wire_protocol);
793         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
794         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
795         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
796         p->two_primaries = cpu_to_be32(nc->two_primaries);
797         cf = 0;
798         if (nc->discard_my_data)
799                 cf |= CF_DISCARD_MY_DATA;
800         if (nc->tentative)
801                 cf |= CF_DRY_RUN;
802         p->conn_flags    = cpu_to_be32(cf);
803
804         if (connection->agreed_pro_version >= 87)
805                 strcpy(p->integrity_alg, nc->integrity_alg);
806         rcu_read_unlock();
807
808         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
809 }
810
811 int drbd_send_protocol(struct drbd_connection *connection)
812 {
813         int err;
814
815         mutex_lock(&connection->data.mutex);
816         err = __drbd_send_protocol(connection, P_PROTOCOL);
817         mutex_unlock(&connection->data.mutex);
818
819         return err;
820 }
821
822 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
823 {
824         struct drbd_device *device = peer_device->device;
825         struct drbd_socket *sock;
826         struct p_uuids *p;
827         int i;
828
829         if (!get_ldev_if_state(device, D_NEGOTIATING))
830                 return 0;
831
832         sock = &peer_device->connection->data;
833         p = drbd_prepare_command(peer_device, sock);
834         if (!p) {
835                 put_ldev(device);
836                 return -EIO;
837         }
838         spin_lock_irq(&device->ldev->md.uuid_lock);
839         for (i = UI_CURRENT; i < UI_SIZE; i++)
840                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
841         spin_unlock_irq(&device->ldev->md.uuid_lock);
842
843         device->comm_bm_set = drbd_bm_total_weight(device);
844         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
845         rcu_read_lock();
846         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
847         rcu_read_unlock();
848         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
849         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
850         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
851
852         put_ldev(device);
853         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
854 }
855
856 int drbd_send_uuids(struct drbd_peer_device *peer_device)
857 {
858         return _drbd_send_uuids(peer_device, 0);
859 }
860
861 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
862 {
863         return _drbd_send_uuids(peer_device, 8);
864 }
865
866 void drbd_print_uuids(struct drbd_device *device, const char *text)
867 {
868         if (get_ldev_if_state(device, D_NEGOTIATING)) {
869                 u64 *uuid = device->ldev->md.uuid;
870                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
871                      text,
872                      (unsigned long long)uuid[UI_CURRENT],
873                      (unsigned long long)uuid[UI_BITMAP],
874                      (unsigned long long)uuid[UI_HISTORY_START],
875                      (unsigned long long)uuid[UI_HISTORY_END]);
876                 put_ldev(device);
877         } else {
878                 drbd_info(device, "%s effective data uuid: %016llX\n",
879                                 text,
880                                 (unsigned long long)device->ed_uuid);
881         }
882 }
883
884 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
885 {
886         struct drbd_device *device = peer_device->device;
887         struct drbd_socket *sock;
888         struct p_rs_uuid *p;
889         u64 uuid;
890
891         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
892
893         uuid = device->ldev->md.uuid[UI_BITMAP];
894         if (uuid && uuid != UUID_JUST_CREATED)
895                 uuid = uuid + UUID_NEW_BM_OFFSET;
896         else
897                 get_random_bytes(&uuid, sizeof(u64));
898         drbd_uuid_set(device, UI_BITMAP, uuid);
899         drbd_print_uuids(device, "updated sync UUID");
900         drbd_md_sync(device);
901
902         sock = &peer_device->connection->data;
903         p = drbd_prepare_command(peer_device, sock);
904         if (p) {
905                 p->uuid = cpu_to_be64(uuid);
906                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
907         }
908 }
909
910 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
911 {
912         struct drbd_device *device = peer_device->device;
913         struct drbd_socket *sock;
914         struct p_sizes *p;
915         sector_t d_size, u_size;
916         int q_order_type;
917         unsigned int max_bio_size;
918         unsigned int packet_size;
919
920         sock = &peer_device->connection->data;
921         p = drbd_prepare_command(peer_device, sock);
922         if (!p)
923                 return -EIO;
924
925         packet_size = sizeof(*p);
926         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
927                 packet_size += sizeof(p->qlim[0]);
928
929         memset(p, 0, packet_size);
930         if (get_ldev_if_state(device, D_NEGOTIATING)) {
931                 struct block_device *bdev = device->ldev->backing_bdev;
932                 struct request_queue *q = bdev_get_queue(bdev);
933
934                 d_size = drbd_get_max_capacity(device->ldev);
935                 rcu_read_lock();
936                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
937                 rcu_read_unlock();
938                 q_order_type = drbd_queue_order_type(device);
939                 max_bio_size = queue_max_hw_sectors(q) << 9;
940                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
941                 p->qlim->physical_block_size =
942                         cpu_to_be32(bdev_physical_block_size(bdev));
943                 p->qlim->logical_block_size =
944                         cpu_to_be32(bdev_logical_block_size(bdev));
945                 p->qlim->alignment_offset =
946                         cpu_to_be32(bdev_alignment_offset(bdev));
947                 p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev));
948                 p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev));
949                 p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev);
950                 put_ldev(device);
951         } else {
952                 struct request_queue *q = device->rq_queue;
953
954                 p->qlim->physical_block_size =
955                         cpu_to_be32(queue_physical_block_size(q));
956                 p->qlim->logical_block_size =
957                         cpu_to_be32(queue_logical_block_size(q));
958                 p->qlim->alignment_offset = 0;
959                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
960                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
961                 p->qlim->discard_enabled = 0;
962
963                 d_size = 0;
964                 u_size = 0;
965                 q_order_type = QUEUE_ORDERED_NONE;
966                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
967         }
968
969         if (peer_device->connection->agreed_pro_version <= 94)
970                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
971         else if (peer_device->connection->agreed_pro_version < 100)
972                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
973
974         p->d_size = cpu_to_be64(d_size);
975         p->u_size = cpu_to_be64(u_size);
976         if (trigger_reply)
977                 p->c_size = 0;
978         else
979                 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
980         p->max_bio_size = cpu_to_be32(max_bio_size);
981         p->queue_order_type = cpu_to_be16(q_order_type);
982         p->dds_flags = cpu_to_be16(flags);
983
984         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
985 }
986
987 /**
988  * drbd_send_current_state() - Sends the drbd state to the peer
989  * @peer_device:        DRBD peer device.
990  */
991 int drbd_send_current_state(struct drbd_peer_device *peer_device)
992 {
993         struct drbd_socket *sock;
994         struct p_state *p;
995
996         sock = &peer_device->connection->data;
997         p = drbd_prepare_command(peer_device, sock);
998         if (!p)
999                 return -EIO;
1000         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1001         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1002 }
1003
1004 /**
1005  * drbd_send_state() - After a state change, sends the new state to the peer
1006  * @peer_device:      DRBD peer device.
1007  * @state:     the state to send, not necessarily the current state.
1008  *
1009  * Each state change queues an "after_state_ch" work, which will eventually
1010  * send the resulting new state to the peer. If more state changes happen
1011  * between queuing and processing of the after_state_ch work, we still
1012  * want to send each intermediary state in the order it occurred.
1013  */
1014 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1015 {
1016         struct drbd_socket *sock;
1017         struct p_state *p;
1018
1019         sock = &peer_device->connection->data;
1020         p = drbd_prepare_command(peer_device, sock);
1021         if (!p)
1022                 return -EIO;
1023         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1024         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1025 }
1026
1027 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1028 {
1029         struct drbd_socket *sock;
1030         struct p_req_state *p;
1031
1032         sock = &peer_device->connection->data;
1033         p = drbd_prepare_command(peer_device, sock);
1034         if (!p)
1035                 return -EIO;
1036         p->mask = cpu_to_be32(mask.i);
1037         p->val = cpu_to_be32(val.i);
1038         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1039 }
1040
1041 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1042 {
1043         enum drbd_packet cmd;
1044         struct drbd_socket *sock;
1045         struct p_req_state *p;
1046
1047         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1048         sock = &connection->data;
1049         p = conn_prepare_command(connection, sock);
1050         if (!p)
1051                 return -EIO;
1052         p->mask = cpu_to_be32(mask.i);
1053         p->val = cpu_to_be32(val.i);
1054         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1055 }
1056
1057 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1058 {
1059         struct drbd_socket *sock;
1060         struct p_req_state_reply *p;
1061
1062         sock = &peer_device->connection->meta;
1063         p = drbd_prepare_command(peer_device, sock);
1064         if (p) {
1065                 p->retcode = cpu_to_be32(retcode);
1066                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1067         }
1068 }
1069
1070 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1071 {
1072         struct drbd_socket *sock;
1073         struct p_req_state_reply *p;
1074         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1075
1076         sock = &connection->meta;
1077         p = conn_prepare_command(connection, sock);
1078         if (p) {
1079                 p->retcode = cpu_to_be32(retcode);
1080                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1081         }
1082 }
1083
1084 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1085 {
1086         BUG_ON(code & ~0xf);
1087         p->encoding = (p->encoding & ~0xf) | code;
1088 }
1089
1090 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1091 {
1092         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1093 }
1094
1095 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1096 {
1097         BUG_ON(n & ~0x7);
1098         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1099 }
1100
1101 static int fill_bitmap_rle_bits(struct drbd_device *device,
1102                          struct p_compressed_bm *p,
1103                          unsigned int size,
1104                          struct bm_xfer_ctx *c)
1105 {
1106         struct bitstream bs;
1107         unsigned long plain_bits;
1108         unsigned long tmp;
1109         unsigned long rl;
1110         unsigned len;
1111         unsigned toggle;
1112         int bits, use_rle;
1113
1114         /* may we use this feature? */
1115         rcu_read_lock();
1116         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1117         rcu_read_unlock();
1118         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1119                 return 0;
1120
1121         if (c->bit_offset >= c->bm_bits)
1122                 return 0; /* nothing to do. */
1123
1124         /* use at most thus many bytes */
1125         bitstream_init(&bs, p->code, size, 0);
1126         memset(p->code, 0, size);
1127         /* plain bits covered in this code string */
1128         plain_bits = 0;
1129
1130         /* p->encoding & 0x80 stores whether the first run length is set.
1131          * bit offset is implicit.
1132          * start with toggle == 2 to be able to tell the first iteration */
1133         toggle = 2;
1134
1135         /* see how much plain bits we can stuff into one packet
1136          * using RLE and VLI. */
1137         do {
1138                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1139                                     : _drbd_bm_find_next(device, c->bit_offset);
1140                 if (tmp == -1UL)
1141                         tmp = c->bm_bits;
1142                 rl = tmp - c->bit_offset;
1143
1144                 if (toggle == 2) { /* first iteration */
1145                         if (rl == 0) {
1146                                 /* the first checked bit was set,
1147                                  * store start value, */
1148                                 dcbp_set_start(p, 1);
1149                                 /* but skip encoding of zero run length */
1150                                 toggle = !toggle;
1151                                 continue;
1152                         }
1153                         dcbp_set_start(p, 0);
1154                 }
1155
1156                 /* paranoia: catch zero runlength.
1157                  * can only happen if bitmap is modified while we scan it. */
1158                 if (rl == 0) {
1159                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1160                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1161                         return -1;
1162                 }
1163
1164                 bits = vli_encode_bits(&bs, rl);
1165                 if (bits == -ENOBUFS) /* buffer full */
1166                         break;
1167                 if (bits <= 0) {
1168                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1169                         return 0;
1170                 }
1171
1172                 toggle = !toggle;
1173                 plain_bits += rl;
1174                 c->bit_offset = tmp;
1175         } while (c->bit_offset < c->bm_bits);
1176
1177         len = bs.cur.b - p->code + !!bs.cur.bit;
1178
1179         if (plain_bits < (len << 3)) {
1180                 /* incompressible with this method.
