Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66                         " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67                         " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 static int cciss_allow_hpsa;
72 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_allow_hpsa,
74         "Prevent cciss driver from accessing hardware known to be "
75         " supported by the hpsa driver");
76
77 #include "cciss_cmd.h"
78 #include "cciss.h"
79 #include <linux/cciss_ioctl.h>
80
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id[] = {
83         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
84         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
110         {0,}
111 };
112
113 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
114
115 /*  board_id = Subsystem Device ID & Vendor ID
116  *  product = Marketing Name for the board
117  *  access = Address of the struct of function pointers
118  */
119 static struct board_type products[] = {
120         {0x40700E11, "Smart Array 5300", &SA5_access},
121         {0x40800E11, "Smart Array 5i", &SA5B_access},
122         {0x40820E11, "Smart Array 532", &SA5B_access},
123         {0x40830E11, "Smart Array 5312", &SA5B_access},
124         {0x409A0E11, "Smart Array 641", &SA5_access},
125         {0x409B0E11, "Smart Array 642", &SA5_access},
126         {0x409C0E11, "Smart Array 6400", &SA5_access},
127         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128         {0x40910E11, "Smart Array 6i", &SA5_access},
129         {0x3225103C, "Smart Array P600", &SA5_access},
130         {0x3235103C, "Smart Array P400i", &SA5_access},
131         {0x3211103C, "Smart Array E200i", &SA5_access},
132         {0x3212103C, "Smart Array E200", &SA5_access},
133         {0x3213103C, "Smart Array E200i", &SA5_access},
134         {0x3214103C, "Smart Array E200i", &SA5_access},
135         {0x3215103C, "Smart Array E200i", &SA5_access},
136         {0x3237103C, "Smart Array E500", &SA5_access},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139         {0x3223103C, "Smart Array P800", &SA5_access},
140         {0x3234103C, "Smart Array P400", &SA5_access},
141         {0x323D103C, "Smart Array P700m", &SA5_access},
142         {0x3241103C, "Smart Array P212", &SA5_access},
143         {0x3243103C, "Smart Array P410", &SA5_access},
144         {0x3245103C, "Smart Array P410i", &SA5_access},
145         {0x3247103C, "Smart Array P411", &SA5_access},
146         {0x3249103C, "Smart Array P812", &SA5_access},
147         {0x324A103C, "Smart Array P712m", &SA5_access},
148         {0x324B103C, "Smart Array P711m", &SA5_access},
149 };
150
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
154
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
157
158 #define MAX_CTLR        32
159
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG   8
162
163 static ctlr_info_t *hba[MAX_CTLR];
164
165 static struct task_struct *cciss_scan_thread;
166 static DEFINE_MUTEX(scan_mutex);
167 static LIST_HEAD(scan_q);
168
169 static void do_cciss_request(struct request_queue *q);
170 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
171 static int cciss_open(struct block_device *bdev, fmode_t mode);
172 static int cciss_release(struct gendisk *disk, fmode_t mode);
173 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
174                        unsigned int cmd, unsigned long arg);
175 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
176
177 static int cciss_revalidate(struct gendisk *disk);
178 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
179 static int deregister_disk(ctlr_info_t *h, int drv_index,
180                            int clear_all, int via_ioctl);
181
182 static void cciss_read_capacity(int ctlr, int logvol,
183                         sector_t *total_size, unsigned int *block_size);
184 static void cciss_read_capacity_16(int ctlr, int logvol,
185                         sector_t *total_size, unsigned int *block_size);
186 static void cciss_geometry_inquiry(int ctlr, int logvol,
187                         sector_t total_size,
188                         unsigned int block_size, InquiryData_struct *inq_buff,
189                                    drive_info_struct *drv);
190 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
191                                            __u32);
192 static void start_io(ctlr_info_t *h);
193 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
194                         __u8 page_code, unsigned char scsi3addr[],
195                         int cmd_type);
196 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
197         int attempt_retry);
198 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
199
200 static void fail_all_cmds(unsigned long ctlr);
201 static int add_to_scan_list(struct ctlr_info *h);
202 static int scan_thread(void *data);
203 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
204 static void cciss_hba_release(struct device *dev);
205 static void cciss_device_release(struct device *dev);
206 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
207 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
208
209 #ifdef CONFIG_PROC_FS
210 static void cciss_procinit(int i);
211 #else
212 static void cciss_procinit(int i)
213 {
214 }
215 #endif                          /* CONFIG_PROC_FS */
216
217 #ifdef CONFIG_COMPAT
218 static int cciss_compat_ioctl(struct block_device *, fmode_t,
219                               unsigned, unsigned long);
220 #endif
221
222 static const struct block_device_operations cciss_fops = {
223         .owner = THIS_MODULE,
224         .open = cciss_open,
225         .release = cciss_release,
226         .locked_ioctl = cciss_ioctl,
227         .getgeo = cciss_getgeo,
228 #ifdef CONFIG_COMPAT
229         .compat_ioctl = cciss_compat_ioctl,
230 #endif
231         .revalidate_disk = cciss_revalidate,
232 };
233
234 /*
235  * Enqueuing and dequeuing functions for cmdlists.
236  */
237 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
238 {
239         hlist_add_head(&c->list, list);
240 }
241
242 static inline void removeQ(CommandList_struct *c)
243 {
244         /*
245          * After kexec/dump some commands might still
246          * be in flight, which the firmware will try
247          * to complete. Resetting the firmware doesn't work
248          * with old fw revisions, so we have to mark
249          * them off as 'stale' to prevent the driver from
250          * falling over.
251          */
252         if (WARN_ON(hlist_unhashed(&c->list))) {
253                 c->cmd_type = CMD_MSG_STALE;
254                 return;
255         }
256
257         hlist_del_init(&c->list);
258 }
259
260 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
261         int nr_cmds)
262 {
263         int i;
264
265         if (!cmd_sg_list)
266                 return;
267         for (i = 0; i < nr_cmds; i++) {
268                 kfree(cmd_sg_list[i]);
269                 cmd_sg_list[i] = NULL;
270         }
271         kfree(cmd_sg_list);
272 }
273
274 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
275         ctlr_info_t *h, int chainsize, int nr_cmds)
276 {
277         int j;
278         SGDescriptor_struct **cmd_sg_list;
279
280         if (chainsize <= 0)
281                 return NULL;
282
283         cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
284         if (!cmd_sg_list)
285                 return NULL;
286
287         /* Build up chain blocks for each command */
288         for (j = 0; j < nr_cmds; j++) {
289                 /* Need a block of chainsized s/g elements. */
290                 cmd_sg_list[j] = kmalloc((chainsize *
291                         sizeof(*cmd_sg_list[j])), GFP_KERNEL);
292                 if (!cmd_sg_list[j]) {
293                         dev_err(&h->pdev->dev, "Cannot get memory "
294                                 "for s/g chains.\n");
295                         goto clean;
296                 }
297         }
298         return cmd_sg_list;
299 clean:
300         cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
301         return NULL;
302 }
303
304 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
305 {
306         SGDescriptor_struct *chain_sg;
307         u64bit temp64;
308
309         if (c->Header.SGTotal <= h->max_cmd_sgentries)
310                 return;
311
312         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
313         temp64.val32.lower = chain_sg->Addr.lower;
314         temp64.val32.upper = chain_sg->Addr.upper;
315         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
316 }
317
318 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
319         SGDescriptor_struct *chain_block, int len)
320 {
321         SGDescriptor_struct *chain_sg;
322         u64bit temp64;
323
324         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
325         chain_sg->Ext = CCISS_SG_CHAIN;
326         chain_sg->Len = len;
327         temp64.val = pci_map_single(h->pdev, chain_block, len,
328                                 PCI_DMA_TODEVICE);
329         chain_sg->Addr.lower = temp64.val32.lower;
330         chain_sg->Addr.upper = temp64.val32.upper;
331 }
332
333 #include "cciss_scsi.c"         /* For SCSI tape support */
334
335 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
336         "UNKNOWN"
337 };
338 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
339
340 #ifdef CONFIG_PROC_FS
341
342 /*
343  * Report information about this controller.
