2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 static int cciss_allow_hpsa;
72 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_allow_hpsa,
74 "Prevent cciss driver from accessing hardware known to be "
75 " supported by the hpsa driver");
77 #include "cciss_cmd.h"
79 #include <linux/cciss_ioctl.h>
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id[] = {
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
113 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
115 /* board_id = Subsystem Device ID & Vendor ID
116 * product = Marketing Name for the board
117 * access = Address of the struct of function pointers
119 static struct board_type products[] = {
120 {0x40700E11, "Smart Array 5300", &SA5_access},
121 {0x40800E11, "Smart Array 5i", &SA5B_access},
122 {0x40820E11, "Smart Array 532", &SA5B_access},
123 {0x40830E11, "Smart Array 5312", &SA5B_access},
124 {0x409A0E11, "Smart Array 641", &SA5_access},
125 {0x409B0E11, "Smart Array 642", &SA5_access},
126 {0x409C0E11, "Smart Array 6400", &SA5_access},
127 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128 {0x40910E11, "Smart Array 6i", &SA5_access},
129 {0x3225103C, "Smart Array P600", &SA5_access},
130 {0x3235103C, "Smart Array P400i", &SA5_access},
131 {0x3211103C, "Smart Array E200i", &SA5_access},
132 {0x3212103C, "Smart Array E200", &SA5_access},
133 {0x3213103C, "Smart Array E200i", &SA5_access},
134 {0x3214103C, "Smart Array E200i", &SA5_access},
135 {0x3215103C, "Smart Array E200i", &SA5_access},
136 {0x3237103C, "Smart Array E500", &SA5_access},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139 {0x3223103C, "Smart Array P800", &SA5_access},
140 {0x3234103C, "Smart Array P400", &SA5_access},
141 {0x323D103C, "Smart Array P700m", &SA5_access},
142 {0x3241103C, "Smart Array P212", &SA5_access},
143 {0x3243103C, "Smart Array P410", &SA5_access},
144 {0x3245103C, "Smart Array P410i", &SA5_access},
145 {0x3247103C, "Smart Array P411", &SA5_access},
146 {0x3249103C, "Smart Array P812", &SA5_access},
147 {0x324A103C, "Smart Array P712m", &SA5_access},
148 {0x324B103C, "Smart Array P711m", &SA5_access},
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG 8
163 static ctlr_info_t *hba[MAX_CTLR];
165 static struct task_struct *cciss_scan_thread;
166 static DEFINE_MUTEX(scan_mutex);
167 static LIST_HEAD(scan_q);
169 static void do_cciss_request(struct request_queue *q);
170 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
171 static int cciss_open(struct block_device *bdev, fmode_t mode);
172 static int cciss_release(struct gendisk *disk, fmode_t mode);
173 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
174 unsigned int cmd, unsigned long arg);
175 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
177 static int cciss_revalidate(struct gendisk *disk);
178 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
179 static int deregister_disk(ctlr_info_t *h, int drv_index,
180 int clear_all, int via_ioctl);
182 static void cciss_read_capacity(int ctlr, int logvol,
183 sector_t *total_size, unsigned int *block_size);
184 static void cciss_read_capacity_16(int ctlr, int logvol,
185 sector_t *total_size, unsigned int *block_size);
186 static void cciss_geometry_inquiry(int ctlr, int logvol,
188 unsigned int block_size, InquiryData_struct *inq_buff,
189 drive_info_struct *drv);
190 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
192 static void start_io(ctlr_info_t *h);
193 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
194 __u8 page_code, unsigned char scsi3addr[],
196 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
198 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
200 static void fail_all_cmds(unsigned long ctlr);
201 static int add_to_scan_list(struct ctlr_info *h);
202 static int scan_thread(void *data);
203 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
204 static void cciss_hba_release(struct device *dev);
205 static void cciss_device_release(struct device *dev);
206 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
207 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
209 #ifdef CONFIG_PROC_FS
210 static void cciss_procinit(int i);
212 static void cciss_procinit(int i)
215 #endif /* CONFIG_PROC_FS */
218 static int cciss_compat_ioctl(struct block_device *, fmode_t,
219 unsigned, unsigned long);
222 static const struct block_device_operations cciss_fops = {
223 .owner = THIS_MODULE,
225 .release = cciss_release,
226 .locked_ioctl = cciss_ioctl,
227 .getgeo = cciss_getgeo,
229 .compat_ioctl = cciss_compat_ioctl,
231 .revalidate_disk = cciss_revalidate,
235 * Enqueuing and dequeuing functions for cmdlists.
237 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
239 hlist_add_head(&c->list, list);
242 static inline void removeQ(CommandList_struct *c)
245 * After kexec/dump some commands might still
246 * be in flight, which the firmware will try
247 * to complete. Resetting the firmware doesn't work
248 * with old fw revisions, so we have to mark
249 * them off as 'stale' to prevent the driver from
252 if (WARN_ON(hlist_unhashed(&c->list))) {
253 c->cmd_type = CMD_MSG_STALE;
257 hlist_del_init(&c->list);
260 #include "cciss_scsi.c" /* For SCSI tape support */
262 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
265 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
267 #ifdef CONFIG_PROC_FS
270 * Report information about this controller.
272 #define ENG_GIG 1000000000
273 #define ENG_GIG_FACTOR (ENG_GIG/512)
274 #define ENGAGE_SCSI "engage scsi"
276 static struct proc_dir_entry *proc_cciss;
278 static void cciss_seq_show_header(struct seq_file *seq)
280 ctlr_info_t *h = seq->private;
282 seq_printf(seq, "%s: HP %s Controller\n"
283 "Board ID: 0x%08lx\n"
284 "Firmware Version: %c%c%c%c\n"
286 "Logical drives: %d\n"
287 "Current Q depth: %d\n"
288 "Current # commands on controller: %d\n"
289 "Max Q depth since init: %d\n"
290 "Max # commands on controller since init: %d\n"
291 "Max SG entries since init: %d\n",
294 (unsigned long)h->board_id,
295 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
296 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
298 h->Qdepth, h->commands_outstanding,
299 h->maxQsinceinit, h->max_outstanding, h->maxSG);
301 #ifdef CONFIG_CISS_SCSI_TAPE
302 cciss_seq_tape_report(seq, h->ctlr);
303 #endif /* CONFIG_CISS_SCSI_TAPE */
306 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
308 ctlr_info_t *h = seq->private;
309 unsigned ctlr = h->ctlr;
312 /* prevent displaying bogus info during configuration
313 * or deconfiguration of a logical volume
315 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
316 if (h->busy_configuring) {
317 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
318 return ERR_PTR(-EBUSY);
320 h->busy_configuring = 1;
321 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
324 cciss_seq_show_header(seq);
329 static int cciss_seq_show(struct seq_file *seq, void *v)
331 sector_t vol_sz, vol_sz_frac;
332 ctlr_info_t *h = seq->private;
333 unsigned ctlr = h->ctlr;
335 drive_info_struct *drv = h->drv[*pos];
337 if (*pos > h->highest_lun)
343 vol_sz = drv->nr_blocks;
344 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
346 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
348 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
349 drv->raid_level = RAID_UNKNOWN;
350 seq_printf(seq, "cciss/c%dd%d:"
351 "\t%4u.%02uGB\tRAID %s\n",
352 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
353 raid_label[drv->raid_level]);
357 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
359 ctlr_info_t *h = seq->private;
361 if (*pos > h->highest_lun)
368 static void cciss_seq_stop(struct seq_file *seq, void *v)
370 ctlr_info_t *h = seq->private;
372 /* Only reset h->busy_configuring if we succeeded in setting
373 * it during cciss_seq_start. */
374 if (v == ERR_PTR(-EBUSY))
377 h->busy_configuring = 0;
380 static const struct seq_operations cciss_seq_ops = {
381 .start = cciss_seq_start,
382 .show = cciss_seq_show,
383 .next = cciss_seq_next,
384 .stop = cciss_seq_stop,
387 static int cciss_seq_open(struct inode *inode, struct file *file)
389 int ret = seq_open(file, &cciss_seq_ops);
390 struct seq_file *seq = file->private_data;
393 seq->private = PDE(inode)->data;
399 cciss_proc_write(struct file *file, const char __user *buf,
400 size_t length, loff_t *ppos)
405 #ifndef CONFIG_CISS_SCSI_TAPE
409 if (!buf || length > PAGE_SIZE - 1)
412 buffer = (char *)__get_free_page(GFP_KERNEL);
417 if (copy_from_user(buffer, buf, length))
419 buffer[length] = '\0';
421 #ifdef CONFIG_CISS_SCSI_TAPE
422 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
423 struct seq_file *seq = file->private_data;
424 ctlr_info_t *h = seq->private;
426 err = cciss_engage_scsi(h->ctlr);
430 #endif /* CONFIG_CISS_SCSI_TAPE */
432 /* might be nice to have "disengage" too, but it's not
433 safely possible. (only 1 module use count, lock issues.) */
436 free_page((unsigned long)buffer);
440 static const struct file_operations cciss_proc_fops = {
441 .owner = THIS_MODULE,
442 .open = cciss_seq_open,
445 .release = seq_release,
446 .write = cciss_proc_write,
449 static void __devinit cciss_procinit(int i)
451 struct proc_dir_entry *pde;
453 if (proc_cciss == NULL)
454 proc_cciss = proc_mkdir("driver/cciss", NULL);
457 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
459 &cciss_proc_fops, hba[i]);
461 #endif /* CONFIG_PROC_FS */
463 #define MAX_PRODUCT_NAME_LEN 19
465 #define to_hba(n) container_of(n, struct ctlr_info, dev)
466 #define to_drv(n) container_of(n, drive_info_struct, dev)
468 static ssize_t host_store_rescan(struct device *dev,
469 struct device_attribute *attr,
470 const char *buf, size_t count)
472 struct ctlr_info *h = to_hba(dev);
475 wake_up_process(cciss_scan_thread);
476 wait_for_completion_interruptible(&h->scan_wait);
480 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
482 static ssize_t dev_show_unique_id(struct device *dev,
483 struct device_attribute *attr,
486 drive_info_struct *drv = to_drv(dev);
487 struct ctlr_info *h = to_hba(drv->dev.parent);
492 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
493 if (h->busy_configuring)
496 memcpy(sn, drv->serial_no, sizeof(sn));
497 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
502 return snprintf(buf, 16 * 2 + 2,
503 "%02X%02X%02X%02X%02X%02X%02X%02X"
504 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
505 sn[0], sn[1], sn[2], sn[3],
506 sn[4], sn[5], sn[6], sn[7],
507 sn[8], sn[9], sn[10], sn[11],
508 sn[12], sn[13], sn[14], sn[15]);
510 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
512 static ssize_t dev_show_vendor(struct device *dev,
513 struct device_attribute *attr,
516 drive_info_struct *drv = to_drv(dev);
517 struct ctlr_info *h = to_hba(drv->dev.parent);
518 char vendor[VENDOR_LEN + 1];
522 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
523 if (h->busy_configuring)
526 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
527 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
532 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
534 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
536 static ssize_t dev_show_model(struct device *dev,
537 struct device_attribute *attr,
540 drive_info_struct *drv = to_drv(dev);
541 struct ctlr_info *h = to_hba(drv->dev.parent);
542 char model[MODEL_LEN + 1];
546 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
547 if (h->busy_configuring)
550 memcpy(model, drv->model, MODEL_LEN + 1);
551 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
556 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
558 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
560 static ssize_t dev_show_rev(struct device *dev,
561 struct device_attribute *attr,
564 drive_info_struct *drv = to_drv(dev);
565 struct ctlr_info *h = to_hba(drv->dev.parent);
566 char rev[REV_LEN + 1];
570 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
571 if (h->busy_configuring)
574 memcpy(rev, drv->rev, REV_LEN + 1);
575 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
580 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
582 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
584 static ssize_t cciss_show_lunid(struct device *dev,
585 struct device_attribute *attr, char *buf)
587 drive_info_struct *drv = to_drv(dev);
588 struct ctlr_info *h = to_hba(drv->dev.parent);
590 unsigned char lunid[8];
592 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
593 if (h->busy_configuring) {
594 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
598 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
601 memcpy(lunid, drv->LunID, sizeof(lunid));
602 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
603 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
604 lunid[0], lunid[1], lunid[2], lunid[3],
605 lunid[4], lunid[5], lunid[6], lunid[7]);
607 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
609 static ssize_t cciss_show_raid_level(struct device *dev,
610 struct device_attribute *attr, char *buf)
612 drive_info_struct *drv = to_drv(dev);
613 struct ctlr_info *h = to_hba(drv->dev.parent);
617 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
618 if (h->busy_configuring) {
619 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
622 raid = drv->raid_level;
623 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
624 if (raid < 0 || raid > RAID_UNKNOWN)
627 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
630 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
632 static ssize_t cciss_show_usage_count(struct device *dev,
633 struct device_attribute *attr, char *buf)
635 drive_info_struct *drv = to_drv(dev);
636 struct ctlr_info *h = to_hba(drv->dev.parent);
640 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
641 if (h->busy_configuring) {
642 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
645 count = drv->usage_count;
646 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
647 return snprintf(buf, 20, "%d\n", count);
649 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
651 static struct attribute *cciss_host_attrs[] = {
652 &dev_attr_rescan.attr,
656 static struct attribute_group cciss_host_attr_group = {
657 .attrs = cciss_host_attrs,
660 static const struct attribute_group *cciss_host_attr_groups[] = {
661 &cciss_host_attr_group,
665 static struct device_type cciss_host_type = {
666 .name = "cciss_host",
667 .groups = cciss_host_attr_groups,
668 .release = cciss_hba_release,
671 static struct attribute *cciss_dev_attrs[] = {
672 &dev_attr_unique_id.attr,
673 &dev_attr_model.attr,
674 &dev_attr_vendor.attr,
676 &dev_attr_lunid.attr,
677 &dev_attr_raid_level.attr,
678 &dev_attr_usage_count.attr,
682 static struct attribute_group cciss_dev_attr_group = {
683 .attrs = cciss_dev_attrs,
686 static const struct attribute_group *cciss_dev_attr_groups[] = {
687 &cciss_dev_attr_group,
691 static struct device_type cciss_dev_type = {
692 .name = "cciss_device",
693 .groups = cciss_dev_attr_groups,
694 .release = cciss_device_release,
697 static struct bus_type cciss_bus_type = {
702 * cciss_hba_release is called when the reference count
703 * of h->dev goes to zero.