1181                  * we need to rewind both word and bit position. */
1182                 c->bit_offset -= plain_bits;
1183                 bm_xfer_ctx_bit_to_word_offset(c);
1184                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1185                 return 0;
1186         }
1187
1188         /* RLE + VLI was able to compress it just fine.
1189          * update c->word_offset. */
1190         bm_xfer_ctx_bit_to_word_offset(c);
1191
1192         /* store pad_bits */
1193         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1194
1195         return len;
1196 }
1197
1198 /*
1199  * send_bitmap_rle_or_plain
1200  *
1201  * Return 0 when done, 1 when another iteration is needed, and a negative error
1202  * code upon failure.
1203  */
1204 static int
1205 send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c)
1206 {
1207         struct drbd_device *device = peer_device->device;
1208         struct drbd_socket *sock = &peer_device->connection->data;
1209         unsigned int header_size = drbd_header_size(peer_device->connection);
1210         struct p_compressed_bm *p = sock->sbuf + header_size;
1211         int len, err;
1212
1213         len = fill_bitmap_rle_bits(device, p,
1214                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1215         if (len < 0)
1216                 return -EIO;
1217
1218         if (len) {
1219                 dcbp_set_code(p, RLE_VLI_Bits);
1220                 err = __send_command(peer_device->connection, device->vnr, sock,
1221                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1222                                      NULL, 0);
1223                 c->packets[0]++;
1224                 c->bytes[0] += header_size + sizeof(*p) + len;
1225
1226                 if (c->bit_offset >= c->bm_bits)
1227                         len = 0; /* DONE */
1228         } else {
1229                 /* was not compressible.
1230                  * send a buffer full of plain text bits instead. */
1231                 unsigned int data_size;
1232                 unsigned long num_words;
1233                 unsigned long *p = sock->sbuf + header_size;
1234
1235                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1236                 num_words = min_t(size_t, data_size / sizeof(*p),
1237                                   c->bm_words - c->word_offset);
1238                 len = num_words * sizeof(*p);
1239                 if (len)
1240                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1241                 err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP,
1242                                      len, NULL, 0);
1243                 c->word_offset += num_words;
1244                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1245
1246                 c->packets[1]++;
1247                 c->bytes[1] += header_size + len;
1248
1249                 if (c->bit_offset > c->bm_bits)
1250                         c->bit_offset = c->bm_bits;
1251         }
1252         if (!err) {
1253                 if (len == 0) {
1254                         INFO_bm_xfer_stats(peer_device, "send", c);
1255                         return 0;
1256                 } else
1257                         return 1;
1258         }
1259         return -EIO;
1260 }
1261
1262 /* See the comment at receive_bitmap() */
1263 static int _drbd_send_bitmap(struct drbd_device *device,
1264                             struct drbd_peer_device *peer_device)
1265 {
1266         struct bm_xfer_ctx c;
1267         int err;
1268
1269         if (!expect(device, device->bitmap))
1270                 return false;
1271
1272         if (get_ldev(device)) {
1273                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1274                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1275                         drbd_bm_set_all(device);
1276                         if (drbd_bm_write(device, peer_device)) {
1277                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1278                                  * but otherwise process as per normal - need to tell other
1279                                  * side that a full resync is required! */
1280                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1281                         } else {
1282                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1283                                 drbd_md_sync(device);
1284                         }
1285                 }
1286                 put_ldev(device);
1287         }
1288
1289         c = (struct bm_xfer_ctx) {
1290                 .bm_bits = drbd_bm_bits(device),
1291                 .bm_words = drbd_bm_words(device),
1292         };
1293
1294         do {
1295                 err = send_bitmap_rle_or_plain(peer_device, &c);
1296         } while (err > 0);
1297
1298         return err == 0;
1299 }
1300
1301 int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device)
1302 {
1303         struct drbd_socket *sock = &peer_device->connection->data;
1304         int err = -1;
1305
1306         mutex_lock(&sock->mutex);
1307         if (sock->socket)
1308                 err = !_drbd_send_bitmap(device, peer_device);
1309         mutex_unlock(&sock->mutex);
1310         return err;
1311 }
1312
1313 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1314 {
1315         struct drbd_socket *sock;
1316         struct p_barrier_ack *p;
1317
1318         if (connection->cstate < C_WF_REPORT_PARAMS)
1319                 return;
1320
1321         sock = &connection->meta;
1322         p = conn_prepare_command(connection, sock);
1323         if (!p)
1324                 return;
1325         p->barrier = barrier_nr;
1326         p->set_size = cpu_to_be32(set_size);
1327         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1328 }
1329
1330 /**
1331  * _drbd_send_ack() - Sends an ack packet
1332  * @peer_device:        DRBD peer device.
1333  * @cmd:                Packet command code.
1334  * @sector:             sector, needs to be in big endian byte order
1335  * @blksize:            size in byte, needs to be in big endian byte order
1336  * @block_id:           Id, big endian byte order
1337  */
1338 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1339                           u64 sector, u32 blksize, u64 block_id)
1340 {
1341         struct drbd_socket *sock;
1342         struct p_block_ack *p;
1343
1344         if (peer_device->device->state.conn < C_CONNECTED)
1345                 return -EIO;
1346
1347         sock = &peer_device->connection->meta;
1348         p = drbd_prepare_command(peer_device, sock);
1349         if (!p)
1350                 return -EIO;
1351         p->sector = sector;
1352         p->block_id = block_id;
1353         p->blksize = blksize;
1354         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1355         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1356 }
1357
1358 /* dp->sector and dp->block_id already/still in network byte order,
1359  * data_size is payload size according to dp->head,
1360  * and may need to be corrected for digest size. */
1361 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1362                       struct p_data *dp, int data_size)
1363 {
1364         if (peer_device->connection->peer_integrity_tfm)
1365                 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1366         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1367                        dp->block_id);
1368 }
1369
1370 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1371                       struct p_block_req *rp)
1372 {
1373         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1374 }
1375
1376 /**
1377  * drbd_send_ack() - Sends an ack packet
1378  * @peer_device:        DRBD peer device
1379  * @cmd:                packet command code
1380  * @peer_req:           peer request
1381  */
1382 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1383                   struct drbd_peer_request *peer_req)
1384 {
1385         return _drbd_send_ack(peer_device, cmd,
1386                               cpu_to_be64(peer_req->i.sector),
1387                               cpu_to_be32(peer_req->i.size),
1388                               peer_req->block_id);
1389 }
1390
1391 /* This function misuses the block_id field to signal if the blocks
1392  * are is sync or not. */
1393 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1394                      sector_t sector, int blksize, u64 block_id)
1395 {
1396         return _drbd_send_ack(peer_device, cmd,
1397                               cpu_to_be64(sector),
1398                               cpu_to_be32(blksize),
1399                               cpu_to_be64(block_id));
1400 }
1401
1402 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1403                              struct drbd_peer_request *peer_req)
1404 {
1405         struct drbd_socket *sock;
1406         struct p_block_desc *p;
1407
1408         sock = &peer_device->connection->data;
1409         p = drbd_prepare_command(peer_device, sock);
1410         if (!p)
1411                 return -EIO;
1412         p->sector = cpu_to_be64(peer_req->i.sector);
1413         p->blksize = cpu_to_be32(peer_req->i.size);
1414         p->pad = 0;
1415         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1416 }
1417
1418 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1419                        sector_t sector, int size, u64 block_id)
1420 {
1421         struct drbd_socket *sock;
1422         struct p_block_req *p;
1423
1424         sock = &peer_device->connection->data;
1425         p = drbd_prepare_command(peer_device, sock);
1426         if (!p)
1427                 return -EIO;
1428         p->sector = cpu_to_be64(sector);
1429         p->block_id = block_id;
1430         p->blksize = cpu_to_be32(size);
1431         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1432 }
1433
1434 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1435                             void *digest, int digest_size, enum drbd_packet cmd)
1436 {
1437         struct drbd_socket *sock;
1438         struct p_block_req *p;
1439
1440         /* FIXME: Put the digest into the preallocated socket buffer.  */
1441
1442         sock = &peer_device->connection->data;
1443         p = drbd_prepare_command(peer_device, sock);
1444         if (!p)
1445                 return -EIO;
1446         p->sector = cpu_to_be64(sector);
1447         p->block_id = ID_SYNCER /* unused */;
1448         p->blksize = cpu_to_be32(size);
1449         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1450 }
1451
1452 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1453 {
1454         struct drbd_socket *sock;
1455         struct p_block_req *p;
1456
1457         sock = &peer_device->connection->data;
1458         p = drbd_prepare_command(peer_device, sock);
1459         if (!p)
1460                 return -EIO;
1461         p->sector = cpu_to_be64(sector);
1462         p->block_id = ID_SYNCER /* unused */;
1463         p->blksize = cpu_to_be32(size);
1464         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1465 }
1466
1467 /* called on sndtimeo
1468  * returns false if we should retry,
1469  * true if we think connection is dead
1470  */
1471 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1472 {
1473         int drop_it;
1474         /* long elapsed = (long)(jiffies - device->last_received); */
1475
1476         drop_it =   connection->meta.socket == sock
1477                 || !connection->ack_receiver.task
1478                 || get_t_state(&connection->ack_receiver) != RUNNING
1479                 || connection->cstate < C_WF_REPORT_PARAMS;
1480
1481         if (drop_it)
1482                 return true;
1483
1484         drop_it = !--connection->ko_count;
1485         if (!drop_it) {
1486                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1487                          current->comm, current->pid, connection->ko_count);
1488                 request_ping(connection);
1489         }
1490
1491         return drop_it; /* && (device->state == R_PRIMARY) */;
1492 }
1493
1494 static void drbd_update_congested(struct drbd_connection *connection)
1495 {
1496         struct sock *sk = connection->data.socket->sk;
1497         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1498                 set_bit(NET_CONGESTED, &connection->flags);
1499 }
1500
1501 /* The idea of sendpage seems to be to put some kind of reference
1502  * to the page into the skb, and to hand it over to the NIC. In
1503  * this process get_page() gets called.
1504  *
1505  * As soon as the page was really sent over the network put_page()
1506  * gets called by some part of the network layer. [ NIC driver? ]
1507  *
1508  * [ get_page() / put_page() increment/decrement the count. If count
1509  *   reaches 0 the page will be freed. ]
1510  *
1511  * This works nicely with pages from FSs.
1512  * But this means that in protocol A we might signal IO completion too early!
1513  *
1514  * In order not to corrupt data during a resync we must make sure
1515  * that we do not reuse our own buffer pages (EEs) to early, therefore
1516  * we have the net_ee list.
1517  *
1518  * XFS seems to have problems, still, it submits pages with page_count == 0!
1519  * As a workaround, we disable sendpage on pages
1520  * with page_count == 0 or PageSlab.
1521  */
1522 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1523                               int offset, size_t size, unsigned msg_flags)
1524 {
1525         struct socket *socket;
1526         void *addr;
1527         int err;
1528
1529         socket = peer_device->connection->data.socket;
1530         addr = kmap(page) + offset;
1531         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1532         kunmap(page);
1533         if (!err)
1534                 peer_device->device->send_cnt += size >> 9;
1535         return err;
1536 }
1537
1538 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1539                     int offset, size_t size, unsigned msg_flags)
1540 {
1541         struct socket *socket = peer_device->connection->data.socket;
1542         int len = size;
1543         int err = -EIO;
1544
1545         /* e.g. XFS meta- & log-data is in slab pages, which have a
1546          * page_count of 0 and/or have PageSlab() set.