344  */
345 #define ENG_GIG 1000000000
346 #define ENG_GIG_FACTOR (ENG_GIG/512)
347 #define ENGAGE_SCSI     "engage scsi"
348
349 static struct proc_dir_entry *proc_cciss;
350
351 static void cciss_seq_show_header(struct seq_file *seq)
352 {
353         ctlr_info_t *h = seq->private;
354
355         seq_printf(seq, "%s: HP %s Controller\n"
356                 "Board ID: 0x%08lx\n"
357                 "Firmware Version: %c%c%c%c\n"
358                 "IRQ: %d\n"
359                 "Logical drives: %d\n"
360                 "Current Q depth: %d\n"
361                 "Current # commands on controller: %d\n"
362                 "Max Q depth since init: %d\n"
363                 "Max # commands on controller since init: %d\n"
364                 "Max SG entries since init: %d\n",
365                 h->devname,
366                 h->product_name,
367                 (unsigned long)h->board_id,
368                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
369                 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
370                 h->num_luns,
371                 h->Qdepth, h->commands_outstanding,
372                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
373
374 #ifdef CONFIG_CISS_SCSI_TAPE
375         cciss_seq_tape_report(seq, h->ctlr);
376 #endif /* CONFIG_CISS_SCSI_TAPE */
377 }
378
379 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
380 {
381         ctlr_info_t *h = seq->private;
382         unsigned ctlr = h->ctlr;
383         unsigned long flags;
384
385         /* prevent displaying bogus info during configuration
386          * or deconfiguration of a logical volume
387          */
388         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
389         if (h->busy_configuring) {
390                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
391                 return ERR_PTR(-EBUSY);
392         }
393         h->busy_configuring = 1;
394         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
395
396         if (*pos == 0)
397                 cciss_seq_show_header(seq);
398
399         return pos;
400 }
401
402 static int cciss_seq_show(struct seq_file *seq, void *v)
403 {
404         sector_t vol_sz, vol_sz_frac;
405         ctlr_info_t *h = seq->private;
406         unsigned ctlr = h->ctlr;
407         loff_t *pos = v;
408         drive_info_struct *drv = h->drv[*pos];
409
410         if (*pos > h->highest_lun)
411                 return 0;
412
413         if (drv == NULL) /* it's possible for h->drv[] to have holes. */
414                 return 0;
415
416         if (drv->heads == 0)
417                 return 0;
418
419         vol_sz = drv->nr_blocks;
420         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
421         vol_sz_frac *= 100;
422         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
423
424         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
425                 drv->raid_level = RAID_UNKNOWN;
426         seq_printf(seq, "cciss/c%dd%d:"
427                         "\t%4u.%02uGB\tRAID %s\n",
428                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
429                         raid_label[drv->raid_level]);
430         return 0;
431 }
432
433 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
434 {
435         ctlr_info_t *h = seq->private;
436
437         if (*pos > h->highest_lun)
438                 return NULL;
439         *pos += 1;
440
441         return pos;
442 }
443
444 static void cciss_seq_stop(struct seq_file *seq, void *v)
445 {
446         ctlr_info_t *h = seq->private;
447
448         /* Only reset h->busy_configuring if we succeeded in setting
449          * it during cciss_seq_start. */
450         if (v == ERR_PTR(-EBUSY))
451                 return;
452
453         h->busy_configuring = 0;
454 }
455
456 static const struct seq_operations cciss_seq_ops = {
457         .start = cciss_seq_start,
458         .show  = cciss_seq_show,
459         .next  = cciss_seq_next,
460         .stop  = cciss_seq_stop,
461 };
462
463 static int cciss_seq_open(struct inode *inode, struct file *file)
464 {
465         int ret = seq_open(file, &cciss_seq_ops);
466         struct seq_file *seq = file->private_data;
467
468         if (!ret)
469                 seq->private = PDE(inode)->data;
470
471         return ret;
472 }
473
474 static ssize_t
475 cciss_proc_write(struct file *file, const char __user *buf,
476                  size_t length, loff_t *ppos)
477 {
478         int err;
479         char *buffer;
480
481 #ifndef CONFIG_CISS_SCSI_TAPE
482         return -EINVAL;
483 #endif
484
485         if (!buf || length > PAGE_SIZE - 1)
486                 return -EINVAL;
487
488         buffer = (char *)__get_free_page(GFP_KERNEL);
489         if (!buffer)
490                 return -ENOMEM;
491
492         err = -EFAULT;
493         if (copy_from_user(buffer, buf, length))
494                 goto out;
495         buffer[length] = '\0';
496
497 #ifdef CONFIG_CISS_SCSI_TAPE
498         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
499                 struct seq_file *seq = file->private_data;
500                 ctlr_info_t *h = seq->private;
501
502                 err = cciss_engage_scsi(h->ctlr);
503                 if (err == 0)
504                         err = length;
505         } else
506 #endif /* CONFIG_CISS_SCSI_TAPE */
507                 err = -EINVAL;
508         /* might be nice to have "disengage" too, but it's not
509            safely possible. (only 1 module use count, lock issues.) */
510
511 out:
512         free_page((unsigned long)buffer);
513         return err;
514 }
515
516 static const struct file_operations cciss_proc_fops = {
517         .owner   = THIS_MODULE,
518         .open    = cciss_seq_open,
519         .read    = seq_read,
520         .llseek  = seq_lseek,
521         .release = seq_release,
522         .write   = cciss_proc_write,
523 };
524
525 static void __devinit cciss_procinit(int i)
526 {
527         struct proc_dir_entry *pde;
528
529         if (proc_cciss == NULL)
530                 proc_cciss = proc_mkdir("driver/cciss", NULL);
531         if (!proc_cciss)
532                 return;
533         pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
534                                         S_IROTH, proc_cciss,
535                                         &cciss_proc_fops, hba[i]);
536 }
537 #endif                          /* CONFIG_PROC_FS */
538
539 #define MAX_PRODUCT_NAME_LEN 19
540
541 #define to_hba(n) container_of(n, struct ctlr_info, dev)
542 #define to_drv(n) container_of(n, drive_info_struct, dev)
543
544 static ssize_t host_store_rescan(struct device *dev,
545                                  struct device_attribute *attr,
546                                  const char *buf, size_t count)
547 {
548         struct ctlr_info *h = to_hba(dev);
549
550         add_to_scan_list(h);
551         wake_up_process(cciss_scan_thread);
552         wait_for_completion_interruptible(&h->scan_wait);
553
554         return count;
555 }
556 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
557
558 static ssize_t dev_show_unique_id(struct device *dev,
559                                  struct device_attribute *attr,
560                                  char *buf)
561 {
562         drive_info_struct *drv = to_drv(dev);
563         struct ctlr_info *h = to_hba(drv->dev.parent);
564         __u8 sn[16];
565         unsigned long flags;
566         int ret = 0;
567
568         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
569         if (h->busy_configuring)
570                 ret = -EBUSY;
571         else
572                 memcpy(sn, drv->serial_no, sizeof(sn));
573         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
574
575         if (ret)
576                 return ret;
577         else
578                 return snprintf(buf, 16 * 2 + 2,
579                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
580                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
581                                 sn[0], sn[1], sn[2], sn[3],
582                                 sn[4], sn[5], sn[6], sn[7],
583                                 sn[8], sn[9], sn[10], sn[11],
584                                 sn[12], sn[13], sn[14], sn[15]);
585 }
586 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
587
588 static ssize_t dev_show_vendor(struct device *dev,
589                                struct device_attribute *attr,
590                                char *buf)
591 {
592         drive_info_struct *drv = to_drv(dev);
593         struct ctlr_info *h = to_hba(drv->dev.parent);
594         char vendor[VENDOR_LEN + 1];
595         unsigned long flags;
596         int ret = 0;
597
598         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
599         if (h->busy_configuring)
600                 ret = -EBUSY;
601         else
602                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
603         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
604
605         if (ret)
606                 return ret;
607         else
608                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
609 }
610 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
611
612 static ssize_t dev_show_model(struct device *dev,
613                               struct device_attribute *attr,
614                               char *buf)
615 {
616         drive_info_struct *drv = to_drv(dev);
617         struct ctlr_info *h = to_hba(drv->dev.parent);
618         char model[MODEL_LEN + 1];
619         unsigned long flags;
620         int ret = 0;
621
622         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
623         if (h->busy_configuring)
624                 ret = -EBUSY;
625         else
626                 memcpy(model, drv->model, MODEL_LEN + 1);
627         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
628
629         if (ret)
630                 return ret;
631         else
632                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
633 }
634 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
635
636 static ssize_t dev_show_rev(struct device *dev,
637                             struct device_attribute *attr,
638                             char *buf)
639 {
640         drive_info_struct *drv = to_drv(dev);
641         struct ctlr_info *h = to_hba(drv->dev.parent);
642         char rev[REV_LEN + 1];
643         unsigned long flags;
644         int ret = 0;