705 static void cciss_hba_release(struct device *dev)
708 * nothing to do, but need this to avoid a warning
709 * about not having a release handler from lib/kref.c.
714 * Initialize sysfs entry for each controller. This sets up and registers
715 * the 'cciss#' directory for each individual controller under
716 * /sys/bus/pci/devices/<dev>/.
718 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
720 device_initialize(&h->dev);
721 h->dev.type = &cciss_host_type;
722 h->dev.bus = &cciss_bus_type;
723 dev_set_name(&h->dev, "%s", h->devname);
724 h->dev.parent = &h->pdev->dev;
726 return device_add(&h->dev);
730 * Remove sysfs entries for an hba.
732 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
735 put_device(&h->dev); /* final put. */
738 /* cciss_device_release is called when the reference count
739 * of h->drv[x]dev goes to zero.
741 static void cciss_device_release(struct device *dev)
743 drive_info_struct *drv = to_drv(dev);
748 * Initialize sysfs for each logical drive. This sets up and registers
749 * the 'c#d#' directory for each individual logical drive under
750 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
751 * /sys/block/cciss!c#d# to this entry.
753 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
758 if (h->drv[drv_index]->device_initialized)
761 dev = &h->drv[drv_index]->dev;
762 device_initialize(dev);
763 dev->type = &cciss_dev_type;
764 dev->bus = &cciss_bus_type;
765 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
766 dev->parent = &h->dev;
767 h->drv[drv_index]->device_initialized = 1;
768 return device_add(dev);
772 * Remove sysfs entries for a logical drive.
774 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
777 struct device *dev = &h->drv[drv_index]->dev;
779 /* special case for c*d0, we only destroy it on controller exit */
780 if (drv_index == 0 && !ctlr_exiting)
784 put_device(dev); /* the "final" put. */
785 h->drv[drv_index] = NULL;
789 * For operations that cannot sleep, a command block is allocated at init,
790 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
791 * which ones are free or in use. For operations that can wait for kmalloc
792 * to possible sleep, this routine can be called with get_from_pool set to 0.
793 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
795 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
797 CommandList_struct *c;
800 dma_addr_t cmd_dma_handle, err_dma_handle;
802 if (!get_from_pool) {
803 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
804 sizeof(CommandList_struct), &cmd_dma_handle);
807 memset(c, 0, sizeof(CommandList_struct));
811 c->err_info = (ErrorInfo_struct *)
812 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
815 if (c->err_info == NULL) {
816 pci_free_consistent(h->pdev,
817 sizeof(CommandList_struct), c, cmd_dma_handle);
820 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
821 } else { /* get it out of the controllers pool */
824 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
827 } while (test_and_set_bit
828 (i & (BITS_PER_LONG - 1),
829 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
831 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
834 memset(c, 0, sizeof(CommandList_struct));
835 cmd_dma_handle = h->cmd_pool_dhandle
836 + i * sizeof(CommandList_struct);
837 c->err_info = h->errinfo_pool + i;
838 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
839 err_dma_handle = h->errinfo_pool_dhandle
840 + i * sizeof(ErrorInfo_struct);
846 INIT_HLIST_NODE(&c->list);
847 c->busaddr = (__u32) cmd_dma_handle;
848 temp64.val = (__u64) err_dma_handle;
849 c->ErrDesc.Addr.lower = temp64.val32.lower;
850 c->ErrDesc.Addr.upper = temp64.val32.upper;
851 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
858 * Frees a command block that was previously allocated with cmd_alloc().
860 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
865 if (!got_from_pool) {
866 temp64.val32.lower = c->ErrDesc.Addr.lower;
867 temp64.val32.upper = c->ErrDesc.Addr.upper;
868 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
869 c->err_info, (dma_addr_t) temp64.val);
870 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
871 c, (dma_addr_t) c->busaddr);
874 clear_bit(i & (BITS_PER_LONG - 1),
875 h->cmd_pool_bits + (i / BITS_PER_LONG));
880 static inline ctlr_info_t *get_host(struct gendisk *disk)
882 return disk->queue->queuedata;
885 static inline drive_info_struct *get_drv(struct gendisk *disk)
887 return disk->private_data;
891 * Open. Make sure the device is really there.
893 static int cciss_open(struct block_device *bdev, fmode_t mode)
895 ctlr_info_t *host = get_host(bdev->bd_disk);
896 drive_info_struct *drv = get_drv(bdev->bd_disk);
899 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
900 #endif /* CCISS_DEBUG */
902 if (drv->busy_configuring)
905 * Root is allowed to open raw volume zero even if it's not configured
906 * so array config can still work. Root is also allowed to open any
907 * volume that has a LUN ID, so it can issue IOCTL to reread the
908 * disk information. I don't think I really like this
909 * but I'm already using way to many device nodes to claim another one
910 * for "raw controller".
912 if (drv->heads == 0) {
913 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
914 /* if not node 0 make sure it is a partition = 0 */
915 if (MINOR(bdev->bd_dev) & 0x0f) {
917 /* if it is, make sure we have a LUN ID */
918 } else if (memcmp(drv->LunID, CTLR_LUNID,
919 sizeof(drv->LunID))) {
923 if (!capable(CAP_SYS_ADMIN))
934 static int cciss_release(struct gendisk *disk, fmode_t mode)
936 ctlr_info_t *host = get_host(disk);
937 drive_info_struct *drv = get_drv(disk);
940 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
941 #endif /* CCISS_DEBUG */
950 static int do_ioctl(struct block_device *bdev, fmode_t mode,
951 unsigned cmd, unsigned long arg)
955 ret = cciss_ioctl(bdev, mode, cmd, arg);
960 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
961 unsigned cmd, unsigned long arg);
962 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
963 unsigned cmd, unsigned long arg);
965 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
966 unsigned cmd, unsigned long arg)
969 case CCISS_GETPCIINFO:
970 case CCISS_GETINTINFO:
971 case CCISS_SETINTINFO:
972 case CCISS_GETNODENAME:
973 case CCISS_SETNODENAME:
974 case CCISS_GETHEARTBEAT:
975 case CCISS_GETBUSTYPES:
976 case CCISS_GETFIRMVER:
977 case CCISS_GETDRIVVER:
978 case CCISS_REVALIDVOLS:
979 case CCISS_DEREGDISK:
980 case CCISS_REGNEWDISK:
982 case CCISS_RESCANDISK:
983 case CCISS_GETLUNINFO:
984 return do_ioctl(bdev, mode, cmd, arg);
986 case CCISS_PASSTHRU32:
987 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
988 case CCISS_BIG_PASSTHRU32:
989 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
996 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
997 unsigned cmd, unsigned long arg)
999 IOCTL32_Command_struct __user *arg32 =
1000 (IOCTL32_Command_struct __user *) arg;
1001 IOCTL_Command_struct arg64;
1002 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1008 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1009 sizeof(arg64.LUN_info));
1011 copy_from_user(&arg64.Request, &arg32->Request,
1012 sizeof(arg64.Request));
1014 copy_from_user(&arg64.error_info, &arg32->error_info,
1015 sizeof(arg64.error_info));
1016 err |= get_user(arg64.buf_size, &arg32->buf_size);
1017 err |= get_user(cp, &arg32->buf);
1018 arg64.buf = compat_ptr(cp);
1019 err |= copy_to_user(p, &arg64, sizeof(arg64));
1024 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1028 copy_in_user(&arg32->error_info, &p->error_info,
1029 sizeof(arg32->error_info));
1035 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1036 unsigned cmd, unsigned long arg)
1038 BIG_IOCTL32_Command_struct __user *arg32 =
1039 (BIG_IOCTL32_Command_struct __user *) arg;
1040 BIG_IOCTL_Command_struct arg64;
1041 BIG_IOCTL_Command_struct __user *p =
1042 compat_alloc_user_space(sizeof(arg64));
1048 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1049 sizeof(arg64.LUN_info));
1051 copy_from_user(&arg64.Request, &arg32->Request,
1052 sizeof(arg64.Request));
1054 copy_from_user(&arg64.error_info, &arg32->error_info,
1055 sizeof(arg64.error_info));
1056 err |= get_user(arg64.buf_size, &arg32->buf_size);
1057 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1058 err |= get_user(cp, &arg32->buf);
1059 arg64.buf = compat_ptr(cp);
1060 err |= copy_to_user(p, &arg64, sizeof(arg64));
1065 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1069 copy_in_user(&arg32->error_info, &p->error_info,
1070 sizeof(arg32->error_info));
1077 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1079 drive_info_struct *drv = get_drv(bdev->bd_disk);
1081 if (!drv->cylinders)
1084 geo->heads = drv->heads;
1085 geo->sectors = drv->sectors;
1086 geo->cylinders = drv->cylinders;
1090 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1092 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1093 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1094 (void)check_for_unit_attention(host, c);
1099 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1100 unsigned int cmd, unsigned long arg)
1102 struct gendisk *disk = bdev->bd_disk;
1103 ctlr_info_t *host = get_host(disk);
1104 drive_info_struct *drv = get_drv(disk);
1105 int ctlr = host->ctlr;
1106 void __user *argp = (void __user *)arg;
1109 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1110 #endif /* CCISS_DEBUG */
1113 case CCISS_GETPCIINFO:
1115 cciss_pci_info_struct pciinfo;
1119 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1120 pciinfo.bus = host->pdev->bus->number;
1121 pciinfo.dev_fn = host->pdev->devfn;
1122 pciinfo.board_id = host->board_id;
1124 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1128 case CCISS_GETINTINFO:
1130 cciss_coalint_struct intinfo;
1134 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1136 readl(&host->cfgtable->HostWrite.CoalIntCount);
1138 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1142 case CCISS_SETINTINFO:
1144 cciss_coalint_struct intinfo;
1145 unsigned long flags;
1150 if (!capable(CAP_SYS_ADMIN))
1153 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1155 if ((intinfo.delay == 0) && (intinfo.count == 0))
1157 // printk("cciss_ioctl: delay and count cannot be 0\n");
1160 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1161 /* Update the field, and then ring the doorbell */
1162 writel(intinfo.delay,
1163 &(host->cfgtable->HostWrite.CoalIntDelay));
1164 writel(intinfo.count,
1165 &(host->cfgtable->HostWrite.CoalIntCount));
1166 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1168 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1169 if (!(readl(host->vaddr + SA5_DOORBELL)
1170 & CFGTBL_ChangeReq))
1172 /* delay and try again */
1175 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1176 if (i >= MAX_IOCTL_CONFIG_WAIT)
1180 case CCISS_GETNODENAME:
1182 NodeName_type NodeName;
1187 for (i = 0; i < 16; i++)
1189 readb(&host->cfgtable->ServerName[i]);
1190 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1194 case CCISS_SETNODENAME:
1196 NodeName_type NodeName;
1197 unsigned long flags;
1202 if (!capable(CAP_SYS_ADMIN))
1206 (NodeName, argp, sizeof(NodeName_type)))
1209 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1211 /* Update the field, and then ring the doorbell */
1212 for (i = 0; i < 16; i++)
1214 &host->cfgtable->ServerName[i]);
1216 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1218 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1219 if (!(readl(host->vaddr + SA5_DOORBELL)
1220 & CFGTBL_ChangeReq))
1222 /* delay and try again */
1225 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1226 if (i >= MAX_IOCTL_CONFIG_WAIT)
1231 case CCISS_GETHEARTBEAT:
1233 Heartbeat_type heartbeat;
1237 heartbeat = readl(&host->cfgtable->HeartBeat);
1239 (argp, &heartbeat, sizeof(Heartbeat_type)))
1243 case CCISS_GETBUSTYPES:
1245 BusTypes_type BusTypes;
1249 BusTypes = readl(&host->cfgtable->BusTypes);
1251 (argp, &BusTypes, sizeof(BusTypes_type)))
1255 case CCISS_GETFIRMVER:
1257 FirmwareVer_type firmware;
1261 memcpy(firmware, host->firm_ver, 4);
1264 (argp, firmware, sizeof(FirmwareVer_type)))
1268 case CCISS_GETDRIVVER:
1270 DriverVer_type DriverVer = DRIVER_VERSION;
1276 (argp, &DriverVer, sizeof(DriverVer_type)))
1281 case CCISS_DEREGDISK:
1283 case CCISS_REVALIDVOLS:
1284 return rebuild_lun_table(host, 0, 1);
1286 case CCISS_GETLUNINFO:{
1287 LogvolInfo_struct luninfo;
1289 memcpy(&luninfo.LunID, drv->LunID,
1290 sizeof(luninfo.LunID));
1291 luninfo.num_opens = drv->usage_count;
1292 luninfo.num_parts = 0;
1293 if (copy_to_user(argp, &luninfo,
1294 sizeof(LogvolInfo_struct)))
1298 case CCISS_PASSTHRU:
1300 IOCTL_Command_struct iocommand;
1301 CommandList_struct *c;
1304 unsigned long flags;
1305 DECLARE_COMPLETION_ONSTACK(wait);
1310 if (!capable(CAP_SYS_RAWIO))
1314 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1316 if ((iocommand.buf_size < 1) &&
1317 (iocommand.Request.Type.Direction != XFER_NONE)) {
1320 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1321 /* Check kmalloc limits */
1322 if (iocommand.buf_size > 128000)
1325 if (iocommand.buf_size > 0) {
1326 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1330 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1331 /* Copy the data into the buffer we created */
1333 (buff, iocommand.buf, iocommand.buf_size)) {
1338 memset(buff, 0, iocommand.buf_size);
1340 if ((c = cmd_alloc(host, 0)) == NULL) {
1344 // Fill in the command type
1345 c->cmd_type = CMD_IOCTL_PEND;
1346 // Fill in Command Header
1347 c->Header.ReplyQueue = 0; // unused in simple mode
1348 if (iocommand.buf_size > 0) // buffer to fill
1350 c->Header.SGList = 1;
1351 c->Header.SGTotal = 1;
1352 } else // no buffers to fill
1354 c->Header.SGList = 0;
1355 c->Header.SGTotal = 0;
1357 c->Header.LUN = iocommand.LUN_info;