1547          * we cannot use send_page for those, as that does get_page();
1548          * put_page(); and would cause either a VM_BUG directly, or
1549          * __page_cache_release a page that would actually still be referenced
1550          * by someone, leading to some obscure delayed Oops somewhere else. */
1551         if (drbd_disable_sendpage || !sendpage_ok(page))
1552                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1553
1554         msg_flags |= MSG_NOSIGNAL;
1555         drbd_update_congested(peer_device->connection);
1556         do {
1557                 int sent;
1558
1559                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1560                 if (sent <= 0) {
1561                         if (sent == -EAGAIN) {
1562                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1563                                         break;
1564                                 continue;
1565                         }
1566                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1567                              __func__, (int)size, len, sent);
1568                         if (sent < 0)
1569                                 err = sent;
1570                         break;
1571                 }
1572                 len    -= sent;
1573                 offset += sent;
1574         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1575         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1576
1577         if (len == 0) {
1578                 err = 0;
1579                 peer_device->device->send_cnt += size >> 9;
1580         }
1581         return err;
1582 }
1583
1584 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1585 {
1586         struct bio_vec bvec;
1587         struct bvec_iter iter;
1588
1589         /* hint all but last page with MSG_MORE */
1590         bio_for_each_segment(bvec, bio, iter) {
1591                 int err;
1592
1593                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1594                                          bvec.bv_offset, bvec.bv_len,
1595                                          bio_iter_last(bvec, iter)
1596                                          ? 0 : MSG_MORE);
1597                 if (err)
1598                         return err;
1599         }
1600         return 0;
1601 }
1602
1603 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1604 {
1605         struct bio_vec bvec;
1606         struct bvec_iter iter;
1607
1608         /* hint all but last page with MSG_MORE */
1609         bio_for_each_segment(bvec, bio, iter) {
1610                 int err;
1611
1612                 err = _drbd_send_page(peer_device, bvec.bv_page,
1613                                       bvec.bv_offset, bvec.bv_len,
1614                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1615                 if (err)
1616                         return err;
1617         }
1618         return 0;
1619 }
1620
1621 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1622                             struct drbd_peer_request *peer_req)
1623 {
1624         struct page *page = peer_req->pages;
1625         unsigned len = peer_req->i.size;
1626         int err;
1627
1628         /* hint all but last page with MSG_MORE */
1629         page_chain_for_each(page) {
1630                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1631
1632                 err = _drbd_send_page(peer_device, page, 0, l,
1633                                       page_chain_next(page) ? MSG_MORE : 0);
1634                 if (err)
1635                         return err;
1636                 len -= l;
1637         }
1638         return 0;
1639 }
1640
1641 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1642                              struct bio *bio)
1643 {
1644         if (connection->agreed_pro_version >= 95)
1645                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1646                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1647                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1648                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1649                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1650                           ((connection->agreed_features & DRBD_FF_WZEROES) ?
1651                            (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1652                            : DP_DISCARD)
1653                         : 0);
1654         else
1655                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1656 }
1657
1658 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1659  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1660  */
1661 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1662 {
1663         struct drbd_device *device = peer_device->device;
1664         struct drbd_socket *sock;
1665         struct p_data *p;
1666         void *digest_out;
1667         unsigned int dp_flags = 0;
1668         int digest_size;
1669         int err;
1670
1671         sock = &peer_device->connection->data;
1672         p = drbd_prepare_command(peer_device, sock);
1673         digest_size = peer_device->connection->integrity_tfm ?
1674                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1675
1676         if (!p)
1677                 return -EIO;
1678         p->sector = cpu_to_be64(req->i.sector);
1679         p->block_id = (unsigned long)req;
1680         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1681         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1682         if (device->state.conn >= C_SYNC_SOURCE &&
1683             device->state.conn <= C_PAUSED_SYNC_T)
1684                 dp_flags |= DP_MAY_SET_IN_SYNC;
1685         if (peer_device->connection->agreed_pro_version >= 100) {
1686                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1687                         dp_flags |= DP_SEND_RECEIVE_ACK;
1688                 /* During resync, request an explicit write ack,
1689                  * even in protocol != C */
1690                 if (req->rq_state & RQ_EXP_WRITE_ACK
1691                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1692                         dp_flags |= DP_SEND_WRITE_ACK;
1693         }
1694         p->dp_flags = cpu_to_be32(dp_flags);
1695
1696         if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1697                 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1698                 struct p_trim *t = (struct p_trim*)p;
1699                 t->size = cpu_to_be32(req->i.size);
1700                 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1701                 goto out;
1702         }
1703         digest_out = p + 1;
1704
1705         /* our digest is still only over the payload.
1706          * TRIM does not carry any payload. */
1707         if (digest_size)
1708                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1709         err = __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1710                              sizeof(*p) + digest_size, NULL, req->i.size);
1711         if (!err) {
1712                 /* For protocol A, we have to memcpy the payload into
1713                  * socket buffers, as we may complete right away
1714                  * as soon as we handed it over to tcp, at which point the data
1715                  * pages may become invalid.
1716                  *
1717                  * For data-integrity enabled, we copy it as well, so we can be
1718                  * sure that even if the bio pages may still be modified, it
1719                  * won't change the data on the wire, thus if the digest checks
1720                  * out ok after sending on this side, but does not fit on the
1721                  * receiving side, we sure have detected corruption elsewhere.
1722                  */
1723                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1724                         err = _drbd_send_bio(peer_device, req->master_bio);
1725                 else
1726                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1727
1728                 /* double check digest, sometimes buffers have been modified in flight. */
1729                 if (digest_size > 0 && digest_size <= 64) {
1730                         /* 64 byte, 512 bit, is the largest digest size
1731                          * currently supported in kernel crypto. */
1732                         unsigned char digest[64];
1733                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1734                         if (memcmp(p + 1, digest, digest_size)) {
1735                                 drbd_warn(device,
1736                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1737                                         (unsigned long long)req->i.sector, req->i.size);
1738                         }
1739                 } /* else if (digest_size > 64) {
1740                      ... Be noisy about digest too large ...
1741                 } */
1742         }
1743 out:
1744         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1745
1746         return err;
1747 }
1748
1749 /* answer packet, used to send data back for read requests:
1750  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1751  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1752  */
1753 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1754                     struct drbd_peer_request *peer_req)
1755 {
1756         struct drbd_device *device = peer_device->device;
1757         struct drbd_socket *sock;
1758         struct p_data *p;
1759         int err;
1760         int digest_size;
1761
1762         sock = &peer_device->connection->data;
1763         p = drbd_prepare_command(peer_device, sock);
1764
1765         digest_size = peer_device->connection->integrity_tfm ?
1766                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1767
1768         if (!p)
1769                 return -EIO;
1770         p->sector = cpu_to_be64(peer_req->i.sector);
1771         p->block_id = peer_req->block_id;
1772         p->seq_num = 0;  /* unused */
1773         p->dp_flags = 0;
1774         if (digest_size)
1775                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1776         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1777         if (!err)
1778                 err = _drbd_send_zc_ee(peer_device, peer_req);
1779         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1780
1781         return err;
1782 }
1783
1784 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1785 {
1786         struct drbd_socket *sock;
1787         struct p_block_desc *p;
1788
1789         sock = &peer_device->connection->data;
1790         p = drbd_prepare_command(peer_device, sock);
1791         if (!p)
1792                 return -EIO;
1793         p->sector = cpu_to_be64(req->i.sector);
1794         p->blksize = cpu_to_be32(req->i.size);
1795         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1796 }
1797
1798 /*
1799   drbd_send distinguishes two cases:
1800
1801   Packets sent via the data socket "sock"
1802   and packets sent via the meta data socket "msock"
1803
1804                     sock                      msock
1805   -----------------+-------------------------+------------------------------
1806   timeout           conf.timeout / 2          conf.timeout / 2
1807   timeout action    send a ping via msock     Abort communication
1808                                               and close all sockets
1809 */
1810
1811 /*
1812  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1813  */
1814 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1815               void *buf, size_t size, unsigned msg_flags)
1816 {
1817         struct kvec iov = {.iov_base = buf, .iov_len = size};
1818         struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1819         int rv, sent = 0;
1820
1821         if (!sock)
1822                 return -EBADR;
1823
1824         /* THINK  if (signal_pending) return ... ? */
1825
1826         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size);
1827
1828         if (sock == connection->data.socket) {
1829                 rcu_read_lock();
1830                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1831                 rcu_read_unlock();
1832                 drbd_update_congested(connection);
1833         }
1834         do {
1835                 rv = sock_sendmsg(sock, &msg);
1836                 if (rv == -EAGAIN) {
1837                         if (we_should_drop_the_connection(connection, sock))
1838                                 break;
1839                         else
1840                                 continue;
1841                 }
1842                 if (rv == -EINTR) {
1843                         flush_signals(current);
1844                         rv = 0;
1845                 }
1846                 if (rv < 0)
1847                         break;
1848                 sent += rv;
1849         } while (sent < size);
1850
1851         if (sock == connection->data.socket)
1852                 clear_bit(NET_CONGESTED, &connection->flags);
1853
1854         if (rv <= 0) {
1855                 if (rv != -EAGAIN) {
1856                         drbd_err(connection, "%s_sendmsg returned %d\n",
1857                                  sock == connection->meta.socket ? "msock" : "sock",
1858                                  rv);
1859                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1860                 } else
1861                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1862         }
1863
1864         return sent;
1865 }
1866
1867 /*
1868  * drbd_send_all  -  Send an entire buffer
1869  *
1870  * Returns 0 upon success and a negative error value otherwise.
1871  */
1872 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1873                   size_t size, unsigned msg_flags)
1874 {
1875         int err;
1876
1877         err = drbd_send(connection, sock, buffer, size, msg_flags);
1878         if (err < 0)
1879                 return err;
1880         if (err != size)
1881                 return -EIO;
1882         return 0;
1883 }
1884
1885 static int drbd_open(struct block_device *bdev, fmode_t mode)
1886 {
1887         struct drbd_device *device = bdev->bd_disk->private_data;
1888         unsigned long flags;
1889         int rv = 0;
1890
1891         mutex_lock(&drbd_main_mutex);
1892         spin_lock_irqsave(&device->resource->req_lock, flags);
1893         /* to have a stable device->state.role
1894          * and no race with updating open_cnt */
1895
1896         if (device->state.role != R_PRIMARY) {
1897                 if (mode & FMODE_WRITE)
1898                         rv = -EROFS;
1899                 else if (!drbd_allow_oos)
1900                         rv = -EMEDIUMTYPE;
1901         }
1902
1903         if (!rv)
1904                 device->open_cnt++;
1905         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1906         mutex_unlock(&drbd_main_mutex);
1907
1908         return rv;
1909 }
1910
1911 static void drbd_release(struct gendisk *gd, fmode_t mode)
1912 {
1913         struct drbd_device *device = gd->private_data;
1914         mutex_lock(&drbd_main_mutex);
1915         device->open_cnt--;
1916         mutex_unlock(&drbd_main_mutex);
1917 }
1918
1919 /* need to hold resource->req_lock */
1920 void drbd_queue_unplug(struct drbd_device *device)
1921 {
1922         if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1923                 D_ASSERT(device, device->state.role == R_PRIMARY);
1924                 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1925                         drbd_queue_work_if_unqueued(
1926                                 &first_peer_device(device)->connection->sender_work,
1927                                 &device->unplug_work);
1928                 }
1929         }
1930 }
1931
1932 static void drbd_set_defaults(struct drbd_device *device)
1933 {
1934         /* Beware! The actual layout differs
1935          * between big endian and little endian */
1936         device->state = (union drbd_dev_state) {
1937                 { .role = R_SECONDARY,
1938                   .peer = R_UNKNOWN,
1939                   .conn = C_STANDALONE,
1940                   .disk = D_DISKLESS,
1941                   .pdsk = D_UNKNOWN,
1942                 } };
1943 }
1944
1945 void drbd_init_set_defaults(struct drbd_device *device)
1946 {
1947         /* the memset(,0,) did most of this.