645
646         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
647         if (h->busy_configuring)
648                 ret = -EBUSY;
649         else
650                 memcpy(rev, drv->rev, REV_LEN + 1);
651         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
652
653         if (ret)
654                 return ret;
655         else
656                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
657 }
658 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
659
660 static ssize_t cciss_show_lunid(struct device *dev,
661                                 struct device_attribute *attr, char *buf)
662 {
663         drive_info_struct *drv = to_drv(dev);
664         struct ctlr_info *h = to_hba(drv->dev.parent);
665         unsigned long flags;
666         unsigned char lunid[8];
667
668         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
669         if (h->busy_configuring) {
670                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
671                 return -EBUSY;
672         }
673         if (!drv->heads) {
674                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
675                 return -ENOTTY;
676         }
677         memcpy(lunid, drv->LunID, sizeof(lunid));
678         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
679         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
680                 lunid[0], lunid[1], lunid[2], lunid[3],
681                 lunid[4], lunid[5], lunid[6], lunid[7]);
682 }
683 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
684
685 static ssize_t cciss_show_raid_level(struct device *dev,
686                                      struct device_attribute *attr, char *buf)
687 {
688         drive_info_struct *drv = to_drv(dev);
689         struct ctlr_info *h = to_hba(drv->dev.parent);
690         int raid;
691         unsigned long flags;
692
693         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
694         if (h->busy_configuring) {
695                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
696                 return -EBUSY;
697         }
698         raid = drv->raid_level;
699         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
700         if (raid < 0 || raid > RAID_UNKNOWN)
701                 raid = RAID_UNKNOWN;
702
703         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
704                         raid_label[raid]);
705 }
706 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
707
708 static ssize_t cciss_show_usage_count(struct device *dev,
709                                       struct device_attribute *attr, char *buf)
710 {
711         drive_info_struct *drv = to_drv(dev);
712         struct ctlr_info *h = to_hba(drv->dev.parent);
713         unsigned long flags;
714         int count;
715
716         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
717         if (h->busy_configuring) {
718                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
719                 return -EBUSY;
720         }
721         count = drv->usage_count;
722         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
723         return snprintf(buf, 20, "%d\n", count);
724 }
725 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
726
727 static struct attribute *cciss_host_attrs[] = {
728         &dev_attr_rescan.attr,
729         NULL
730 };
731
732 static struct attribute_group cciss_host_attr_group = {
733         .attrs = cciss_host_attrs,
734 };
735
736 static const struct attribute_group *cciss_host_attr_groups[] = {
737         &cciss_host_attr_group,
738         NULL
739 };
740
741 static struct device_type cciss_host_type = {
742         .name           = "cciss_host",
743         .groups         = cciss_host_attr_groups,
744         .release        = cciss_hba_release,
745 };
746
747 static struct attribute *cciss_dev_attrs[] = {
748         &dev_attr_unique_id.attr,
749         &dev_attr_model.attr,
750         &dev_attr_vendor.attr,
751         &dev_attr_rev.attr,
752         &dev_attr_lunid.attr,
753         &dev_attr_raid_level.attr,
754         &dev_attr_usage_count.attr,
755         NULL
756 };
757
758 static struct attribute_group cciss_dev_attr_group = {
759         .attrs = cciss_dev_attrs,
760 };
761
762 static const struct attribute_group *cciss_dev_attr_groups[] = {
763         &cciss_dev_attr_group,
764         NULL
765 };
766
767 static struct device_type cciss_dev_type = {
768         .name           = "cciss_device",
769         .groups         = cciss_dev_attr_groups,
770         .release        = cciss_device_release,
771 };
772
773 static struct bus_type cciss_bus_type = {
774         .name           = "cciss",
775 };
776
777 /*
778  * cciss_hba_release is called when the reference count
779  * of h->dev goes to zero.
780  */
781 static void cciss_hba_release(struct device *dev)
782 {
783         /*
784          * nothing to do, but need this to avoid a warning
785          * about not having a release handler from lib/kref.c.
786          */
787 }
788
789 /*
790  * Initialize sysfs entry for each controller.  This sets up and registers
791  * the 'cciss#' directory for each individual controller under
792  * /sys/bus/pci/devices/<dev>/.
793  */
794 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
795 {
796         device_initialize(&h->dev);
797         h->dev.type = &cciss_host_type;
798         h->dev.bus = &cciss_bus_type;
799         dev_set_name(&h->dev, "%s", h->devname);
800         h->dev.parent = &h->pdev->dev;
801
802         return device_add(&h->dev);
803 }
804
805 /*
806  * Remove sysfs entries for an hba.
807  */
808 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
809 {
810         device_del(&h->dev);
811         put_device(&h->dev); /* final put. */
812 }
813
814 /* cciss_device_release is called when the reference count
815  * of h->drv[x]dev goes to zero.
816  */
817 static void cciss_device_release(struct device *dev)
818 {
819         drive_info_struct *drv = to_drv(dev);
820         kfree(drv);
821 }
822
823 /*
824  * Initialize sysfs for each logical drive.  This sets up and registers
825  * the 'c#d#' directory for each individual logical drive under
826  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
827  * /sys/block/cciss!c#d# to this entry.
828  */
829 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
830                                        int drv_index)
831 {
832         struct device *dev;
833
834         if (h->drv[drv_index]->device_initialized)
835                 return 0;
836
837         dev = &h->drv[drv_index]->dev;
838         device_initialize(dev);
839         dev->type = &cciss_dev_type;
840         dev->bus = &cciss_bus_type;
841         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
842         dev->parent = &h->dev;
843         h->drv[drv_index]->device_initialized = 1;
844         return device_add(dev);
845 }
846
847 /*
848  * Remove sysfs entries for a logical drive.
849  */
850 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
851         int ctlr_exiting)
852 {
853         struct device *dev = &h->drv[drv_index]->dev;
854
855         /* special case for c*d0, we only destroy it on controller exit */
856         if (drv_index == 0 && !ctlr_exiting)
857                 return;
858
859         device_del(dev);
860         put_device(dev); /* the "final" put. */
861         h->drv[drv_index] = NULL;
862 }
863
864 /*
865  * For operations that cannot sleep, a command block is allocated at init,
866  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
867  * which ones are free or in use.  For operations that can wait for kmalloc
868  * to possible sleep, this routine can be called with get_from_pool set to 0.
869  * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
870  */
871 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
872 {
873         CommandList_struct *c;
874         int i;
875         u64bit temp64;
876         dma_addr_t cmd_dma_handle, err_dma_handle;
877
878         if (!get_from_pool) {
879                 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
880                         sizeof(CommandList_struct), &cmd_dma_handle);
881                 if (c == NULL)
882                         return NULL;
883                 memset(c, 0, sizeof(CommandList_struct));
884
885                 c->cmdindex = -1;
886
887                 c->err_info = (ErrorInfo_struct *)
888                     pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
889                             &err_dma_handle);
890
891                 if (c->err_info == NULL) {
892                         pci_free_consistent(h->pdev,
893                                 sizeof(CommandList_struct), c, cmd_dma_handle);
894                         return NULL;
895                 }
896                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
897         } else {                /* get it out of the controllers pool */
898
899                 do {
900                         i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
901                         if (i == h->nr_cmds)
902                                 return NULL;
903                 } while (test_and_set_bit
904                          (i & (BITS_PER_LONG - 1),
905                           h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
906 #ifdef CCISS_DEBUG
907                 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
908 #endif
909                 c = h->cmd_pool + i;
910                 memset(c, 0, sizeof(CommandList_struct));
911                 cmd_dma_handle = h->cmd_pool_dhandle
912                     + i * sizeof(CommandList_struct);
913                 c->err_info = h->errinfo_pool + i;
914                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
915                 err_dma_handle = h->errinfo_pool_dhandle
916                     + i * sizeof(ErrorInfo_struct);
917                 h->nr_allocs++;
918
919                 c->cmdindex = i;
920         }
921
922         INIT_HLIST_NODE(&c->list);
923         c->busaddr = (__u32) cmd_dma_handle;
924         temp64.val = (__u64) err_dma_handle;
925         c->ErrDesc.Addr.lower = temp64.val32.lower;
926         c->ErrDesc.Addr.upper = temp64.val32.upper;
927         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
928
929         c->ctlr = h->ctlr;
930         return c;
931 }
932
933 /*
934  * Frees a command block that was previously allocated with cmd_alloc().