1358 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1360 // Fill in Request block
1361 c->Request = iocommand.Request;
1363 // Fill in the scatter gather information
1364 if (iocommand.buf_size > 0) {
1365 temp64.val = pci_map_single(host->pdev, buff,
1367 PCI_DMA_BIDIRECTIONAL);
1368 c->SG[0].Addr.lower = temp64.val32.lower;
1369 c->SG[0].Addr.upper = temp64.val32.upper;
1370 c->SG[0].Len = iocommand.buf_size;
1371 c->SG[0].Ext = 0; // we are not chaining
1375 /* Put the request on the tail of the request queue */
1376 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1377 addQ(&host->reqQ, c);
1380 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1382 wait_for_completion(&wait);
1384 /* unlock the buffers from DMA */
1385 temp64.val32.lower = c->SG[0].Addr.lower;
1386 temp64.val32.upper = c->SG[0].Addr.upper;
1387 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1389 PCI_DMA_BIDIRECTIONAL);
1391 check_ioctl_unit_attention(host, c);
1393 /* Copy the error information out */
1394 iocommand.error_info = *(c->err_info);
1396 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1398 cmd_free(host, c, 0);
1402 if (iocommand.Request.Type.Direction == XFER_READ) {
1403 /* Copy the data out of the buffer we created */
1405 (iocommand.buf, buff, iocommand.buf_size)) {
1407 cmd_free(host, c, 0);
1412 cmd_free(host, c, 0);
1415 case CCISS_BIG_PASSTHRU:{
1416 BIG_IOCTL_Command_struct *ioc;
1417 CommandList_struct *c;
1418 unsigned char **buff = NULL;
1419 int *buff_size = NULL;
1421 unsigned long flags;
1425 DECLARE_COMPLETION_ONSTACK(wait);
1428 BYTE __user *data_ptr;
1432 if (!capable(CAP_SYS_RAWIO))
1434 ioc = (BIG_IOCTL_Command_struct *)
1435 kmalloc(sizeof(*ioc), GFP_KERNEL);
1440 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1444 if ((ioc->buf_size < 1) &&
1445 (ioc->Request.Type.Direction != XFER_NONE)) {
1449 /* Check kmalloc limits using all SGs */
1450 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1454 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1459 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1464 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1470 left = ioc->buf_size;
1471 data_ptr = ioc->buf;
1474 ioc->malloc_size) ? ioc->
1476 buff_size[sg_used] = sz;
1477 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1478 if (buff[sg_used] == NULL) {
1482 if (ioc->Request.Type.Direction == XFER_WRITE) {
1484 (buff[sg_used], data_ptr, sz)) {
1489 memset(buff[sg_used], 0, sz);
1495 if ((c = cmd_alloc(host, 0)) == NULL) {
1499 c->cmd_type = CMD_IOCTL_PEND;
1500 c->Header.ReplyQueue = 0;
1502 if (ioc->buf_size > 0) {
1503 c->Header.SGList = sg_used;
1504 c->Header.SGTotal = sg_used;
1506 c->Header.SGList = 0;
1507 c->Header.SGTotal = 0;
1509 c->Header.LUN = ioc->LUN_info;
1510 c->Header.Tag.lower = c->busaddr;
1512 c->Request = ioc->Request;
1513 if (ioc->buf_size > 0) {
1515 for (i = 0; i < sg_used; i++) {
1517 pci_map_single(host->pdev, buff[i],
1519 PCI_DMA_BIDIRECTIONAL);
1520 c->SG[i].Addr.lower =
1522 c->SG[i].Addr.upper =
1524 c->SG[i].Len = buff_size[i];
1525 c->SG[i].Ext = 0; /* we are not chaining */
1529 /* Put the request on the tail of the request queue */
1530 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1531 addQ(&host->reqQ, c);
1534 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1535 wait_for_completion(&wait);
1536 /* unlock the buffers from DMA */
1537 for (i = 0; i < sg_used; i++) {
1538 temp64.val32.lower = c->SG[i].Addr.lower;
1539 temp64.val32.upper = c->SG[i].Addr.upper;
1540 pci_unmap_single(host->pdev,
1541 (dma_addr_t) temp64.val, buff_size[i],
1542 PCI_DMA_BIDIRECTIONAL);
1544 check_ioctl_unit_attention(host, c);
1545 /* Copy the error information out */
1546 ioc->error_info = *(c->err_info);
1547 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1548 cmd_free(host, c, 0);
1552 if (ioc->Request.Type.Direction == XFER_READ) {
1553 /* Copy the data out of the buffer we created */
1554 BYTE __user *ptr = ioc->buf;
1555 for (i = 0; i < sg_used; i++) {
1557 (ptr, buff[i], buff_size[i])) {
1558 cmd_free(host, c, 0);
1562 ptr += buff_size[i];
1565 cmd_free(host, c, 0);
1569 for (i = 0; i < sg_used; i++)
1578 /* scsi_cmd_ioctl handles these, below, though some are not */
1579 /* very meaningful for cciss. SG_IO is the main one people want. */
1581 case SG_GET_VERSION_NUM:
1582 case SG_SET_TIMEOUT:
1583 case SG_GET_TIMEOUT:
1584 case SG_GET_RESERVED_SIZE:
1585 case SG_SET_RESERVED_SIZE:
1586 case SG_EMULATED_HOST:
1588 case SCSI_IOCTL_SEND_COMMAND:
1589 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1591 /* scsi_cmd_ioctl would normally handle these, below, but */
1592 /* they aren't a good fit for cciss, as CD-ROMs are */
1593 /* not supported, and we don't have any bus/target/lun */
1594 /* which we present to the kernel. */
1596 case CDROM_SEND_PACKET:
1597 case CDROMCLOSETRAY:
1599 case SCSI_IOCTL_GET_IDLUN:
1600 case SCSI_IOCTL_GET_BUS_NUMBER:
1606 static void cciss_check_queues(ctlr_info_t *h)
1608 int start_queue = h->next_to_run;
1611 /* check to see if we have maxed out the number of commands that can
1612 * be placed on the queue. If so then exit. We do this check here
1613 * in case the interrupt we serviced was from an ioctl and did not
1614 * free any new commands.
1616 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1619 /* We have room on the queue for more commands. Now we need to queue
1620 * them up. We will also keep track of the next queue to run so
1621 * that every queue gets a chance to be started first.
1623 for (i = 0; i < h->highest_lun + 1; i++) {
1624 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1625 /* make sure the disk has been added and the drive is real
1626 * because this can be called from the middle of init_one.
1628 if (!h->drv[curr_queue])
1630 if (!(h->drv[curr_queue]->queue) ||
1631 !(h->drv[curr_queue]->heads))
1633 blk_start_queue(h->gendisk[curr_queue]->queue);
1635 /* check to see if we have maxed out the number of commands
1636 * that can be placed on the queue.
1638 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1639 if (curr_queue == start_queue) {
1641 (start_queue + 1) % (h->highest_lun + 1);
1644 h->next_to_run = curr_queue;
1651 static void cciss_softirq_done(struct request *rq)
1653 CommandList_struct *cmd = rq->completion_data;
1654 ctlr_info_t *h = hba[cmd->ctlr];
1655 SGDescriptor_struct *curr_sg = cmd->SG;
1656 unsigned long flags;
1661 if (cmd->Request.Type.Direction == XFER_READ)
1662 ddir = PCI_DMA_FROMDEVICE;
1664 ddir = PCI_DMA_TODEVICE;
1666 /* command did not need to be retried */
1667 /* unmap the DMA mapping for all the scatter gather elements */
1668 for (i = 0; i < cmd->Header.SGList; i++) {
1669 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1670 temp64.val32.lower = cmd->SG[i].Addr.lower;
1671 temp64.val32.upper = cmd->SG[i].Addr.upper;
1672 pci_dma_sync_single_for_cpu(h->pdev, temp64.val,
1673 cmd->SG[i].Len, ddir);
1674 pci_unmap_single(h->pdev, temp64.val,
1675 cmd->SG[i].Len, ddir);
1676 /* Point to the next block */
1677 curr_sg = h->cmd_sg_list[cmd->cmdindex]->sgchain;
1680 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1681 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1682 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1688 printk("Done with %p\n", rq);
1689 #endif /* CCISS_DEBUG */
1691 /* set the residual count for pc requests */
1692 if (blk_pc_request(rq))
1693 rq->resid_len = cmd->err_info->ResidualCnt;
1695 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1697 spin_lock_irqsave(&h->lock, flags);
1698 cmd_free(h, cmd, 1);
1699 cciss_check_queues(h);
1700 spin_unlock_irqrestore(&h->lock, flags);
1703 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1704 unsigned char scsi3addr[], uint32_t log_unit)
1706 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1707 sizeof(h->drv[log_unit]->LunID));
1710 /* This function gets the SCSI vendor, model, and revision of a logical drive
1711 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1712 * they cannot be read.
1714 static void cciss_get_device_descr(int ctlr, int logvol,
1715 char *vendor, char *model, char *rev)
1718 InquiryData_struct *inq_buf;
1719 unsigned char scsi3addr[8];
1725 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1729 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1730 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1731 scsi3addr, TYPE_CMD);
1733 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1734 vendor[VENDOR_LEN] = '\0';
1735 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1736 model[MODEL_LEN] = '\0';
1737 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1738 rev[REV_LEN] = '\0';
1745 /* This function gets the serial number of a logical drive via
1746 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1747 * number cannot be had, for whatever reason, 16 bytes of 0xff
1748 * are returned instead.
1750 static void cciss_get_serial_no(int ctlr, int logvol,
1751 unsigned char *serial_no, int buflen)
1753 #define PAGE_83_INQ_BYTES 64
1756 unsigned char scsi3addr[8];
1760 memset(serial_no, 0xff, buflen);
1761 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1764 memset(serial_no, 0, buflen);
1765 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1766 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1767 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1769 memcpy(serial_no, &buf[8], buflen);
1775 * cciss_add_disk sets up the block device queue for a logical drive
1777 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1780 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1782 goto init_queue_failure;
1783 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1784 disk->major = h->major;
1785 disk->first_minor = drv_index << NWD_SHIFT;
1786 disk->fops = &cciss_fops;
1787 if (cciss_create_ld_sysfs_entry(h, drv_index))
1789 disk->private_data = h->drv[drv_index];
1790 disk->driverfs_dev = &h->drv[drv_index]->dev;
1792 /* Set up queue information */
1793 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1795 /* This is a hardware imposed limit. */
1796 blk_queue_max_hw_segments(disk->queue, h->maxsgentries);
1798 /* This is a limit in the driver and could be eliminated. */
1799 blk_queue_max_phys_segments(disk->queue, h->maxsgentries);
1801 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1803 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1805 disk->queue->queuedata = h;
1807 blk_queue_logical_block_size(disk->queue,
1808 h->drv[drv_index]->block_size);
1810 /* Make sure all queue data is written out before */
1811 /* setting h->drv[drv_index]->queue, as setting this */
1812 /* allows the interrupt handler to start the queue */
1814 h->drv[drv_index]->queue = disk->queue;
1819 blk_cleanup_queue(disk->queue);
1825 /* This function will check the usage_count of the drive to be updated/added.
1826 * If the usage_count is zero and it is a heretofore unknown drive, or,
1827 * the drive's capacity, geometry, or serial number has changed,
1828 * then the drive information will be updated and the disk will be
1829 * re-registered with the kernel. If these conditions don't hold,
1830 * then it will be left alone for the next reboot. The exception to this
1831 * is disk 0 which will always be left registered with the kernel since it
1832 * is also the controller node. Any changes to disk 0 will show up on
1835 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1838 ctlr_info_t *h = hba[ctlr];
1839 struct gendisk *disk;
1840 InquiryData_struct *inq_buff = NULL;
1841 unsigned int block_size;
1842 sector_t total_size;
1843 unsigned long flags = 0;
1845 drive_info_struct *drvinfo;
1847 /* Get information about the disk and modify the driver structure */
1848 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1849 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1850 if (inq_buff == NULL || drvinfo == NULL)
1853 /* testing to see if 16-byte CDBs are already being used */
1854 if (h->cciss_read == CCISS_READ_16) {
1855 cciss_read_capacity_16(h->ctlr, drv_index,
1856 &total_size, &block_size);
1859 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1860 /* if read_capacity returns all F's this volume is >2TB */
1861 /* in size so we switch to 16-byte CDB's for all */
1862 /* read/write ops */
1863 if (total_size == 0xFFFFFFFFULL) {
1864 cciss_read_capacity_16(ctlr, drv_index,
1865 &total_size, &block_size);
1866 h->cciss_read = CCISS_READ_16;
1867 h->cciss_write = CCISS_WRITE_16;
1869 h->cciss_read = CCISS_READ_10;
1870 h->cciss_write = CCISS_WRITE_10;
1874 cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1876 drvinfo->block_size = block_size;
1877 drvinfo->nr_blocks = total_size + 1;
1879 cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1880 drvinfo->model, drvinfo->rev);
1881 cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1882 sizeof(drvinfo->serial_no));
1883 /* Save the lunid in case we deregister the disk, below. */
1884 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1885 sizeof(drvinfo->LunID));
1887 /* Is it the same disk we already know, and nothing's changed? */
1888 if (h->drv[drv_index]->raid_level != -1 &&
1889 ((memcmp(drvinfo->serial_no,
1890 h->drv[drv_index]->serial_no, 16) == 0) &&
1891 drvinfo->block_size == h->drv[drv_index]->block_size &&
1892 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1893 drvinfo->heads == h->drv[drv_index]->heads &&
1894 drvinfo->sectors == h->drv[drv_index]->sectors &&
1895 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1896 /* The disk is unchanged, nothing to update */
1899 /* If we get here it's not the same disk, or something's changed,
1900 * so we need to * deregister it, and re-register it, if it's not
1902 * If the disk already exists then deregister it before proceeding
1903 * (unless it's the first disk (for the controller node).
