2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 static int cciss_allow_hpsa;
72 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_allow_hpsa,
74 "Prevent cciss driver from accessing hardware known to be "
75 " supported by the hpsa driver");
77 #include "cciss_cmd.h"
79 #include <linux/cciss_ioctl.h>
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id[] = {
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
113 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
115 /* board_id = Subsystem Device ID & Vendor ID
116 * product = Marketing Name for the board
117 * access = Address of the struct of function pointers
119 static struct board_type products[] = {
120 {0x40700E11, "Smart Array 5300", &SA5_access},
121 {0x40800E11, "Smart Array 5i", &SA5B_access},
122 {0x40820E11, "Smart Array 532", &SA5B_access},
123 {0x40830E11, "Smart Array 5312", &SA5B_access},
124 {0x409A0E11, "Smart Array 641", &SA5_access},
125 {0x409B0E11, "Smart Array 642", &SA5_access},
126 {0x409C0E11, "Smart Array 6400", &SA5_access},
127 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128 {0x40910E11, "Smart Array 6i", &SA5_access},
129 {0x3225103C, "Smart Array P600", &SA5_access},
130 {0x3235103C, "Smart Array P400i", &SA5_access},
131 {0x3211103C, "Smart Array E200i", &SA5_access},
132 {0x3212103C, "Smart Array E200", &SA5_access},
133 {0x3213103C, "Smart Array E200i", &SA5_access},
134 {0x3214103C, "Smart Array E200i", &SA5_access},
135 {0x3215103C, "Smart Array E200i", &SA5_access},
136 {0x3237103C, "Smart Array E500", &SA5_access},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139 {0x3223103C, "Smart Array P800", &SA5_access},
140 {0x3234103C, "Smart Array P400", &SA5_access},
141 {0x323D103C, "Smart Array P700m", &SA5_access},
142 {0x3241103C, "Smart Array P212", &SA5_access},
143 {0x3243103C, "Smart Array P410", &SA5_access},
144 {0x3245103C, "Smart Array P410i", &SA5_access},
145 {0x3247103C, "Smart Array P411", &SA5_access},
146 {0x3249103C, "Smart Array P812", &SA5_access},
147 {0x324A103C, "Smart Array P712m", &SA5_access},
148 {0x324B103C, "Smart Array P711m", &SA5_access},
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG 8
163 static ctlr_info_t *hba[MAX_CTLR];
165 static struct task_struct *cciss_scan_thread;
166 static DEFINE_MUTEX(scan_mutex);
167 static LIST_HEAD(scan_q);
169 static void do_cciss_request(struct request_queue *q);
170 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
171 static int cciss_open(struct block_device *bdev, fmode_t mode);
172 static int cciss_release(struct gendisk *disk, fmode_t mode);
173 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
174 unsigned int cmd, unsigned long arg);
175 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
177 static int cciss_revalidate(struct gendisk *disk);
178 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
179 static int deregister_disk(ctlr_info_t *h, int drv_index,
180 int clear_all, int via_ioctl);
182 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
183 sector_t *total_size, unsigned int *block_size);
184 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
185 sector_t *total_size, unsigned int *block_size);
186 static void cciss_geometry_inquiry(int ctlr, int logvol,
187 int withirq, sector_t total_size,
188 unsigned int block_size, InquiryData_struct *inq_buff,
189 drive_info_struct *drv);
190 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
192 static void start_io(ctlr_info_t *h);
193 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
194 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
195 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
196 __u8 page_code, unsigned char scsi3addr[],
198 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
200 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
202 static void fail_all_cmds(unsigned long ctlr);
203 static int add_to_scan_list(struct ctlr_info *h);
204 static int scan_thread(void *data);
205 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
206 static void cciss_hba_release(struct device *dev);
207 static void cciss_device_release(struct device *dev);
208 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
209 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
211 #ifdef CONFIG_PROC_FS
212 static void cciss_procinit(int i);
214 static void cciss_procinit(int i)
217 #endif /* CONFIG_PROC_FS */
220 static int cciss_compat_ioctl(struct block_device *, fmode_t,
221 unsigned, unsigned long);
224 static const struct block_device_operations cciss_fops = {
225 .owner = THIS_MODULE,
227 .release = cciss_release,
228 .locked_ioctl = cciss_ioctl,
229 .getgeo = cciss_getgeo,
231 .compat_ioctl = cciss_compat_ioctl,
233 .revalidate_disk = cciss_revalidate,
237 * Enqueuing and dequeuing functions for cmdlists.
239 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
241 hlist_add_head(&c->list, list);
244 static inline void removeQ(CommandList_struct *c)
247 * After kexec/dump some commands might still
248 * be in flight, which the firmware will try
249 * to complete. Resetting the firmware doesn't work
250 * with old fw revisions, so we have to mark
251 * them off as 'stale' to prevent the driver from
254 if (WARN_ON(hlist_unhashed(&c->list))) {
255 c->cmd_type = CMD_MSG_STALE;
259 hlist_del_init(&c->list);
262 #include "cciss_scsi.c" /* For SCSI tape support */
264 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
267 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
269 #ifdef CONFIG_PROC_FS
272 * Report information about this controller.
274 #define ENG_GIG 1000000000
275 #define ENG_GIG_FACTOR (ENG_GIG/512)
276 #define ENGAGE_SCSI "engage scsi"
278 static struct proc_dir_entry *proc_cciss;
280 static void cciss_seq_show_header(struct seq_file *seq)
282 ctlr_info_t *h = seq->private;
284 seq_printf(seq, "%s: HP %s Controller\n"
285 "Board ID: 0x%08lx\n"
286 "Firmware Version: %c%c%c%c\n"
288 "Logical drives: %d\n"
289 "Current Q depth: %d\n"
290 "Current # commands on controller: %d\n"
291 "Max Q depth since init: %d\n"
292 "Max # commands on controller since init: %d\n"
293 "Max SG entries since init: %d\n",
296 (unsigned long)h->board_id,
297 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
298 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
300 h->Qdepth, h->commands_outstanding,
301 h->maxQsinceinit, h->max_outstanding, h->maxSG);
303 #ifdef CONFIG_CISS_SCSI_TAPE
304 cciss_seq_tape_report(seq, h->ctlr);
305 #endif /* CONFIG_CISS_SCSI_TAPE */
308 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
310 ctlr_info_t *h = seq->private;
311 unsigned ctlr = h->ctlr;
314 /* prevent displaying bogus info during configuration
315 * or deconfiguration of a logical volume
317 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
318 if (h->busy_configuring) {
319 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
320 return ERR_PTR(-EBUSY);
322 h->busy_configuring = 1;
323 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
326 cciss_seq_show_header(seq);
331 static int cciss_seq_show(struct seq_file *seq, void *v)
333 sector_t vol_sz, vol_sz_frac;
334 ctlr_info_t *h = seq->private;
335 unsigned ctlr = h->ctlr;
337 drive_info_struct *drv = h->drv[*pos];
339 if (*pos > h->highest_lun)
345 vol_sz = drv->nr_blocks;
346 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
348 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
350 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
351 drv->raid_level = RAID_UNKNOWN;
352 seq_printf(seq, "cciss/c%dd%d:"
353 "\t%4u.%02uGB\tRAID %s\n",
354 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
355 raid_label[drv->raid_level]);
359 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
361 ctlr_info_t *h = seq->private;
363 if (*pos > h->highest_lun)
370 static void cciss_seq_stop(struct seq_file *seq, void *v)
372 ctlr_info_t *h = seq->private;
374 /* Only reset h->busy_configuring if we succeeded in setting
375 * it during cciss_seq_start. */
376 if (v == ERR_PTR(-EBUSY))
379 h->busy_configuring = 0;
382 static const struct seq_operations cciss_seq_ops = {
383 .start = cciss_seq_start,
384 .show = cciss_seq_show,
385 .next = cciss_seq_next,
386 .stop = cciss_seq_stop,
389 static int cciss_seq_open(struct inode *inode, struct file *file)
391 int ret = seq_open(file, &cciss_seq_ops);
392 struct seq_file *seq = file->private_data;
395 seq->private = PDE(inode)->data;
401 cciss_proc_write(struct file *file, const char __user *buf,
402 size_t length, loff_t *ppos)
407 #ifndef CONFIG_CISS_SCSI_TAPE
411 if (!buf || length > PAGE_SIZE - 1)
414 buffer = (char *)__get_free_page(GFP_KERNEL);
419 if (copy_from_user(buffer, buf, length))
421 buffer[length] = '\0';
423 #ifdef CONFIG_CISS_SCSI_TAPE
424 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
425 struct seq_file *seq = file->private_data;
426 ctlr_info_t *h = seq->private;
429 rc = cciss_engage_scsi(h->ctlr);
435 #endif /* CONFIG_CISS_SCSI_TAPE */
437 /* might be nice to have "disengage" too, but it's not
438 safely possible. (only 1 module use count, lock issues.) */
441 free_page((unsigned long)buffer);
445 static const struct file_operations cciss_proc_fops = {
446 .owner = THIS_MODULE,
447 .open = cciss_seq_open,
450 .release = seq_release,
451 .write = cciss_proc_write,
454 static void __devinit cciss_procinit(int i)
456 struct proc_dir_entry *pde;
458 if (proc_cciss == NULL)
459 proc_cciss = proc_mkdir("driver/cciss", NULL);
462 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
464 &cciss_proc_fops, hba[i]);
466 #endif /* CONFIG_PROC_FS */
468 #define MAX_PRODUCT_NAME_LEN 19
470 #define to_hba(n) container_of(n, struct ctlr_info, dev)
471 #define to_drv(n) container_of(n, drive_info_struct, dev)
473 static ssize_t host_store_rescan(struct device *dev,
474 struct device_attribute *attr,
475 const char *buf, size_t count)
477 struct ctlr_info *h = to_hba(dev);
480 wake_up_process(cciss_scan_thread);
481 wait_for_completion_interruptible(&h->scan_wait);
485 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
487 static ssize_t dev_show_unique_id(struct device *dev,
488 struct device_attribute *attr,
491 drive_info_struct *drv = to_drv(dev);
492 struct ctlr_info *h = to_hba(drv->dev.parent);
497 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
498 if (h->busy_configuring)
501 memcpy(sn, drv->serial_no, sizeof(sn));
502 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
507 return snprintf(buf, 16 * 2 + 2,
508 "%02X%02X%02X%02X%02X%02X%02X%02X"
509 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
510 sn[0], sn[1], sn[2], sn[3],
511 sn[4], sn[5], sn[6], sn[7],
512 sn[8], sn[9], sn[10], sn[11],
513 sn[12], sn[13], sn[14], sn[15]);
515 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
517 static ssize_t dev_show_vendor(struct device *dev,
518 struct device_attribute *attr,
521 drive_info_struct *drv = to_drv(dev);
522 struct ctlr_info *h = to_hba(drv->dev.parent);
523 char vendor[VENDOR_LEN + 1];
527 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
528 if (h->busy_configuring)
531 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
532 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
537 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
539 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
541 static ssize_t dev_show_model(struct device *dev,
542 struct device_attribute *attr,
545 drive_info_struct *drv = to_drv(dev);
546 struct ctlr_info *h = to_hba(drv->dev.parent);
547 char model[MODEL_LEN + 1];
551 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
552 if (h->busy_configuring)
555 memcpy(model, drv->model, MODEL_LEN + 1);
556 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
561 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
563 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
565 static ssize_t dev_show_rev(struct device *dev,
566 struct device_attribute *attr,
569 drive_info_struct *drv = to_drv(dev);
570 struct ctlr_info *h = to_hba(drv->dev.parent);
571 char rev[REV_LEN + 1];
575 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
576 if (h->busy_configuring)
579 memcpy(rev, drv->rev, REV_LEN + 1);
580 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
585 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
587 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
589 static ssize_t cciss_show_lunid(struct device *dev,
590 struct device_attribute *attr, char *buf)
592 drive_info_struct *drv = to_drv(dev);
593 struct ctlr_info *h = to_hba(drv->dev.parent);
595 unsigned char lunid[8];
597 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
598 if (h->busy_configuring) {
599 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
603 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
606 memcpy(lunid, drv->LunID, sizeof(lunid));
607 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
608 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
609 lunid[0], lunid[1], lunid[2], lunid[3],
610 lunid[4], lunid[5], lunid[6], lunid[7]);
612 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
614 static ssize_t cciss_show_raid_level(struct device *dev,
615 struct device_attribute *attr, char *buf)
617 drive_info_struct *drv = to_drv(dev);
618 struct ctlr_info *h = to_hba(drv->dev.parent);
622 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
623 if (h->busy_configuring) {
624 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
627 raid = drv->raid_level;
628 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
629 if (raid < 0 || raid > RAID_UNKNOWN)
632 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
635 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
637 static ssize_t cciss_show_usage_count(struct device *dev,
638 struct device_attribute *attr, char *buf)
640 drive_info_struct *drv = to_drv(dev);
641 struct ctlr_info *h = to_hba(drv->dev.parent);
645 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
646 if (h->busy_configuring) {
647 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
650 count = drv->usage_count;
651 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
652 return snprintf(buf, 20, "%d\n", count);
654 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
656 static struct attribute *cciss_host_attrs[] = {
657 &dev_attr_rescan.attr,
661 static struct attribute_group cciss_host_attr_group = {
662 .attrs = cciss_host_attrs,
665 static const struct attribute_group *cciss_host_attr_groups[] = {
666 &cciss_host_attr_group,
670 static struct device_type cciss_host_type = {
671 .name = "cciss_host",
672 .groups = cciss_host_attr_groups,
673 .release = cciss_hba_release,
676 static struct attribute *cciss_dev_attrs[] = {
677 &dev_attr_unique_id.attr,
678 &dev_attr_model.attr,
679 &dev_attr_vendor.attr,
681 &dev_attr_lunid.attr,
682 &dev_attr_raid_level.attr,
683 &dev_attr_usage_count.attr,
687 static struct attribute_group cciss_dev_attr_group = {
688 .attrs = cciss_dev_attrs,
691 static const struct attribute_group *cciss_dev_attr_groups[] = {
692 &cciss_dev_attr_group,
696 static struct device_type cciss_dev_type = {
697 .name = "cciss_device",
698 .groups = cciss_dev_attr_groups,
699 .release = cciss_device_release,
702 static struct bus_type cciss_bus_type = {
707 * cciss_hba_release is called when the reference count
708 * of h->dev goes to zero.