935  */
936 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
937 {
938         int i;
939         u64bit temp64;
940
941         if (!got_from_pool) {
942                 temp64.val32.lower = c->ErrDesc.Addr.lower;
943                 temp64.val32.upper = c->ErrDesc.Addr.upper;
944                 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
945                                     c->err_info, (dma_addr_t) temp64.val);
946                 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
947                                     c, (dma_addr_t) c->busaddr);
948         } else {
949                 i = c - h->cmd_pool;
950                 clear_bit(i & (BITS_PER_LONG - 1),
951                           h->cmd_pool_bits + (i / BITS_PER_LONG));
952                 h->nr_frees++;
953         }
954 }
955
956 static inline ctlr_info_t *get_host(struct gendisk *disk)
957 {
958         return disk->queue->queuedata;
959 }
960
961 static inline drive_info_struct *get_drv(struct gendisk *disk)
962 {
963         return disk->private_data;
964 }
965
966 /*
967  * Open.  Make sure the device is really there.
968  */
969 static int cciss_open(struct block_device *bdev, fmode_t mode)
970 {
971         ctlr_info_t *host = get_host(bdev->bd_disk);
972         drive_info_struct *drv = get_drv(bdev->bd_disk);
973
974 #ifdef CCISS_DEBUG
975         printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
976 #endif                          /* CCISS_DEBUG */
977
978         if (drv->busy_configuring)
979                 return -EBUSY;
980         /*
981          * Root is allowed to open raw volume zero even if it's not configured
982          * so array config can still work. Root is also allowed to open any
983          * volume that has a LUN ID, so it can issue IOCTL to reread the
984          * disk information.  I don't think I really like this
985          * but I'm already using way to many device nodes to claim another one
986          * for "raw controller".
987          */
988         if (drv->heads == 0) {
989                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
990                         /* if not node 0 make sure it is a partition = 0 */
991                         if (MINOR(bdev->bd_dev) & 0x0f) {
992                                 return -ENXIO;
993                                 /* if it is, make sure we have a LUN ID */
994                         } else if (memcmp(drv->LunID, CTLR_LUNID,
995                                 sizeof(drv->LunID))) {
996                                 return -ENXIO;
997                         }
998                 }
999                 if (!capable(CAP_SYS_ADMIN))
1000                         return -EPERM;
1001         }
1002         drv->usage_count++;
1003         host->usage_count++;
1004         return 0;
1005 }
1006
1007 /*
1008  * Close.  Sync first.
1009  */
1010 static int cciss_release(struct gendisk *disk, fmode_t mode)
1011 {
1012         ctlr_info_t *host = get_host(disk);
1013         drive_info_struct *drv = get_drv(disk);
1014
1015 #ifdef CCISS_DEBUG
1016         printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
1017 #endif                          /* CCISS_DEBUG */
1018
1019         drv->usage_count--;
1020         host->usage_count--;
1021         return 0;
1022 }
1023
1024 #ifdef CONFIG_COMPAT
1025
1026 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1027                     unsigned cmd, unsigned long arg)
1028 {
1029         int ret;
1030         lock_kernel();
1031         ret = cciss_ioctl(bdev, mode, cmd, arg);
1032         unlock_kernel();
1033         return ret;
1034 }
1035
1036 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1037                                   unsigned cmd, unsigned long arg);
1038 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1039                                       unsigned cmd, unsigned long arg);
1040
1041 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1042                               unsigned cmd, unsigned long arg)
1043 {
1044         switch (cmd) {
1045         case CCISS_GETPCIINFO:
1046         case CCISS_GETINTINFO:
1047         case CCISS_SETINTINFO:
1048         case CCISS_GETNODENAME:
1049         case CCISS_SETNODENAME:
1050         case CCISS_GETHEARTBEAT:
1051         case CCISS_GETBUSTYPES:
1052         case CCISS_GETFIRMVER:
1053         case CCISS_GETDRIVVER:
1054         case CCISS_REVALIDVOLS:
1055         case CCISS_DEREGDISK:
1056         case CCISS_REGNEWDISK:
1057         case CCISS_REGNEWD:
1058         case CCISS_RESCANDISK:
1059         case CCISS_GETLUNINFO:
1060                 return do_ioctl(bdev, mode, cmd, arg);
1061
1062         case CCISS_PASSTHRU32:
1063                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1064         case CCISS_BIG_PASSTHRU32:
1065                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1066
1067         default:
1068                 return -ENOIOCTLCMD;
1069         }
1070 }
1071
1072 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1073                                   unsigned cmd, unsigned long arg)
1074 {
1075         IOCTL32_Command_struct __user *arg32 =
1076             (IOCTL32_Command_struct __user *) arg;
1077         IOCTL_Command_struct arg64;
1078         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1079         int err;
1080         u32 cp;
1081
1082         err = 0;
1083         err |=
1084             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1085                            sizeof(arg64.LUN_info));
1086         err |=
1087             copy_from_user(&arg64.Request, &arg32->Request,
1088                            sizeof(arg64.Request));
1089         err |=
1090             copy_from_user(&arg64.error_info, &arg32->error_info,
1091                            sizeof(arg64.error_info));
1092         err |= get_user(arg64.buf_size, &arg32->buf_size);
1093         err |= get_user(cp, &arg32->buf);
1094         arg64.buf = compat_ptr(cp);
1095         err |= copy_to_user(p, &arg64, sizeof(arg64));
1096
1097         if (err)
1098                 return -EFAULT;
1099
1100         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1101         if (err)
1102                 return err;
1103         err |=
1104             copy_in_user(&arg32->error_info, &p->error_info,
1105                          sizeof(arg32->error_info));
1106         if (err)
1107                 return -EFAULT;
1108         return err;
1109 }
1110
1111 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1112                                       unsigned cmd, unsigned long arg)
1113 {
1114         BIG_IOCTL32_Command_struct __user *arg32 =
1115             (BIG_IOCTL32_Command_struct __user *) arg;
1116         BIG_IOCTL_Command_struct arg64;
1117         BIG_IOCTL_Command_struct __user *p =
1118             compat_alloc_user_space(sizeof(arg64));
1119         int err;
1120         u32 cp;
1121
1122         err = 0;
1123         err |=
1124             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1125                            sizeof(arg64.LUN_info));
1126         err |=
1127             copy_from_user(&arg64.Request, &arg32->Request,
1128                            sizeof(arg64.Request));
1129         err |=
1130             copy_from_user(&arg64.error_info, &arg32->error_info,
1131                            sizeof(arg64.error_info));
1132         err |= get_user(arg64.buf_size, &arg32->buf_size);
1133         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1134         err |= get_user(cp, &arg32->buf);
1135         arg64.buf = compat_ptr(cp);
1136         err |= copy_to_user(p, &arg64, sizeof(arg64));
1137
1138         if (err)
1139                 return -EFAULT;
1140
1141         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1142         if (err)
1143                 return err;
1144         err |=
1145             copy_in_user(&arg32->error_info, &p->error_info,
1146                          sizeof(arg32->error_info));
1147         if (err)
1148                 return -EFAULT;
1149         return err;
1150 }
1151 #endif
1152
1153 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1154 {
1155         drive_info_struct *drv = get_drv(bdev->bd_disk);
1156
1157         if (!drv->cylinders)
1158                 return -ENXIO;
1159
1160         geo->heads = drv->heads;
1161         geo->sectors = drv->sectors;
1162         geo->cylinders = drv->cylinders;
1163         return 0;
1164 }
1165
1166 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1167 {
1168         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1169                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1170                 (void)check_for_unit_attention(host, c);
1171 }
1172 /*
1173  * ioctl
1174  */
1175 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1176                        unsigned int cmd, unsigned long arg)
1177 {
1178         struct gendisk *disk = bdev->bd_disk;
1179         ctlr_info_t *host = get_host(disk);
1180         drive_info_struct *drv = get_drv(disk);
1181         int ctlr = host->ctlr;
1182         void __user *argp = (void __user *)arg;
1183
1184 #ifdef CCISS_DEBUG
1185         printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1186 #endif                          /* CCISS_DEBUG */
1187
1188         switch (cmd) {
1189         case CCISS_GETPCIINFO:
1190                 {
1191                         cciss_pci_info_struct pciinfo;
1192
1193                         if (!arg)
1194                                 return -EINVAL;
1195                         pciinfo.domain = pci_domain_nr(host->pdev->bus);
1196                         pciinfo.bus = host->pdev->bus->number;
1197                         pciinfo.dev_fn = host->pdev->devfn;
1198                         pciinfo.board_id = host->board_id;
1199                         if (copy_to_user
1200                             (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1201                                 return -EFAULT;
1202                         return 0;
1203                 }
1204         case CCISS_GETINTINFO:
1205                 {
1206                         cciss_coalint_struct intinfo;
1207                         if (!arg)
1208                                 return -EINVAL;
1209                         intinfo.delay =
1210                             readl(&host->cfgtable->HostWrite.CoalIntDelay);
1211                         intinfo.count =
1212                             readl(&host->cfgtable->HostWrite.CoalIntCount);
1213                         if (copy_to_user
1214                             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1215                                 return -EFAULT;