1948          * note: only assignments, no allocation in here */
1949
1950         drbd_set_defaults(device);
1951
1952         atomic_set(&device->ap_bio_cnt, 0);
1953         atomic_set(&device->ap_actlog_cnt, 0);
1954         atomic_set(&device->ap_pending_cnt, 0);
1955         atomic_set(&device->rs_pending_cnt, 0);
1956         atomic_set(&device->unacked_cnt, 0);
1957         atomic_set(&device->local_cnt, 0);
1958         atomic_set(&device->pp_in_use_by_net, 0);
1959         atomic_set(&device->rs_sect_in, 0);
1960         atomic_set(&device->rs_sect_ev, 0);
1961         atomic_set(&device->ap_in_flight, 0);
1962         atomic_set(&device->md_io.in_use, 0);
1963
1964         mutex_init(&device->own_state_mutex);
1965         device->state_mutex = &device->own_state_mutex;
1966
1967         spin_lock_init(&device->al_lock);
1968         spin_lock_init(&device->peer_seq_lock);
1969
1970         INIT_LIST_HEAD(&device->active_ee);
1971         INIT_LIST_HEAD(&device->sync_ee);
1972         INIT_LIST_HEAD(&device->done_ee);
1973         INIT_LIST_HEAD(&device->read_ee);
1974         INIT_LIST_HEAD(&device->net_ee);
1975         INIT_LIST_HEAD(&device->resync_reads);
1976         INIT_LIST_HEAD(&device->resync_work.list);
1977         INIT_LIST_HEAD(&device->unplug_work.list);
1978         INIT_LIST_HEAD(&device->bm_io_work.w.list);
1979         INIT_LIST_HEAD(&device->pending_master_completion[0]);
1980         INIT_LIST_HEAD(&device->pending_master_completion[1]);
1981         INIT_LIST_HEAD(&device->pending_completion[0]);
1982         INIT_LIST_HEAD(&device->pending_completion[1]);
1983
1984         device->resync_work.cb  = w_resync_timer;
1985         device->unplug_work.cb  = w_send_write_hint;
1986         device->bm_io_work.w.cb = w_bitmap_io;
1987
1988         timer_setup(&device->resync_timer, resync_timer_fn, 0);
1989         timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1990         timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1991         timer_setup(&device->request_timer, request_timer_fn, 0);
1992
1993         init_waitqueue_head(&device->misc_wait);
1994         init_waitqueue_head(&device->state_wait);
1995         init_waitqueue_head(&device->ee_wait);
1996         init_waitqueue_head(&device->al_wait);
1997         init_waitqueue_head(&device->seq_wait);
1998
1999         device->resync_wenr = LC_FREE;
2000         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2001         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2002 }
2003
2004 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2005 {
2006         char ppb[10];
2007
2008         set_capacity_and_notify(device->vdisk, size);
2009
2010         drbd_info(device, "size = %s (%llu KB)\n",
2011                 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2012 }
2013
2014 void drbd_device_cleanup(struct drbd_device *device)
2015 {
2016         int i;
2017         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2018                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2019                                 first_peer_device(device)->connection->receiver.t_state);
2020
2021         device->al_writ_cnt  =
2022         device->bm_writ_cnt  =
2023         device->read_cnt     =
2024         device->recv_cnt     =
2025         device->send_cnt     =
2026         device->writ_cnt     =
2027         device->p_size       =
2028         device->rs_start     =
2029         device->rs_total     =
2030         device->rs_failed    = 0;
2031         device->rs_last_events = 0;
2032         device->rs_last_sect_ev = 0;
2033         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2034                 device->rs_mark_left[i] = 0;
2035                 device->rs_mark_time[i] = 0;
2036         }
2037         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2038
2039         set_capacity_and_notify(device->vdisk, 0);
2040         if (device->bitmap) {
2041                 /* maybe never allocated. */
2042                 drbd_bm_resize(device, 0, 1);
2043                 drbd_bm_cleanup(device);
2044         }
2045
2046         drbd_backing_dev_free(device, device->ldev);
2047         device->ldev = NULL;
2048
2049         clear_bit(AL_SUSPENDED, &device->flags);
2050
2051         D_ASSERT(device, list_empty(&device->active_ee));
2052         D_ASSERT(device, list_empty(&device->sync_ee));
2053         D_ASSERT(device, list_empty(&device->done_ee));
2054         D_ASSERT(device, list_empty(&device->read_ee));
2055         D_ASSERT(device, list_empty(&device->net_ee));
2056         D_ASSERT(device, list_empty(&device->resync_reads));
2057         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2058         D_ASSERT(device, list_empty(&device->resync_work.list));
2059         D_ASSERT(device, list_empty(&device->unplug_work.list));
2060
2061         drbd_set_defaults(device);
2062 }
2063
2064
2065 static void drbd_destroy_mempools(void)
2066 {
2067         struct page *page;
2068
2069         while (drbd_pp_pool) {
2070                 page = drbd_pp_pool;
2071                 drbd_pp_pool = (struct page *)page_private(page);
2072                 __free_page(page);
2073                 drbd_pp_vacant--;
2074         }
2075
2076         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2077
2078         bioset_exit(&drbd_io_bio_set);
2079         bioset_exit(&drbd_md_io_bio_set);
2080         mempool_exit(&drbd_md_io_page_pool);
2081         mempool_exit(&drbd_ee_mempool);
2082         mempool_exit(&drbd_request_mempool);
2083         kmem_cache_destroy(drbd_ee_cache);
2084         kmem_cache_destroy(drbd_request_cache);
2085         kmem_cache_destroy(drbd_bm_ext_cache);
2086         kmem_cache_destroy(drbd_al_ext_cache);
2087
2088         drbd_ee_cache        = NULL;
2089         drbd_request_cache   = NULL;
2090         drbd_bm_ext_cache    = NULL;
2091         drbd_al_ext_cache    = NULL;
2092
2093         return;
2094 }
2095
2096 static int drbd_create_mempools(void)
2097 {
2098         struct page *page;
2099         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2100         int i, ret;
2101
2102         /* caches */
2103         drbd_request_cache = kmem_cache_create(
2104                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2105         if (drbd_request_cache == NULL)
2106                 goto Enomem;
2107
2108         drbd_ee_cache = kmem_cache_create(
2109                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2110         if (drbd_ee_cache == NULL)
2111                 goto Enomem;
2112
2113         drbd_bm_ext_cache = kmem_cache_create(
2114                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2115         if (drbd_bm_ext_cache == NULL)
2116                 goto Enomem;
2117
2118         drbd_al_ext_cache = kmem_cache_create(
2119                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2120         if (drbd_al_ext_cache == NULL)
2121                 goto Enomem;
2122
2123         /* mempools */
2124         ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2125         if (ret)
2126                 goto Enomem;
2127
2128         ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2129                           BIOSET_NEED_BVECS);
2130         if (ret)
2131                 goto Enomem;
2132
2133         ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2134         if (ret)
2135                 goto Enomem;
2136
2137         ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2138                                      drbd_request_cache);
2139         if (ret)
2140                 goto Enomem;
2141
2142         ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2143         if (ret)
2144                 goto Enomem;
2145
2146         for (i = 0; i < number; i++) {
2147                 page = alloc_page(GFP_HIGHUSER);
2148                 if (!page)
2149                         goto Enomem;
2150                 set_page_private(page, (unsigned long)drbd_pp_pool);
2151                 drbd_pp_pool = page;
2152         }
2153         drbd_pp_vacant = number;
2154
2155         return 0;
2156
2157 Enomem:
2158         drbd_destroy_mempools(); /* in case we allocated some */
2159         return -ENOMEM;
2160 }
2161
2162 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2163 {
2164         int rr;
2165
2166         rr = drbd_free_peer_reqs(device, &device->active_ee);
2167         if (rr)
2168                 drbd_err(device, "%d EEs in active list found!\n", rr);
2169
2170         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2171         if (rr)
2172                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2173
2174         rr = drbd_free_peer_reqs(device, &device->read_ee);
2175         if (rr)
2176                 drbd_err(device, "%d EEs in read list found!\n", rr);
2177
2178         rr = drbd_free_peer_reqs(device, &device->done_ee);
2179         if (rr)
2180                 drbd_err(device, "%d EEs in done list found!\n", rr);
2181
2182         rr = drbd_free_peer_reqs(device, &device->net_ee);
2183         if (rr)
2184                 drbd_err(device, "%d EEs in net list found!\n", rr);
2185 }
2186
2187 /* caution. no locking. */
2188 void drbd_destroy_device(struct kref *kref)
2189 {
2190         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2191         struct drbd_resource *resource = device->resource;
2192         struct drbd_peer_device *peer_device, *tmp_peer_device;
2193
2194         timer_shutdown_sync(&device->request_timer);
2195
2196         /* paranoia asserts */
2197         D_ASSERT(device, device->open_cnt == 0);
2198         /* end paranoia asserts */
2199
2200         /* cleanup stuff that may have been allocated during
2201          * device (re-)configuration or state changes */
2202
2203         drbd_backing_dev_free(device, device->ldev);
2204         device->ldev = NULL;
2205
2206         drbd_release_all_peer_reqs(device);
2207
2208         lc_destroy(device->act_log);
2209         lc_destroy(device->resync);
2210
2211         kfree(device->p_uuid);
2212         /* device->p_uuid = NULL; */
2213
2214         if (device->bitmap) /* should no longer be there. */
2215                 drbd_bm_cleanup(device);
2216         __free_page(device->md_io.page);
2217         put_disk(device->vdisk);
2218         kfree(device->rs_plan_s);
2219
2220         /* not for_each_connection(connection, resource):
2221          * those may have been cleaned up and disassociated already.
2222          */
2223         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2224                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2225                 kfree(peer_device);
2226         }
2227         if (device->submit.wq)
2228                 destroy_workqueue(device->submit.wq);
2229         kfree(device);
2230         kref_put(&resource->kref, drbd_destroy_resource);
2231 }
2232
2233 /* One global retry thread, if we need to push back some bio and have it
2234  * reinserted through our make request function.
2235  */
2236 static struct retry_worker {
2237         struct workqueue_struct *wq;
2238         struct work_struct worker;
2239
2240         spinlock_t lock;
2241         struct list_head writes;
2242 } retry;
2243
2244 static void do_retry(struct work_struct *ws)
2245 {
2246         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2247         LIST_HEAD(writes);
2248         struct drbd_request *req, *tmp;
2249
2250         spin_lock_irq(&retry->lock);
2251         list_splice_init(&retry->writes, &writes);
2252         spin_unlock_irq(&retry->lock);
2253
2254         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2255                 struct drbd_device *device = req->device;
2256                 struct bio *bio = req->master_bio;
2257                 bool expected;
2258
2259                 expected =
2260                         expect(device, atomic_read(&req->completion_ref) == 0) &&
2261                         expect(device, req->rq_state & RQ_POSTPONED) &&
2262                         expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2263                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2264
2265                 if (!expected)
2266                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2267                                 req, atomic_read(&req->completion_ref),
2268                                 req->rq_state);
2269
2270                 /* We still need to put one kref associated with the
2271                  * "completion_ref" going zero in the code path that queued it
2272                  * here.  The request object may still be referenced by a
2273                  * frozen local req->private_bio, in case we force-detached.
2274                  */
2275                 kref_put(&req->kref, drbd_req_destroy);
2276
2277                 /* A single suspended or otherwise blocking device may stall
2278                  * all others as well.  Fortunately, this code path is to
2279                  * recover from a situation that "should not happen":
2280                  * concurrent writes in multi-primary setup.
2281                  * In a "normal" lifecycle, this workqueue is supposed to be
2282                  * destroyed without ever doing anything.