1905 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1906 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1907 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1908 h->drv[drv_index]->busy_configuring = 1;
1909 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1911 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1912 * which keeps the interrupt handler from starting
1915 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1918 /* If the disk is in use return */
1922 /* Save the new information from cciss_geometry_inquiry
1923 * and serial number inquiry. If the disk was deregistered
1924 * above, then h->drv[drv_index] will be NULL.
1926 if (h->drv[drv_index] == NULL) {
1927 drvinfo->device_initialized = 0;
1928 h->drv[drv_index] = drvinfo;
1929 drvinfo = NULL; /* so it won't be freed below. */
1931 /* special case for cxd0 */
1932 h->drv[drv_index]->block_size = drvinfo->block_size;
1933 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1934 h->drv[drv_index]->heads = drvinfo->heads;
1935 h->drv[drv_index]->sectors = drvinfo->sectors;
1936 h->drv[drv_index]->cylinders = drvinfo->cylinders;
1937 h->drv[drv_index]->raid_level = drvinfo->raid_level;
1938 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1939 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1941 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1942 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1946 disk = h->gendisk[drv_index];
1947 set_capacity(disk, h->drv[drv_index]->nr_blocks);
1949 /* If it's not disk 0 (drv_index != 0)
1950 * or if it was disk 0, but there was previously
1951 * no actual corresponding configured logical drive
1952 * (raid_leve == -1) then we want to update the
1953 * logical drive's information.
1955 if (drv_index || first_time) {
1956 if (cciss_add_disk(h, disk, drv_index) != 0) {
1957 cciss_free_gendisk(h, drv_index);
1958 cciss_free_drive_info(h, drv_index);
1959 printk(KERN_WARNING "cciss:%d could not update "
1960 "disk %d\n", h->ctlr, drv_index);
1970 printk(KERN_ERR "cciss: out of memory\n");
1974 /* This function will find the first index of the controllers drive array
1975 * that has a null drv pointer and allocate the drive info struct and
1976 * will return that index This is where new drives will be added.
1977 * If the index to be returned is greater than the highest_lun index for
1978 * the controller then highest_lun is set * to this new index.
1979 * If there are no available indexes or if tha allocation fails, then -1
1980 * is returned. * "controller_node" is used to know if this is a real
1981 * logical drive, or just the controller node, which determines if this
1982 * counts towards highest_lun.
1984 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1987 drive_info_struct *drv;
1989 /* Search for an empty slot for our drive info */
1990 for (i = 0; i < CISS_MAX_LUN; i++) {
1992 /* if not cxd0 case, and it's occupied, skip it. */
1993 if (h->drv[i] && i != 0)
1996 * If it's cxd0 case, and drv is alloc'ed already, and a
1997 * disk is configured there, skip it.
1999 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2003 * We've found an empty slot. Update highest_lun
2004 * provided this isn't just the fake cxd0 controller node.
2006 if (i > h->highest_lun && !controller_node)
2009 /* If adding a real disk at cxd0, and it's already alloc'ed */
2010 if (i == 0 && h->drv[i] != NULL)
2014 * Found an empty slot, not already alloc'ed. Allocate it.
2015 * Mark it with raid_level == -1, so we know it's new later on.
2017 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2020 drv->raid_level = -1; /* so we know it's new */
2027 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2029 kfree(h->drv[drv_index]);
2030 h->drv[drv_index] = NULL;
2033 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2035 put_disk(h->gendisk[drv_index]);
2036 h->gendisk[drv_index] = NULL;
2039 /* cciss_add_gendisk finds a free hba[]->drv structure
2040 * and allocates a gendisk if needed, and sets the lunid
2041 * in the drvinfo structure. It returns the index into
2042 * the ->drv[] array, or -1 if none are free.
2043 * is_controller_node indicates whether highest_lun should
2044 * count this disk, or if it's only being added to provide
2045 * a means to talk to the controller in case no logical
2046 * drives have yet been configured.
2048 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2049 int controller_node)
2053 drv_index = cciss_alloc_drive_info(h, controller_node);
2054 if (drv_index == -1)
2057 /*Check if the gendisk needs to be allocated */
2058 if (!h->gendisk[drv_index]) {
2059 h->gendisk[drv_index] =
2060 alloc_disk(1 << NWD_SHIFT);
2061 if (!h->gendisk[drv_index]) {
2062 printk(KERN_ERR "cciss%d: could not "
2063 "allocate a new disk %d\n",
2064 h->ctlr, drv_index);
2065 goto err_free_drive_info;
2068 memcpy(h->drv[drv_index]->LunID, lunid,
2069 sizeof(h->drv[drv_index]->LunID));
2070 if (cciss_create_ld_sysfs_entry(h, drv_index))
2072 /* Don't need to mark this busy because nobody */
2073 /* else knows about this disk yet to contend */
2074 /* for access to it. */
2075 h->drv[drv_index]->busy_configuring = 0;
2080 cciss_free_gendisk(h, drv_index);
2081 err_free_drive_info:
2082 cciss_free_drive_info(h, drv_index);
2086 /* This is for the special case of a controller which
2087 * has no logical drives. In this case, we still need
2088 * to register a disk so the controller can be accessed
2089 * by the Array Config Utility.
2091 static void cciss_add_controller_node(ctlr_info_t *h)
2093 struct gendisk *disk;
2096 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2099 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2100 if (drv_index == -1)
2102 h->drv[drv_index]->block_size = 512;
2103 h->drv[drv_index]->nr_blocks = 0;
2104 h->drv[drv_index]->heads = 0;
2105 h->drv[drv_index]->sectors = 0;
2106 h->drv[drv_index]->cylinders = 0;
2107 h->drv[drv_index]->raid_level = -1;
2108 memset(h->drv[drv_index]->serial_no, 0, 16);
2109 disk = h->gendisk[drv_index];
2110 if (cciss_add_disk(h, disk, drv_index) == 0)
2112 cciss_free_gendisk(h, drv_index);
2113 cciss_free_drive_info(h, drv_index);
2115 printk(KERN_WARNING "cciss%d: could not "
2116 "add disk 0.\n", h->ctlr);
2120 /* This function will add and remove logical drives from the Logical
2121 * drive array of the controller and maintain persistency of ordering
2122 * so that mount points are preserved until the next reboot. This allows
2123 * for the removal of logical drives in the middle of the drive array
2124 * without a re-ordering of those drives.
2126 * h = The controller to perform the operations on
2128 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2133 ReportLunData_struct *ld_buff = NULL;
2139 unsigned char lunid[8] = CTLR_LUNID;
2140 unsigned long flags;
2142 if (!capable(CAP_SYS_RAWIO))
2145 /* Set busy_configuring flag for this operation */
2146 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2147 if (h->busy_configuring) {
2148 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2151 h->busy_configuring = 1;
2152 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2154 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2155 if (ld_buff == NULL)
2158 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2159 sizeof(ReportLunData_struct),
2160 0, CTLR_LUNID, TYPE_CMD);
2162 if (return_code == IO_OK)
2163 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2164 else { /* reading number of logical volumes failed */
2165 printk(KERN_WARNING "cciss: report logical volume"
2166 " command failed\n");
2171 num_luns = listlength / 8; /* 8 bytes per entry */
2172 if (num_luns > CISS_MAX_LUN) {
2173 num_luns = CISS_MAX_LUN;
2174 printk(KERN_WARNING "cciss: more luns configured"
2175 " on controller than can be handled by"
2180 cciss_add_controller_node(h);
2182 /* Compare controller drive array to driver's drive array
2183 * to see if any drives are missing on the controller due
2184 * to action of Array Config Utility (user deletes drive)
2185 * and deregister logical drives which have disappeared.
2187 for (i = 0; i <= h->highest_lun; i++) {
2191 /* skip holes in the array from already deleted drives */
2192 if (h->drv[i] == NULL)
2195 for (j = 0; j < num_luns; j++) {
2196 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2197 if (memcmp(h->drv[i]->LunID, lunid,
2198 sizeof(lunid)) == 0) {
2204 /* Deregister it from the OS, it's gone. */
2205 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2206 h->drv[i]->busy_configuring = 1;
2207 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2208 return_code = deregister_disk(h, i, 1, via_ioctl);
2209 if (h->drv[i] != NULL)
2210 h->drv[i]->busy_configuring = 0;
2214 /* Compare controller drive array to driver's drive array.
2215 * Check for updates in the drive information and any new drives
2216 * on the controller due to ACU adding logical drives, or changing
2217 * a logical drive's size, etc. Reregister any new/changed drives
2219 for (i = 0; i < num_luns; i++) {
2224 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2225 /* Find if the LUN is already in the drive array
2226 * of the driver. If so then update its info
2227 * if not in use. If it does not exist then find
2228 * the first free index and add it.
2230 for (j = 0; j <= h->highest_lun; j++) {
2231 if (h->drv[j] != NULL &&
2232 memcmp(h->drv[j]->LunID, lunid,
2233 sizeof(h->drv[j]->LunID)) == 0) {
2240 /* check if the drive was found already in the array */
2242 drv_index = cciss_add_gendisk(h, lunid, 0);
2243 if (drv_index == -1)
2246 cciss_update_drive_info(ctlr, drv_index, first_time,
2252 h->busy_configuring = 0;
2253 /* We return -1 here to tell the ACU that we have registered/updated
2254 * all of the drives that we can and to keep it from calling us
2259 printk(KERN_ERR "cciss: out of memory\n");
2260 h->busy_configuring = 0;
2264 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2266 /* zero out the disk size info */
2267 drive_info->nr_blocks = 0;
2268 drive_info->block_size = 0;
2269 drive_info->heads = 0;
2270 drive_info->sectors = 0;
2271 drive_info->cylinders = 0;
2272 drive_info->raid_level = -1;
2273 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2274 memset(drive_info->model, 0, sizeof(drive_info->model));
2275 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2276 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2278 * don't clear the LUNID though, we need to remember which
2283 /* This function will deregister the disk and it's queue from the
2284 * kernel. It must be called with the controller lock held and the
2285 * drv structures busy_configuring flag set. It's parameters are:
2287 * disk = This is the disk to be deregistered
2288 * drv = This is the drive_info_struct associated with the disk to be
2289 * deregistered. It contains information about the disk used
2291 * clear_all = This flag determines whether or not the disk information
2292 * is going to be completely cleared out and the highest_lun
2293 * reset. Sometimes we want to clear out information about
2294 * the disk in preparation for re-adding it. In this case
2295 * the highest_lun should be left unchanged and the LunID
2296 * should not be cleared.
2298 * This indicates whether we've reached this path via ioctl.
2299 * This affects the maximum usage count allowed for c0d0 to be messed with.
2300 * If this path is reached via ioctl(), then the max_usage_count will
2301 * be 1, as the process calling ioctl() has got to have the device open.
2302 * If we get here via sysfs, then the max usage count will be zero.
2304 static int deregister_disk(ctlr_info_t *h, int drv_index,
2305 int clear_all, int via_ioctl)
2308 struct gendisk *disk;
2309 drive_info_struct *drv;
2310 int recalculate_highest_lun;
2312 if (!capable(CAP_SYS_RAWIO))
2315 drv = h->drv[drv_index];
2316 disk = h->gendisk[drv_index];
2318 /* make sure logical volume is NOT is use */
2319 if (clear_all || (h->gendisk[0] == disk)) {
2320 if (drv->usage_count > via_ioctl)
2322 } else if (drv->usage_count > 0)
2325 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2327 /* invalidate the devices and deregister the disk. If it is disk
2328 * zero do not deregister it but just zero out it's values. This
2329 * allows us to delete disk zero but keep the controller registered.
2331 if (h->gendisk[0] != disk) {
2332 struct request_queue *q = disk->queue;
2333 if (disk->flags & GENHD_FL_UP) {
2334 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2338 blk_cleanup_queue(q);
2339 /* If clear_all is set then we are deleting the logical
2340 * drive, not just refreshing its info. For drives
2341 * other than disk 0 we will call put_disk. We do not
2342 * do this for disk 0 as we need it to be able to
2343 * configure the controller.
2346 /* This isn't pretty, but we need to find the
2347 * disk in our array and NULL our the pointer.
2348 * This is so that we will call alloc_disk if
2349 * this index is used again later.