1216                         return 0;
1217                 }
1218         case CCISS_SETINTINFO:
1219                 {
1220                         cciss_coalint_struct intinfo;
1221                         unsigned long flags;
1222                         int i;
1223
1224                         if (!arg)
1225                                 return -EINVAL;
1226                         if (!capable(CAP_SYS_ADMIN))
1227                                 return -EPERM;
1228                         if (copy_from_user
1229                             (&intinfo, argp, sizeof(cciss_coalint_struct)))
1230                                 return -EFAULT;
1231                         if ((intinfo.delay == 0) && (intinfo.count == 0))
1232                         {
1233 //                      printk("cciss_ioctl: delay and count cannot be 0\n");
1234                                 return -EINVAL;
1235                         }
1236                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1237                         /* Update the field, and then ring the doorbell */
1238                         writel(intinfo.delay,
1239                                &(host->cfgtable->HostWrite.CoalIntDelay));
1240                         writel(intinfo.count,
1241                                &(host->cfgtable->HostWrite.CoalIntCount));
1242                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1243
1244                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1245                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1246                                       & CFGTBL_ChangeReq))
1247                                         break;
1248                                 /* delay and try again */
1249                                 udelay(1000);
1250                         }
1251                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1252                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1253                                 return -EAGAIN;
1254                         return 0;
1255                 }
1256         case CCISS_GETNODENAME:
1257                 {
1258                         NodeName_type NodeName;
1259                         int i;
1260
1261                         if (!arg)
1262                                 return -EINVAL;
1263                         for (i = 0; i < 16; i++)
1264                                 NodeName[i] =
1265                                     readb(&host->cfgtable->ServerName[i]);
1266                         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1267                                 return -EFAULT;
1268                         return 0;
1269                 }
1270         case CCISS_SETNODENAME:
1271                 {
1272                         NodeName_type NodeName;
1273                         unsigned long flags;
1274                         int i;
1275
1276                         if (!arg)
1277                                 return -EINVAL;
1278                         if (!capable(CAP_SYS_ADMIN))
1279                                 return -EPERM;
1280
1281                         if (copy_from_user
1282                             (NodeName, argp, sizeof(NodeName_type)))
1283                                 return -EFAULT;
1284
1285                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1286
1287                         /* Update the field, and then ring the doorbell */
1288                         for (i = 0; i < 16; i++)
1289                                 writeb(NodeName[i],
1290                                        &host->cfgtable->ServerName[i]);
1291
1292                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1293
1294                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1295                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1296                                       & CFGTBL_ChangeReq))
1297                                         break;
1298                                 /* delay and try again */
1299                                 udelay(1000);
1300                         }
1301                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1302                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1303                                 return -EAGAIN;
1304                         return 0;
1305                 }
1306
1307         case CCISS_GETHEARTBEAT:
1308                 {
1309                         Heartbeat_type heartbeat;
1310
1311                         if (!arg)
1312                                 return -EINVAL;
1313                         heartbeat = readl(&host->cfgtable->HeartBeat);
1314                         if (copy_to_user
1315                             (argp, &heartbeat, sizeof(Heartbeat_type)))
1316                                 return -EFAULT;
1317                         return 0;
1318                 }
1319         case CCISS_GETBUSTYPES:
1320                 {
1321                         BusTypes_type BusTypes;
1322
1323                         if (!arg)
1324                                 return -EINVAL;
1325                         BusTypes = readl(&host->cfgtable->BusTypes);
1326                         if (copy_to_user
1327                             (argp, &BusTypes, sizeof(BusTypes_type)))
1328                                 return -EFAULT;
1329                         return 0;
1330                 }
1331         case CCISS_GETFIRMVER:
1332                 {
1333                         FirmwareVer_type firmware;
1334
1335                         if (!arg)
1336                                 return -EINVAL;
1337                         memcpy(firmware, host->firm_ver, 4);
1338
1339                         if (copy_to_user
1340                             (argp, firmware, sizeof(FirmwareVer_type)))
1341                                 return -EFAULT;
1342                         return 0;
1343                 }
1344         case CCISS_GETDRIVVER:
1345                 {
1346                         DriverVer_type DriverVer = DRIVER_VERSION;
1347
1348                         if (!arg)
1349                                 return -EINVAL;
1350
1351                         if (copy_to_user
1352                             (argp, &DriverVer, sizeof(DriverVer_type)))
1353                                 return -EFAULT;
1354                         return 0;
1355                 }
1356
1357         case CCISS_DEREGDISK:
1358         case CCISS_REGNEWD:
1359         case CCISS_REVALIDVOLS:
1360                 return rebuild_lun_table(host, 0, 1);
1361
1362         case CCISS_GETLUNINFO:{
1363                         LogvolInfo_struct luninfo;
1364
1365                         memcpy(&luninfo.LunID, drv->LunID,
1366                                 sizeof(luninfo.LunID));
1367                         luninfo.num_opens = drv->usage_count;
1368                         luninfo.num_parts = 0;
1369                         if (copy_to_user(argp, &luninfo,
1370                                          sizeof(LogvolInfo_struct)))
1371                                 return -EFAULT;
1372                         return 0;
1373                 }
1374         case CCISS_PASSTHRU:
1375                 {
1376                         IOCTL_Command_struct iocommand;
1377                         CommandList_struct *c;
1378                         char *buff = NULL;
1379                         u64bit temp64;
1380                         unsigned long flags;
1381                         DECLARE_COMPLETION_ONSTACK(wait);
1382
1383                         if (!arg)
1384                                 return -EINVAL;
1385
1386                         if (!capable(CAP_SYS_RAWIO))
1387                                 return -EPERM;
1388
1389                         if (copy_from_user
1390                             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1391                                 return -EFAULT;
1392                         if ((iocommand.buf_size < 1) &&
1393                             (iocommand.Request.Type.Direction != XFER_NONE)) {
1394                                 return -EINVAL;
1395                         }
1396 #if 0                           /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1397                         /* Check kmalloc limits */
1398                         if (iocommand.buf_size > 128000)
1399                                 return -EINVAL;
1400 #endif
1401                         if (iocommand.buf_size > 0) {
1402                                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1403                                 if (buff == NULL)
1404                                         return -EFAULT;
1405                         }
1406                         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1407                                 /* Copy the data into the buffer we created */
1408                                 if (copy_from_user
1409                                     (buff, iocommand.buf, iocommand.buf_size)) {
1410                                         kfree(buff);
1411                                         return -EFAULT;
1412                                 }
1413                         } else {
1414                                 memset(buff, 0, iocommand.buf_size);
1415                         }
1416                         if ((c = cmd_alloc(host, 0)) == NULL) {
1417                                 kfree(buff);
1418                                 return -ENOMEM;
1419                         }
1420                         /* Fill in the command type */
1421                         c->cmd_type = CMD_IOCTL_PEND;
1422                         /* Fill in Command Header */
1423                         c->Header.ReplyQueue = 0;   /* unused in simple mode */
1424                         if (iocommand.buf_size > 0) /* buffer to fill */
1425                         {
1426                                 c->Header.SGList = 1;
1427                                 c->Header.SGTotal = 1;
1428                         } else /* no buffers to fill */
1429                         {
1430                                 c->Header.SGList = 0;
1431                                 c->Header.SGTotal = 0;
1432                         }
1433                         c->Header.LUN = iocommand.LUN_info;
1434                         /* use the kernel address the cmd block for tag */
1435                         c->Header.Tag.lower = c->busaddr;
1436
1437                         /* Fill in Request block */
1438                         c->Request = iocommand.Request;
1439
1440                         /* Fill in the scatter gather information */