2283                  * If it turns out to be an issue anyways, we can do per
2284                  * resource (replication group) or per device (minor) retry
2285                  * workqueues instead.
2286                  */
2287
2288                 /* We are not just doing submit_bio_noacct(),
2289                  * as we want to keep the start_time information. */
2290                 inc_ap_bio(device);
2291                 __drbd_make_request(device, bio);
2292         }
2293 }
2294
2295 /* called via drbd_req_put_completion_ref(),
2296  * holds resource->req_lock */
2297 void drbd_restart_request(struct drbd_request *req)
2298 {
2299         unsigned long flags;
2300         spin_lock_irqsave(&retry.lock, flags);
2301         list_move_tail(&req->tl_requests, &retry.writes);
2302         spin_unlock_irqrestore(&retry.lock, flags);
2303
2304         /* Drop the extra reference that would otherwise
2305          * have been dropped by complete_master_bio.
2306          * do_retry() needs to grab a new one. */
2307         dec_ap_bio(req->device);
2308
2309         queue_work(retry.wq, &retry.worker);
2310 }
2311
2312 void drbd_destroy_resource(struct kref *kref)
2313 {
2314         struct drbd_resource *resource =
2315                 container_of(kref, struct drbd_resource, kref);
2316
2317         idr_destroy(&resource->devices);
2318         free_cpumask_var(resource->cpu_mask);
2319         kfree(resource->name);
2320         kfree(resource);
2321 }
2322
2323 void drbd_free_resource(struct drbd_resource *resource)
2324 {
2325         struct drbd_connection *connection, *tmp;
2326
2327         for_each_connection_safe(connection, tmp, resource) {
2328                 list_del(&connection->connections);
2329                 drbd_debugfs_connection_cleanup(connection);
2330                 kref_put(&connection->kref, drbd_destroy_connection);
2331         }
2332         drbd_debugfs_resource_cleanup(resource);
2333         kref_put(&resource->kref, drbd_destroy_resource);
2334 }
2335
2336 static void drbd_cleanup(void)
2337 {
2338         unsigned int i;
2339         struct drbd_device *device;
2340         struct drbd_resource *resource, *tmp;
2341
2342         /* first remove proc,
2343          * drbdsetup uses it's presence to detect
2344          * whether DRBD is loaded.
2345          * If we would get stuck in proc removal,
2346          * but have netlink already deregistered,
2347          * some drbdsetup commands may wait forever
2348          * for an answer.
2349          */
2350         if (drbd_proc)
2351                 remove_proc_entry("drbd", NULL);
2352
2353         if (retry.wq)
2354                 destroy_workqueue(retry.wq);
2355
2356         drbd_genl_unregister();
2357
2358         idr_for_each_entry(&drbd_devices, device, i)
2359                 drbd_delete_device(device);
2360
2361         /* not _rcu since, no other updater anymore. Genl already unregistered */
2362         for_each_resource_safe(resource, tmp, &drbd_resources) {
2363                 list_del(&resource->resources);
2364                 drbd_free_resource(resource);
2365         }
2366
2367         drbd_debugfs_cleanup();
2368
2369         drbd_destroy_mempools();
2370         unregister_blkdev(DRBD_MAJOR, "drbd");
2371
2372         idr_destroy(&drbd_devices);
2373
2374         pr_info("module cleanup done.\n");
2375 }
2376
2377 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2378 {
2379         spin_lock_init(&wq->q_lock);
2380         INIT_LIST_HEAD(&wq->q);
2381         init_waitqueue_head(&wq->q_wait);
2382 }
2383
2384 struct completion_work {
2385         struct drbd_work w;
2386         struct completion done;
2387 };
2388
2389 static int w_complete(struct drbd_work *w, int cancel)
2390 {
2391         struct completion_work *completion_work =
2392                 container_of(w, struct completion_work, w);
2393
2394         complete(&completion_work->done);
2395         return 0;
2396 }
2397
2398 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2399 {
2400         struct completion_work completion_work;
2401
2402         completion_work.w.cb = w_complete;
2403         init_completion(&completion_work.done);
2404         drbd_queue_work(work_queue, &completion_work.w);
2405         wait_for_completion(&completion_work.done);
2406 }
2407
2408 struct drbd_resource *drbd_find_resource(const char *name)
2409 {
2410         struct drbd_resource *resource;
2411
2412         if (!name || !name[0])
2413                 return NULL;
2414
2415         rcu_read_lock();
2416         for_each_resource_rcu(resource, &drbd_resources) {
2417                 if (!strcmp(resource->name, name)) {
2418                         kref_get(&resource->kref);
2419                         goto found;
2420                 }
2421         }
2422         resource = NULL;
2423 found:
2424         rcu_read_unlock();
2425         return resource;
2426 }
2427
2428 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2429                                      void *peer_addr, int peer_addr_len)
2430 {
2431         struct drbd_resource *resource;
2432         struct drbd_connection *connection;
2433
2434         rcu_read_lock();
2435         for_each_resource_rcu(resource, &drbd_resources) {
2436                 for_each_connection_rcu(connection, resource) {
2437                         if (connection->my_addr_len == my_addr_len &&
2438                             connection->peer_addr_len == peer_addr_len &&
2439                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2440                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2441                                 kref_get(&connection->kref);
2442                                 goto found;
2443                         }
2444                 }
2445         }
2446         connection = NULL;
2447 found:
2448         rcu_read_unlock();
2449         return connection;
2450 }
2451
2452 static int drbd_alloc_socket(struct drbd_socket *socket)
2453 {
2454         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2455         if (!socket->rbuf)
2456                 return -ENOMEM;
2457         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2458         if (!socket->sbuf)
2459                 return -ENOMEM;
2460         return 0;
2461 }
2462
2463 static void drbd_free_socket(struct drbd_socket *socket)
2464 {
2465         free_page((unsigned long) socket->sbuf);
2466         free_page((unsigned long) socket->rbuf);
2467 }
2468
2469 void conn_free_crypto(struct drbd_connection *connection)
2470 {
2471         drbd_free_sock(connection);
2472
2473         crypto_free_shash(connection->csums_tfm);
2474         crypto_free_shash(connection->verify_tfm);
2475         crypto_free_shash(connection->cram_hmac_tfm);
2476         crypto_free_shash(connection->integrity_tfm);
2477         crypto_free_shash(connection->peer_integrity_tfm);
2478         kfree(connection->int_dig_in);
2479         kfree(connection->int_dig_vv);
2480
2481         connection->csums_tfm = NULL;
2482         connection->verify_tfm = NULL;
2483         connection->cram_hmac_tfm = NULL;
2484         connection->integrity_tfm = NULL;
2485         connection->peer_integrity_tfm = NULL;
2486         connection->int_dig_in = NULL;
2487         connection->int_dig_vv = NULL;
2488 }
2489
2490 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2491 {
2492         struct drbd_connection *connection;
2493         cpumask_var_t new_cpu_mask;
2494         int err;
2495
2496         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2497                 return -ENOMEM;
2498
2499         /* silently ignore cpu mask on UP kernel */
2500         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2501                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2502                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2503                 if (err == -EOVERFLOW) {
2504                         /* So what. mask it out. */
2505                         cpumask_var_t tmp_cpu_mask;
2506                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2507                                 cpumask_setall(tmp_cpu_mask);
2508                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2509                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2510                                         res_opts->cpu_mask,
2511                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2512                                         nr_cpu_ids);
2513                                 free_cpumask_var(tmp_cpu_mask);
2514                                 err = 0;
2515                         }
2516                 }
2517                 if (err) {
2518                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2519                         /* retcode = ERR_CPU_MASK_PARSE; */
2520                         goto fail;
2521                 }
2522         }
2523         resource->res_opts = *res_opts;
2524         if (cpumask_empty(new_cpu_mask))
2525                 drbd_calc_cpu_mask(&new_cpu_mask);
2526         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2527                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2528                 for_each_connection_rcu(connection, resource) {
2529                         connection->receiver.reset_cpu_mask = 1;
2530                         connection->ack_receiver.reset_cpu_mask = 1;
2531                         connection->worker.reset_cpu_mask = 1;
2532                 }
2533         }
2534         err = 0;
2535
2536 fail:
2537         free_cpumask_var(new_cpu_mask);
2538         return err;
2539
2540 }
2541
2542 struct drbd_resource *drbd_create_resource(const char *name)
2543 {
2544         struct drbd_resource *resource;
2545
2546         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2547         if (!resource)
2548                 goto fail;
2549         resource->name = kstrdup(name, GFP_KERNEL);
2550         if (!resource->name)
2551                 goto fail_free_resource;
2552         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2553                 goto fail_free_name;
2554         kref_init(&resource->kref);
2555         idr_init(&resource->devices);
2556         INIT_LIST_HEAD(&resource->connections);
2557         resource->write_ordering = WO_BDEV_FLUSH;
2558         list_add_tail_rcu(&resource->resources, &drbd_resources);
2559         mutex_init(&resource->conf_update);
2560         mutex_init(&resource->adm_mutex);
2561         spin_lock_init(&resource->req_lock);
2562         drbd_debugfs_resource_add(resource);
2563         return resource;
2564
2565 fail_free_name:
2566         kfree(resource->name);
2567 fail_free_resource:
2568         kfree(resource);
2569 fail:
2570         return NULL;
2571 }
2572
2573 /* caller must be under adm_mutex */
2574 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2575 {
2576         struct drbd_resource *resource;
2577         struct drbd_connection *connection;
2578
2579         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2580         if (!connection)
2581                 return NULL;
2582
2583         if (drbd_alloc_socket(&connection->data))
2584                 goto fail;
2585         if (drbd_alloc_socket(&connection->meta))
2586                 goto fail;
2587
2588         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2589         if (!connection->current_epoch)
2590                 goto fail;
2591
2592         INIT_LIST_HEAD(&connection->transfer_log);
2593
2594         INIT_LIST_HEAD(&connection->current_epoch->list);
2595         connection->epochs = 1;
2596         spin_lock_init(&connection->epoch_lock);
2597
2598         connection->send.seen_any_write_yet = false;
2599         connection->send.current_epoch_nr = 0;
2600         connection->send.current_epoch_writes = 0;
2601
2602         resource = drbd_create_resource(name);
2603         if (!resource)
2604                 goto fail;
2605
2606         connection->cstate = C_STANDALONE;
2607         mutex_init(&connection->cstate_mutex);
2608         init_waitqueue_head(&connection->ping_wait);
2609         idr_init(&connection->peer_devices);
2610
2611         drbd_init_workqueue(&connection->sender_work);
2612         mutex_init(&connection->data.mutex);
2613         mutex_init(&connection->meta.mutex);
2614
2615         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2616         connection->receiver.connection = connection;
2617         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2618         connection->worker.connection = connection;
2619         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2620         connection->ack_receiver.connection = connection;
2621
2622         kref_init(&connection->kref);
2623
2624         connection->resource = resource;
2625
2626         if (set_resource_options(resource, res_opts))
2627                 goto fail_resource;
2628
2629         kref_get(&resource->kref);
2630         list_add_tail_rcu(&connection->connections, &resource->connections);
2631         drbd_debugfs_connection_add(connection);
2632         return connection;
2633
2634 fail_resource:
2635         list_del(&resource->resources);
2636         drbd_free_resource(resource);
2637 fail:
2638         kfree(connection->current_epoch);
2639         drbd_free_socket(&connection->meta);
2640         drbd_free_socket(&connection->data);
2641         kfree(connection);
2642         return NULL;
2643 }
2644
2645 void drbd_destroy_connection(struct kref *kref)
2646 {
2647         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2648         struct drbd_resource *resource = connection->resource;
2649
2650         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2651                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2652         kfree(connection->current_epoch);
2653
2654         idr_destroy(&connection->peer_devices);
2655
2656         drbd_free_socket(&connection->meta);
2657         drbd_free_socket(&connection->data);