710 static void cciss_hba_release(struct device *dev)
713 * nothing to do, but need this to avoid a warning
714 * about not having a release handler from lib/kref.c.
719 * Initialize sysfs entry for each controller. This sets up and registers
720 * the 'cciss#' directory for each individual controller under
721 * /sys/bus/pci/devices/<dev>/.
723 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
725 device_initialize(&h->dev);
726 h->dev.type = &cciss_host_type;
727 h->dev.bus = &cciss_bus_type;
728 dev_set_name(&h->dev, "%s", h->devname);
729 h->dev.parent = &h->pdev->dev;
731 return device_add(&h->dev);
735 * Remove sysfs entries for an hba.
737 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
740 put_device(&h->dev); /* final put. */
743 /* cciss_device_release is called when the reference count
744 * of h->drv[x]dev goes to zero.
746 static void cciss_device_release(struct device *dev)
748 drive_info_struct *drv = to_drv(dev);
753 * Initialize sysfs for each logical drive. This sets up and registers
754 * the 'c#d#' directory for each individual logical drive under
755 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
756 * /sys/block/cciss!c#d# to this entry.
758 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
763 if (h->drv[drv_index]->device_initialized)
766 dev = &h->drv[drv_index]->dev;
767 device_initialize(dev);
768 dev->type = &cciss_dev_type;
769 dev->bus = &cciss_bus_type;
770 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
771 dev->parent = &h->dev;
772 h->drv[drv_index]->device_initialized = 1;
773 return device_add(dev);
777 * Remove sysfs entries for a logical drive.
779 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
782 struct device *dev = &h->drv[drv_index]->dev;
784 /* special case for c*d0, we only destroy it on controller exit */
785 if (drv_index == 0 && !ctlr_exiting)
789 put_device(dev); /* the "final" put. */
790 h->drv[drv_index] = NULL;
794 * For operations that cannot sleep, a command block is allocated at init,
795 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
796 * which ones are free or in use. For operations that can wait for kmalloc
797 * to possible sleep, this routine can be called with get_from_pool set to 0.
798 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
800 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
802 CommandList_struct *c;
805 dma_addr_t cmd_dma_handle, err_dma_handle;
807 if (!get_from_pool) {
808 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
809 sizeof(CommandList_struct), &cmd_dma_handle);
812 memset(c, 0, sizeof(CommandList_struct));
816 c->err_info = (ErrorInfo_struct *)
817 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
820 if (c->err_info == NULL) {
821 pci_free_consistent(h->pdev,
822 sizeof(CommandList_struct), c, cmd_dma_handle);
825 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
826 } else { /* get it out of the controllers pool */
829 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
832 } while (test_and_set_bit
833 (i & (BITS_PER_LONG - 1),
834 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
836 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
839 memset(c, 0, sizeof(CommandList_struct));
840 cmd_dma_handle = h->cmd_pool_dhandle
841 + i * sizeof(CommandList_struct);
842 c->err_info = h->errinfo_pool + i;
843 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
844 err_dma_handle = h->errinfo_pool_dhandle
845 + i * sizeof(ErrorInfo_struct);
851 INIT_HLIST_NODE(&c->list);
852 c->busaddr = (__u32) cmd_dma_handle;
853 temp64.val = (__u64) err_dma_handle;
854 c->ErrDesc.Addr.lower = temp64.val32.lower;
855 c->ErrDesc.Addr.upper = temp64.val32.upper;
856 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
863 * Frees a command block that was previously allocated with cmd_alloc().
865 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
870 if (!got_from_pool) {
871 temp64.val32.lower = c->ErrDesc.Addr.lower;
872 temp64.val32.upper = c->ErrDesc.Addr.upper;
873 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
874 c->err_info, (dma_addr_t) temp64.val);
875 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
876 c, (dma_addr_t) c->busaddr);
879 clear_bit(i & (BITS_PER_LONG - 1),
880 h->cmd_pool_bits + (i / BITS_PER_LONG));
885 static inline ctlr_info_t *get_host(struct gendisk *disk)
887 return disk->queue->queuedata;
890 static inline drive_info_struct *get_drv(struct gendisk *disk)
892 return disk->private_data;
896 * Open. Make sure the device is really there.
898 static int cciss_open(struct block_device *bdev, fmode_t mode)
900 ctlr_info_t *host = get_host(bdev->bd_disk);
901 drive_info_struct *drv = get_drv(bdev->bd_disk);
904 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
905 #endif /* CCISS_DEBUG */
907 if (drv->busy_configuring)
910 * Root is allowed to open raw volume zero even if it's not configured
911 * so array config can still work. Root is also allowed to open any
912 * volume that has a LUN ID, so it can issue IOCTL to reread the
913 * disk information. I don't think I really like this
914 * but I'm already using way to many device nodes to claim another one
915 * for "raw controller".
917 if (drv->heads == 0) {
918 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
919 /* if not node 0 make sure it is a partition = 0 */
920 if (MINOR(bdev->bd_dev) & 0x0f) {
922 /* if it is, make sure we have a LUN ID */
923 } else if (memcmp(drv->LunID, CTLR_LUNID,
924 sizeof(drv->LunID))) {
928 if (!capable(CAP_SYS_ADMIN))
939 static int cciss_release(struct gendisk *disk, fmode_t mode)
941 ctlr_info_t *host = get_host(disk);
942 drive_info_struct *drv = get_drv(disk);
945 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
946 #endif /* CCISS_DEBUG */
955 static int do_ioctl(struct block_device *bdev, fmode_t mode,
956 unsigned cmd, unsigned long arg)
960 ret = cciss_ioctl(bdev, mode, cmd, arg);
965 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
966 unsigned cmd, unsigned long arg);
967 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
968 unsigned cmd, unsigned long arg);
970 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
971 unsigned cmd, unsigned long arg)
974 case CCISS_GETPCIINFO:
975 case CCISS_GETINTINFO:
976 case CCISS_SETINTINFO:
977 case CCISS_GETNODENAME:
978 case CCISS_SETNODENAME:
979 case CCISS_GETHEARTBEAT:
980 case CCISS_GETBUSTYPES:
981 case CCISS_GETFIRMVER:
982 case CCISS_GETDRIVVER:
983 case CCISS_REVALIDVOLS:
984 case CCISS_DEREGDISK:
985 case CCISS_REGNEWDISK:
987 case CCISS_RESCANDISK:
988 case CCISS_GETLUNINFO:
989 return do_ioctl(bdev, mode, cmd, arg);
991 case CCISS_PASSTHRU32:
992 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
993 case CCISS_BIG_PASSTHRU32:
994 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1001 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1002 unsigned cmd, unsigned long arg)
1004 IOCTL32_Command_struct __user *arg32 =
1005 (IOCTL32_Command_struct __user *) arg;
1006 IOCTL_Command_struct arg64;
1007 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1013 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1014 sizeof(arg64.LUN_info));
1016 copy_from_user(&arg64.Request, &arg32->Request,
1017 sizeof(arg64.Request));
1019 copy_from_user(&arg64.error_info, &arg32->error_info,
1020 sizeof(arg64.error_info));
1021 err |= get_user(arg64.buf_size, &arg32->buf_size);
1022 err |= get_user(cp, &arg32->buf);
1023 arg64.buf = compat_ptr(cp);
1024 err |= copy_to_user(p, &arg64, sizeof(arg64));
1029 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1033 copy_in_user(&arg32->error_info, &p->error_info,
1034 sizeof(arg32->error_info));
1040 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1041 unsigned cmd, unsigned long arg)
1043 BIG_IOCTL32_Command_struct __user *arg32 =
1044 (BIG_IOCTL32_Command_struct __user *) arg;
1045 BIG_IOCTL_Command_struct arg64;
1046 BIG_IOCTL_Command_struct __user *p =
1047 compat_alloc_user_space(sizeof(arg64));
1053 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1054 sizeof(arg64.LUN_info));
1056 copy_from_user(&arg64.Request, &arg32->Request,
1057 sizeof(arg64.Request));
1059 copy_from_user(&arg64.error_info, &arg32->error_info,
1060 sizeof(arg64.error_info));
1061 err |= get_user(arg64.buf_size, &arg32->buf_size);
1062 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1063 err |= get_user(cp, &arg32->buf);
1064 arg64.buf = compat_ptr(cp);
1065 err |= copy_to_user(p, &arg64, sizeof(arg64));
1070 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1074 copy_in_user(&arg32->error_info, &p->error_info,
1075 sizeof(arg32->error_info));
1082 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1084 drive_info_struct *drv = get_drv(bdev->bd_disk);
1086 if (!drv->cylinders)
1089 geo->heads = drv->heads;
1090 geo->sectors = drv->sectors;
1091 geo->cylinders = drv->cylinders;
1095 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1097 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1098 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1099 (void)check_for_unit_attention(host, c);
1104 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1105 unsigned int cmd, unsigned long arg)
1107 struct gendisk *disk = bdev->bd_disk;
1108 ctlr_info_t *host = get_host(disk);
1109 drive_info_struct *drv = get_drv(disk);
1110 int ctlr = host->ctlr;
1111 void __user *argp = (void __user *)arg;
1114 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1115 #endif /* CCISS_DEBUG */
1118 case CCISS_GETPCIINFO:
1120 cciss_pci_info_struct pciinfo;
1124 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1125 pciinfo.bus = host->pdev->bus->number;
1126 pciinfo.dev_fn = host->pdev->devfn;
1127 pciinfo.board_id = host->board_id;
1129 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1133 case CCISS_GETINTINFO:
1135 cciss_coalint_struct intinfo;
1139 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1141 readl(&host->cfgtable->HostWrite.CoalIntCount);
1143 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1147 case CCISS_SETINTINFO:
1149 cciss_coalint_struct intinfo;
1150 unsigned long flags;
1155 if (!capable(CAP_SYS_ADMIN))
1158 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1160 if ((intinfo.delay == 0) && (intinfo.count == 0))
1162 // printk("cciss_ioctl: delay and count cannot be 0\n");
1165 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1166 /* Update the field, and then ring the doorbell */
1167 writel(intinfo.delay,
1168 &(host->cfgtable->HostWrite.CoalIntDelay));
1169 writel(intinfo.count,
1170 &(host->cfgtable->HostWrite.CoalIntCount));
1171 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1173 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1174 if (!(readl(host->vaddr + SA5_DOORBELL)
1175 & CFGTBL_ChangeReq))
1177 /* delay and try again */
1180 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1181 if (i >= MAX_IOCTL_CONFIG_WAIT)
1185 case CCISS_GETNODENAME:
1187 NodeName_type NodeName;
1192 for (i = 0; i < 16; i++)
1194 readb(&host->cfgtable->ServerName[i]);
1195 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1199 case CCISS_SETNODENAME:
1201 NodeName_type NodeName;
1202 unsigned long flags;
1207 if (!capable(CAP_SYS_ADMIN))
1211 (NodeName, argp, sizeof(NodeName_type)))
1214 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1216 /* Update the field, and then ring the doorbell */
1217 for (i = 0; i < 16; i++)
1219 &host->cfgtable->ServerName[i]);
1221 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1223 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1224 if (!(readl(host->vaddr + SA5_DOORBELL)
1225 & CFGTBL_ChangeReq))
1227 /* delay and try again */
1230 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1231 if (i >= MAX_IOCTL_CONFIG_WAIT)
1236 case CCISS_GETHEARTBEAT:
1238 Heartbeat_type heartbeat;
1242 heartbeat = readl(&host->cfgtable->HeartBeat);
1244 (argp, &heartbeat, sizeof(Heartbeat_type)))
1248 case CCISS_GETBUSTYPES:
1250 BusTypes_type BusTypes;
1254 BusTypes = readl(&host->cfgtable->BusTypes);
1256 (argp, &BusTypes, sizeof(BusTypes_type)))
1260 case CCISS_GETFIRMVER:
1262 FirmwareVer_type firmware;
1266 memcpy(firmware, host->firm_ver, 4);
1269 (argp, firmware, sizeof(FirmwareVer_type)))
1273 case CCISS_GETDRIVVER:
1275 DriverVer_type DriverVer = DRIVER_VERSION;
1281 (argp, &DriverVer, sizeof(DriverVer_type)))
1286 case CCISS_DEREGDISK:
1288 case CCISS_REVALIDVOLS:
1289 return rebuild_lun_table(host, 0, 1);
1291 case CCISS_GETLUNINFO:{
1292 LogvolInfo_struct luninfo;
1294 memcpy(&luninfo.LunID, drv->LunID,
1295 sizeof(luninfo.LunID));
1296 luninfo.num_opens = drv->usage_count;
1297 luninfo.num_parts = 0;
1298 if (copy_to_user(argp, &luninfo,
1299 sizeof(LogvolInfo_struct)))
1303 case CCISS_PASSTHRU:
1305 IOCTL_Command_struct iocommand;
1306 CommandList_struct *c;
1309 unsigned long flags;
1310 DECLARE_COMPLETION_ONSTACK(wait);
1315 if (!capable(CAP_SYS_RAWIO))
1319 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1321 if ((iocommand.buf_size < 1) &&
1322 (iocommand.Request.Type.Direction != XFER_NONE)) {
1325 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1326 /* Check kmalloc limits */
1327 if (iocommand.buf_size > 128000)
1330 if (iocommand.buf_size > 0) {
1331 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1335 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1336 /* Copy the data into the buffer we created */
1338 (buff, iocommand.buf, iocommand.buf_size)) {
1343 memset(buff, 0, iocommand.buf_size);
1345 if ((c = cmd_alloc(host, 0)) == NULL) {
1349 // Fill in the command type
1350 c->cmd_type = CMD_IOCTL_PEND;
1351 // Fill in Command Header
1352 c->Header.ReplyQueue = 0; // unused in simple mode
1353 if (iocommand.buf_size > 0) // buffer to fill
1355 c->Header.SGList = 1;
1356 c->Header.SGTotal = 1;
1357 } else // no buffers to fill