1441                         if (iocommand.buf_size > 0) {
1442                                 temp64.val = pci_map_single(host->pdev, buff,
1443                                         iocommand.buf_size,
1444                                         PCI_DMA_BIDIRECTIONAL);
1445                                 c->SG[0].Addr.lower = temp64.val32.lower;
1446                                 c->SG[0].Addr.upper = temp64.val32.upper;
1447                                 c->SG[0].Len = iocommand.buf_size;
1448                                 c->SG[0].Ext = 0;  /* we are not chaining */
1449                         }
1450                         c->waiting = &wait;
1451
1452                         /* Put the request on the tail of the request queue */
1453                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1454                         addQ(&host->reqQ, c);
1455                         host->Qdepth++;
1456                         start_io(host);
1457                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1458
1459                         wait_for_completion(&wait);
1460
1461                         /* unlock the buffers from DMA */
1462                         temp64.val32.lower = c->SG[0].Addr.lower;
1463                         temp64.val32.upper = c->SG[0].Addr.upper;
1464                         pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1465                                          iocommand.buf_size,
1466                                          PCI_DMA_BIDIRECTIONAL);
1467
1468                         check_ioctl_unit_attention(host, c);
1469
1470                         /* Copy the error information out */
1471                         iocommand.error_info = *(c->err_info);
1472                         if (copy_to_user
1473                             (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1474                                 kfree(buff);
1475                                 cmd_free(host, c, 0);
1476                                 return -EFAULT;
1477                         }
1478
1479                         if (iocommand.Request.Type.Direction == XFER_READ) {
1480                                 /* Copy the data out of the buffer we created */
1481                                 if (copy_to_user
1482                                     (iocommand.buf, buff, iocommand.buf_size)) {
1483                                         kfree(buff);
1484                                         cmd_free(host, c, 0);
1485                                         return -EFAULT;
1486                                 }
1487                         }
1488                         kfree(buff);
1489                         cmd_free(host, c, 0);
1490                         return 0;
1491                 }
1492         case CCISS_BIG_PASSTHRU:{
1493                         BIG_IOCTL_Command_struct *ioc;
1494                         CommandList_struct *c;
1495                         unsigned char **buff = NULL;
1496                         int *buff_size = NULL;
1497                         u64bit temp64;
1498                         unsigned long flags;
1499                         BYTE sg_used = 0;
1500                         int status = 0;
1501                         int i;
1502                         DECLARE_COMPLETION_ONSTACK(wait);
1503                         __u32 left;
1504                         __u32 sz;
1505                         BYTE __user *data_ptr;
1506
1507                         if (!arg)
1508                                 return -EINVAL;
1509                         if (!capable(CAP_SYS_RAWIO))
1510                                 return -EPERM;
1511                         ioc = (BIG_IOCTL_Command_struct *)
1512                             kmalloc(sizeof(*ioc), GFP_KERNEL);
1513                         if (!ioc) {
1514                                 status = -ENOMEM;
1515                                 goto cleanup1;
1516                         }
1517                         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1518                                 status = -EFAULT;
1519                                 goto cleanup1;
1520                         }
1521                         if ((ioc->buf_size < 1) &&
1522                             (ioc->Request.Type.Direction != XFER_NONE)) {
1523                                 status = -EINVAL;
1524                                 goto cleanup1;
1525                         }
1526                         /* Check kmalloc limits  using all SGs */
1527                         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1528                                 status = -EINVAL;
1529                                 goto cleanup1;
1530                         }
1531                         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1532                                 status = -EINVAL;
1533                                 goto cleanup1;
1534                         }
1535                         buff =
1536                             kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1537                         if (!buff) {
1538                                 status = -ENOMEM;
1539                                 goto cleanup1;
1540                         }
1541                         buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1542                                                    GFP_KERNEL);
1543                         if (!buff_size) {
1544                                 status = -ENOMEM;
1545                                 goto cleanup1;
1546                         }
1547                         left = ioc->buf_size;
1548                         data_ptr = ioc->buf;
1549                         while (left) {
1550                                 sz = (left >
1551                                       ioc->malloc_size) ? ioc->
1552                                     malloc_size : left;
1553                                 buff_size[sg_used] = sz;
1554                                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1555                                 if (buff[sg_used] == NULL) {
1556                                         status = -ENOMEM;
1557                                         goto cleanup1;
1558                                 }
1559                                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1560                                         if (copy_from_user
1561                                             (buff[sg_used], data_ptr, sz)) {
1562                                                 status = -EFAULT;
1563                                                 goto cleanup1;
1564                                         }
1565                                 } else {
1566                                         memset(buff[sg_used], 0, sz);
1567                                 }
1568                                 left -= sz;
1569                                 data_ptr += sz;
1570                                 sg_used++;
1571                         }
1572                         if ((c = cmd_alloc(host, 0)) == NULL) {
1573                                 status = -ENOMEM;
1574                                 goto cleanup1;
1575                         }
1576                         c->cmd_type = CMD_IOCTL_PEND;
1577                         c->Header.ReplyQueue = 0;
1578
1579                         if (ioc->buf_size > 0) {
1580                                 c->Header.SGList = sg_used;
1581                                 c->Header.SGTotal = sg_used;
1582                         } else {
1583                                 c->Header.SGList = 0;
1584                                 c->Header.SGTotal = 0;
1585                         }
1586                         c->Header.LUN = ioc->LUN_info;
1587                         c->Header.Tag.lower = c->busaddr;
1588
1589                         c->Request = ioc->Request;
1590                         if (ioc->buf_size > 0) {
1591                                 int i;
1592                                 for (i = 0; i < sg_used; i++) {
1593                                         temp64.val =
1594                                             pci_map_single(host->pdev, buff[i],
1595                                                     buff_size[i],
1596                                                     PCI_DMA_BIDIRECTIONAL);
1597                                         c->SG[i].Addr.lower =
1598                                             temp64.val32.lower;
1599                                         c->SG[i].Addr.upper =
1600                                             temp64.val32.upper;
1601                                         c->SG[i].Len = buff_size[i];
1602                                         c->SG[i].Ext = 0;       /* we are not chaining */
1603                                 }
1604                         }
1605                         c->waiting = &wait;
1606                         /* Put the request on the tail of the request queue */
1607                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1608                         addQ(&host->reqQ, c);
1609                         host->Qdepth++;
1610                         start_io(host);
1611                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1612                         wait_for_completion(&wait);
1613                         /* unlock the buffers from DMA */
1614                         for (i = 0; i < sg_used; i++) {
1615                                 temp64.val32.lower = c->SG[i].Addr.lower;
1616                                 temp64.val32.upper = c->SG[i].Addr.upper;
1617                                 pci_unmap_single(host->pdev,
1618                                         (dma_addr_t) temp64.val, buff_size[i],
1619                                         PCI_DMA_BIDIRECTIONAL);
1620                         }
1621                         check_ioctl_unit_attention(host, c);
1622                         /* Copy the error information out */
1623                         ioc->error_info = *(c->err_info);
1624                         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1625                                 cmd_free(host, c, 0);
1626                                 status = -EFAULT;
1627                                 goto cleanup1;
1628                         }
1629                         if (ioc->Request.Type.Direction == XFER_READ) {
1630                                 /* Copy the data out of the buffer we created */
1631                                 BYTE __user *ptr = ioc->buf;
1632                                 for (i = 0; i < sg_used; i++) {