2658         kfree(connection->int_dig_in);
2659         kfree(connection->int_dig_vv);
2660         kfree(connection);
2661         kref_put(&resource->kref, drbd_destroy_resource);
2662 }
2663
2664 static int init_submitter(struct drbd_device *device)
2665 {
2666         /* opencoded create_singlethread_workqueue(),
2667          * to be able to say "drbd%d", ..., minor */
2668         device->submit.wq =
2669                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2670         if (!device->submit.wq)
2671                 return -ENOMEM;
2672
2673         INIT_WORK(&device->submit.worker, do_submit);
2674         INIT_LIST_HEAD(&device->submit.writes);
2675         return 0;
2676 }
2677
2678 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2679 {
2680         struct drbd_resource *resource = adm_ctx->resource;
2681         struct drbd_connection *connection, *n;
2682         struct drbd_device *device;
2683         struct drbd_peer_device *peer_device, *tmp_peer_device;
2684         struct gendisk *disk;
2685         int id;
2686         int vnr = adm_ctx->volume;
2687         enum drbd_ret_code err = ERR_NOMEM;
2688
2689         device = minor_to_device(minor);
2690         if (device)
2691                 return ERR_MINOR_OR_VOLUME_EXISTS;
2692
2693         /* GFP_KERNEL, we are outside of all write-out paths */
2694         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2695         if (!device)
2696                 return ERR_NOMEM;
2697         kref_init(&device->kref);
2698
2699         kref_get(&resource->kref);
2700         device->resource = resource;
2701         device->minor = minor;
2702         device->vnr = vnr;
2703
2704         drbd_init_set_defaults(device);
2705
2706         disk = blk_alloc_disk(NUMA_NO_NODE);
2707         if (!disk)
2708                 goto out_no_disk;
2709
2710         device->vdisk = disk;
2711         device->rq_queue = disk->queue;
2712
2713         set_disk_ro(disk, true);
2714
2715         disk->major = DRBD_MAJOR;
2716         disk->first_minor = minor;
2717         disk->minors = 1;
2718         disk->fops = &drbd_ops;
2719         disk->flags |= GENHD_FL_NO_PART;
2720         sprintf(disk->disk_name, "drbd%d", minor);
2721         disk->private_data = device;
2722
2723         blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue);
2724         blk_queue_write_cache(disk->queue, true, true);
2725         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2726            This triggers a max_bio_size message upon first attach or connect */
2727         blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2728
2729         device->md_io.page = alloc_page(GFP_KERNEL);
2730         if (!device->md_io.page)
2731                 goto out_no_io_page;
2732
2733         if (drbd_bm_init(device))
2734                 goto out_no_bitmap;
2735         device->read_requests = RB_ROOT;
2736         device->write_requests = RB_ROOT;
2737
2738         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2739         if (id < 0) {
2740                 if (id == -ENOSPC)
2741                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2742                 goto out_no_minor_idr;
2743         }
2744         kref_get(&device->kref);
2745
2746         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2747         if (id < 0) {
2748                 if (id == -ENOSPC)
2749                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2750                 goto out_idr_remove_minor;
2751         }
2752         kref_get(&device->kref);
2753
2754         INIT_LIST_HEAD(&device->peer_devices);
2755         INIT_LIST_HEAD(&device->pending_bitmap_io);
2756         for_each_connection(connection, resource) {
2757                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2758                 if (!peer_device)
2759                         goto out_idr_remove_from_resource;
2760                 peer_device->connection = connection;
2761                 peer_device->device = device;
2762
2763                 list_add(&peer_device->peer_devices, &device->peer_devices);
2764                 kref_get(&device->kref);
2765
2766                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2767                 if (id < 0) {
2768                         if (id == -ENOSPC)
2769                                 err = ERR_INVALID_REQUEST;
2770                         goto out_idr_remove_from_resource;
2771                 }
2772                 kref_get(&connection->kref);
2773                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2774         }
2775
2776         if (init_submitter(device)) {
2777                 err = ERR_NOMEM;
2778                 goto out_idr_remove_from_resource;
2779         }
2780
2781         err = add_disk(disk);
2782         if (err)
2783                 goto out_destroy_workqueue;
2784
2785         /* inherit the connection state */
2786         device->state.conn = first_connection(resource)->cstate;
2787         if (device->state.conn == C_WF_REPORT_PARAMS) {
2788                 for_each_peer_device(peer_device, device)
2789                         drbd_connected(peer_device);
2790         }
2791         /* move to create_peer_device() */
2792         for_each_peer_device(peer_device, device)
2793                 drbd_debugfs_peer_device_add(peer_device);
2794         drbd_debugfs_device_add(device);
2795         return NO_ERROR;
2796
2797 out_destroy_workqueue:
2798         destroy_workqueue(device->submit.wq);
2799 out_idr_remove_from_resource:
2800         for_each_connection_safe(connection, n, resource) {
2801                 peer_device = idr_remove(&connection->peer_devices, vnr);
2802                 if (peer_device)
2803                         kref_put(&connection->kref, drbd_destroy_connection);
2804         }
2805         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2806                 list_del(&peer_device->peer_devices);
2807                 kfree(peer_device);
2808         }
2809         idr_remove(&resource->devices, vnr);
2810 out_idr_remove_minor:
2811         idr_remove(&drbd_devices, minor);
2812         synchronize_rcu();
2813 out_no_minor_idr:
2814         drbd_bm_cleanup(device);
2815 out_no_bitmap:
2816         __free_page(device->md_io.page);
2817 out_no_io_page:
2818         put_disk(disk);
2819 out_no_disk:
2820         kref_put(&resource->kref, drbd_destroy_resource);
2821         kfree(device);
2822         return err;
2823 }
2824
2825 void drbd_delete_device(struct drbd_device *device)
2826 {
2827         struct drbd_resource *resource = device->resource;
2828         struct drbd_connection *connection;
2829         struct drbd_peer_device *peer_device;
2830
2831         /* move to free_peer_device() */
2832         for_each_peer_device(peer_device, device)
2833                 drbd_debugfs_peer_device_cleanup(peer_device);
2834         drbd_debugfs_device_cleanup(device);
2835         for_each_connection(connection, resource) {
2836                 idr_remove(&connection->peer_devices, device->vnr);
2837                 kref_put(&device->kref, drbd_destroy_device);
2838         }
2839         idr_remove(&resource->devices, device->vnr);
2840         kref_put(&device->kref, drbd_destroy_device);
2841         idr_remove(&drbd_devices, device_to_minor(device));
2842         kref_put(&device->kref, drbd_destroy_device);
2843         del_gendisk(device->vdisk);
2844         synchronize_rcu();
2845         kref_put(&device->kref, drbd_destroy_device);
2846 }
2847
2848 static int __init drbd_init(void)
2849 {
2850         int err;
2851
2852         if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2853                 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2854 #ifdef MODULE
2855                 return -EINVAL;
2856 #else
2857                 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2858 #endif
2859         }
2860
2861         err = register_blkdev(DRBD_MAJOR, "drbd");
2862         if (err) {
2863                 pr_err("unable to register block device major %d\n",
2864                        DRBD_MAJOR);
2865                 return err;
2866         }
2867
2868         /*
2869          * allocate all necessary structs
2870          */
2871         init_waitqueue_head(&drbd_pp_wait);
2872
2873         drbd_proc = NULL; /* play safe for drbd_cleanup */
2874         idr_init(&drbd_devices);
2875
2876         mutex_init(&resources_mutex);
2877         INIT_LIST_HEAD(&drbd_resources);
2878
2879         err = drbd_genl_register();
2880         if (err) {
2881                 pr_err("unable to register generic netlink family\n");
2882                 goto fail;
2883         }
2884
2885         err = drbd_create_mempools();
2886         if (err)
2887                 goto fail;
2888
2889         err = -ENOMEM;
2890         drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2891         if (!drbd_proc) {
2892                 pr_err("unable to register proc file\n");
2893                 goto fail;
2894         }
2895
2896         retry.wq = create_singlethread_workqueue("drbd-reissue");
2897         if (!retry.wq) {
2898                 pr_err("unable to create retry workqueue\n");
2899                 goto fail;
2900         }
2901         INIT_WORK(&retry.worker, do_retry);
2902         spin_lock_init(&retry.lock);
2903         INIT_LIST_HEAD(&retry.writes);
2904
2905         drbd_debugfs_init();
2906
2907         pr_info("initialized. "
2908                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2909                GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2910         pr_info("%s\n", drbd_buildtag());
2911         pr_info("registered as block device major %d\n", DRBD_MAJOR);
2912         return 0; /* Success! */
2913
2914 fail:
2915         drbd_cleanup();
2916         if (err == -ENOMEM)
2917                 pr_err("ran out of memory\n");
2918         else
2919                 pr_err("initialization failure\n");
2920         return err;
2921 }
2922
2923 static void drbd_free_one_sock(struct drbd_socket *ds)
2924 {
2925         struct socket *s;
2926         mutex_lock(&ds->mutex);
2927         s = ds->socket;
2928         ds->socket = NULL;
2929         mutex_unlock(&ds->mutex);
2930         if (s) {
2931                 /* so debugfs does not need to mutex_lock() */
2932                 synchronize_rcu();
2933                 kernel_sock_shutdown(s, SHUT_RDWR);
2934                 sock_release(s);
2935         }
2936 }
2937
2938 void drbd_free_sock(struct drbd_connection *connection)
2939 {
2940         if (connection->data.socket)
2941                 drbd_free_one_sock(&connection->data);
2942         if (connection->meta.socket)
2943                 drbd_free_one_sock(&connection->meta);
2944 }
2945
2946 /* meta data management */
2947
2948 void conn_md_sync(struct drbd_connection *connection)
2949 {
2950         struct drbd_peer_device *peer_device;
2951         int vnr;
2952
2953         rcu_read_lock();
2954         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2955                 struct drbd_device *device = peer_device->device;
2956
2957                 kref_get(&device->kref);
2958                 rcu_read_unlock();
2959                 drbd_md_sync(device);
2960                 kref_put(&device->kref, drbd_destroy_device);
2961                 rcu_read_lock();
2962         }
2963         rcu_read_unlock();
2964 }
2965
2966 /* aligned 4kByte */
2967 struct meta_data_on_disk {
2968         u64 la_size_sect;      /* last agreed size. */
2969         u64 uuid[UI_SIZE];   /* UUIDs. */
2970         u64 device_uuid;
2971         u64 reserved_u64_1;
2972         u32 flags;             /* MDF */
2973         u32 magic;
2974         u32 md_size_sect;
2975         u32 al_offset;         /* offset to this block */
2976         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2977               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2978         u32 bm_offset;         /* offset to the bitmap, from here */
2979         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2980         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2981
2982         /* see al_tr_number_to_on_disk_sector() */
2983         u32 al_stripes;
2984         u32 al_stripe_size_4k;
2985
2986         u8 reserved_u8[4096 - (7*8 + 10*4)];
2987 } __packed;
2988
2989
2990
2991 void drbd_md_write(struct drbd_device *device, void *b)
2992 {
2993         struct meta_data_on_disk *buffer = b;
2994         sector_t sector;
2995         int i;
2996
2997         memset(buffer, 0, sizeof(*buffer));
2998
2999         buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3000         for (i = UI_CURRENT; i < UI_SIZE; i++)
3001                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3002         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3003         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3004
3005         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3006         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3007         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3008         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3009         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3010
3011         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3012         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3013
3014         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3015         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3016
3017         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3018         sector = device->ldev->md.md_offset;
3019
3020         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3021                 /* this was a try anyways ... */
3022                 drbd_err(device, "meta data update failed!\n");
3023                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3024         }
3025 }
3026
3027 /**
3028  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3029  * @device:     DRBD device.