2351 for (i=0; i < CISS_MAX_LUN; i++){
2352 if (h->gendisk[i] == disk) {
2353 h->gendisk[i] = NULL;
2360 set_capacity(disk, 0);
2361 cciss_clear_drive_info(drv);
2366 /* if it was the last disk, find the new hightest lun */
2367 if (clear_all && recalculate_highest_lun) {
2368 int i, newhighest = -1;
2369 for (i = 0; i <= h->highest_lun; i++) {
2370 /* if the disk has size > 0, it is available */
2371 if (h->drv[i] && h->drv[i]->heads)
2374 h->highest_lun = newhighest;
2379 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2380 size_t size, __u8 page_code, unsigned char *scsi3addr,
2383 ctlr_info_t *h = hba[ctlr];
2384 u64bit buff_dma_handle;
2387 c->cmd_type = CMD_IOCTL_PEND;
2388 c->Header.ReplyQueue = 0;
2390 c->Header.SGList = 1;
2391 c->Header.SGTotal = 1;
2393 c->Header.SGList = 0;
2394 c->Header.SGTotal = 0;
2396 c->Header.Tag.lower = c->busaddr;
2397 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2399 c->Request.Type.Type = cmd_type;
2400 if (cmd_type == TYPE_CMD) {
2403 /* are we trying to read a vital product page */
2404 if (page_code != 0) {
2405 c->Request.CDB[1] = 0x01;
2406 c->Request.CDB[2] = page_code;
2408 c->Request.CDBLen = 6;
2409 c->Request.Type.Attribute = ATTR_SIMPLE;
2410 c->Request.Type.Direction = XFER_READ;
2411 c->Request.Timeout = 0;
2412 c->Request.CDB[0] = CISS_INQUIRY;
2413 c->Request.CDB[4] = size & 0xFF;
2415 case CISS_REPORT_LOG:
2416 case CISS_REPORT_PHYS:
2417 /* Talking to controller so It's a physical command
2418 mode = 00 target = 0. Nothing to write.
2420 c->Request.CDBLen = 12;
2421 c->Request.Type.Attribute = ATTR_SIMPLE;
2422 c->Request.Type.Direction = XFER_READ;
2423 c->Request.Timeout = 0;
2424 c->Request.CDB[0] = cmd;
2425 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2426 c->Request.CDB[7] = (size >> 16) & 0xFF;
2427 c->Request.CDB[8] = (size >> 8) & 0xFF;
2428 c->Request.CDB[9] = size & 0xFF;
2431 case CCISS_READ_CAPACITY:
2432 c->Request.CDBLen = 10;
2433 c->Request.Type.Attribute = ATTR_SIMPLE;
2434 c->Request.Type.Direction = XFER_READ;
2435 c->Request.Timeout = 0;
2436 c->Request.CDB[0] = cmd;
2438 case CCISS_READ_CAPACITY_16:
2439 c->Request.CDBLen = 16;
2440 c->Request.Type.Attribute = ATTR_SIMPLE;
2441 c->Request.Type.Direction = XFER_READ;
2442 c->Request.Timeout = 0;
2443 c->Request.CDB[0] = cmd;
2444 c->Request.CDB[1] = 0x10;
2445 c->Request.CDB[10] = (size >> 24) & 0xFF;
2446 c->Request.CDB[11] = (size >> 16) & 0xFF;
2447 c->Request.CDB[12] = (size >> 8) & 0xFF;
2448 c->Request.CDB[13] = size & 0xFF;
2449 c->Request.Timeout = 0;
2450 c->Request.CDB[0] = cmd;
2452 case CCISS_CACHE_FLUSH:
2453 c->Request.CDBLen = 12;
2454 c->Request.Type.Attribute = ATTR_SIMPLE;
2455 c->Request.Type.Direction = XFER_WRITE;
2456 c->Request.Timeout = 0;
2457 c->Request.CDB[0] = BMIC_WRITE;
2458 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2460 case TEST_UNIT_READY:
2461 c->Request.CDBLen = 6;
2462 c->Request.Type.Attribute = ATTR_SIMPLE;
2463 c->Request.Type.Direction = XFER_NONE;
2464 c->Request.Timeout = 0;
2468 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2471 } else if (cmd_type == TYPE_MSG) {
2473 case 0: /* ABORT message */
2474 c->Request.CDBLen = 12;
2475 c->Request.Type.Attribute = ATTR_SIMPLE;
2476 c->Request.Type.Direction = XFER_WRITE;
2477 c->Request.Timeout = 0;
2478 c->Request.CDB[0] = cmd; /* abort */
2479 c->Request.CDB[1] = 0; /* abort a command */
2480 /* buff contains the tag of the command to abort */
2481 memcpy(&c->Request.CDB[4], buff, 8);
2483 case 1: /* RESET message */
2484 c->Request.CDBLen = 16;
2485 c->Request.Type.Attribute = ATTR_SIMPLE;
2486 c->Request.Type.Direction = XFER_NONE;
2487 c->Request.Timeout = 0;
2488 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2489 c->Request.CDB[0] = cmd; /* reset */
2490 c->Request.CDB[1] = 0x03; /* reset a target */
2492 case 3: /* No-Op message */
2493 c->Request.CDBLen = 1;
2494 c->Request.Type.Attribute = ATTR_SIMPLE;
2495 c->Request.Type.Direction = XFER_WRITE;
2496 c->Request.Timeout = 0;
2497 c->Request.CDB[0] = cmd;
2501 "cciss%d: unknown message type %d\n", ctlr, cmd);
2506 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2509 /* Fill in the scatter gather information */
2511 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2513 PCI_DMA_BIDIRECTIONAL);
2514 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2515 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2516 c->SG[0].Len = size;
2517 c->SG[0].Ext = 0; /* we are not chaining */
2522 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2524 switch (c->err_info->ScsiStatus) {
2527 case SAM_STAT_CHECK_CONDITION:
2528 switch (0xf & c->err_info->SenseInfo[2]) {
2529 case 0: return IO_OK; /* no sense */
2530 case 1: return IO_OK; /* recovered error */
2532 if (check_for_unit_attention(h, c))
2533 return IO_NEEDS_RETRY;
2534 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2535 "check condition, sense key = 0x%02x\n",
2536 h->ctlr, c->Request.CDB[0],
2537 c->err_info->SenseInfo[2]);
2541 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2542 "scsi status = 0x%02x\n", h->ctlr,
2543 c->Request.CDB[0], c->err_info->ScsiStatus);
2549 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2551 int return_status = IO_OK;
2553 if (c->err_info->CommandStatus == CMD_SUCCESS)
2556 switch (c->err_info->CommandStatus) {
2557 case CMD_TARGET_STATUS:
2558 return_status = check_target_status(h, c);
2560 case CMD_DATA_UNDERRUN:
2561 case CMD_DATA_OVERRUN:
2562 /* expected for inquiry and report lun commands */
2565 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2566 "reported invalid\n", c->Request.CDB[0]);
2567 return_status = IO_ERROR;
2569 case CMD_PROTOCOL_ERR:
2570 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2571 "protocol error \n", c->Request.CDB[0]);
2572 return_status = IO_ERROR;
2574 case CMD_HARDWARE_ERR:
2575 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2576 " hardware error\n", c->Request.CDB[0]);
2577 return_status = IO_ERROR;
2579 case CMD_CONNECTION_LOST:
2580 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2581 "connection lost\n", c->Request.CDB[0]);
2582 return_status = IO_ERROR;
2585 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2586 "aborted\n", c->Request.CDB[0]);
2587 return_status = IO_ERROR;
2589 case CMD_ABORT_FAILED:
2590 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2591 "abort failed\n", c->Request.CDB[0]);
2592 return_status = IO_ERROR;
2594 case CMD_UNSOLICITED_ABORT:
2596 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2598 return_status = IO_NEEDS_RETRY;
2601 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2602 "unknown status %x\n", c->Request.CDB[0],
2603 c->err_info->CommandStatus);
2604 return_status = IO_ERROR;
2606 return return_status;
2609 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2612 DECLARE_COMPLETION_ONSTACK(wait);
2613 u64bit buff_dma_handle;
2614 unsigned long flags;
2615 int return_status = IO_OK;
2619 /* Put the request on the tail of the queue and send it */
2620 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2624 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2626 wait_for_completion(&wait);
2628 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2631 return_status = process_sendcmd_error(h, c);
2633 if (return_status == IO_NEEDS_RETRY &&
2634 c->retry_count < MAX_CMD_RETRIES) {
2635 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2638 /* erase the old error information */
2639 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2640 return_status = IO_OK;
2641 INIT_COMPLETION(wait);
2646 /* unlock the buffers from DMA */
2647 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2648 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2649 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2650 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2651 return return_status;
2654 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2655 __u8 page_code, unsigned char scsi3addr[],
2658 ctlr_info_t *h = hba[ctlr];
2659 CommandList_struct *c;
2662 c = cmd_alloc(h, 0);
2665 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2666 scsi3addr, cmd_type);
2667 if (return_status == IO_OK)
2668 return_status = sendcmd_withirq_core(h, c, 1);
2671 return return_status;
2674 static void cciss_geometry_inquiry(int ctlr, int logvol,
2675 sector_t total_size,
2676 unsigned int block_size,
2677 InquiryData_struct *inq_buff,
2678 drive_info_struct *drv)
2682 unsigned char scsi3addr[8];
2684 memset(inq_buff, 0, sizeof(InquiryData_struct));
2685 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2686 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2687 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2688 if (return_code == IO_OK) {
2689 if (inq_buff->data_byte[8] == 0xFF) {
2691 "cciss: reading geometry failed, volume "
2692 "does not support reading geometry\n");
2694 drv->sectors = 32; // Sectors per track
2695 drv->cylinders = total_size + 1;
2696 drv->raid_level = RAID_UNKNOWN;
2698 drv->heads = inq_buff->data_byte[6];
2699 drv->sectors = inq_buff->data_byte[7];
2700 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2701 drv->cylinders += inq_buff->data_byte[5];
2702 drv->raid_level = inq_buff->data_byte[8];
2704 drv->block_size = block_size;
2705 drv->nr_blocks = total_size + 1;
2706 t = drv->heads * drv->sectors;
2708 sector_t real_size = total_size + 1;
2709 unsigned long rem = sector_div(real_size, t);
2712 drv->cylinders = real_size;
2714 } else { /* Get geometry failed */
2715 printk(KERN_WARNING "cciss: reading geometry failed\n");
2720 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2721 unsigned int *block_size)
2723 ReadCapdata_struct *buf;
2725 unsigned char scsi3addr[8];
2727 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2729 printk(KERN_WARNING "cciss: out of memory\n");
2733 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2734 return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2735 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2736 if (return_code == IO_OK) {
2737 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2738 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2739 } else { /* read capacity command failed */
2740 printk(KERN_WARNING "cciss: read capacity failed\n");
2742 *block_size = BLOCK_SIZE;
2747 static void cciss_read_capacity_16(int ctlr, int logvol,
2748 sector_t *total_size, unsigned int *block_size)
2750 ReadCapdata_struct_16 *buf;
2752 unsigned char scsi3addr[8];
2754 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2756 printk(KERN_WARNING "cciss: out of memory\n");
2760 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2761 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2762 ctlr, buf, sizeof(ReadCapdata_struct_16),
2763 0, scsi3addr, TYPE_CMD);
2764 if (return_code == IO_OK) {
2765 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2766 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2767 } else { /* read capacity command failed */
2768 printk(KERN_WARNING "cciss: read capacity failed\n");
2770 *block_size = BLOCK_SIZE;
2772 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2773 (unsigned long long)*total_size+1, *block_size);
2777 static int cciss_revalidate(struct gendisk *disk)
2779 ctlr_info_t *h = get_host(disk);
2780 drive_info_struct *drv = get_drv(disk);
2783 unsigned int block_size;
2784 sector_t total_size;
2785 InquiryData_struct *inq_buff = NULL;
2787 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2788 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2789 sizeof(drv->LunID)) == 0) {
2798 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2799 if (inq_buff == NULL) {
2800 printk(KERN_WARNING "cciss: out of memory\n");
2803 if (h->cciss_read == CCISS_READ_10) {
2804 cciss_read_capacity(h->ctlr, logvol,
2805 &total_size, &block_size);
2807 cciss_read_capacity_16(h->ctlr, logvol,
2808 &total_size, &block_size);
2810 cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2813 blk_queue_logical_block_size(drv->queue, drv->block_size);
2814 set_capacity(disk, drv->nr_blocks);
2821 * Map (physical) PCI mem into (virtual) kernel space
2823 static void __iomem *remap_pci_mem(ulong base, ulong size)
2825 ulong page_base = ((ulong) base) & PAGE_MASK;
2826 ulong page_offs = ((ulong) base) - page_base;
2827 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2829 return page_remapped ? (page_remapped + page_offs) : NULL;
2833 * Takes jobs of the Q and sends them to the hardware, then puts it on
2834 * the Q to wait for completion.
2836 static void start_io(ctlr_info_t *h)
2838 CommandList_struct *c;
2840 while (!hlist_empty(&h->reqQ)) {
2841 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2842 /* can't do anything if fifo is full */
2843 if ((h->access.fifo_full(h))) {
2844 printk(KERN_WARNING "cciss: fifo full\n");
2848 /* Get the first entry from the Request Q */
2852 /* Tell the controller execute command */
2853 h->access.submit_command(h, c);
2855 /* Put job onto the completed Q */
2860 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2861 /* Zeros out the error record and then resends the command back */
2862 /* to the controller */
2863 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2865 /* erase the old error information */
2866 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2868 /* add it to software queue and then send it to the controller */
2871 if (h->Qdepth > h->maxQsinceinit)
2872 h->maxQsinceinit = h->Qdepth;
2877 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2878 unsigned int msg_byte, unsigned int host_byte,
2879 unsigned int driver_byte)
2881 /* inverse of macros in scsi.h */
2882 return (scsi_status_byte & 0xff) |
2883 ((msg_byte & 0xff) << 8) |
2884 ((host_byte & 0xff) << 16) |
2885 ((driver_byte & 0xff) << 24);
2888 static inline int evaluate_target_status(ctlr_info_t *h,
2889 CommandList_struct *cmd, int *retry_cmd)
2891 unsigned char sense_key;
2892 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2896 /* If we get in here, it means we got "target status", that is, scsi status */
2897 status_byte = cmd->err_info->ScsiStatus;
2898 driver_byte = DRIVER_OK;
2899 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2901 if (blk_pc_request(cmd->rq))
2902 host_byte = DID_PASSTHROUGH;
2906 error_value = make_status_bytes(status_byte, msg_byte,
2907 host_byte, driver_byte);
2909 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2910 if (!blk_pc_request(cmd->rq))
2911 printk(KERN_WARNING "cciss: cmd %p "
2912 "has SCSI Status 0x%x\n",
2913 cmd, cmd->err_info->ScsiStatus);
2917 /* check the sense key */
2918 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2919 /* no status or recovered error */
2920 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2923 if (check_for_unit_attention(h, cmd)) {
2924 *retry_cmd = !blk_pc_request(cmd->rq);
2928 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2929 if (error_value != 0)
2930 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2931 " sense key = 0x%x\n", cmd, sense_key);
2935 /* SG_IO or similar, copy sense data back */
2936 if (cmd->rq->sense) {
2937 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2938 cmd->rq->sense_len = cmd->err_info->SenseLen;
2939 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2940 cmd->rq->sense_len);
2942 cmd->rq->sense_len = 0;
2947 /* checks the status of the job and calls complete buffers to mark all
2948 * buffers for the completed job. Note that this function does not need
2949 * to hold the hba/queue lock.