1633                                         if (copy_to_user
1634                                             (ptr, buff[i], buff_size[i])) {
1635                                                 cmd_free(host, c, 0);
1636                                                 status = -EFAULT;
1637                                                 goto cleanup1;
1638                                         }
1639                                         ptr += buff_size[i];
1640                                 }
1641                         }
1642                         cmd_free(host, c, 0);
1643                         status = 0;
1644                       cleanup1:
1645                         if (buff) {
1646                                 for (i = 0; i < sg_used; i++)
1647                                         kfree(buff[i]);
1648                                 kfree(buff);
1649                         }
1650                         kfree(buff_size);
1651                         kfree(ioc);
1652                         return status;
1653                 }
1654
1655         /* scsi_cmd_ioctl handles these, below, though some are not */
1656         /* very meaningful for cciss.  SG_IO is the main one people want. */
1657
1658         case SG_GET_VERSION_NUM:
1659         case SG_SET_TIMEOUT:
1660         case SG_GET_TIMEOUT:
1661         case SG_GET_RESERVED_SIZE:
1662         case SG_SET_RESERVED_SIZE:
1663         case SG_EMULATED_HOST:
1664         case SG_IO:
1665         case SCSI_IOCTL_SEND_COMMAND:
1666                 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1667
1668         /* scsi_cmd_ioctl would normally handle these, below, but */
1669         /* they aren't a good fit for cciss, as CD-ROMs are */
1670         /* not supported, and we don't have any bus/target/lun */
1671         /* which we present to the kernel. */
1672
1673         case CDROM_SEND_PACKET:
1674         case CDROMCLOSETRAY:
1675         case CDROMEJECT:
1676         case SCSI_IOCTL_GET_IDLUN:
1677         case SCSI_IOCTL_GET_BUS_NUMBER:
1678         default:
1679                 return -ENOTTY;
1680         }
1681 }
1682
1683 static void cciss_check_queues(ctlr_info_t *h)
1684 {
1685         int start_queue = h->next_to_run;
1686         int i;
1687
1688         /* check to see if we have maxed out the number of commands that can
1689          * be placed on the queue.  If so then exit.  We do this check here
1690          * in case the interrupt we serviced was from an ioctl and did not
1691          * free any new commands.
1692          */
1693         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1694                 return;
1695
1696         /* We have room on the queue for more commands.  Now we need to queue
1697          * them up.  We will also keep track of the next queue to run so
1698          * that every queue gets a chance to be started first.
1699          */
1700         for (i = 0; i < h->highest_lun + 1; i++) {
1701                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1702                 /* make sure the disk has been added and the drive is real
1703                  * because this can be called from the middle of init_one.
1704                  */
1705                 if (!h->drv[curr_queue])
1706                         continue;
1707                 if (!(h->drv[curr_queue]->queue) ||
1708                         !(h->drv[curr_queue]->heads))
1709                         continue;
1710                 blk_start_queue(h->gendisk[curr_queue]->queue);
1711
1712                 /* check to see if we have maxed out the number of commands
1713                  * that can be placed on the queue.
1714                  */
1715                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1716                         if (curr_queue == start_queue) {
1717                                 h->next_to_run =
1718                                     (start_queue + 1) % (h->highest_lun + 1);
1719                                 break;
1720                         } else {
1721                                 h->next_to_run = curr_queue;
1722                                 break;
1723                         }
1724                 }
1725         }
1726 }
1727
1728 static void cciss_softirq_done(struct request *rq)
1729 {
1730         CommandList_struct *cmd = rq->completion_data;
1731         ctlr_info_t *h = hba[cmd->ctlr];
1732         SGDescriptor_struct *curr_sg = cmd->SG;
1733         unsigned long flags;
1734         u64bit temp64;
1735         int i, ddir;
1736         int sg_index = 0;
1737
1738         if (cmd->Request.Type.Direction == XFER_READ)
1739                 ddir = PCI_DMA_FROMDEVICE;
1740         else
1741                 ddir = PCI_DMA_TODEVICE;
1742
1743         /* command did not need to be retried */
1744         /* unmap the DMA mapping for all the scatter gather elements */
1745         for (i = 0; i < cmd->Header.SGList; i++) {
1746                 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1747                         cciss_unmap_sg_chain_block(h, cmd);
1748                         /* Point to the next block */
1749                         curr_sg = h->cmd_sg_list[cmd->cmdindex];
1750                         sg_index = 0;
1751                 }
1752                 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1753                 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1754                 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1755                                 ddir);
1756                 ++sg_index;
1757         }
1758
1759 #ifdef CCISS_DEBUG
1760         printk("Done with %p\n", rq);
1761 #endif                          /* CCISS_DEBUG */
1762
1763         /* set the residual count for pc requests */
1764         if (blk_pc_request(rq))
1765                 rq->resid_len = cmd->err_info->ResidualCnt;
1766
1767         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1768
1769         spin_lock_irqsave(&h->lock, flags);
1770         cmd_free(h, cmd, 1);
1771         cciss_check_queues(h);
1772         spin_unlock_irqrestore(&h->lock, flags);
1773 }
1774
1775 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1776         unsigned char scsi3addr[], uint32_t log_unit)
1777 {
1778         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1779                 sizeof(h->drv[log_unit]->LunID));
1780 }
1781
1782 /* This function gets the SCSI vendor, model, and revision of a logical drive
1783  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1784  * they cannot be read.
1785  */
1786 static void cciss_get_device_descr(int ctlr, int logvol,
1787                                    char *vendor, char *model, char *rev)
1788 {
1789         int rc;
1790         InquiryData_struct *inq_buf;
1791         unsigned char scsi3addr[8];
1792
1793         *vendor = '\0';
1794         *model = '\0';
1795         *rev = '\0';
1796
1797         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1798         if (!inq_buf)
1799                 return;
1800
1801         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1802         rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1803                         scsi3addr, TYPE_CMD);
1804         if (rc == IO_OK) {
1805                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1806                 vendor[VENDOR_LEN] = '\0';
1807                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1808                 model[MODEL_LEN] = '\0';
1809                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1810                 rev[REV_LEN] = '\0';
1811         }
1812
1813         kfree(inq_buf);
1814         return;
1815 }
1816
1817 /* This function gets the serial number of a logical drive via
1818  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1819  * number cannot be had, for whatever reason, 16 bytes of 0xff
1820  * are returned instead.
1821  */
1822 static void cciss_get_serial_no(int ctlr, int logvol,
1823                                 unsigned char *serial_no, int buflen)
1824 {
1825 #define PAGE_83_INQ_BYTES 64
1826         int rc;
1827         unsigned char *buf;
1828         unsigned char scsi3addr[8];
1829
1830         if (buflen > 16)
1831                 buflen = 16;
1832         memset(serial_no, 0xff, buflen);
1833         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1834         if (!buf)
1835                 return;
1836         memset(serial_no, 0, buflen);
1837         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1838         rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1839                 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1840         if (rc == IO_OK)
1841                 memcpy(serial_no, &buf[8], buflen);
1842         kfree(buf);
1843         return;
1844 }
1845
1846 /*
1847  * cciss_add_disk sets up the block device queue for a logical drive
1848  */
1849 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1850                                 int drv_index)
1851 {
1852         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1853         if (!disk->queue)
1854                 goto init_queue_failure;
1855         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1856         disk->major = h->major;
1857         disk->first_minor = drv_index << NWD_SHIFT;
1858         disk->fops = &cciss_fops;
1859         if (cciss_create_ld_sysfs_entry(h, drv_index))
1860                 goto cleanup_queue;
1861         disk->private_data = h->drv[drv_index];
1862         disk->driverfs_dev = &h->drv[drv_index]->dev;
1863
1864         /* Set up queue information */
1865         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1866
1867         /* This is a hardware imposed limit. */
1868         blk_queue_max_segments(disk->queue, h->maxsgentries);
1869
1870         blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1871
1872         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1873
1874         disk->queue->queuedata = h;
1875
1876         blk_queue_logical_block_size(disk->queue,
1877                                      h->drv[drv_index]->block_size);
1878
1879         /* Make sure all queue data is written out before */
1880         /* setting h->drv[drv_index]->queue, as setting this */
1881         /* allows the interrupt handler to start the queue */
1882         wmb();
1883         h->drv[drv_index]->queue = disk->queue;
1884         add_disk(disk);
1885         return 0;
1886
1887 cleanup_queue:
1888         blk_cleanup_queue(disk->queue);
1889         disk->queue = NULL;
1890 init_queue_failure:
1891         return -1;
1892 }
1893
1894 /* This function will check the usage_count of the drive to be updated/added.