1359 c->Header.SGList = 0;
1360 c->Header.SGTotal = 0;
1362 c->Header.LUN = iocommand.LUN_info;
1363 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1365 // Fill in Request block
1366 c->Request = iocommand.Request;
1368 // Fill in the scatter gather information
1369 if (iocommand.buf_size > 0) {
1370 temp64.val = pci_map_single(host->pdev, buff,
1372 PCI_DMA_BIDIRECTIONAL);
1373 c->SG[0].Addr.lower = temp64.val32.lower;
1374 c->SG[0].Addr.upper = temp64.val32.upper;
1375 c->SG[0].Len = iocommand.buf_size;
1376 c->SG[0].Ext = 0; // we are not chaining
1380 /* Put the request on the tail of the request queue */
1381 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1382 addQ(&host->reqQ, c);
1385 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1387 wait_for_completion(&wait);
1389 /* unlock the buffers from DMA */
1390 temp64.val32.lower = c->SG[0].Addr.lower;
1391 temp64.val32.upper = c->SG[0].Addr.upper;
1392 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1394 PCI_DMA_BIDIRECTIONAL);
1396 check_ioctl_unit_attention(host, c);
1398 /* Copy the error information out */
1399 iocommand.error_info = *(c->err_info);
1401 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1403 cmd_free(host, c, 0);
1407 if (iocommand.Request.Type.Direction == XFER_READ) {
1408 /* Copy the data out of the buffer we created */
1410 (iocommand.buf, buff, iocommand.buf_size)) {
1412 cmd_free(host, c, 0);
1417 cmd_free(host, c, 0);
1420 case CCISS_BIG_PASSTHRU:{
1421 BIG_IOCTL_Command_struct *ioc;
1422 CommandList_struct *c;
1423 unsigned char **buff = NULL;
1424 int *buff_size = NULL;
1426 unsigned long flags;
1430 DECLARE_COMPLETION_ONSTACK(wait);
1433 BYTE __user *data_ptr;
1437 if (!capable(CAP_SYS_RAWIO))
1439 ioc = (BIG_IOCTL_Command_struct *)
1440 kmalloc(sizeof(*ioc), GFP_KERNEL);
1445 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1449 if ((ioc->buf_size < 1) &&
1450 (ioc->Request.Type.Direction != XFER_NONE)) {
1454 /* Check kmalloc limits using all SGs */
1455 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1459 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1464 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1469 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1475 left = ioc->buf_size;
1476 data_ptr = ioc->buf;
1479 ioc->malloc_size) ? ioc->
1481 buff_size[sg_used] = sz;
1482 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1483 if (buff[sg_used] == NULL) {
1487 if (ioc->Request.Type.Direction == XFER_WRITE) {
1489 (buff[sg_used], data_ptr, sz)) {
1494 memset(buff[sg_used], 0, sz);
1500 if ((c = cmd_alloc(host, 0)) == NULL) {
1504 c->cmd_type = CMD_IOCTL_PEND;
1505 c->Header.ReplyQueue = 0;
1507 if (ioc->buf_size > 0) {
1508 c->Header.SGList = sg_used;
1509 c->Header.SGTotal = sg_used;
1511 c->Header.SGList = 0;
1512 c->Header.SGTotal = 0;
1514 c->Header.LUN = ioc->LUN_info;
1515 c->Header.Tag.lower = c->busaddr;
1517 c->Request = ioc->Request;
1518 if (ioc->buf_size > 0) {
1520 for (i = 0; i < sg_used; i++) {
1522 pci_map_single(host->pdev, buff[i],
1524 PCI_DMA_BIDIRECTIONAL);
1525 c->SG[i].Addr.lower =
1527 c->SG[i].Addr.upper =
1529 c->SG[i].Len = buff_size[i];
1530 c->SG[i].Ext = 0; /* we are not chaining */
1534 /* Put the request on the tail of the request queue */
1535 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1536 addQ(&host->reqQ, c);
1539 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1540 wait_for_completion(&wait);
1541 /* unlock the buffers from DMA */
1542 for (i = 0; i < sg_used; i++) {
1543 temp64.val32.lower = c->SG[i].Addr.lower;
1544 temp64.val32.upper = c->SG[i].Addr.upper;
1545 pci_unmap_single(host->pdev,
1546 (dma_addr_t) temp64.val, buff_size[i],
1547 PCI_DMA_BIDIRECTIONAL);
1549 check_ioctl_unit_attention(host, c);
1550 /* Copy the error information out */
1551 ioc->error_info = *(c->err_info);
1552 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1553 cmd_free(host, c, 0);
1557 if (ioc->Request.Type.Direction == XFER_READ) {
1558 /* Copy the data out of the buffer we created */
1559 BYTE __user *ptr = ioc->buf;
1560 for (i = 0; i < sg_used; i++) {
1562 (ptr, buff[i], buff_size[i])) {
1563 cmd_free(host, c, 0);
1567 ptr += buff_size[i];
1570 cmd_free(host, c, 0);
1574 for (i = 0; i < sg_used; i++)
1583 /* scsi_cmd_ioctl handles these, below, though some are not */
1584 /* very meaningful for cciss. SG_IO is the main one people want. */
1586 case SG_GET_VERSION_NUM:
1587 case SG_SET_TIMEOUT:
1588 case SG_GET_TIMEOUT:
1589 case SG_GET_RESERVED_SIZE:
1590 case SG_SET_RESERVED_SIZE:
1591 case SG_EMULATED_HOST:
1593 case SCSI_IOCTL_SEND_COMMAND:
1594 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1596 /* scsi_cmd_ioctl would normally handle these, below, but */
1597 /* they aren't a good fit for cciss, as CD-ROMs are */
1598 /* not supported, and we don't have any bus/target/lun */
1599 /* which we present to the kernel. */
1601 case CDROM_SEND_PACKET:
1602 case CDROMCLOSETRAY:
1604 case SCSI_IOCTL_GET_IDLUN:
1605 case SCSI_IOCTL_GET_BUS_NUMBER:
1611 static void cciss_check_queues(ctlr_info_t *h)
1613 int start_queue = h->next_to_run;
1616 /* check to see if we have maxed out the number of commands that can
1617 * be placed on the queue. If so then exit. We do this check here
1618 * in case the interrupt we serviced was from an ioctl and did not
1619 * free any new commands.
1621 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1624 /* We have room on the queue for more commands. Now we need to queue
1625 * them up. We will also keep track of the next queue to run so
1626 * that every queue gets a chance to be started first.
1628 for (i = 0; i < h->highest_lun + 1; i++) {
1629 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1630 /* make sure the disk has been added and the drive is real
1631 * because this can be called from the middle of init_one.
1633 if (!h->drv[curr_queue])
1635 if (!(h->drv[curr_queue]->queue) ||
1636 !(h->drv[curr_queue]->heads))
1638 blk_start_queue(h->gendisk[curr_queue]->queue);
1640 /* check to see if we have maxed out the number of commands
1641 * that can be placed on the queue.
1643 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1644 if (curr_queue == start_queue) {
1646 (start_queue + 1) % (h->highest_lun + 1);
1649 h->next_to_run = curr_queue;
1656 static void cciss_softirq_done(struct request *rq)
1658 CommandList_struct *cmd = rq->completion_data;
1659 ctlr_info_t *h = hba[cmd->ctlr];
1660 unsigned long flags;
1664 if (cmd->Request.Type.Direction == XFER_READ)
1665 ddir = PCI_DMA_FROMDEVICE;
1667 ddir = PCI_DMA_TODEVICE;
1669 /* command did not need to be retried */
1670 /* unmap the DMA mapping for all the scatter gather elements */
1671 for (i = 0; i < cmd->Header.SGList; i++) {
1672 temp64.val32.lower = cmd->SG[i].Addr.lower;
1673 temp64.val32.upper = cmd->SG[i].Addr.upper;
1674 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1678 printk("Done with %p\n", rq);
1679 #endif /* CCISS_DEBUG */
1681 /* set the residual count for pc requests */
1682 if (blk_pc_request(rq))
1683 rq->resid_len = cmd->err_info->ResidualCnt;
1685 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1687 spin_lock_irqsave(&h->lock, flags);
1688 cmd_free(h, cmd, 1);
1689 cciss_check_queues(h);
1690 spin_unlock_irqrestore(&h->lock, flags);
1693 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1694 unsigned char scsi3addr[], uint32_t log_unit)
1696 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1697 sizeof(h->drv[log_unit]->LunID));
1700 /* This function gets the SCSI vendor, model, and revision of a logical drive
1701 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1702 * they cannot be read.
1704 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1705 char *vendor, char *model, char *rev)
1708 InquiryData_struct *inq_buf;
1709 unsigned char scsi3addr[8];
1715 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1719 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1721 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1722 sizeof(InquiryData_struct), 0,
1723 scsi3addr, TYPE_CMD);
1725 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1726 sizeof(InquiryData_struct), 0,
1727 scsi3addr, TYPE_CMD);
1729 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1730 vendor[VENDOR_LEN] = '\0';
1731 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1732 model[MODEL_LEN] = '\0';
1733 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1734 rev[REV_LEN] = '\0';
1741 /* This function gets the serial number of a logical drive via
1742 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1743 * number cannot be had, for whatever reason, 16 bytes of 0xff
1744 * are returned instead.
1746 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1747 unsigned char *serial_no, int buflen)
1749 #define PAGE_83_INQ_BYTES 64
1752 unsigned char scsi3addr[8];
1756 memset(serial_no, 0xff, buflen);
1757 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1760 memset(serial_no, 0, buflen);
1761 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1763 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1764 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1766 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1767 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1769 memcpy(serial_no, &buf[8], buflen);
1775 * cciss_add_disk sets up the block device queue for a logical drive
1777 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1780 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1782 goto init_queue_failure;
1783 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1784 disk->major = h->major;
1785 disk->first_minor = drv_index << NWD_SHIFT;
1786 disk->fops = &cciss_fops;
1787 if (cciss_create_ld_sysfs_entry(h, drv_index))
1789 disk->private_data = h->drv[drv_index];
1790 disk->driverfs_dev = &h->drv[drv_index]->dev;
1792 /* Set up queue information */
1793 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1795 /* This is a hardware imposed limit. */
1796 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1798 /* This is a limit in the driver and could be eliminated. */
1799 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1801 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1803 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1805 disk->queue->queuedata = h;
1807 blk_queue_logical_block_size(disk->queue,
1808 h->drv[drv_index]->block_size);
1810 /* Make sure all queue data is written out before */
1811 /* setting h->drv[drv_index]->queue, as setting this */
1812 /* allows the interrupt handler to start the queue */
1814 h->drv[drv_index]->queue = disk->queue;
1819 blk_cleanup_queue(disk->queue);
1825 /* This function will check the usage_count of the drive to be updated/added.
1826 * If the usage_count is zero and it is a heretofore unknown drive, or,
1827 * the drive's capacity, geometry, or serial number has changed,
1828 * then the drive information will be updated and the disk will be
1829 * re-registered with the kernel. If these conditions don't hold,
1830 * then it will be left alone for the next reboot. The exception to this
1831 * is disk 0 which will always be left registered with the kernel since it
1832 * is also the controller node. Any changes to disk 0 will show up on
1835 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1838 ctlr_info_t *h = hba[ctlr];
1839 struct gendisk *disk;
1840 InquiryData_struct *inq_buff = NULL;
1841 unsigned int block_size;
1842 sector_t total_size;
1843 unsigned long flags = 0;
1845 drive_info_struct *drvinfo;
1847 /* Get information about the disk and modify the driver structure */
1848 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1849 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1850 if (inq_buff == NULL || drvinfo == NULL)
1853 /* testing to see if 16-byte CDBs are already being used */
1854 if (h->cciss_read == CCISS_READ_16) {
1855 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1856 &total_size, &block_size);
1859 cciss_read_capacity(ctlr, drv_index, 1,
1860 &total_size, &block_size);
1862 /* if read_capacity returns all F's this volume is >2TB */
1863 /* in size so we switch to 16-byte CDB's for all */
1864 /* read/write ops */
1865 if (total_size == 0xFFFFFFFFULL) {
1866 cciss_read_capacity_16(ctlr, drv_index, 1,
1867 &total_size, &block_size);
1868 h->cciss_read = CCISS_READ_16;
1869 h->cciss_write = CCISS_WRITE_16;
1871 h->cciss_read = CCISS_READ_10;
1872 h->cciss_write = CCISS_WRITE_10;
1876 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1878 drvinfo->block_size = block_size;
1879 drvinfo->nr_blocks = total_size + 1;
1881 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1882 drvinfo->model, drvinfo->rev);
1883 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1884 sizeof(drvinfo->serial_no));
1885 /* Save the lunid in case we deregister the disk, below. */
1886 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1887 sizeof(drvinfo->LunID));
1889 /* Is it the same disk we already know, and nothing's changed? */
1890 if (h->drv[drv_index]->raid_level != -1 &&
1891 ((memcmp(drvinfo->serial_no,
1892 h->drv[drv_index]->serial_no, 16) == 0) &&
1893 drvinfo->block_size == h->drv[drv_index]->block_size &&
1894 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1895 drvinfo->heads == h->drv[drv_index]->heads &&
1896 drvinfo->sectors == h->drv[drv_index]->sectors &&
1897 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1898 /* The disk is unchanged, nothing to update */
1901 /* If we get here it's not the same disk, or something's changed,
1902 * so we need to * deregister it, and re-register it, if it's not
1904 * If the disk already exists then deregister it before proceeding
1905 * (unless it's the first disk (for the controller node).