2951 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2955 struct request *rq = cmd->rq;
2960 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2962 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2963 goto after_error_processing;
2965 switch (cmd->err_info->CommandStatus) {
2966 case CMD_TARGET_STATUS:
2967 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2969 case CMD_DATA_UNDERRUN:
2970 if (blk_fs_request(cmd->rq)) {
2971 printk(KERN_WARNING "cciss: cmd %p has"
2972 " completed with data underrun "
2974 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2977 case CMD_DATA_OVERRUN:
2978 if (blk_fs_request(cmd->rq))
2979 printk(KERN_WARNING "cciss: cmd %p has"
2980 " completed with data overrun "
2984 printk(KERN_WARNING "cciss: cmd %p is "
2985 "reported invalid\n", cmd);
2986 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2987 cmd->err_info->CommandStatus, DRIVER_OK,
2988 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2990 case CMD_PROTOCOL_ERR:
2991 printk(KERN_WARNING "cciss: cmd %p has "
2992 "protocol error \n", cmd);
2993 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2994 cmd->err_info->CommandStatus, DRIVER_OK,
2995 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2997 case CMD_HARDWARE_ERR:
2998 printk(KERN_WARNING "cciss: cmd %p had "
2999 " hardware error\n", cmd);
3000 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3001 cmd->err_info->CommandStatus, DRIVER_OK,
3002 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3004 case CMD_CONNECTION_LOST:
3005 printk(KERN_WARNING "cciss: cmd %p had "
3006 "connection lost\n", cmd);
3007 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3008 cmd->err_info->CommandStatus, DRIVER_OK,
3009 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3012 printk(KERN_WARNING "cciss: cmd %p was "
3014 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3015 cmd->err_info->CommandStatus, DRIVER_OK,
3016 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3018 case CMD_ABORT_FAILED:
3019 printk(KERN_WARNING "cciss: cmd %p reports "
3020 "abort failed\n", cmd);
3021 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3022 cmd->err_info->CommandStatus, DRIVER_OK,
3023 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3025 case CMD_UNSOLICITED_ABORT:
3026 printk(KERN_WARNING "cciss%d: unsolicited "
3027 "abort %p\n", h->ctlr, cmd);
3028 if (cmd->retry_count < MAX_CMD_RETRIES) {
3031 "cciss%d: retrying %p\n", h->ctlr, cmd);
3035 "cciss%d: %p retried too "
3036 "many times\n", h->ctlr, cmd);
3037 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3038 cmd->err_info->CommandStatus, DRIVER_OK,
3039 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3042 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3043 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3044 cmd->err_info->CommandStatus, DRIVER_OK,
3045 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3048 printk(KERN_WARNING "cciss: cmd %p returned "
3049 "unknown status %x\n", cmd,
3050 cmd->err_info->CommandStatus);
3051 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3052 cmd->err_info->CommandStatus, DRIVER_OK,
3053 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3056 after_error_processing:
3058 /* We need to return this command */
3060 resend_cciss_cmd(h, cmd);
3063 cmd->rq->completion_data = cmd;
3064 blk_complete_request(cmd->rq);
3068 * Get a request and submit it to the controller.
3070 static void do_cciss_request(struct request_queue *q)
3072 ctlr_info_t *h = q->queuedata;
3073 CommandList_struct *c;
3076 struct request *creq;
3078 struct scatterlist *tmp_sg;
3079 SGDescriptor_struct *curr_sg;
3080 drive_info_struct *drv;
3086 /* We call start_io here in case there is a command waiting on the
3087 * queue that has not been sent.
3089 if (blk_queue_plugged(q))
3093 creq = blk_peek_request(q);
3097 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3099 if ((c = cmd_alloc(h, 1)) == NULL)
3102 blk_start_request(creq);
3104 tmp_sg = h->scatter_list[c->cmdindex];
3105 spin_unlock_irq(q->queue_lock);
3107 c->cmd_type = CMD_RWREQ;
3110 /* fill in the request */
3111 drv = creq->rq_disk->private_data;
3112 c->Header.ReplyQueue = 0; // unused in simple mode
3113 /* got command from pool, so use the command block index instead */
3114 /* for direct lookups. */
3115 /* The first 2 bits are reserved for controller error reporting. */
3116 c->Header.Tag.lower = (c->cmdindex << 3);
3117 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3118 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3119 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3120 c->Request.Type.Type = TYPE_CMD; // It is a command.
3121 c->Request.Type.Attribute = ATTR_SIMPLE;
3122 c->Request.Type.Direction =
3123 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3124 c->Request.Timeout = 0; // Don't time out
3126 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3127 start_blk = blk_rq_pos(creq);
3129 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3130 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3131 #endif /* CCISS_DEBUG */
3133 sg_init_table(tmp_sg, h->maxsgentries);
3134 seg = blk_rq_map_sg(q, creq, tmp_sg);
3136 /* get the DMA records for the setup */
3137 if (c->Request.Type.Direction == XFER_READ)
3138 dir = PCI_DMA_FROMDEVICE;
3140 dir = PCI_DMA_TODEVICE;
3146 for (i = 0; i < seg; i++) {
3147 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3148 !chained && ((seg - i) > 1)) {
3150 curr_sg[sg_index].Len = (nseg) *
3151 sizeof(SGDescriptor_struct);
3152 curr_sg[sg_index].Ext = CCISS_SG_CHAIN;
3154 /* Point to next chain block. */
3155 curr_sg = h->cmd_sg_list[c->cmdindex]->sgchain;
3159 curr_sg[sg_index].Len = tmp_sg[i].length;
3160 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3162 tmp_sg[i].length, dir);
3163 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3164 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3165 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3173 sg_index = h->max_cmd_sgentries - 1;
3174 len = curr_sg[sg_index].Len;
3175 /* Setup pointer to next chain block.
3176 * Fill out last element in current chain
3177 * block with address of next chain block.
3179 temp64.val = pci_map_single(h->pdev,
3180 h->cmd_sg_list[c->cmdindex]->sgchain,
3183 h->cmd_sg_list[c->cmdindex]->sg_chain_dma = temp64.val;
3184 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3185 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3187 pci_dma_sync_single_for_device(h->pdev,
3188 h->cmd_sg_list[c->cmdindex]->sg_chain_dma,
3192 /* track how many SG entries we are using */
3197 printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3199 blk_rq_sectors(creq), seg, chained);
3200 #endif /* CCISS_DEBUG */
3202 c->Header.SGList = c->Header.SGTotal = seg + chained;
3203 if (seg > h->max_cmd_sgentries)
3204 c->Header.SGList = h->max_cmd_sgentries;
3206 if (likely(blk_fs_request(creq))) {
3207 if(h->cciss_read == CCISS_READ_10) {
3208 c->Request.CDB[1] = 0;
3209 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3210 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3211 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3212 c->Request.CDB[5] = start_blk & 0xff;
3213 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3214 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3215 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3216 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3218 u32 upper32 = upper_32_bits(start_blk);
3220 c->Request.CDBLen = 16;
3221 c->Request.CDB[1]= 0;
3222 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3223 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3224 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3225 c->Request.CDB[5]= upper32 & 0xff;
3226 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3227 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3228 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3229 c->Request.CDB[9]= start_blk & 0xff;
3230 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3231 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3232 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3233 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3234 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3236 } else if (blk_pc_request(creq)) {
3237 c->Request.CDBLen = creq->cmd_len;
3238 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3240 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3244 spin_lock_irq(q->queue_lock);
3248 if (h->Qdepth > h->maxQsinceinit)
3249 h->maxQsinceinit = h->Qdepth;
3255 /* We will already have the driver lock here so not need
3261 static inline unsigned long get_next_completion(ctlr_info_t *h)
3263 return h->access.command_completed(h);
3266 static inline int interrupt_pending(ctlr_info_t *h)
3268 return h->access.intr_pending(h);
3271 static inline long interrupt_not_for_us(ctlr_info_t *h)
3273 return (((h->access.intr_pending(h) == 0) ||
3274 (h->interrupts_enabled == 0)));
3277 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3279 ctlr_info_t *h = dev_id;
3280 CommandList_struct *c;
3281 unsigned long flags;
3284 if (interrupt_not_for_us(h))
3287 * If there are completed commands in the completion queue,
3288 * we had better do something about it.
3290 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3291 while (interrupt_pending(h)) {
3292 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3296 if (a2 >= h->nr_cmds) {
3298 "cciss: controller cciss%d failed, stopping.\n",
3300 fail_all_cmds(h->ctlr);
3304 c = h->cmd_pool + a2;
3308 struct hlist_node *tmp;
3312 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3313 if (c->busaddr == a)
3318 * If we've found the command, take it off the
3319 * completion Q and free it
3321 if (c && c->busaddr == a) {
3323 if (c->cmd_type == CMD_RWREQ) {
3324 complete_command(h, c, 0);
3325 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3326 complete(c->waiting);
3328 # ifdef CONFIG_CISS_SCSI_TAPE
3329 else if (c->cmd_type == CMD_SCSI)
3330 complete_scsi_command(c, 0, a1);
3337 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3342 * add_to_scan_list() - add controller to rescan queue
3343 * @h: Pointer to the controller.
3345 * Adds the controller to the rescan queue if not already on the queue.
3347 * returns 1 if added to the queue, 0 if skipped (could be on the
3348 * queue already, or the controller could be initializing or shutting
3351 static int add_to_scan_list(struct ctlr_info *h)
3353 struct ctlr_info *test_h;
3357 if (h->busy_initializing)
3360 if (!mutex_trylock(&h->busy_shutting_down))
3363 mutex_lock(&scan_mutex);
3364 list_for_each_entry(test_h, &scan_q, scan_list) {
3370 if (!found && !h->busy_scanning) {
3371 INIT_COMPLETION(h->scan_wait);
3372 list_add_tail(&h->scan_list, &scan_q);
3375 mutex_unlock(&scan_mutex);
3376 mutex_unlock(&h->busy_shutting_down);
3382 * remove_from_scan_list() - remove controller from rescan queue
3383 * @h: Pointer to the controller.
3385 * Removes the controller from the rescan queue if present. Blocks if
3386 * the controller is currently conducting a rescan. The controller
3387 * can be in one of three states:
3388 * 1. Doesn't need a scan
3389 * 2. On the scan list, but not scanning yet (we remove it)
3390 * 3. Busy scanning (and not on the list). In this case we want to wait for
3391 * the scan to complete to make sure the scanning thread for this
3392 * controller is completely idle.
3394 static void remove_from_scan_list(struct ctlr_info *h)
3396 struct ctlr_info *test_h, *tmp_h;
3398 mutex_lock(&scan_mutex);
3399 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3400 if (test_h == h) { /* state 2. */
3401 list_del(&h->scan_list);
3402 complete_all(&h->scan_wait);
3403 mutex_unlock(&scan_mutex);
3407 if (h->busy_scanning) { /* state 3. */
3408 mutex_unlock(&scan_mutex);
3409 wait_for_completion(&h->scan_wait);
3410 } else { /* state 1, nothing to do. */
3411 mutex_unlock(&scan_mutex);
3416 * scan_thread() - kernel thread used to rescan controllers
3419 * A kernel thread used scan for drive topology changes on
3420 * controllers. The thread processes only one controller at a time
3421 * using a queue. Controllers are added to the queue using
3422 * add_to_scan_list() and removed from the queue either after done
3423 * processing or using remove_from_scan_list().
3427 static int scan_thread(void *data)
3429 struct ctlr_info *h;
3432 set_current_state(TASK_INTERRUPTIBLE);
3434 if (kthread_should_stop())
3438 mutex_lock(&scan_mutex);
3439 if (list_empty(&scan_q)) {
3440 mutex_unlock(&scan_mutex);
3444 h = list_entry(scan_q.next,
3447 list_del(&h->scan_list);
3448 h->busy_scanning = 1;
3449 mutex_unlock(&scan_mutex);
3451 rebuild_lun_table(h, 0, 0);
3452 complete_all(&h->scan_wait);
3453 mutex_lock(&scan_mutex);
3454 h->busy_scanning = 0;
3455 mutex_unlock(&scan_mutex);
3462 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3464 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3467 switch (c->err_info->SenseInfo[12]) {
3469 printk(KERN_WARNING "cciss%d: a state change "
3470 "detected, command retried\n", h->ctlr);
3474 printk(KERN_WARNING "cciss%d: LUN failure "
3475 "detected, action required\n", h->ctlr);
3478 case REPORT_LUNS_CHANGED:
3479 printk(KERN_WARNING "cciss%d: report LUN data "
3480 "changed\n", h->ctlr);
3482 * Here, we could call add_to_scan_list and wake up the scan thread,
3483 * except that it's quite likely that we will get more than one
3484 * REPORT_LUNS_CHANGED condition in quick succession, which means
3485 * that those which occur after the first one will likely happen
3486 * *during* the scan_thread's rescan. And the rescan code is not
3487 * robust enough to restart in the middle, undoing what it has already
3488 * done, and it's not clear that it's even possible to do this, since
3489 * part of what it does is notify the block layer, which starts
3490 * doing it's own i/o to read partition tables and so on, and the
3491 * driver doesn't have visibility to know what might need undoing.