3030  */
3031 void drbd_md_sync(struct drbd_device *device)
3032 {
3033         struct meta_data_on_disk *buffer;
3034
3035         /* Don't accidentally change the DRBD meta data layout. */
3036         BUILD_BUG_ON(UI_SIZE != 4);
3037         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3038
3039         del_timer(&device->md_sync_timer);
3040         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3041         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3042                 return;
3043
3044         /* We use here D_FAILED and not D_ATTACHING because we try to write
3045          * metadata even if we detach due to a disk failure! */
3046         if (!get_ldev_if_state(device, D_FAILED))
3047                 return;
3048
3049         buffer = drbd_md_get_buffer(device, __func__);
3050         if (!buffer)
3051                 goto out;
3052
3053         drbd_md_write(device, buffer);
3054
3055         /* Update device->ldev->md.la_size_sect,
3056          * since we updated it on metadata. */
3057         device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3058
3059         drbd_md_put_buffer(device);
3060 out:
3061         put_ldev(device);
3062 }
3063
3064 static int check_activity_log_stripe_size(struct drbd_device *device,
3065                 struct meta_data_on_disk *on_disk,
3066                 struct drbd_md *in_core)
3067 {
3068         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3069         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3070         u64 al_size_4k;
3071
3072         /* both not set: default to old fixed size activity log */
3073         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3074                 al_stripes = 1;
3075                 al_stripe_size_4k = MD_32kB_SECT/8;
3076         }
3077
3078         /* some paranoia plausibility checks */
3079
3080         /* we need both values to be set */
3081         if (al_stripes == 0 || al_stripe_size_4k == 0)
3082                 goto err;
3083
3084         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3085
3086         /* Upper limit of activity log area, to avoid potential overflow
3087          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3088          * than 72 * 4k blocks total only increases the amount of history,
3089          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3090         if (al_size_4k > (16 * 1024 * 1024/4))
3091                 goto err;
3092
3093         /* Lower limit: we need at least 8 transaction slots (32kB)
3094          * to not break existing setups */
3095         if (al_size_4k < MD_32kB_SECT/8)
3096                 goto err;
3097
3098         in_core->al_stripe_size_4k = al_stripe_size_4k;
3099         in_core->al_stripes = al_stripes;
3100         in_core->al_size_4k = al_size_4k;
3101
3102         return 0;
3103 err:
3104         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3105                         al_stripes, al_stripe_size_4k);
3106         return -EINVAL;
3107 }
3108
3109 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3110 {
3111         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3112         struct drbd_md *in_core = &bdev->md;
3113         s32 on_disk_al_sect;
3114         s32 on_disk_bm_sect;
3115
3116         /* The on-disk size of the activity log, calculated from offsets, and
3117          * the size of the activity log calculated from the stripe settings,
3118          * should match.
3119          * Though we could relax this a bit: it is ok, if the striped activity log
3120          * fits in the available on-disk activity log size.
3121          * Right now, that would break how resize is implemented.
3122          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3123          * of possible unused padding space in the on disk layout. */
3124         if (in_core->al_offset < 0) {
3125                 if (in_core->bm_offset > in_core->al_offset)
3126                         goto err;
3127                 on_disk_al_sect = -in_core->al_offset;
3128                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3129         } else {
3130                 if (in_core->al_offset != MD_4kB_SECT)
3131                         goto err;
3132                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3133                         goto err;
3134
3135                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3136                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3137         }
3138
3139         /* old fixed size meta data is exactly that: fixed. */
3140         if (in_core->meta_dev_idx >= 0) {
3141                 if (in_core->md_size_sect != MD_128MB_SECT
3142                 ||  in_core->al_offset != MD_4kB_SECT
3143                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3144                 ||  in_core->al_stripes != 1
3145                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3146                         goto err;
3147         }
3148
3149         if (capacity < in_core->md_size_sect)
3150                 goto err;
3151         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3152                 goto err;
3153
3154         /* should be aligned, and at least 32k */
3155         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3156                 goto err;
3157
3158         /* should fit (for now: exactly) into the available on-disk space;
3159          * overflow prevention is in check_activity_log_stripe_size() above. */
3160         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3161                 goto err;
3162
3163         /* again, should be aligned */
3164         if (in_core->bm_offset & 7)
3165                 goto err;
3166
3167         /* FIXME check for device grow with flex external meta data? */
3168
3169         /* can the available bitmap space cover the last agreed device size? */
3170         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3171                 goto err;
3172
3173         return 0;
3174
3175 err:
3176         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3177                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3178                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3179                         in_core->meta_dev_idx,
3180                         in_core->al_stripes, in_core->al_stripe_size_4k,
3181                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3182                         (unsigned long long)in_core->la_size_sect,
3183                         (unsigned long long)capacity);
3184
3185         return -EINVAL;
3186 }
3187
3188
3189 /**
3190  * drbd_md_read() - Reads in the meta data super block
3191  * @device:     DRBD device.
3192  * @bdev:       Device from which the meta data should be read in.
3193  *
3194  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3195  * something goes wrong.
3196  *
3197  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3198  * even before @bdev is assigned to @device->ldev.
3199  */
3200 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3201 {
3202         struct meta_data_on_disk *buffer;
3203         u32 magic, flags;
3204         int i, rv = NO_ERROR;
3205
3206         if (device->state.disk != D_DISKLESS)
3207                 return ERR_DISK_CONFIGURED;
3208
3209         buffer = drbd_md_get_buffer(device, __func__);
3210         if (!buffer)
3211                 return ERR_NOMEM;
3212
3213         /* First, figure out where our meta data superblock is located,
3214          * and read it. */
3215         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3216         bdev->md.md_offset = drbd_md_ss(bdev);
3217         /* Even for (flexible or indexed) external meta data,
3218          * initially restrict us to the 4k superblock for now.
3219          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3220         bdev->md.md_size_sect = 8;
3221
3222         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3223                                  REQ_OP_READ)) {
3224                 /* NOTE: can't do normal error processing here as this is
3225                    called BEFORE disk is attached */
3226                 drbd_err(device, "Error while reading metadata.\n");
3227                 rv = ERR_IO_MD_DISK;
3228                 goto err;
3229         }
3230
3231         magic = be32_to_cpu(buffer->magic);
3232         flags = be32_to_cpu(buffer->flags);
3233         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3234             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3235                         /* btw: that's Activity Log clean, not "all" clean. */
3236                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3237                 rv = ERR_MD_UNCLEAN;
3238                 goto err;
3239         }
3240
3241         rv = ERR_MD_INVALID;
3242         if (magic != DRBD_MD_MAGIC_08) {
3243                 if (magic == DRBD_MD_MAGIC_07)
3244                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3245                 else
3246                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3247                 goto err;
3248         }
3249
3250         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3251                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3252                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3253                 goto err;
3254         }
3255
3256
3257         /* convert to in_core endian */
3258         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3259         for (i = UI_CURRENT; i < UI_SIZE; i++)
3260                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3261         bdev->md.flags = be32_to_cpu(buffer->flags);
3262         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3263
3264         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3265         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3266         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3267
3268         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3269                 goto err;
3270         if (check_offsets_and_sizes(device, bdev))
3271                 goto err;
3272
3273         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3274                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3275                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3276                 goto err;
3277         }
3278         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3279                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3280                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3281                 goto err;
3282         }
3283
3284         rv = NO_ERROR;
3285
3286         spin_lock_irq(&device->resource->req_lock);
3287         if (device->state.conn < C_CONNECTED) {
3288                 unsigned int peer;
3289                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3290                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3291                 device->peer_max_bio_size = peer;
3292         }
3293         spin_unlock_irq(&device->resource->req_lock);
3294
3295  err:
3296         drbd_md_put_buffer(device);
3297
3298         return rv;
3299 }
3300
3301 /**
3302  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3303  * @device:     DRBD device.
3304  *
3305  * Call this function if you change anything that should be written to
3306  * the meta-data super block. This function sets MD_DIRTY, and starts a
3307  * timer that ensures that within five seconds you have to call drbd_md_sync().
3308  */
3309 void drbd_md_mark_dirty(struct drbd_device *device)
3310 {
3311         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3312                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3313 }
3314
3315 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3316 {
3317         int i;
3318
3319         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3320                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3321 }
3322
3323 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3324 {
3325         if (idx == UI_CURRENT) {
3326                 if (device->state.role == R_PRIMARY)
3327                         val |= 1;
3328                 else
3329                         val &= ~((u64)1);
3330
3331                 drbd_set_ed_uuid(device, val);
3332         }
3333
3334         device->ldev->md.uuid[idx] = val;
3335         drbd_md_mark_dirty(device);
3336 }
3337
3338 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3339 {
3340         unsigned long flags;
3341         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3342         __drbd_uuid_set(device, idx, val);
3343         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3344 }
3345
3346 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3347 {
3348         unsigned long flags;
3349         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3350         if (device->ldev->md.uuid[idx]) {
3351                 drbd_uuid_move_history(device);
3352                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3353         }
3354         __drbd_uuid_set(device, idx, val);
3355         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3356 }
3357
3358 /**
3359  * drbd_uuid_new_current() - Creates a new current UUID
3360  * @device:     DRBD device.
3361  *
3362  * Creates a new current UUID, and rotates the old current UUID into
3363  * the bitmap slot. Causes an incremental resync upon next connect.
3364  */
3365 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3366 {
3367         u64 val;
3368         unsigned long long bm_uuid;
3369
3370         get_random_bytes(&val, sizeof(u64));
3371
3372         spin_lock_irq(&device->ldev->md.uuid_lock);
3373         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3374
3375         if (bm_uuid)
3376                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3377
3378         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3379         __drbd_uuid_set(device, UI_CURRENT, val);
3380         spin_unlock_irq(&device->ldev->md.uuid_lock);
3381
3382         drbd_print_uuids(device, "new current UUID");
3383         /* get it to stable storage _now_ */
3384         drbd_md_sync(device);
3385 }
3386
3387 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3388 {
3389         unsigned long flags;
3390         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3391                 return;
3392
3393         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3394         if (val == 0) {
3395                 drbd_uuid_move_history(device);
3396                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3397                 device->ldev->md.uuid[UI_BITMAP] = 0;
3398         } else {
3399                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3400                 if (bm_uuid)
3401                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3402
3403                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3404         }
3405         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3406
3407         drbd_md_mark_dirty(device);
3408 }
3409
3410 /**
3411  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3412  * @device:     DRBD device.
3413  *
3414  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3415  */
3416 int drbd_bmio_set_n_write(struct drbd_device *device,
3417                           struct drbd_peer_device *peer_device) __must_hold(local)
3418
3419 {
3420         int rv = -EIO;
3421
3422         drbd_md_set_flag(device, MDF_FULL_SYNC);
3423         drbd_md_sync(device);
3424         drbd_bm_set_all(device);
3425
3426         rv = drbd_bm_write(device, peer_device);
3427
3428         if (!rv) {
3429                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3430                 drbd_md_sync(device);
3431         }
3432
3433         return rv;
3434 }
3435
3436 /**
3437  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3438  * @device:     DRBD device.