1907 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1908 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1909 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1910 h->drv[drv_index]->busy_configuring = 1;
1911 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1913 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1914 * which keeps the interrupt handler from starting
1917 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1920 /* If the disk is in use return */
1924 /* Save the new information from cciss_geometry_inquiry
1925 * and serial number inquiry. If the disk was deregistered
1926 * above, then h->drv[drv_index] will be NULL.
1928 if (h->drv[drv_index] == NULL) {
1929 drvinfo->device_initialized = 0;
1930 h->drv[drv_index] = drvinfo;
1931 drvinfo = NULL; /* so it won't be freed below. */
1933 /* special case for cxd0 */
1934 h->drv[drv_index]->block_size = drvinfo->block_size;
1935 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1936 h->drv[drv_index]->heads = drvinfo->heads;
1937 h->drv[drv_index]->sectors = drvinfo->sectors;
1938 h->drv[drv_index]->cylinders = drvinfo->cylinders;
1939 h->drv[drv_index]->raid_level = drvinfo->raid_level;
1940 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1941 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1943 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1944 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1948 disk = h->gendisk[drv_index];
1949 set_capacity(disk, h->drv[drv_index]->nr_blocks);
1951 /* If it's not disk 0 (drv_index != 0)
1952 * or if it was disk 0, but there was previously
1953 * no actual corresponding configured logical drive
1954 * (raid_leve == -1) then we want to update the
1955 * logical drive's information.
1957 if (drv_index || first_time) {
1958 if (cciss_add_disk(h, disk, drv_index) != 0) {
1959 cciss_free_gendisk(h, drv_index);
1960 cciss_free_drive_info(h, drv_index);
1961 printk(KERN_WARNING "cciss:%d could not update "
1962 "disk %d\n", h->ctlr, drv_index);
1972 printk(KERN_ERR "cciss: out of memory\n");
1976 /* This function will find the first index of the controllers drive array
1977 * that has a null drv pointer and allocate the drive info struct and
1978 * will return that index This is where new drives will be added.
1979 * If the index to be returned is greater than the highest_lun index for
1980 * the controller then highest_lun is set * to this new index.
1981 * If there are no available indexes or if tha allocation fails, then -1
1982 * is returned. * "controller_node" is used to know if this is a real
1983 * logical drive, or just the controller node, which determines if this
1984 * counts towards highest_lun.
1986 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1989 drive_info_struct *drv;
1991 /* Search for an empty slot for our drive info */
1992 for (i = 0; i < CISS_MAX_LUN; i++) {
1994 /* if not cxd0 case, and it's occupied, skip it. */
1995 if (h->drv[i] && i != 0)
1998 * If it's cxd0 case, and drv is alloc'ed already, and a
1999 * disk is configured there, skip it.
2001 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2005 * We've found an empty slot. Update highest_lun
2006 * provided this isn't just the fake cxd0 controller node.
2008 if (i > h->highest_lun && !controller_node)
2011 /* If adding a real disk at cxd0, and it's already alloc'ed */
2012 if (i == 0 && h->drv[i] != NULL)
2016 * Found an empty slot, not already alloc'ed. Allocate it.
2017 * Mark it with raid_level == -1, so we know it's new later on.
2019 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2022 drv->raid_level = -1; /* so we know it's new */
2029 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2031 kfree(h->drv[drv_index]);
2032 h->drv[drv_index] = NULL;
2035 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2037 put_disk(h->gendisk[drv_index]);
2038 h->gendisk[drv_index] = NULL;
2041 /* cciss_add_gendisk finds a free hba[]->drv structure
2042 * and allocates a gendisk if needed, and sets the lunid
2043 * in the drvinfo structure. It returns the index into
2044 * the ->drv[] array, or -1 if none are free.
2045 * is_controller_node indicates whether highest_lun should
2046 * count this disk, or if it's only being added to provide
2047 * a means to talk to the controller in case no logical
2048 * drives have yet been configured.
2050 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2051 int controller_node)
2055 drv_index = cciss_alloc_drive_info(h, controller_node);
2056 if (drv_index == -1)
2059 /*Check if the gendisk needs to be allocated */
2060 if (!h->gendisk[drv_index]) {
2061 h->gendisk[drv_index] =
2062 alloc_disk(1 << NWD_SHIFT);
2063 if (!h->gendisk[drv_index]) {
2064 printk(KERN_ERR "cciss%d: could not "
2065 "allocate a new disk %d\n",
2066 h->ctlr, drv_index);
2067 goto err_free_drive_info;
2070 memcpy(h->drv[drv_index]->LunID, lunid,
2071 sizeof(h->drv[drv_index]->LunID));
2072 if (cciss_create_ld_sysfs_entry(h, drv_index))
2074 /* Don't need to mark this busy because nobody */
2075 /* else knows about this disk yet to contend */
2076 /* for access to it. */
2077 h->drv[drv_index]->busy_configuring = 0;
2082 cciss_free_gendisk(h, drv_index);
2083 err_free_drive_info:
2084 cciss_free_drive_info(h, drv_index);
2088 /* This is for the special case of a controller which
2089 * has no logical drives. In this case, we still need
2090 * to register a disk so the controller can be accessed
2091 * by the Array Config Utility.
2093 static void cciss_add_controller_node(ctlr_info_t *h)
2095 struct gendisk *disk;
2098 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2101 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2102 if (drv_index == -1)
2104 h->drv[drv_index]->block_size = 512;
2105 h->drv[drv_index]->nr_blocks = 0;
2106 h->drv[drv_index]->heads = 0;
2107 h->drv[drv_index]->sectors = 0;
2108 h->drv[drv_index]->cylinders = 0;
2109 h->drv[drv_index]->raid_level = -1;
2110 memset(h->drv[drv_index]->serial_no, 0, 16);
2111 disk = h->gendisk[drv_index];
2112 if (cciss_add_disk(h, disk, drv_index) == 0)
2114 cciss_free_gendisk(h, drv_index);
2115 cciss_free_drive_info(h, drv_index);
2117 printk(KERN_WARNING "cciss%d: could not "
2118 "add disk 0.\n", h->ctlr);
2122 /* This function will add and remove logical drives from the Logical
2123 * drive array of the controller and maintain persistency of ordering
2124 * so that mount points are preserved until the next reboot. This allows
2125 * for the removal of logical drives in the middle of the drive array
2126 * without a re-ordering of those drives.
2128 * h = The controller to perform the operations on
2130 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2135 ReportLunData_struct *ld_buff = NULL;
2141 unsigned char lunid[8] = CTLR_LUNID;
2142 unsigned long flags;
2144 if (!capable(CAP_SYS_RAWIO))
2147 /* Set busy_configuring flag for this operation */
2148 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2149 if (h->busy_configuring) {
2150 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2153 h->busy_configuring = 1;
2154 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2156 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2157 if (ld_buff == NULL)
2160 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2161 sizeof(ReportLunData_struct),
2162 0, CTLR_LUNID, TYPE_CMD);
2164 if (return_code == IO_OK)
2165 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2166 else { /* reading number of logical volumes failed */
2167 printk(KERN_WARNING "cciss: report logical volume"
2168 " command failed\n");
2173 num_luns = listlength / 8; /* 8 bytes per entry */
2174 if (num_luns > CISS_MAX_LUN) {
2175 num_luns = CISS_MAX_LUN;
2176 printk(KERN_WARNING "cciss: more luns configured"
2177 " on controller than can be handled by"
2182 cciss_add_controller_node(h);
2184 /* Compare controller drive array to driver's drive array
2185 * to see if any drives are missing on the controller due
2186 * to action of Array Config Utility (user deletes drive)
2187 * and deregister logical drives which have disappeared.
2189 for (i = 0; i <= h->highest_lun; i++) {
2193 /* skip holes in the array from already deleted drives */
2194 if (h->drv[i] == NULL)
2197 for (j = 0; j < num_luns; j++) {
2198 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2199 if (memcmp(h->drv[i]->LunID, lunid,
2200 sizeof(lunid)) == 0) {
2206 /* Deregister it from the OS, it's gone. */
2207 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2208 h->drv[i]->busy_configuring = 1;
2209 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2210 return_code = deregister_disk(h, i, 1, via_ioctl);
2211 if (h->drv[i] != NULL)
2212 h->drv[i]->busy_configuring = 0;
2216 /* Compare controller drive array to driver's drive array.
2217 * Check for updates in the drive information and any new drives
2218 * on the controller due to ACU adding logical drives, or changing
2219 * a logical drive's size, etc. Reregister any new/changed drives
2221 for (i = 0; i < num_luns; i++) {
2226 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2227 /* Find if the LUN is already in the drive array
2228 * of the driver. If so then update its info
2229 * if not in use. If it does not exist then find
2230 * the first free index and add it.
2232 for (j = 0; j <= h->highest_lun; j++) {
2233 if (h->drv[j] != NULL &&
2234 memcmp(h->drv[j]->LunID, lunid,
2235 sizeof(h->drv[j]->LunID)) == 0) {
2242 /* check if the drive was found already in the array */
2244 drv_index = cciss_add_gendisk(h, lunid, 0);
2245 if (drv_index == -1)
2248 cciss_update_drive_info(ctlr, drv_index, first_time,
2254 h->busy_configuring = 0;
2255 /* We return -1 here to tell the ACU that we have registered/updated
2256 * all of the drives that we can and to keep it from calling us
2261 printk(KERN_ERR "cciss: out of memory\n");
2262 h->busy_configuring = 0;
2266 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2268 /* zero out the disk size info */
2269 drive_info->nr_blocks = 0;
2270 drive_info->block_size = 0;
2271 drive_info->heads = 0;
2272 drive_info->sectors = 0;
2273 drive_info->cylinders = 0;
2274 drive_info->raid_level = -1;
2275 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2276 memset(drive_info->model, 0, sizeof(drive_info->model));
2277 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2278 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2280 * don't clear the LUNID though, we need to remember which
2285 /* This function will deregister the disk and it's queue from the
2286 * kernel. It must be called with the controller lock held and the
2287 * drv structures busy_configuring flag set. It's parameters are:
2289 * disk = This is the disk to be deregistered
2290 * drv = This is the drive_info_struct associated with the disk to be
2291 * deregistered. It contains information about the disk used
2293 * clear_all = This flag determines whether or not the disk information
2294 * is going to be completely cleared out and the highest_lun
2295 * reset. Sometimes we want to clear out information about
2296 * the disk in preparation for re-adding it. In this case
2297 * the highest_lun should be left unchanged and the LunID
2298 * should not be cleared.
2300 * This indicates whether we've reached this path via ioctl.
2301 * This affects the maximum usage count allowed for c0d0 to be messed with.
2302 * If this path is reached via ioctl(), then the max_usage_count will
2303 * be 1, as the process calling ioctl() has got to have the device open.
2304 * If we get here via sysfs, then the max usage count will be zero.
2306 static int deregister_disk(ctlr_info_t *h, int drv_index,
2307 int clear_all, int via_ioctl)
2310 struct gendisk *disk;
2311 drive_info_struct *drv;
2312 int recalculate_highest_lun;
2314 if (!capable(CAP_SYS_RAWIO))
2317 drv = h->drv[drv_index];
2318 disk = h->gendisk[drv_index];
2320 /* make sure logical volume is NOT is use */
2321 if (clear_all || (h->gendisk[0] == disk)) {
2322 if (drv->usage_count > via_ioctl)
2324 } else if (drv->usage_count > 0)
2327 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2329 /* invalidate the devices and deregister the disk. If it is disk
2330 * zero do not deregister it but just zero out it's values. This
2331 * allows us to delete disk zero but keep the controller registered.
2333 if (h->gendisk[0] != disk) {
2334 struct request_queue *q = disk->queue;
2335 if (disk->flags & GENHD_FL_UP) {
2336 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2340 blk_cleanup_queue(q);
2341 /* If clear_all is set then we are deleting the logical
2342 * drive, not just refreshing its info. For drives
2343 * other than disk 0 we will call put_disk. We do not
2344 * do this for disk 0 as we need it to be able to
2345 * configure the controller.
2348 /* This isn't pretty, but we need to find the
2349 * disk in our array and NULL our the pointer.
2350 * This is so that we will call alloc_disk if
2351 * this index is used again later.