3492 * In any event, if possible, it is horribly complicated to get right
3493 * so we just don't do it for now.
3495 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3499 case POWER_OR_RESET:
3500 printk(KERN_WARNING "cciss%d: a power on "
3501 "or device reset detected\n", h->ctlr);
3504 case UNIT_ATTENTION_CLEARED:
3505 printk(KERN_WARNING "cciss%d: unit attention "
3506 "cleared by another initiator\n", h->ctlr);
3510 printk(KERN_WARNING "cciss%d: unknown "
3511 "unit attention detected\n", h->ctlr);
3517 * We cannot read the structure directly, for portability we must use
3519 * This is for debug only.
3522 static void print_cfg_table(CfgTable_struct *tb)
3527 printk("Controller Configuration information\n");
3528 printk("------------------------------------\n");
3529 for (i = 0; i < 4; i++)
3530 temp_name[i] = readb(&(tb->Signature[i]));
3531 temp_name[4] = '\0';
3532 printk(" Signature = %s\n", temp_name);
3533 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3534 printk(" Transport methods supported = 0x%x\n",
3535 readl(&(tb->TransportSupport)));
3536 printk(" Transport methods active = 0x%x\n",
3537 readl(&(tb->TransportActive)));
3538 printk(" Requested transport Method = 0x%x\n",
3539 readl(&(tb->HostWrite.TransportRequest)));
3540 printk(" Coalesce Interrupt Delay = 0x%x\n",
3541 readl(&(tb->HostWrite.CoalIntDelay)));
3542 printk(" Coalesce Interrupt Count = 0x%x\n",
3543 readl(&(tb->HostWrite.CoalIntCount)));
3544 printk(" Max outstanding commands = 0x%d\n",
3545 readl(&(tb->CmdsOutMax)));
3546 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3547 for (i = 0; i < 16; i++)
3548 temp_name[i] = readb(&(tb->ServerName[i]));
3549 temp_name[16] = '\0';
3550 printk(" Server Name = %s\n", temp_name);
3551 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3553 #endif /* CCISS_DEBUG */
3555 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3557 int i, offset, mem_type, bar_type;
3558 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3561 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3562 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3563 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3566 mem_type = pci_resource_flags(pdev, i) &
3567 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3569 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3570 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3571 offset += 4; /* 32 bit */
3573 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3576 default: /* reserved in PCI 2.2 */
3578 "Base address is invalid\n");
3583 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3589 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3590 * controllers that are capable. If not, we use IO-APIC mode.
3593 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3594 struct pci_dev *pdev, __u32 board_id)
3596 #ifdef CONFIG_PCI_MSI
3598 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3602 /* Some boards advertise MSI but don't really support it */
3603 if ((board_id == 0x40700E11) ||
3604 (board_id == 0x40800E11) ||
3605 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3606 goto default_int_mode;
3608 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3609 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3611 c->intr[0] = cciss_msix_entries[0].vector;
3612 c->intr[1] = cciss_msix_entries[1].vector;
3613 c->intr[2] = cciss_msix_entries[2].vector;
3614 c->intr[3] = cciss_msix_entries[3].vector;
3619 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3620 "available\n", err);
3621 goto default_int_mode;
3623 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3625 goto default_int_mode;
3628 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3629 if (!pci_enable_msi(pdev)) {
3632 printk(KERN_WARNING "cciss: MSI init failed\n");
3636 #endif /* CONFIG_PCI_MSI */
3637 /* if we get here we're going to use the default interrupt mode */
3638 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3642 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3644 ushort subsystem_vendor_id, subsystem_device_id, command;
3645 __u32 board_id, scratchpad = 0;
3647 __u32 cfg_base_addr;
3648 __u64 cfg_base_addr_index;
3649 int i, prod_index, err;
3651 subsystem_vendor_id = pdev->subsystem_vendor;
3652 subsystem_device_id = pdev->subsystem_device;
3653 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3654 subsystem_vendor_id);
3656 for (i = 0; i < ARRAY_SIZE(products); i++) {
3657 /* Stand aside for hpsa driver on request */
3658 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3660 if (board_id == products[i].board_id)
3664 if (prod_index == ARRAY_SIZE(products)) {
3665 dev_warn(&pdev->dev,
3666 "unrecognized board ID: 0x%08lx, ignoring.\n",
3667 (unsigned long) board_id);
3671 /* check to see if controller has been disabled */
3672 /* BEFORE trying to enable it */
3673 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3674 if (!(command & 0x02)) {
3676 "cciss: controller appears to be disabled\n");
3680 err = pci_enable_device(pdev);
3682 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3686 err = pci_request_regions(pdev, "cciss");
3688 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3694 printk("command = %x\n", command);
3695 printk("irq = %x\n", pdev->irq);
3696 printk("board_id = %x\n", board_id);
3697 #endif /* CCISS_DEBUG */
3699 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3700 * else we use the IO-APIC interrupt assigned to us by system ROM.
3702 cciss_interrupt_mode(c, pdev, board_id);
3704 /* find the memory BAR */
3705 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3706 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3709 if (i == DEVICE_COUNT_RESOURCE) {
3710 printk(KERN_WARNING "cciss: No memory BAR found\n");
3712 goto err_out_free_res;
3715 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3720 printk("address 0 = %lx\n", c->paddr);
3721 #endif /* CCISS_DEBUG */
3722 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3724 /* Wait for the board to become ready. (PCI hotplug needs this.)
3725 * We poll for up to 120 secs, once per 100ms. */
3726 for (i = 0; i < 1200; i++) {
3727 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3728 if (scratchpad == CCISS_FIRMWARE_READY)
3730 set_current_state(TASK_INTERRUPTIBLE);
3731 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3733 if (scratchpad != CCISS_FIRMWARE_READY) {
3734 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3736 goto err_out_free_res;
3739 /* get the address index number */
3740 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3741 cfg_base_addr &= (__u32) 0x0000ffff;
3743 printk("cfg base address = %x\n", cfg_base_addr);
3744 #endif /* CCISS_DEBUG */
3745 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3747 printk("cfg base address index = %llx\n",
3748 (unsigned long long)cfg_base_addr_index);
3749 #endif /* CCISS_DEBUG */
3750 if (cfg_base_addr_index == -1) {
3751 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3753 goto err_out_free_res;
3756 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3758 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3759 #endif /* CCISS_DEBUG */
3760 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3761 cfg_base_addr_index) +
3762 cfg_offset, sizeof(CfgTable_struct));
3763 c->board_id = board_id;
3766 print_cfg_table(c->cfgtable);
3767 #endif /* CCISS_DEBUG */
3769 /* Some controllers support Zero Memory Raid (ZMR).
3770 * When configured in ZMR mode the number of supported
3771 * commands drops to 64. So instead of just setting an
3772 * arbitrary value we make the driver a little smarter.
3773 * We read the config table to tell us how many commands
3774 * are supported on the controller then subtract 4 to
3775 * leave a little room for ioctl calls.
3777 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3778 c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
3781 * Limit native command to 32 s/g elements to save dma'able memory.
3782 * Howvever spec says if 0, use 31
3785 c->max_cmd_sgentries = 31;
3786 if (c->maxsgentries > 512) {
3787 c->max_cmd_sgentries = 32;
3788 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
3789 c->maxsgentries -= 1; /* account for chain pointer */
3791 c->maxsgentries = 31; /* Default to traditional value */
3792 c->chainsize = 0; /* traditional */
3795 c->product_name = products[prod_index].product_name;
3796 c->access = *(products[prod_index].access);
3797 c->nr_cmds = c->max_commands - 4;
3798 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3799 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3800 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3801 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3802 printk("Does not appear to be a valid CISS config table\n");
3804 goto err_out_free_res;
3808 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3810 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3812 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3816 /* Disabling DMA prefetch and refetch for the P600.
3817 * An ASIC bug may result in accesses to invalid memory addresses.
3818 * We've disabled prefetch for some time now. Testing with XEN
3819 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3821 if(board_id == 0x3225103C) {
3824 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3825 dma_prefetch |= 0x8000;
3826 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3827 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3829 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3833 printk("Trying to put board into Simple mode\n");
3834 #endif /* CCISS_DEBUG */
3835 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3836 /* Update the field, and then ring the doorbell */
3837 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3838 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3840 /* under certain very rare conditions, this can take awhile.
3841 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3842 * as we enter this code.) */
3843 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3844 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3846 /* delay and try again */
3847 set_current_state(TASK_INTERRUPTIBLE);
3848 schedule_timeout(msecs_to_jiffies(1));
3852 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3853 readl(c->vaddr + SA5_DOORBELL));
3854 #endif /* CCISS_DEBUG */
3856 print_cfg_table(c->cfgtable);
3857 #endif /* CCISS_DEBUG */
3859 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3860 printk(KERN_WARNING "cciss: unable to get board into"
3863 goto err_out_free_res;
3869 * Deliberately omit pci_disable_device(): it does something nasty to
3870 * Smart Array controllers that pci_enable_device does not undo
3872 pci_release_regions(pdev);
3876 /* Function to find the first free pointer into our hba[] array
3877 * Returns -1 if no free entries are left.
3879 static int alloc_cciss_hba(void)
3883 for (i = 0; i < MAX_CTLR; i++) {
3887 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3894 printk(KERN_WARNING "cciss: This driver supports a maximum"
3895 " of %d controllers.\n", MAX_CTLR);
3898 printk(KERN_ERR "cciss: out of memory.\n");
3902 static void free_hba(int n)
3904 ctlr_info_t *h = hba[n];
3908 for (i = 0; i < h->highest_lun + 1; i++)
3909 if (h->gendisk[i] != NULL)
3910 put_disk(h->gendisk[i]);
3914 /* Send a message CDB to the firmware. */
3915 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3918 CommandListHeader_struct CommandHeader;
3919 RequestBlock_struct Request;
3920 ErrDescriptor_struct ErrorDescriptor;
3922 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3925 uint32_t paddr32, tag;
3926 void __iomem *vaddr;
3929 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3933 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3934 CCISS commands, so they must be allocated from the lower 4GiB of
3936 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3942 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3948 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3949 although there's no guarantee, we assume that the address is at
3950 least 4-byte aligned (most likely, it's page-aligned). */
3953 cmd->CommandHeader.ReplyQueue = 0;
3954 cmd->CommandHeader.SGList = 0;
3955 cmd->CommandHeader.SGTotal = 0;
3956 cmd->CommandHeader.Tag.lower = paddr32;
3957 cmd->CommandHeader.Tag.upper = 0;
3958 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3960 cmd->Request.CDBLen = 16;
3961 cmd->Request.Type.Type = TYPE_MSG;
3962 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3963 cmd->Request.Type.Direction = XFER_NONE;
3964 cmd->Request.Timeout = 0; /* Don't time out */
3965 cmd->Request.CDB[0] = opcode;
3966 cmd->Request.CDB[1] = type;
3967 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3969 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3970 cmd->ErrorDescriptor.Addr.upper = 0;
3971 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3973 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3975 for (i = 0; i < 10; i++) {
3976 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3977 if ((tag & ~3) == paddr32)
3979 schedule_timeout_uninterruptible(HZ);
3984 /* we leak the DMA buffer here ... no choice since the controller could
3985 still complete the command. */
3987 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3992 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3995 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4000 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4005 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4006 #define cciss_noop(p) cciss_message(p, 3, 0)
4008 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4010 /* the #defines are stolen from drivers/pci/msi.h. */
4011 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4012 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4017 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4019 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4020 if (control & PCI_MSI_FLAGS_ENABLE) {
4021 printk(KERN_INFO "cciss: resetting MSI\n");
4022 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4026 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4028 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4029 if (control & PCI_MSIX_FLAGS_ENABLE) {
4030 printk(KERN_INFO "cciss: resetting MSI-X\n");
4031 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4038 /* This does a hard reset of the controller using PCI power management
4040 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4042 u16 pmcsr, saved_config_space[32];
4045 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4047 /* This is very nearly the same thing as
4049 pci_save_state(pci_dev);
4050 pci_set_power_state(pci_dev, PCI_D3hot);
4051 pci_set_power_state(pci_dev, PCI_D0);
4052 pci_restore_state(pci_dev);
4054 but we can't use these nice canned kernel routines on
4055 kexec, because they also check the MSI/MSI-X state in PCI
4056 configuration space and do the wrong thing when it is
4057 set/cleared. Also, the pci_save/restore_state functions
4058 violate the ordering requirements for restoring the
4059 configuration space from the CCISS document (see the
4060 comment below). So we roll our own .... */
4062 for (i = 0; i < 32; i++)
4063 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4065 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4067 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4071 /* Quoting from the Open CISS Specification: "The Power
4072 * Management Control/Status Register (CSR) controls the power
4073 * state of the device. The normal operating state is D0,
4074 * CSR=00h. The software off state is D3, CSR=03h. To reset
4075 * the controller, place the interface device in D3 then to
4076 * D0, this causes a secondary PCI reset which will reset the
4079 /* enter the D3hot power management state */
4080 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4081 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4083 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4085 schedule_timeout_uninterruptible(HZ >> 1);
4087 /* enter the D0 power management state */
4088 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4090 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4092 schedule_timeout_uninterruptible(HZ >> 1);
4094 /* Restore the PCI configuration space. The Open CISS
4095 * Specification says, "Restore the PCI Configuration
4096 * Registers, offsets 00h through 60h. It is important to
4097 * restore the command register, 16-bits at offset 04h,
4098 * last. Do not restore the configuration status register,
4099 * 16-bits at offset 06h." Note that the offset is 2*i. */
4100 for (i = 0; i < 32; i++) {
4101 if (i == 2 || i == 3)
4103 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4106 pci_write_config_word(pdev, 4, saved_config_space[2]);
4112 * This is it. Find all the controllers and register them. I really hate
4113 * stealing all these major device numbers.