3439  *
3440  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3441  */
3442 int drbd_bmio_clear_n_write(struct drbd_device *device,
3443                           struct drbd_peer_device *peer_device) __must_hold(local)
3444
3445 {
3446         drbd_resume_al(device);
3447         drbd_bm_clear_all(device);
3448         return drbd_bm_write(device, peer_device);
3449 }
3450
3451 static int w_bitmap_io(struct drbd_work *w, int unused)
3452 {
3453         struct drbd_device *device =
3454                 container_of(w, struct drbd_device, bm_io_work.w);
3455         struct bm_io_work *work = &device->bm_io_work;
3456         int rv = -EIO;
3457
3458         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3459                 int cnt = atomic_read(&device->ap_bio_cnt);
3460                 if (cnt)
3461                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3462                                         cnt, work->why);
3463         }
3464
3465         if (get_ldev(device)) {
3466                 drbd_bm_lock(device, work->why, work->flags);
3467                 rv = work->io_fn(device, work->peer_device);
3468                 drbd_bm_unlock(device);
3469                 put_ldev(device);
3470         }
3471
3472         clear_bit_unlock(BITMAP_IO, &device->flags);
3473         wake_up(&device->misc_wait);
3474
3475         if (work->done)
3476                 work->done(device, rv);
3477
3478         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3479         work->why = NULL;
3480         work->flags = 0;
3481
3482         return 0;
3483 }
3484
3485 /**
3486  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3487  * @device:     DRBD device.
3488  * @io_fn:      IO callback to be called when bitmap IO is possible
3489  * @done:       callback to be called after the bitmap IO was performed
3490  * @why:        Descriptive text of the reason for doing the IO
3491  * @flags:      Bitmap flags
3492  *
3493  * While IO on the bitmap happens we freeze application IO thus we ensure
3494  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3495  * called from worker context. It MUST NOT be used while a previous such
3496  * work is still pending!
3497  *
3498  * Its worker function encloses the call of io_fn() by get_ldev() and
3499  * put_ldev().
3500  */
3501 void drbd_queue_bitmap_io(struct drbd_device *device,
3502                           int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3503                           void (*done)(struct drbd_device *, int),
3504                           char *why, enum bm_flag flags,
3505                           struct drbd_peer_device *peer_device)
3506 {
3507         D_ASSERT(device, current == peer_device->connection->worker.task);
3508
3509         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3510         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3511         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3512         if (device->bm_io_work.why)
3513                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3514                         why, device->bm_io_work.why);
3515
3516         device->bm_io_work.peer_device = peer_device;
3517         device->bm_io_work.io_fn = io_fn;
3518         device->bm_io_work.done = done;
3519         device->bm_io_work.why = why;
3520         device->bm_io_work.flags = flags;
3521
3522         spin_lock_irq(&device->resource->req_lock);
3523         set_bit(BITMAP_IO, &device->flags);
3524         /* don't wait for pending application IO if the caller indicates that
3525          * application IO does not conflict anyways. */
3526         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3527                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3528                         drbd_queue_work(&peer_device->connection->sender_work,
3529                                         &device->bm_io_work.w);
3530         }
3531         spin_unlock_irq(&device->resource->req_lock);
3532 }
3533
3534 /**
3535  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3536  * @device:     DRBD device.
3537  * @io_fn:      IO callback to be called when bitmap IO is possible
3538  * @why:        Descriptive text of the reason for doing the IO
3539  * @flags:      Bitmap flags
3540  *
3541  * freezes application IO while that the actual IO operations runs. This
3542  * functions MAY NOT be called from worker context.
3543  */
3544 int drbd_bitmap_io(struct drbd_device *device,
3545                 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3546                 char *why, enum bm_flag flags,
3547                 struct drbd_peer_device *peer_device)
3548 {
3549         /* Only suspend io, if some operation is supposed to be locked out */
3550         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3551         int rv;
3552
3553         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3554
3555         if (do_suspend_io)
3556                 drbd_suspend_io(device);
3557
3558         drbd_bm_lock(device, why, flags);
3559         rv = io_fn(device, peer_device);
3560         drbd_bm_unlock(device);
3561
3562         if (do_suspend_io)
3563                 drbd_resume_io(device);
3564
3565         return rv;
3566 }
3567
3568 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3569 {
3570         if ((device->ldev->md.flags & flag) != flag) {
3571                 drbd_md_mark_dirty(device);
3572                 device->ldev->md.flags |= flag;
3573         }
3574 }
3575
3576 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3577 {
3578         if ((device->ldev->md.flags & flag) != 0) {
3579                 drbd_md_mark_dirty(device);
3580                 device->ldev->md.flags &= ~flag;
3581         }
3582 }
3583 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3584 {
3585         return (bdev->md.flags & flag) != 0;
3586 }
3587
3588 static void md_sync_timer_fn(struct timer_list *t)
3589 {
3590         struct drbd_device *device = from_timer(device, t, md_sync_timer);
3591         drbd_device_post_work(device, MD_SYNC);
3592 }
3593
3594 const char *cmdname(enum drbd_packet cmd)
3595 {
3596         /* THINK may need to become several global tables
3597          * when we want to support more than
3598          * one PRO_VERSION */
3599         static const char *cmdnames[] = {
3600
3601                 [P_DATA]                = "Data",
3602                 [P_DATA_REPLY]          = "DataReply",
3603                 [P_RS_DATA_REPLY]       = "RSDataReply",
3604                 [P_BARRIER]             = "Barrier",
3605                 [P_BITMAP]              = "ReportBitMap",
3606                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3607                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3608                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3609                 [P_DATA_REQUEST]        = "DataRequest",
3610                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3611                 [P_SYNC_PARAM]          = "SyncParam",
3612                 [P_PROTOCOL]            = "ReportProtocol",
3613                 [P_UUIDS]               = "ReportUUIDs",
3614                 [P_SIZES]               = "ReportSizes",
3615                 [P_STATE]               = "ReportState",
3616                 [P_SYNC_UUID]           = "ReportSyncUUID",
3617                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3618                 [P_AUTH_RESPONSE]       = "AuthResponse",
3619                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3620                 [P_PING]                = "Ping",
3621                 [P_PING_ACK]            = "PingAck",
3622                 [P_RECV_ACK]            = "RecvAck",
3623                 [P_WRITE_ACK]           = "WriteAck",
3624                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3625                 [P_SUPERSEDED]          = "Superseded",
3626                 [P_NEG_ACK]             = "NegAck",
3627                 [P_NEG_DREPLY]          = "NegDReply",
3628                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3629                 [P_BARRIER_ACK]         = "BarrierAck",
3630                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3631                 [P_OV_REQUEST]          = "OVRequest",
3632                 [P_OV_REPLY]            = "OVReply",
3633                 [P_OV_RESULT]           = "OVResult",
3634                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3635                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3636                 [P_SYNC_PARAM89]        = "SyncParam89",
3637                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3638                 [P_DELAY_PROBE]         = "DelayProbe",
3639                 [P_OUT_OF_SYNC]         = "OutOfSync",
3640                 [P_RS_CANCEL]           = "RSCancel",
3641                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3642                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3643                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3644                 [P_TRIM]                = "Trim",
3645                 [P_RS_THIN_REQ]         = "rs_thin_req",
3646                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3647                 [P_WSAME]               = "WriteSame",
3648                 [P_ZEROES]              = "Zeroes",
3649
3650                 /* enum drbd_packet, but not commands - obsoleted flags:
3651                  *      P_MAY_IGNORE
3652                  *      P_MAX_OPT_CMD
3653                  */
3654         };
3655
3656         /* too big for the array: 0xfffX */
3657         if (cmd == P_INITIAL_META)
3658                 return "InitialMeta";
3659         if (cmd == P_INITIAL_DATA)
3660                 return "InitialData";
3661         if (cmd == P_CONNECTION_FEATURES)
3662                 return "ConnectionFeatures";
3663         if (cmd >= ARRAY_SIZE(cmdnames))
3664                 return "Unknown";
3665         return cmdnames[cmd];
3666 }
3667
3668 /**
3669  * drbd_wait_misc  -  wait for a request to make progress
3670  * @device:     device associated with the request
3671  * @i:          the struct drbd_interval embedded in struct drbd_request or
3672  *              struct drbd_peer_request
3673  */
3674 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3675 {
3676         struct net_conf *nc;
3677         DEFINE_WAIT(wait);
3678         long timeout;
3679
3680         rcu_read_lock();
3681         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3682         if (!nc) {
3683                 rcu_read_unlock();
3684                 return -ETIMEDOUT;
3685         }
3686         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3687         rcu_read_unlock();
3688
3689         /* Indicate to wake up device->misc_wait on progress.  */
3690         i->waiting = true;
3691         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3692         spin_unlock_irq(&device->resource->req_lock);
3693         timeout = schedule_timeout(timeout);
3694         finish_wait(&device->misc_wait, &wait);
3695         spin_lock_irq(&device->resource->req_lock);
3696         if (!timeout || device->state.conn < C_CONNECTED)
3697                 return -ETIMEDOUT;
3698         if (signal_pending(current))
3699                 return -ERESTARTSYS;
3700         return 0;
3701 }
3702
3703 void lock_all_resources(void)
3704 {
3705         struct drbd_resource *resource;
3706         int __maybe_unused i = 0;
3707
3708         mutex_lock(&resources_mutex);
3709         local_irq_disable();
3710         for_each_resource(resource, &drbd_resources)
3711                 spin_lock_nested(&resource->req_lock, i++);
3712 }
3713
3714 void unlock_all_resources(void)
3715 {
3716         struct drbd_resource *resource;
3717
3718         for_each_resource(resource, &drbd_resources)
3719                 spin_unlock(&resource->req_lock);
3720         local_irq_enable();
3721         mutex_unlock(&resources_mutex);
3722 }
3723
3724 #ifdef CONFIG_DRBD_FAULT_INJECTION
3725 /* Fault insertion support including random number generator shamelessly
3726  * stolen from kernel/rcutorture.c */
3727 struct fault_random_state {
3728         unsigned long state;
3729         unsigned long count;
3730 };
3731
3732 #define FAULT_RANDOM_MULT 39916801  /* prime */
3733 #define FAULT_RANDOM_ADD        479001701 /* prime */
3734 #define FAULT_RANDOM_REFRESH 10000
3735
3736 /*
3737  * Crude but fast random-number generator.  Uses a linear congruential
3738  * generator, with occasional help from get_random_bytes().
3739  */
3740 static unsigned long
3741 _drbd_fault_random(struct fault_random_state *rsp)
3742 {
3743         long refresh;
3744
3745         if (!rsp->count--) {
3746                 get_random_bytes(&refresh, sizeof(refresh));
3747                 rsp->state += refresh;
3748                 rsp->count = FAULT_RANDOM_REFRESH;
3749         }
3750         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3751         return swahw32(rsp->state);
3752 }
3753
3754 static char *
3755 _drbd_fault_str(unsigned int type) {
3756         static char *_faults[] = {
3757                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3758                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3759                 [DRBD_FAULT_RS_WR] = "Resync write",
3760                 [DRBD_FAULT_RS_RD] = "Resync read",
3761                 [DRBD_FAULT_DT_WR] = "Data write",
3762                 [DRBD_FAULT_DT_RD] = "Data read",
3763                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3764                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3765                 [DRBD_FAULT_AL_EE] = "EE allocation",
3766                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3767         };
3768
3769         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3770 }
3771
3772 unsigned int
3773 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3774 {
3775         static struct fault_random_state rrs = {0, 0};
3776
3777         unsigned int ret = (
3778                 (drbd_fault_devs == 0 ||
3779                         ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3780                 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3781
3782         if (ret) {
3783                 drbd_fault_count++;
3784
3785                 if (drbd_ratelimit())
3786                         drbd_warn(device, "***Simulating %s failure\n",
3787                                 _drbd_fault_str(type));
3788         }
3789
3790         return ret;
3791 }
3792 #endif
3793
3794 module_init(drbd_init)
3795 module_exit(drbd_cleanup)
3796
3797 EXPORT_SYMBOL(drbd_conn_str);
3798 EXPORT_SYMBOL(drbd_role_str);
3799 EXPORT_SYMBOL(drbd_disk_str);
3800 EXPORT_SYMBOL(drbd_set_st_err_str);