2353 for (i=0; i < CISS_MAX_LUN; i++){
2354 if (h->gendisk[i] == disk) {
2355 h->gendisk[i] = NULL;
2362 set_capacity(disk, 0);
2363 cciss_clear_drive_info(drv);
2368 /* if it was the last disk, find the new hightest lun */
2369 if (clear_all && recalculate_highest_lun) {
2370 int i, newhighest = -1;
2371 for (i = 0; i <= h->highest_lun; i++) {
2372 /* if the disk has size > 0, it is available */
2373 if (h->drv[i] && h->drv[i]->heads)
2376 h->highest_lun = newhighest;
2381 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2382 size_t size, __u8 page_code, unsigned char *scsi3addr,
2385 ctlr_info_t *h = hba[ctlr];
2386 u64bit buff_dma_handle;
2389 c->cmd_type = CMD_IOCTL_PEND;
2390 c->Header.ReplyQueue = 0;
2392 c->Header.SGList = 1;
2393 c->Header.SGTotal = 1;
2395 c->Header.SGList = 0;
2396 c->Header.SGTotal = 0;
2398 c->Header.Tag.lower = c->busaddr;
2399 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2401 c->Request.Type.Type = cmd_type;
2402 if (cmd_type == TYPE_CMD) {
2405 /* are we trying to read a vital product page */
2406 if (page_code != 0) {
2407 c->Request.CDB[1] = 0x01;
2408 c->Request.CDB[2] = page_code;
2410 c->Request.CDBLen = 6;
2411 c->Request.Type.Attribute = ATTR_SIMPLE;
2412 c->Request.Type.Direction = XFER_READ;
2413 c->Request.Timeout = 0;
2414 c->Request.CDB[0] = CISS_INQUIRY;
2415 c->Request.CDB[4] = size & 0xFF;
2417 case CISS_REPORT_LOG:
2418 case CISS_REPORT_PHYS:
2419 /* Talking to controller so It's a physical command
2420 mode = 00 target = 0. Nothing to write.
2422 c->Request.CDBLen = 12;
2423 c->Request.Type.Attribute = ATTR_SIMPLE;
2424 c->Request.Type.Direction = XFER_READ;
2425 c->Request.Timeout = 0;
2426 c->Request.CDB[0] = cmd;
2427 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2428 c->Request.CDB[7] = (size >> 16) & 0xFF;
2429 c->Request.CDB[8] = (size >> 8) & 0xFF;
2430 c->Request.CDB[9] = size & 0xFF;
2433 case CCISS_READ_CAPACITY:
2434 c->Request.CDBLen = 10;
2435 c->Request.Type.Attribute = ATTR_SIMPLE;
2436 c->Request.Type.Direction = XFER_READ;
2437 c->Request.Timeout = 0;
2438 c->Request.CDB[0] = cmd;
2440 case CCISS_READ_CAPACITY_16:
2441 c->Request.CDBLen = 16;
2442 c->Request.Type.Attribute = ATTR_SIMPLE;
2443 c->Request.Type.Direction = XFER_READ;
2444 c->Request.Timeout = 0;
2445 c->Request.CDB[0] = cmd;
2446 c->Request.CDB[1] = 0x10;
2447 c->Request.CDB[10] = (size >> 24) & 0xFF;
2448 c->Request.CDB[11] = (size >> 16) & 0xFF;
2449 c->Request.CDB[12] = (size >> 8) & 0xFF;
2450 c->Request.CDB[13] = size & 0xFF;
2451 c->Request.Timeout = 0;
2452 c->Request.CDB[0] = cmd;
2454 case CCISS_CACHE_FLUSH:
2455 c->Request.CDBLen = 12;
2456 c->Request.Type.Attribute = ATTR_SIMPLE;
2457 c->Request.Type.Direction = XFER_WRITE;
2458 c->Request.Timeout = 0;
2459 c->Request.CDB[0] = BMIC_WRITE;
2460 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2462 case TEST_UNIT_READY:
2463 c->Request.CDBLen = 6;
2464 c->Request.Type.Attribute = ATTR_SIMPLE;
2465 c->Request.Type.Direction = XFER_NONE;
2466 c->Request.Timeout = 0;
2470 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2473 } else if (cmd_type == TYPE_MSG) {
2475 case 0: /* ABORT message */
2476 c->Request.CDBLen = 12;
2477 c->Request.Type.Attribute = ATTR_SIMPLE;
2478 c->Request.Type.Direction = XFER_WRITE;
2479 c->Request.Timeout = 0;
2480 c->Request.CDB[0] = cmd; /* abort */
2481 c->Request.CDB[1] = 0; /* abort a command */
2482 /* buff contains the tag of the command to abort */
2483 memcpy(&c->Request.CDB[4], buff, 8);
2485 case 1: /* RESET message */
2486 c->Request.CDBLen = 16;
2487 c->Request.Type.Attribute = ATTR_SIMPLE;
2488 c->Request.Type.Direction = XFER_NONE;
2489 c->Request.Timeout = 0;
2490 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2491 c->Request.CDB[0] = cmd; /* reset */
2492 c->Request.CDB[1] = 0x03; /* reset a target */
2494 case 3: /* No-Op message */
2495 c->Request.CDBLen = 1;
2496 c->Request.Type.Attribute = ATTR_SIMPLE;
2497 c->Request.Type.Direction = XFER_WRITE;
2498 c->Request.Timeout = 0;
2499 c->Request.CDB[0] = cmd;
2503 "cciss%d: unknown message type %d\n", ctlr, cmd);
2508 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2511 /* Fill in the scatter gather information */
2513 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2515 PCI_DMA_BIDIRECTIONAL);
2516 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2517 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2518 c->SG[0].Len = size;
2519 c->SG[0].Ext = 0; /* we are not chaining */
2524 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2526 switch (c->err_info->ScsiStatus) {
2529 case SAM_STAT_CHECK_CONDITION:
2530 switch (0xf & c->err_info->SenseInfo[2]) {
2531 case 0: return IO_OK; /* no sense */
2532 case 1: return IO_OK; /* recovered error */
2534 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2535 "check condition, sense key = 0x%02x\n",
2536 h->ctlr, c->Request.CDB[0],
2537 c->err_info->SenseInfo[2]);
2541 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2542 "scsi status = 0x%02x\n", h->ctlr,
2543 c->Request.CDB[0], c->err_info->ScsiStatus);
2549 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2551 int return_status = IO_OK;
2553 if (c->err_info->CommandStatus == CMD_SUCCESS)
2556 switch (c->err_info->CommandStatus) {
2557 case CMD_TARGET_STATUS:
2558 return_status = check_target_status(h, c);
2560 case CMD_DATA_UNDERRUN:
2561 case CMD_DATA_OVERRUN:
2562 /* expected for inquiry and report lun commands */
2565 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2566 "reported invalid\n", c->Request.CDB[0]);
2567 return_status = IO_ERROR;
2569 case CMD_PROTOCOL_ERR:
2570 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2571 "protocol error \n", c->Request.CDB[0]);
2572 return_status = IO_ERROR;
2574 case CMD_HARDWARE_ERR:
2575 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2576 " hardware error\n", c->Request.CDB[0]);
2577 return_status = IO_ERROR;
2579 case CMD_CONNECTION_LOST:
2580 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2581 "connection lost\n", c->Request.CDB[0]);
2582 return_status = IO_ERROR;
2585 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2586 "aborted\n", c->Request.CDB[0]);
2587 return_status = IO_ERROR;
2589 case CMD_ABORT_FAILED:
2590 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2591 "abort failed\n", c->Request.CDB[0]);
2592 return_status = IO_ERROR;
2594 case CMD_UNSOLICITED_ABORT:
2596 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2598 return_status = IO_NEEDS_RETRY;
2601 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2602 "unknown status %x\n", c->Request.CDB[0],
2603 c->err_info->CommandStatus);
2604 return_status = IO_ERROR;
2606 return return_status;
2609 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2612 DECLARE_COMPLETION_ONSTACK(wait);
2613 u64bit buff_dma_handle;
2614 unsigned long flags;
2615 int return_status = IO_OK;
2619 /* Put the request on the tail of the queue and send it */
2620 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2624 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2626 wait_for_completion(&wait);
2628 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2631 return_status = process_sendcmd_error(h, c);
2633 if (return_status == IO_NEEDS_RETRY &&
2634 c->retry_count < MAX_CMD_RETRIES) {
2635 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2638 /* erase the old error information */
2639 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2640 return_status = IO_OK;
2641 INIT_COMPLETION(wait);
2646 /* unlock the buffers from DMA */
2647 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2648 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2649 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2650 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2651 return return_status;
2654 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2655 __u8 page_code, unsigned char scsi3addr[],
2658 ctlr_info_t *h = hba[ctlr];
2659 CommandList_struct *c;
2662 c = cmd_alloc(h, 0);
2665 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2666 scsi3addr, cmd_type);
2667 if (return_status == IO_OK)
2668 return_status = sendcmd_withirq_core(h, c, 1);
2671 return return_status;
2674 static void cciss_geometry_inquiry(int ctlr, int logvol,
2675 int withirq, sector_t total_size,
2676 unsigned int block_size,
2677 InquiryData_struct *inq_buff,
2678 drive_info_struct *drv)
2682 unsigned char scsi3addr[8];
2684 memset(inq_buff, 0, sizeof(InquiryData_struct));
2685 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2687 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2688 inq_buff, sizeof(*inq_buff),
2689 0xC1, scsi3addr, TYPE_CMD);
2691 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2692 sizeof(*inq_buff), 0xC1, scsi3addr,
2694 if (return_code == IO_OK) {
2695 if (inq_buff->data_byte[8] == 0xFF) {
2697 "cciss: reading geometry failed, volume "
2698 "does not support reading geometry\n");
2700 drv->sectors = 32; // Sectors per track
2701 drv->cylinders = total_size + 1;
2702 drv->raid_level = RAID_UNKNOWN;
2704 drv->heads = inq_buff->data_byte[6];
2705 drv->sectors = inq_buff->data_byte[7];
2706 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2707 drv->cylinders += inq_buff->data_byte[5];
2708 drv->raid_level = inq_buff->data_byte[8];
2710 drv->block_size = block_size;
2711 drv->nr_blocks = total_size + 1;
2712 t = drv->heads * drv->sectors;
2714 sector_t real_size = total_size + 1;
2715 unsigned long rem = sector_div(real_size, t);
2718 drv->cylinders = real_size;
2720 } else { /* Get geometry failed */
2721 printk(KERN_WARNING "cciss: reading geometry failed\n");
2726 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2727 unsigned int *block_size)
2729 ReadCapdata_struct *buf;
2731 unsigned char scsi3addr[8];
2733 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2735 printk(KERN_WARNING "cciss: out of memory\n");
2739 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2741 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2742 ctlr, buf, sizeof(ReadCapdata_struct),
2743 0, scsi3addr, TYPE_CMD);
2745 return_code = sendcmd(CCISS_READ_CAPACITY,
2746 ctlr, buf, sizeof(ReadCapdata_struct),
2747 0, scsi3addr, TYPE_CMD);
2748 if (return_code == IO_OK) {
2749 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2750 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2751 } else { /* read capacity command failed */
2752 printk(KERN_WARNING "cciss: read capacity failed\n");
2754 *block_size = BLOCK_SIZE;
2760 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2762 ReadCapdata_struct_16 *buf;
2764 unsigned char scsi3addr[8];
2766 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2768 printk(KERN_WARNING "cciss: out of memory\n");
2772 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2774 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2775 ctlr, buf, sizeof(ReadCapdata_struct_16),
2776 0, scsi3addr, TYPE_CMD);
2779 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2780 ctlr, buf, sizeof(ReadCapdata_struct_16),
2781 0, scsi3addr, TYPE_CMD);
2783 if (return_code == IO_OK) {
2784 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2785 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2786 } else { /* read capacity command failed */
2787 printk(KERN_WARNING "cciss: read capacity failed\n");
2789 *block_size = BLOCK_SIZE;
2791 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2792 (unsigned long long)*total_size+1, *block_size);
2796 static int cciss_revalidate(struct gendisk *disk)
2798 ctlr_info_t *h = get_host(disk);
2799 drive_info_struct *drv = get_drv(disk);
2802 unsigned int block_size;
2803 sector_t total_size;
2804 InquiryData_struct *inq_buff = NULL;
2806 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2807 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2808 sizeof(drv->LunID)) == 0) {
2817 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2818 if (inq_buff == NULL) {
2819 printk(KERN_WARNING "cciss: out of memory\n");
2822 if (h->cciss_read == CCISS_READ_10) {
2823 cciss_read_capacity(h->ctlr, logvol, 1,
2824 &total_size, &block_size);
2826 cciss_read_capacity_16(h->ctlr, logvol, 1,
2827 &total_size, &block_size);
2829 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2832 blk_queue_logical_block_size(drv->queue, drv->block_size);
2833 set_capacity(disk, drv->nr_blocks);
2840 * Wait polling for a command to complete.
2841 * The memory mapped FIFO is polled for the completion.
2842 * Used only at init time, interrupts from the HBA are disabled.
2844 static unsigned long pollcomplete(int ctlr)
2849 /* Wait (up to 20 seconds) for a command to complete */
2851 for (i = 20 * HZ; i > 0; i--) {
2852 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2853 if (done == FIFO_EMPTY)
2854 schedule_timeout_uninterruptible(1);
2858 /* Invalid address to tell caller we ran out of time */
2862 /* Send command c to controller h and poll for it to complete.
2863 * Turns interrupts off on the board. Used at driver init time
2864 * and during SCSI error recovery.