4114 * returns the number of block devices registered.
4116 static int __devinit cciss_init_one(struct pci_dev *pdev,
4117 const struct pci_device_id *ent)
4123 int dac, return_code;
4124 InquiryData_struct *inq_buff;
4126 if (reset_devices) {
4127 /* Reset the controller with a PCI power-cycle */
4128 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4131 /* Now try to get the controller to respond to a no-op. Some
4132 devices (notably the HP Smart Array 5i Controller) need
4133 up to 30 seconds to respond. */
4134 for (i=0; i<30; i++) {
4135 if (cciss_noop(pdev) == 0)
4138 schedule_timeout_uninterruptible(HZ);
4141 printk(KERN_ERR "cciss: controller seems dead\n");
4146 i = alloc_cciss_hba();
4150 hba[i]->busy_initializing = 1;
4151 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4152 INIT_HLIST_HEAD(&hba[i]->reqQ);
4153 mutex_init(&hba[i]->busy_shutting_down);
4155 if (cciss_pci_init(hba[i], pdev) != 0)
4156 goto clean_no_release_regions;
4158 sprintf(hba[i]->devname, "cciss%d", i);
4160 hba[i]->pdev = pdev;
4162 init_completion(&hba[i]->scan_wait);
4164 if (cciss_create_hba_sysfs_entry(hba[i]))
4167 /* configure PCI DMA stuff */
4168 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4170 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4173 printk(KERN_ERR "cciss: no suitable DMA available\n");
4178 * register with the major number, or get a dynamic major number
4179 * by passing 0 as argument. This is done for greater than
4180 * 8 controller support.
4182 if (i < MAX_CTLR_ORIG)
4183 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4184 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4185 if (rc == -EBUSY || rc == -EINVAL) {
4187 "cciss: Unable to get major number %d for %s "
4188 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4191 if (i >= MAX_CTLR_ORIG)
4195 /* make sure the board interrupts are off */
4196 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4197 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4198 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4199 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4200 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4204 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4205 hba[i]->devname, pdev->device, pci_name(pdev),
4206 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4208 hba[i]->cmd_pool_bits =
4209 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4210 * sizeof(unsigned long), GFP_KERNEL);
4211 hba[i]->cmd_pool = (CommandList_struct *)
4212 pci_alloc_consistent(hba[i]->pdev,
4213 hba[i]->nr_cmds * sizeof(CommandList_struct),
4214 &(hba[i]->cmd_pool_dhandle));
4215 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4216 pci_alloc_consistent(hba[i]->pdev,
4217 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4218 &(hba[i]->errinfo_pool_dhandle));
4219 if ((hba[i]->cmd_pool_bits == NULL)
4220 || (hba[i]->cmd_pool == NULL)
4221 || (hba[i]->errinfo_pool == NULL)) {
4222 printk(KERN_ERR "cciss: out of memory");
4226 /* Need space for temp scatter list */
4227 hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4228 sizeof(struct scatterlist *),
4230 for (k = 0; k < hba[i]->nr_cmds; k++) {
4231 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4232 hba[i]->maxsgentries,
4234 if (hba[i]->scatter_list[k] == NULL) {
4235 printk(KERN_ERR "cciss%d: could not allocate "
4240 hba[i]->cmd_sg_list = kmalloc(sizeof(struct Cmd_sg_list *) *
4243 if (!hba[i]->cmd_sg_list) {
4244 printk(KERN_ERR "cciss%d: Cannot get memory for "
4245 "s/g chaining.\n", i);
4248 /* Build up chain blocks for each command */
4249 if (hba[i]->chainsize > 0) {
4250 for (j = 0; j < hba[i]->nr_cmds; j++) {
4251 hba[i]->cmd_sg_list[j] =
4252 kmalloc(sizeof(struct Cmd_sg_list),
4254 if (!hba[i]->cmd_sg_list[j]) {
4255 printk(KERN_ERR "cciss%d: Cannot get memory "
4256 "for chain block.\n", i);
4259 /* Need a block of chainsized s/g elements. */
4260 hba[i]->cmd_sg_list[j]->sgchain =
4261 kmalloc((hba[i]->chainsize *
4262 sizeof(SGDescriptor_struct)),
4264 if (!hba[i]->cmd_sg_list[j]->sgchain) {
4265 printk(KERN_ERR "cciss%d: Cannot get memory "
4266 "for s/g chains\n", i);
4272 spin_lock_init(&hba[i]->lock);
4274 /* Initialize the pdev driver private data.
4275 have it point to hba[i]. */
4276 pci_set_drvdata(pdev, hba[i]);
4277 /* command and error info recs zeroed out before
4279 memset(hba[i]->cmd_pool_bits, 0,
4280 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4281 * sizeof(unsigned long));
4283 hba[i]->num_luns = 0;
4284 hba[i]->highest_lun = -1;
4285 for (j = 0; j < CISS_MAX_LUN; j++) {
4286 hba[i]->drv[j] = NULL;
4287 hba[i]->gendisk[j] = NULL;
4290 cciss_scsi_setup(i);
4292 /* Turn the interrupts on so we can service requests */
4293 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4295 /* Get the firmware version */
4296 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4297 if (inq_buff == NULL) {
4298 printk(KERN_ERR "cciss: out of memory\n");
4302 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4303 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4304 if (return_code == IO_OK) {
4305 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4306 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4307 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4308 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4309 } else { /* send command failed */
4310 printk(KERN_WARNING "cciss: unable to determine firmware"
4311 " version of controller\n");
4317 hba[i]->cciss_max_sectors = 8192;
4319 rebuild_lun_table(hba[i], 1, 0);
4320 hba[i]->busy_initializing = 0;
4324 kfree(hba[i]->cmd_pool_bits);
4325 /* Free up sg elements */
4326 for (k = 0; k < hba[i]->nr_cmds; k++)
4327 kfree(hba[i]->scatter_list[k]);
4328 kfree(hba[i]->scatter_list);
4329 /* Only free up extra s/g lists if controller supports them */
4330 if (hba[i]->chainsize > 0) {
4331 for (j = 0; j < hba[i]->nr_cmds; j++) {
4332 if (hba[i]->cmd_sg_list[j]) {
4333 kfree(hba[i]->cmd_sg_list[j]->sgchain);
4334 kfree(hba[i]->cmd_sg_list[j]);
4337 kfree(hba[i]->cmd_sg_list);
4339 if (hba[i]->cmd_pool)
4340 pci_free_consistent(hba[i]->pdev,
4341 hba[i]->nr_cmds * sizeof(CommandList_struct),
4342 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4343 if (hba[i]->errinfo_pool)
4344 pci_free_consistent(hba[i]->pdev,
4345 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4346 hba[i]->errinfo_pool,
4347 hba[i]->errinfo_pool_dhandle);
4348 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4350 unregister_blkdev(hba[i]->major, hba[i]->devname);
4352 cciss_destroy_hba_sysfs_entry(hba[i]);
4354 pci_release_regions(pdev);
4355 clean_no_release_regions:
4356 hba[i]->busy_initializing = 0;
4359 * Deliberately omit pci_disable_device(): it does something nasty to
4360 * Smart Array controllers that pci_enable_device does not undo
4362 pci_set_drvdata(pdev, NULL);
4367 static void cciss_shutdown(struct pci_dev *pdev)
4373 h = pci_get_drvdata(pdev);
4374 flush_buf = kzalloc(4, GFP_KERNEL);
4377 "cciss:%d cache not flushed, out of memory.\n",
4381 /* write all data in the battery backed cache to disk */
4382 memset(flush_buf, 0, 4);
4383 return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4384 4, 0, CTLR_LUNID, TYPE_CMD);
4386 if (return_code != IO_OK)
4387 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4389 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4390 free_irq(h->intr[2], h);
4393 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4395 ctlr_info_t *tmp_ptr;
4398 if (pci_get_drvdata(pdev) == NULL) {
4399 printk(KERN_ERR "cciss: Unable to remove device \n");
4403 tmp_ptr = pci_get_drvdata(pdev);
4405 if (hba[i] == NULL) {
4406 printk(KERN_ERR "cciss: device appears to "
4407 "already be removed \n");
4411 mutex_lock(&hba[i]->busy_shutting_down);
4413 remove_from_scan_list(hba[i]);
4414 remove_proc_entry(hba[i]->devname, proc_cciss);
4415 unregister_blkdev(hba[i]->major, hba[i]->devname);
4417 /* remove it from the disk list */
4418 for (j = 0; j < CISS_MAX_LUN; j++) {
4419 struct gendisk *disk = hba[i]->gendisk[j];
4421 struct request_queue *q = disk->queue;
4423 if (disk->flags & GENHD_FL_UP) {
4424 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4428 blk_cleanup_queue(q);
4432 #ifdef CONFIG_CISS_SCSI_TAPE
4433 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4436 cciss_shutdown(pdev);
4438 #ifdef CONFIG_PCI_MSI
4439 if (hba[i]->msix_vector)
4440 pci_disable_msix(hba[i]->pdev);
4441 else if (hba[i]->msi_vector)
4442 pci_disable_msi(hba[i]->pdev);
4443 #endif /* CONFIG_PCI_MSI */
4445 iounmap(hba[i]->vaddr);
4447 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4448 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4449 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4450 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4451 kfree(hba[i]->cmd_pool_bits);
4452 /* Free up sg elements */
4453 for (j = 0; j < hba[i]->nr_cmds; j++)
4454 kfree(hba[i]->scatter_list[j]);
4455 kfree(hba[i]->scatter_list);
4456 /* Only free up extra s/g lists if controller supports them */
4457 if (hba[i]->chainsize > 0) {
4458 for (j = 0; j < hba[i]->nr_cmds; j++) {
4459 if (hba[i]->cmd_sg_list[j]) {
4460 kfree(hba[i]->cmd_sg_list[j]->sgchain);
4461 kfree(hba[i]->cmd_sg_list[j]);
4464 kfree(hba[i]->cmd_sg_list);
4467 * Deliberately omit pci_disable_device(): it does something nasty to
4468 * Smart Array controllers that pci_enable_device does not undo
4470 pci_release_regions(pdev);
4471 pci_set_drvdata(pdev, NULL);
4472 cciss_destroy_hba_sysfs_entry(hba[i]);
4473 mutex_unlock(&hba[i]->busy_shutting_down);
4477 static struct pci_driver cciss_pci_driver = {
4479 .probe = cciss_init_one,
4480 .remove = __devexit_p(cciss_remove_one),
4481 .id_table = cciss_pci_device_id, /* id_table */
4482 .shutdown = cciss_shutdown,
4486 * This is it. Register the PCI driver information for the cards we control
4487 * the OS will call our registered routines when it finds one of our cards.
4489 static int __init cciss_init(void)
4494 * The hardware requires that commands are aligned on a 64-bit
4495 * boundary. Given that we use pci_alloc_consistent() to allocate an
4496 * array of them, the size must be a multiple of 8 bytes.
4498 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4500 printk(KERN_INFO DRIVER_NAME "\n");
4502 err = bus_register(&cciss_bus_type);
4506 /* Start the scan thread */
4507 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4508 if (IS_ERR(cciss_scan_thread)) {
4509 err = PTR_ERR(cciss_scan_thread);
4510 goto err_bus_unregister;
4513 /* Register for our PCI devices */
4514 err = pci_register_driver(&cciss_pci_driver);
4516 goto err_thread_stop;
4521 kthread_stop(cciss_scan_thread);
4523 bus_unregister(&cciss_bus_type);
4528 static void __exit cciss_cleanup(void)
4532 pci_unregister_driver(&cciss_pci_driver);
4533 /* double check that all controller entrys have been removed */
4534 for (i = 0; i < MAX_CTLR; i++) {
4535 if (hba[i] != NULL) {
4536 printk(KERN_WARNING "cciss: had to remove"
4537 " controller %d\n", i);
4538 cciss_remove_one(hba[i]->pdev);
4541 kthread_stop(cciss_scan_thread);
4542 remove_proc_entry("driver/cciss", NULL);
4543 bus_unregister(&cciss_bus_type);
4546 static void fail_all_cmds(unsigned long ctlr)
4548 /* If we get here, the board is apparently dead. */
4549 ctlr_info_t *h = hba[ctlr];
4550 CommandList_struct *c;
4551 unsigned long flags;
4553 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4554 h->alive = 0; /* the controller apparently died... */
4556 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4558 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4560 /* move everything off the request queue onto the completed queue */
4561 while (!hlist_empty(&h->reqQ)) {
4562 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4568 /* Now, fail everything on the completed queue with a HW error */
4569 while (!hlist_empty(&h->cmpQ)) {
4570 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4572 if (c->cmd_type != CMD_MSG_STALE)
4573 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4574 if (c->cmd_type == CMD_RWREQ) {
4575 complete_command(h, c, 0);
4576 } else if (c->cmd_type == CMD_IOCTL_PEND)
4577 complete(c->waiting);
4578 #ifdef CONFIG_CISS_SCSI_TAPE
4579 else if (c->cmd_type == CMD_SCSI)
4580 complete_scsi_command(c, 0, 0);
4583 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4587 module_init(cciss_init);
4588 module_exit(cciss_cleanup);