2866 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2869 unsigned long complete;
2870 int status = IO_ERROR;
2871 u64bit buff_dma_handle;
2875 /* Disable interrupt on the board. */
2876 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2878 /* Make sure there is room in the command FIFO */
2879 /* Actually it should be completely empty at this time */
2880 /* unless we are in here doing error handling for the scsi */
2881 /* tape side of the driver. */
2882 for (i = 200000; i > 0; i--) {
2883 /* if fifo isn't full go */
2884 if (!(h->access.fifo_full(h)))
2887 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2888 " waiting!\n", h->ctlr);
2890 h->access.submit_command(h, c); /* Send the cmd */
2892 complete = pollcomplete(h->ctlr);
2895 printk(KERN_DEBUG "cciss: command completed\n");
2896 #endif /* CCISS_DEBUG */
2898 if (complete == 1) {
2900 "cciss cciss%d: SendCmd Timeout out, "
2901 "No command list address returned!\n", h->ctlr);
2906 /* Make sure it's the command we're expecting. */
2907 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2908 printk(KERN_WARNING "cciss%d: Unexpected command "
2909 "completion.\n", h->ctlr);
2913 /* It is our command. If no error, we're done. */
2914 if (!(complete & CISS_ERROR_BIT)) {
2919 /* There is an error... */
2921 /* if data overrun or underun on Report command ignore it */
2922 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2923 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2924 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2925 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2926 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2927 complete = c->busaddr;
2932 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2933 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2935 if (c->retry_count < MAX_CMD_RETRIES) {
2936 printk(KERN_WARNING "cciss%d: retrying %p\n",
2939 /* erase the old error information */
2940 memset(c->err_info, 0, sizeof(c->err_info));
2943 printk(KERN_WARNING "cciss%d: retried %p too many "
2944 "times\n", h->ctlr, c);
2949 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2950 printk(KERN_WARNING "cciss%d: command could not be "
2951 "aborted.\n", h->ctlr);
2956 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2957 status = check_target_status(h, c);
2961 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2962 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2963 c->Request.CDB[0], c->err_info->CommandStatus);
2969 /* unlock the data buffer from DMA */
2970 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2971 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2972 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2973 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2978 * Send a command to the controller, and wait for it to complete.
2979 * Used at init time, and during SCSI error recovery.
2981 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2982 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2984 CommandList_struct *c;
2987 c = cmd_alloc(hba[ctlr], 1);
2989 printk(KERN_WARNING "cciss: unable to get memory");
2992 status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2993 scsi3addr, cmd_type);
2994 if (status == IO_OK)
2995 status = sendcmd_core(hba[ctlr], c);
2996 cmd_free(hba[ctlr], c, 1);
3001 * Map (physical) PCI mem into (virtual) kernel space
3003 static void __iomem *remap_pci_mem(ulong base, ulong size)
3005 ulong page_base = ((ulong) base) & PAGE_MASK;
3006 ulong page_offs = ((ulong) base) - page_base;
3007 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3009 return page_remapped ? (page_remapped + page_offs) : NULL;
3013 * Takes jobs of the Q and sends them to the hardware, then puts it on
3014 * the Q to wait for completion.
3016 static void start_io(ctlr_info_t *h)
3018 CommandList_struct *c;
3020 while (!hlist_empty(&h->reqQ)) {
3021 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
3022 /* can't do anything if fifo is full */
3023 if ((h->access.fifo_full(h))) {
3024 printk(KERN_WARNING "cciss: fifo full\n");
3028 /* Get the first entry from the Request Q */
3032 /* Tell the controller execute command */
3033 h->access.submit_command(h, c);
3035 /* Put job onto the completed Q */
3040 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
3041 /* Zeros out the error record and then resends the command back */
3042 /* to the controller */
3043 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3045 /* erase the old error information */
3046 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3048 /* add it to software queue and then send it to the controller */
3051 if (h->Qdepth > h->maxQsinceinit)
3052 h->maxQsinceinit = h->Qdepth;
3057 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3058 unsigned int msg_byte, unsigned int host_byte,
3059 unsigned int driver_byte)
3061 /* inverse of macros in scsi.h */
3062 return (scsi_status_byte & 0xff) |
3063 ((msg_byte & 0xff) << 8) |
3064 ((host_byte & 0xff) << 16) |
3065 ((driver_byte & 0xff) << 24);
3068 static inline int evaluate_target_status(ctlr_info_t *h,
3069 CommandList_struct *cmd, int *retry_cmd)
3071 unsigned char sense_key;
3072 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3076 /* If we get in here, it means we got "target status", that is, scsi status */
3077 status_byte = cmd->err_info->ScsiStatus;
3078 driver_byte = DRIVER_OK;
3079 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3081 if (blk_pc_request(cmd->rq))
3082 host_byte = DID_PASSTHROUGH;
3086 error_value = make_status_bytes(status_byte, msg_byte,
3087 host_byte, driver_byte);
3089 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3090 if (!blk_pc_request(cmd->rq))
3091 printk(KERN_WARNING "cciss: cmd %p "
3092 "has SCSI Status 0x%x\n",
3093 cmd, cmd->err_info->ScsiStatus);
3097 /* check the sense key */
3098 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3099 /* no status or recovered error */
3100 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
3103 if (check_for_unit_attention(h, cmd)) {
3104 *retry_cmd = !blk_pc_request(cmd->rq);
3108 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
3109 if (error_value != 0)
3110 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3111 " sense key = 0x%x\n", cmd, sense_key);
3115 /* SG_IO or similar, copy sense data back */
3116 if (cmd->rq->sense) {
3117 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3118 cmd->rq->sense_len = cmd->err_info->SenseLen;
3119 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3120 cmd->rq->sense_len);
3122 cmd->rq->sense_len = 0;
3127 /* checks the status of the job and calls complete buffers to mark all
3128 * buffers for the completed job. Note that this function does not need
3129 * to hold the hba/queue lock.
3131 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3135 struct request *rq = cmd->rq;
3140 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3142 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3143 goto after_error_processing;
3145 switch (cmd->err_info->CommandStatus) {
3146 case CMD_TARGET_STATUS:
3147 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3149 case CMD_DATA_UNDERRUN:
3150 if (blk_fs_request(cmd->rq)) {
3151 printk(KERN_WARNING "cciss: cmd %p has"
3152 " completed with data underrun "
3154 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3157 case CMD_DATA_OVERRUN:
3158 if (blk_fs_request(cmd->rq))
3159 printk(KERN_WARNING "cciss: cmd %p has"
3160 " completed with data overrun "
3164 printk(KERN_WARNING "cciss: cmd %p is "
3165 "reported invalid\n", cmd);
3166 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3167 cmd->err_info->CommandStatus, DRIVER_OK,
3168 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3170 case CMD_PROTOCOL_ERR:
3171 printk(KERN_WARNING "cciss: cmd %p has "
3172 "protocol error \n", cmd);
3173 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3174 cmd->err_info->CommandStatus, DRIVER_OK,
3175 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3177 case CMD_HARDWARE_ERR:
3178 printk(KERN_WARNING "cciss: cmd %p had "
3179 " hardware error\n", cmd);
3180 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181 cmd->err_info->CommandStatus, DRIVER_OK,
3182 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3184 case CMD_CONNECTION_LOST:
3185 printk(KERN_WARNING "cciss: cmd %p had "
3186 "connection lost\n", cmd);
3187 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3188 cmd->err_info->CommandStatus, DRIVER_OK,
3189 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3192 printk(KERN_WARNING "cciss: cmd %p was "
3194 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3195 cmd->err_info->CommandStatus, DRIVER_OK,
3196 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3198 case CMD_ABORT_FAILED:
3199 printk(KERN_WARNING "cciss: cmd %p reports "
3200 "abort failed\n", cmd);
3201 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3202 cmd->err_info->CommandStatus, DRIVER_OK,
3203 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3205 case CMD_UNSOLICITED_ABORT:
3206 printk(KERN_WARNING "cciss%d: unsolicited "
3207 "abort %p\n", h->ctlr, cmd);
3208 if (cmd->retry_count < MAX_CMD_RETRIES) {
3211 "cciss%d: retrying %p\n", h->ctlr, cmd);
3215 "cciss%d: %p retried too "
3216 "many times\n", h->ctlr, cmd);
3217 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3218 cmd->err_info->CommandStatus, DRIVER_OK,
3219 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3222 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3223 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3224 cmd->err_info->CommandStatus, DRIVER_OK,
3225 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3228 printk(KERN_WARNING "cciss: cmd %p returned "
3229 "unknown status %x\n", cmd,
3230 cmd->err_info->CommandStatus);
3231 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3232 cmd->err_info->CommandStatus, DRIVER_OK,
3233 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3236 after_error_processing:
3238 /* We need to return this command */
3240 resend_cciss_cmd(h, cmd);
3243 cmd->rq->completion_data = cmd;
3244 blk_complete_request(cmd->rq);
3248 * Get a request and submit it to the controller.
3250 static void do_cciss_request(struct request_queue *q)
3252 ctlr_info_t *h = q->queuedata;
3253 CommandList_struct *c;
3256 struct request *creq;
3258 struct scatterlist tmp_sg[MAXSGENTRIES];
3259 drive_info_struct *drv;
3262 /* We call start_io here in case there is a command waiting on the
3263 * queue that has not been sent.
3265 if (blk_queue_plugged(q))
3269 creq = blk_peek_request(q);
3273 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3275 if ((c = cmd_alloc(h, 1)) == NULL)
3278 blk_start_request(creq);
3280 spin_unlock_irq(q->queue_lock);
3282 c->cmd_type = CMD_RWREQ;
3285 /* fill in the request */
3286 drv = creq->rq_disk->private_data;
3287 c->Header.ReplyQueue = 0; // unused in simple mode
3288 /* got command from pool, so use the command block index instead */
3289 /* for direct lookups. */
3290 /* The first 2 bits are reserved for controller error reporting. */
3291 c->Header.Tag.lower = (c->cmdindex << 3);
3292 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3293 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3294 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3295 c->Request.Type.Type = TYPE_CMD; // It is a command.
3296 c->Request.Type.Attribute = ATTR_SIMPLE;
3297 c->Request.Type.Direction =
3298 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3299 c->Request.Timeout = 0; // Don't time out
3301 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3302 start_blk = blk_rq_pos(creq);
3304 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3305 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3306 #endif /* CCISS_DEBUG */
3308 sg_init_table(tmp_sg, MAXSGENTRIES);
3309 seg = blk_rq_map_sg(q, creq, tmp_sg);
3311 /* get the DMA records for the setup */
3312 if (c->Request.Type.Direction == XFER_READ)
3313 dir = PCI_DMA_FROMDEVICE;
3315 dir = PCI_DMA_TODEVICE;
3317 for (i = 0; i < seg; i++) {
3318 c->SG[i].Len = tmp_sg[i].length;
3319 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3321 tmp_sg[i].length, dir);
3322 c->SG[i].Addr.lower = temp64.val32.lower;
3323 c->SG[i].Addr.upper = temp64.val32.upper;
3324 c->SG[i].Ext = 0; // we are not chaining
3326 /* track how many SG entries we are using */
3331 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3332 blk_rq_sectors(creq), seg);
3333 #endif /* CCISS_DEBUG */
3335 c->Header.SGList = c->Header.SGTotal = seg;
3336 if (likely(blk_fs_request(creq))) {
3337 if(h->cciss_read == CCISS_READ_10) {
3338 c->Request.CDB[1] = 0;
3339 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3340 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3341 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3342 c->Request.CDB[5] = start_blk & 0xff;
3343 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3344 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3345 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3346 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3348 u32 upper32 = upper_32_bits(start_blk);
3350 c->Request.CDBLen = 16;
3351 c->Request.CDB[1]= 0;
3352 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3353 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3354 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3355 c->Request.CDB[5]= upper32 & 0xff;
3356 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3357 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3358 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3359 c->Request.CDB[9]= start_blk & 0xff;
3360 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3361 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3362 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3363 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3364 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3366 } else if (blk_pc_request(creq)) {
3367 c->Request.CDBLen = creq->cmd_len;
3368 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3370 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3374 spin_lock_irq(q->queue_lock);
3378 if (h->Qdepth > h->maxQsinceinit)
3379 h->maxQsinceinit = h->Qdepth;
3385 /* We will already have the driver lock here so not need
3391 static inline unsigned long get_next_completion(ctlr_info_t *h)
3393 return h->access.command_completed(h);
3396 static inline int interrupt_pending(ctlr_info_t *h)
3398 return h->access.intr_pending(h);
3401 static inline long interrupt_not_for_us(ctlr_info_t *h)
3403 return (((h->access.intr_pending(h) == 0) ||
3404 (h->interrupts_enabled == 0)));
3407 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3409 ctlr_info_t *h = dev_id;
3410 CommandList_struct *c;
3411 unsigned long flags;
3414 if (interrupt_not_for_us(h))
3417 * If there are completed commands in the completion queue,
3418 * we had better do something about it.
3420 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3421 while (interrupt_pending(h)) {
3422 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3426 if (a2 >= h->nr_cmds) {
3428 "cciss: controller cciss%d failed, stopping.\n",
3430 fail_all_cmds(h->ctlr);
3434 c = h->cmd_pool + a2;
3438 struct hlist_node *tmp;
3442 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3443 if (c->busaddr == a)
3448 * If we've found the command, take it off the
3449 * completion Q and free it
3451 if (c && c->busaddr == a) {
3453 if (c->cmd_type == CMD_RWREQ) {
3454 complete_command(h, c, 0);
3455 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3456 complete(c->waiting);
3458 # ifdef CONFIG_CISS_SCSI_TAPE
3459 else if (c->cmd_type == CMD_SCSI)
3460 complete_scsi_command(c, 0, a1);
3467 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3472 * add_to_scan_list() - add controller to rescan queue
3473 * @h: Pointer to the controller.
3475 * Adds the controller to the rescan queue if not already on the queue.
3477 * returns 1 if added to the queue, 0 if skipped (could be on the
3478 * queue already, or the controller could be initializing or shutting
3481 static int add_to_scan_list(struct ctlr_info *h)
3483 struct ctlr_info *test_h;
3487 if (h->busy_initializing)
3490 if (!mutex_trylock(&h->busy_shutting_down))
3493 mutex_lock(&scan_mutex);
3494 list_for_each_entry(test_h, &scan_q, scan_list) {
3500 if (!found && !h->busy_scanning) {
3501 INIT_COMPLETION(h->scan_wait);
3502 list_add_tail(&h->scan_list, &scan_q);
3505 mutex_unlock(&scan_mutex);
3506 mutex_unlock(&h->busy_shutting_down);
3512 * remove_from_scan_list() - remove controller from rescan queue
3513 * @h: Pointer to the controller.
3515 * Removes the controller from the rescan queue if present. Blocks if
3516 * the controller is currently conducting a rescan.
3518 static void remove_from_scan_list(struct ctlr_info *h)
3520 struct ctlr_info *test_h, *tmp_h;
3523 mutex_lock(&scan_mutex);
3524 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3526 list_del(&h->scan_list);
3527 complete_all(&h->scan_wait);
3528 mutex_unlock(&scan_mutex);
3532 if (&h->busy_scanning)
3534 mutex_unlock(&scan_mutex);
3537 wait_for_completion(&h->scan_wait);
3541 * scan_thread() - kernel thread used to rescan controllers
3544 * A kernel thread used scan for drive topology changes on
3545 * controllers. The thread processes only one controller at a time
3546 * using a queue. Controllers are added to the queue using
3547 * add_to_scan_list() and removed from the queue either after done
3548 * processing or using remove_from_scan_list().
3552 static int scan_thread(void *data)
3554 struct ctlr_info *h;
3557 set_current_state(TASK_INTERRUPTIBLE);
3559 if (kthread_should_stop())
3563 mutex_lock(&scan_mutex);
3564 if (list_empty(&scan_q)) {
3565 mutex_unlock(&scan_mutex);
3569 h = list_entry(scan_q.next,
3572 list_del(&h->scan_list);
3573 h->busy_scanning = 1;
3574 mutex_unlock(&scan_mutex);
3577 rebuild_lun_table(h, 0, 0);
3578 complete_all(&h->scan_wait);
3579 mutex_lock(&scan_mutex);
3580 h->busy_scanning = 0;
3581 mutex_unlock(&scan_mutex);
3589 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3591 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3594 switch (c->err_info->SenseInfo[12]) {
3596 printk(KERN_WARNING "cciss%d: a state change "
3597 "detected, command retried\n", h->ctlr);
3601 printk(KERN_WARNING "cciss%d: LUN failure "
3602 "detected, action required\n", h->ctlr);
3605 case REPORT_LUNS_CHANGED:
3606 printk(KERN_WARNING "cciss%d: report LUN data "
3607 "changed\n", h->ctlr);
3608 add_to_scan_list(h);
3609 wake_up_process(cciss_scan_thread);
3612 case POWER_OR_RESET:
3613 printk(KERN_WARNING "cciss%d: a power on "
3614 "or device reset detected\n", h->ctlr);
3617 case UNIT_ATTENTION_CLEARED:
3618 printk(KERN_WARNING "cciss%d: unit attention "
3619 "cleared by another initiator\n", h->ctlr);
3623 printk(KERN_WARNING "cciss%d: unknown "
3624 "unit attention detected\n", h->ctlr);
3630 * We cannot read the structure directly, for portability we must use
3632 * This is for debug only.
3635 static void print_cfg_table(CfgTable_struct *tb)
3640 printk("Controller Configuration information\n");
3641 printk("------------------------------------\n");
3642 for (i = 0; i < 4; i++)
3643 temp_name[i] = readb(&(tb->Signature[i]));
3644 temp_name[4] = '\0';
3645 printk(" Signature = %s\n", temp_name);
3646 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3647 printk(" Transport methods supported = 0x%x\n",
3648 readl(&(tb->TransportSupport)));
3649 printk(" Transport methods active = 0x%x\n",
3650 readl(&(tb->TransportActive)));
3651 printk(" Requested transport Method = 0x%x\n",
3652 readl(&(tb->HostWrite.TransportRequest)));
3653 printk(" Coalesce Interrupt Delay = 0x%x\n",
3654 readl(&(tb->HostWrite.CoalIntDelay)));
3655 printk(" Coalesce Interrupt Count = 0x%x\n",
3656 readl(&(tb->HostWrite.CoalIntCount)));
3657 printk(" Max outstanding commands = 0x%d\n",
3658 readl(&(tb->CmdsOutMax)));
3659 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3660 for (i = 0; i < 16; i++)
3661 temp_name[i] = readb(&(tb->ServerName[i]));
3662 temp_name[16] = '\0';
3663 printk(" Server Name = %s\n", temp_name);
3664 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3666 #endif /* CCISS_DEBUG */
3668 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3670 int i, offset, mem_type, bar_type;
3671 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3674 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3675 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3676 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3679 mem_type = pci_resource_flags(pdev, i) &
3680 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3682 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3683 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3684 offset += 4; /* 32 bit */
3686 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3689 default: /* reserved in PCI 2.2 */
3691 "Base address is invalid\n");
3696 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3702 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3703 * controllers that are capable. If not, we use IO-APIC mode.
3706 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3707 struct pci_dev *pdev, __u32 board_id)
3709 #ifdef CONFIG_PCI_MSI
3711 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3715 /* Some boards advertise MSI but don't really support it */
3716 if ((board_id == 0x40700E11) ||
3717 (board_id == 0x40800E11) ||
3718 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3719 goto default_int_mode;
3721 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3722 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3724 c->intr[0] = cciss_msix_entries[0].vector;
3725 c->intr[1] = cciss_msix_entries[1].vector;
3726 c->intr[2] = cciss_msix_entries[2].vector;
3727 c->intr[3] = cciss_msix_entries[3].vector;
3732 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3733 "available\n", err);
3734 goto default_int_mode;
3736 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3738 goto default_int_mode;
3741 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3742 if (!pci_enable_msi(pdev)) {
3745 printk(KERN_WARNING "cciss: MSI init failed\n");
3749 #endif /* CONFIG_PCI_MSI */
3750 /* if we get here we're going to use the default interrupt mode */
3751 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3755 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3757 ushort subsystem_vendor_id, subsystem_device_id, command;
3758 __u32 board_id, scratchpad = 0;
3760 __u32 cfg_base_addr;
3761 __u64 cfg_base_addr_index;
3762 int i, prod_index, err;
3764 subsystem_vendor_id = pdev->subsystem_vendor;
3765 subsystem_device_id = pdev->subsystem_device;
3766 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3767 subsystem_vendor_id);
3769 for (i = 0; i < ARRAY_SIZE(products); i++) {
3770 /* Stand aside for hpsa driver on request */
3771 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3773 if (board_id == products[i].board_id)
3777 if (prod_index == ARRAY_SIZE(products)) {
3778 dev_warn(&pdev->dev,
3779 "unrecognized board ID: 0x%08lx, ignoring.\n",
3780 (unsigned long) board_id);
3784 /* check to see if controller has been disabled */
3785 /* BEFORE trying to enable it */
3786 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3787 if (!(command & 0x02)) {
3789 "cciss: controller appears to be disabled\n");
3793 err = pci_enable_device(pdev);
3795 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3799 err = pci_request_regions(pdev, "cciss");
3801 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3807 printk("command = %x\n", command);
3808 printk("irq = %x\n", pdev->irq);
3809 printk("board_id = %x\n", board_id);
3810 #endif /* CCISS_DEBUG */
3812 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3813 * else we use the IO-APIC interrupt assigned to us by system ROM.
3815 cciss_interrupt_mode(c, pdev, board_id);
3817 /* find the memory BAR */
3818 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3819 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3822 if (i == DEVICE_COUNT_RESOURCE) {
3823 printk(KERN_WARNING "cciss: No memory BAR found\n");
3825 goto err_out_free_res;
3828 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3833 printk("address 0 = %lx\n", c->paddr);
3834 #endif /* CCISS_DEBUG */
3835 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3837 /* Wait for the board to become ready. (PCI hotplug needs this.)
3838 * We poll for up to 120 secs, once per 100ms. */
3839 for (i = 0; i < 1200; i++) {
3840 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3841 if (scratchpad == CCISS_FIRMWARE_READY)
3843 set_current_state(TASK_INTERRUPTIBLE);
3844 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3846 if (scratchpad != CCISS_FIRMWARE_READY) {
3847 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3849 goto err_out_free_res;
3852 /* get the address index number */
3853 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3854 cfg_base_addr &= (__u32) 0x0000ffff;
3856 printk("cfg base address = %x\n", cfg_base_addr);
3857 #endif /* CCISS_DEBUG */
3858 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3860 printk("cfg base address index = %llx\n",
3861 (unsigned long long)cfg_base_addr_index);
3862 #endif /* CCISS_DEBUG */
3863 if (cfg_base_addr_index == -1) {
3864 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3866 goto err_out_free_res;
3869 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3871 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3872 #endif /* CCISS_DEBUG */
3873 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3874 cfg_base_addr_index) +
3875 cfg_offset, sizeof(CfgTable_struct));
3876 c->board_id = board_id;
3879 print_cfg_table(c->cfgtable);
3880 #endif /* CCISS_DEBUG */
3882 /* Some controllers support Zero Memory Raid (ZMR).
3883 * When configured in ZMR mode the number of supported
3884 * commands drops to 64. So instead of just setting an
3885 * arbitrary value we make the driver a little smarter.
3886 * We read the config table to tell us how many commands
3887 * are supported on the controller then subtract 4 to
3888 * leave a little room for ioctl calls.
3890 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3891 c->product_name = products[prod_index].product_name;
3892 c->access = *(products[prod_index].access);
3893 c->nr_cmds = c->max_commands - 4;
3894 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3895 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3896 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3897 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3898 printk("Does not appear to be a valid CISS config table\n");
3900 goto err_out_free_res;
3904 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3906 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3908 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3912 /* Disabling DMA prefetch and refetch for the P600.
3913 * An ASIC bug may result in accesses to invalid memory addresses.
3914 * We've disabled prefetch for some time now. Testing with XEN
3915 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3917 if(board_id == 0x3225103C) {
3920 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3921 dma_prefetch |= 0x8000;
3922 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3923 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3925 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3929 printk("Trying to put board into Simple mode\n");
3930 #endif /* CCISS_DEBUG */
3931 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3932 /* Update the field, and then ring the doorbell */
3933 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3934 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3936 /* under certain very rare conditions, this can take awhile.
3937 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3938 * as we enter this code.) */
3939 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3940 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3942 /* delay and try again */
3943 set_current_state(TASK_INTERRUPTIBLE);
3944 schedule_timeout(msecs_to_jiffies(1));
3948 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3949 readl(c->vaddr + SA5_DOORBELL));
3950 #endif /* CCISS_DEBUG */
3952 print_cfg_table(c->cfgtable);
3953 #endif /* CCISS_DEBUG */
3955 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3956 printk(KERN_WARNING "cciss: unable to get board into"
3959 goto err_out_free_res;
3965 * Deliberately omit pci_disable_device(): it does something nasty to
3966 * Smart Array controllers that pci_enable_device does not undo
3968 pci_release_regions(pdev);
3972 /* Function to find the first free pointer into our hba[] array
3973 * Returns -1 if no free entries are left.
3975 static int alloc_cciss_hba(void)
3979 for (i = 0; i < MAX_CTLR; i++) {
3983 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3990 printk(KERN_WARNING "cciss: This driver supports a maximum"
3991 " of %d controllers.\n", MAX_CTLR);
3994 printk(KERN_ERR "cciss: out of memory.\n");
3998 static void free_hba(int n)
4000 ctlr_info_t *h = hba[n];
4004 for (i = 0; i < h->highest_lun + 1; i++)
4005 if (h->gendisk[i] != NULL)
4006 put_disk(h->gendisk[i]);
4010 /* Send a message CDB to the firmware. */
4011 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4014 CommandListHeader_struct CommandHeader;
4015 RequestBlock_struct Request;
4016 ErrDescriptor_struct ErrorDescriptor;
4018 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4021 uint32_t paddr32, tag;
4022 void __iomem *vaddr;
4025 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4029 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4030 CCISS commands, so they must be allocated from the lower 4GiB of
4032 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4038 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4044 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4045 although there's no guarantee, we assume that the address is at
4046 least 4-byte aligned (most likely, it's page-aligned). */
4049 cmd->CommandHeader.ReplyQueue = 0;
4050 cmd->CommandHeader.SGList = 0;
4051 cmd->CommandHeader.SGTotal = 0;
4052 cmd->CommandHeader.Tag.lower = paddr32;
4053 cmd->CommandHeader.Tag.upper = 0;
4054 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4056 cmd->Request.CDBLen = 16;
4057 cmd->Request.Type.Type = TYPE_MSG;
4058 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4059 cmd->Request.Type.Direction = XFER_NONE;
4060 cmd->Request.Timeout = 0; /* Don't time out */
4061 cmd->Request.CDB[0] = opcode;
4062 cmd->Request.CDB[1] = type;
4063 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4065 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4066 cmd->ErrorDescriptor.Addr.upper = 0;
4067 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4069 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4071 for (i = 0; i < 10; i++) {
4072 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4073 if ((tag & ~3) == paddr32)
4075 schedule_timeout_uninterruptible(HZ);
4080 /* we leak the DMA buffer here ... no choice since the controller could
4081 still complete the command. */
4083 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4088 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4091 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4096 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4101 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4102 #define cciss_noop(p) cciss_message(p, 3, 0)
4104 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4106 /* the #defines are stolen from drivers/pci/msi.h. */
4107 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4108 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4113 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4115 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4116 if (control & PCI_MSI_FLAGS_ENABLE) {
4117 printk(KERN_INFO "cciss: resetting MSI\n");
4118 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4122 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4124 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4125 if (control & PCI_MSIX_FLAGS_ENABLE) {
4126 printk(KERN_INFO "cciss: resetting MSI-X\n");
4127 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4134 /* This does a hard reset of the controller using PCI power management
4136 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4138 u16 pmcsr, saved_config_space[32];
4141 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4143 /* This is very nearly the same thing as
4145 pci_save_state(pci_dev);
4146 pci_set_power_state(pci_dev, PCI_D3hot);
4147 pci_set_power_state(pci_dev, PCI_D0);
4148 pci_restore_state(pci_dev);
4150 but we can't use these nice canned kernel routines on
4151 kexec, because they also check the MSI/MSI-X state in PCI
4152 configuration space and do the wrong thing when it is
4153 set/cleared. Also, the pci_save/restore_state functions
4154 violate the ordering requirements for restoring the
4155 configuration space from the CCISS document (see the
4156 comment below). So we roll our own .... */
4158 for (i = 0; i < 32; i++)
4159 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4161 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4163 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4167 /* Quoting from the Open CISS Specification: "The Power
4168 * Management Control/Status Register (CSR) controls the power
4169 * state of the device. The normal operating state is D0,
4170 * CSR=00h. The software off state is D3, CSR=03h. To reset
4171 * the controller, place the interface device in D3 then to
4172 * D0, this causes a secondary PCI reset which will reset the
4175 /* enter the D3hot power management state */
4176 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4177 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4179 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4181 schedule_timeout_uninterruptible(HZ >> 1);
4183 /* enter the D0 power management state */
4184 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4186 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4188 schedule_timeout_uninterruptible(HZ >> 1);
4190 /* Restore the PCI configuration space. The Open CISS
4191 * Specification says, "Restore the PCI Configuration
4192 * Registers, offsets 00h through 60h. It is important to
4193 * restore the command register, 16-bits at offset 04h,
4194 * last. Do not restore the configuration status register,
4195 * 16-bits at offset 06h." Note that the offset is 2*i. */
4196 for (i = 0; i < 32; i++) {
4197 if (i == 2 || i == 3)
4199 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4202 pci_write_config_word(pdev, 4, saved_config_space[2]);
4208 * This is it. Find all the controllers and register them. I really hate
4209 * stealing all these major device numbers.
4210 * returns the number of block devices registered.
4212 static int __devinit cciss_init_one(struct pci_dev *pdev,
4213 const struct pci_device_id *ent)
4218 int dac, return_code;
4219 InquiryData_struct *inq_buff;
4221 if (reset_devices) {
4222 /* Reset the controller with a PCI power-cycle */
4223 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4226 /* Now try to get the controller to respond to a no-op. Some
4227 devices (notably the HP Smart Array 5i Controller) need
4228 up to 30 seconds to respond. */
4229 for (i=0; i<30; i++) {
4230 if (cciss_noop(pdev) == 0)
4233 schedule_timeout_uninterruptible(HZ);
4236 printk(KERN_ERR "cciss: controller seems dead\n");
4241 i = alloc_cciss_hba();
4245 hba[i]->busy_initializing = 1;
4246 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4247 INIT_HLIST_HEAD(&hba[i]->reqQ);
4248 mutex_init(&hba[i]->busy_shutting_down);
4250 if (cciss_pci_init(hba[i], pdev) != 0)
4251 goto clean_no_release_regions;
4253 sprintf(hba[i]->devname, "cciss%d", i);
4255 hba[i]->pdev = pdev;
4257 init_completion(&hba[i]->scan_wait);
4259 if (cciss_create_hba_sysfs_entry(hba[i]))
4262 /* configure PCI DMA stuff */
4263 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4265 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4268 printk(KERN_ERR "cciss: no suitable DMA available\n");
4273 * register with the major number, or get a dynamic major number
4274 * by passing 0 as argument. This is done for greater than
4275 * 8 controller support.
4277 if (i < MAX_CTLR_ORIG)
4278 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4279 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4280 if (rc == -EBUSY || rc == -EINVAL) {
4282 "cciss: Unable to get major number %d for %s "
4283 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4286 if (i >= MAX_CTLR_ORIG)
4290 /* make sure the board interrupts are off */
4291 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4292 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4293 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4294 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4295 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4299 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4300 hba[i]->devname, pdev->device, pci_name(pdev),
4301 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4303 hba[i]->cmd_pool_bits =
4304 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4305 * sizeof(unsigned long), GFP_KERNEL);
4306 hba[i]->cmd_pool = (CommandList_struct *)
4307 pci_alloc_consistent(hba[i]->pdev,
4308 hba[i]->nr_cmds * sizeof(CommandList_struct),
4309 &(hba[i]->cmd_pool_dhandle));
4310 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4311 pci_alloc_consistent(hba[i]->pdev,
4312 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4313 &(hba[i]->errinfo_pool_dhandle));
4314 if ((hba[i]->cmd_pool_bits == NULL)
4315 || (hba[i]->cmd_pool == NULL)
4316 || (hba[i]->errinfo_pool == NULL)) {
4317 printk(KERN_ERR "cciss: out of memory");
4320 spin_lock_init(&hba[i]->lock);
4322 /* Initialize the pdev driver private data.
4323 have it point to hba[i]. */
4324 pci_set_drvdata(pdev, hba[i]);
4325 /* command and error info recs zeroed out before
4327 memset(hba[i]->cmd_pool_bits, 0,
4328 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4329 * sizeof(unsigned long));
4331 hba[i]->num_luns = 0;
4332 hba[i]->highest_lun = -1;
4333 for (j = 0; j < CISS_MAX_LUN; j++) {
4334 hba[i]->drv[j] = NULL;
4335 hba[i]->gendisk[j] = NULL;
4338 cciss_scsi_setup(i);
4340 /* Turn the interrupts on so we can service requests */
4341 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4343 /* Get the firmware version */
4344 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4345 if (inq_buff == NULL) {
4346 printk(KERN_ERR "cciss: out of memory\n");
4350 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4351 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4352 if (return_code == IO_OK) {
4353 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4354 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4355 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4356 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4357 } else { /* send command failed */
4358 printk(KERN_WARNING "cciss: unable to determine firmware"
4359 " version of controller\n");
4365 hba[i]->cciss_max_sectors = 2048;
4367 rebuild_lun_table(hba[i], 1, 0);
4368 hba[i]->busy_initializing = 0;
4372 kfree(hba[i]->cmd_pool_bits);
4373 if (hba[i]->cmd_pool)
4374 pci_free_consistent(hba[i]->pdev,
4375 hba[i]->nr_cmds * sizeof(CommandList_struct),
4376 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4377 if (hba[i]->errinfo_pool)
4378 pci_free_consistent(hba[i]->pdev,
4379 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4380 hba[i]->errinfo_pool,
4381 hba[i]->errinfo_pool_dhandle);
4382 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4384 unregister_blkdev(hba[i]->major, hba[i]->devname);
4386 cciss_destroy_hba_sysfs_entry(hba[i]);
4388 pci_release_regions(pdev);
4389 clean_no_release_regions:
4390 hba[i]->busy_initializing = 0;
4393 * Deliberately omit pci_disable_device(): it does something nasty to
4394 * Smart Array controllers that pci_enable_device does not undo
4396 pci_set_drvdata(pdev, NULL);
4401 static void cciss_shutdown(struct pci_dev *pdev)
4403 ctlr_info_t *tmp_ptr;
4408 tmp_ptr = pci_get_drvdata(pdev);
4409 if (tmp_ptr == NULL)
4415 /* Turn board interrupts off and send the flush cache command */
4416 /* sendcmd will turn off interrupt, and send the flush...
4417 * To write all data in the battery backed cache to disks */
4418 memset(flush_buf, 0, 4);
4419 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4420 CTLR_LUNID, TYPE_CMD);
4421 if (return_code == IO_OK) {
4422 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4424 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4426 free_irq(hba[i]->intr[2], hba[i]);
4429 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4431 ctlr_info_t *tmp_ptr;
4434 if (pci_get_drvdata(pdev) == NULL) {
4435 printk(KERN_ERR "cciss: Unable to remove device \n");
4439 tmp_ptr = pci_get_drvdata(pdev);
4441 if (hba[i] == NULL) {
4442 printk(KERN_ERR "cciss: device appears to "
4443 "already be removed \n");
4447 mutex_lock(&hba[i]->busy_shutting_down);
4449 remove_from_scan_list(hba[i]);
4450 remove_proc_entry(hba[i]->devname, proc_cciss);
4451 unregister_blkdev(hba[i]->major, hba[i]->devname);
4453 /* remove it from the disk list */
4454 for (j = 0; j < CISS_MAX_LUN; j++) {
4455 struct gendisk *disk = hba[i]->gendisk[j];
4457 struct request_queue *q = disk->queue;
4459 if (disk->flags & GENHD_FL_UP) {
4460 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4464 blk_cleanup_queue(q);
4468 #ifdef CONFIG_CISS_SCSI_TAPE
4469 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4472 cciss_shutdown(pdev);
4474 #ifdef CONFIG_PCI_MSI
4475 if (hba[i]->msix_vector)
4476 pci_disable_msix(hba[i]->pdev);
4477 else if (hba[i]->msi_vector)
4478 pci_disable_msi(hba[i]->pdev);
4479 #endif /* CONFIG_PCI_MSI */
4481 iounmap(hba[i]->vaddr);
4483 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4484 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4485 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4486 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4487 kfree(hba[i]->cmd_pool_bits);
4489 * Deliberately omit pci_disable_device(): it does something nasty to
4490 * Smart Array controllers that pci_enable_device does not undo
4492 pci_release_regions(pdev);
4493 pci_set_drvdata(pdev, NULL);
4494 cciss_destroy_hba_sysfs_entry(hba[i]);
4495 mutex_unlock(&hba[i]->busy_shutting_down);
4499 static struct pci_driver cciss_pci_driver = {
4501 .probe = cciss_init_one,
4502 .remove = __devexit_p(cciss_remove_one),
4503 .id_table = cciss_pci_device_id, /* id_table */
4504 .shutdown = cciss_shutdown,
4508 * This is it. Register the PCI driver information for the cards we control
4509 * the OS will call our registered routines when it finds one of our cards.
4511 static int __init cciss_init(void)
4516 * The hardware requires that commands are aligned on a 64-bit
4517 * boundary. Given that we use pci_alloc_consistent() to allocate an
4518 * array of them, the size must be a multiple of 8 bytes.
4520 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4522 printk(KERN_INFO DRIVER_NAME "\n");
4524 err = bus_register(&cciss_bus_type);
4528 /* Start the scan thread */
4529 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4530 if (IS_ERR(cciss_scan_thread)) {
4531 err = PTR_ERR(cciss_scan_thread);
4532 goto err_bus_unregister;
4535 /* Register for our PCI devices */
4536 err = pci_register_driver(&cciss_pci_driver);
4538 goto err_thread_stop;
4543 kthread_stop(cciss_scan_thread);
4545 bus_unregister(&cciss_bus_type);
4550 static void __exit cciss_cleanup(void)
4554 pci_unregister_driver(&cciss_pci_driver);
4555 /* double check that all controller entrys have been removed */
4556 for (i = 0; i < MAX_CTLR; i++) {
4557 if (hba[i] != NULL) {
4558 printk(KERN_WARNING "cciss: had to remove"
4559 " controller %d\n", i);
4560 cciss_remove_one(hba[i]->pdev);
4563 kthread_stop(cciss_scan_thread);
4564 remove_proc_entry("driver/cciss", NULL);
4565 bus_unregister(&cciss_bus_type);
4568 static void fail_all_cmds(unsigned long ctlr)
4570 /* If we get here, the board is apparently dead. */
4571 ctlr_info_t *h = hba[ctlr];
4572 CommandList_struct *c;
4573 unsigned long flags;
4575 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4576 h->alive = 0; /* the controller apparently died... */
4578 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4580 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4582 /* move everything off the request queue onto the completed queue */
4583 while (!hlist_empty(&h->reqQ)) {
4584 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4590 /* Now, fail everything on the completed queue with a HW error */
4591 while (!hlist_empty(&h->cmpQ)) {
4592 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4594 if (c->cmd_type != CMD_MSG_STALE)
4595 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4596 if (c->cmd_type == CMD_RWREQ) {
4597 complete_command(h, c, 0);
4598 } else if (c->cmd_type == CMD_IOCTL_PEND)
4599 complete(c->waiting);
4600 #ifdef CONFIG_CISS_SCSI_TAPE
4601 else if (c->cmd_type == CMD_SCSI)
4602 complete_scsi_command(c, 0, 0);
4605 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4609 module_init(cciss_init);
4610 module_exit(cciss_cleanup);