1895  * If the usage_count is zero and it is a heretofore unknown drive, or,
1896  * the drive's capacity, geometry, or serial number has changed,
1897  * then the drive information will be updated and the disk will be
1898  * re-registered with the kernel.  If these conditions don't hold,
1899  * then it will be left alone for the next reboot.  The exception to this
1900  * is disk 0 which will always be left registered with the kernel since it
1901  * is also the controller node.  Any changes to disk 0 will show up on
1902  * the next reboot.
1903  */
1904 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1905         int via_ioctl)
1906 {
1907         ctlr_info_t *h = hba[ctlr];
1908         struct gendisk *disk;
1909         InquiryData_struct *inq_buff = NULL;
1910         unsigned int block_size;
1911         sector_t total_size;
1912         unsigned long flags = 0;
1913         int ret = 0;
1914         drive_info_struct *drvinfo;
1915
1916         /* Get information about the disk and modify the driver structure */
1917         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1918         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1919         if (inq_buff == NULL || drvinfo == NULL)
1920                 goto mem_msg;
1921
1922         /* testing to see if 16-byte CDBs are already being used */
1923         if (h->cciss_read == CCISS_READ_16) {
1924                 cciss_read_capacity_16(h->ctlr, drv_index,
1925                         &total_size, &block_size);
1926
1927         } else {
1928                 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1929                 /* if read_capacity returns all F's this volume is >2TB */
1930                 /* in size so we switch to 16-byte CDB's for all */
1931                 /* read/write ops */
1932                 if (total_size == 0xFFFFFFFFULL) {
1933                         cciss_read_capacity_16(ctlr, drv_index,
1934                         &total_size, &block_size);
1935                         h->cciss_read = CCISS_READ_16;
1936                         h->cciss_write = CCISS_WRITE_16;
1937                 } else {
1938                         h->cciss_read = CCISS_READ_10;
1939                         h->cciss_write = CCISS_WRITE_10;
1940                 }
1941         }
1942
1943         cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1944                                inq_buff, drvinfo);
1945         drvinfo->block_size = block_size;
1946         drvinfo->nr_blocks = total_size + 1;
1947
1948         cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1949                                 drvinfo->model, drvinfo->rev);
1950         cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1951                         sizeof(drvinfo->serial_no));
1952         /* Save the lunid in case we deregister the disk, below. */
1953         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1954                 sizeof(drvinfo->LunID));
1955
1956         /* Is it the same disk we already know, and nothing's changed? */
1957         if (h->drv[drv_index]->raid_level != -1 &&
1958                 ((memcmp(drvinfo->serial_no,
1959                                 h->drv[drv_index]->serial_no, 16) == 0) &&
1960                 drvinfo->block_size == h->drv[drv_index]->block_size &&
1961                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1962                 drvinfo->heads == h->drv[drv_index]->heads &&
1963                 drvinfo->sectors == h->drv[drv_index]->sectors &&
1964                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1965                         /* The disk is unchanged, nothing to update */
1966                         goto freeret;
1967
1968         /* If we get here it's not the same disk, or something's changed,
1969          * so we need to * deregister it, and re-register it, if it's not
1970          * in use.
1971          * If the disk already exists then deregister it before proceeding
1972          * (unless it's the first disk (for the controller node).
1973          */
1974         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1975                 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1976                 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1977                 h->drv[drv_index]->busy_configuring = 1;
1978                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1979
1980                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1981                  * which keeps the interrupt handler from starting
1982                  * the queue.
1983                  */
1984                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1985         }
1986
1987         /* If the disk is in use return */
1988         if (ret)
1989                 goto freeret;
1990
1991         /* Save the new information from cciss_geometry_inquiry
1992          * and serial number inquiry.  If the disk was deregistered
1993          * above, then h->drv[drv_index] will be NULL.
1994          */
1995         if (h->drv[drv_index] == NULL) {
1996                 drvinfo->device_initialized = 0;
1997                 h->drv[drv_index] = drvinfo;
1998                 drvinfo = NULL; /* so it won't be freed below. */
1999         } else {
2000                 /* special case for cxd0 */
2001                 h->drv[drv_index]->block_size = drvinfo->block_size;
2002                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2003                 h->drv[drv_index]->heads = drvinfo->heads;
2004                 h->drv[drv_index]->sectors = drvinfo->sectors;
2005                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2006                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2007                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2008                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2009                         VENDOR_LEN + 1);
2010                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2011                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2012         }
2013
2014         ++h->num_luns;
2015         disk = h->gendisk[drv_index];
2016         set_capacity(disk, h->drv[drv_index]->nr_blocks);
2017
2018         /* If it's not disk 0 (drv_index != 0)
2019          * or if it was disk 0, but there was previously
2020          * no actual corresponding configured logical drive
2021          * (raid_leve == -1) then we want to update the
2022          * logical drive's information.
2023          */
2024         if (drv_index || first_time) {
2025                 if (cciss_add_disk(h, disk, drv_index) != 0) {
2026                         cciss_free_gendisk(h, drv_index);
2027                         cciss_free_drive_info(h, drv_index);
2028                         printk(KERN_WARNING "cciss:%d could not update "
2029                                 "disk %d\n", h->ctlr, drv_index);
2030                         --h->num_luns;
2031                 }
2032         }
2033
2034 freeret:
2035         kfree(inq_buff);
2036         kfree(drvinfo);
2037         return;
2038 mem_msg:
2039         printk(KERN_ERR "cciss: out of memory\n");
2040         goto freeret;
2041 }
2042
2043 /* This function will find the first index of the controllers drive array
2044  * that has a null drv pointer and allocate the drive info struct and
2045  * will return that index   This is where new drives will be added.
2046  * If the index to be returned is greater than the highest_lun index for
2047  * the controller then highest_lun is set * to this new index.
2048  * If there are no available indexes or if tha allocation fails, then -1
2049  * is returned.  * "controller_node" is used to know if this is a real
2050  * logical drive, or just the controller node, which determines if this
2051  * counts towards highest_lun.
2052  */
2053 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2054 {
2055         int i;
2056         drive_info_struct *drv;
2057
2058         /* Search for an empty slot for our drive info */
2059         for (i = 0; i < CISS_MAX_LUN; i++) {
2060
2061                 /* if not cxd0 case, and it's occupied, skip it. */
2062                 if (h->drv[i] && i != 0)
2063                         continue;
2064                 /*
2065                  * If it's cxd0 case, and drv is alloc'ed already, and a
2066                  * disk is configured there, skip it.
2067                  */
2068                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2069                         continue;
2070
2071                 /*
2072                  * We've found an empty slot.  Update highest_lun
2073                  * provided this isn't just the fake cxd0 controller node.
2074                  */
2075                 if (i > h->highest_lun && !controller_node)
2076                         h->highest_lun = i;
2077
2078                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2079                 if (i == 0 && h->drv[i] != NULL)
2080                         return i;
2081
2082                 /*
2083                  * Found an empty slot, not already alloc'ed.  Allocate it.
2084                  * Mark it with raid_level == -1, so we know it's new later on.
2085                  */
2086                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2087                 if (!drv)
2088                         return -1;
2089                 drv->raid_level = -1; /* so we know it's new */
2090                 h->drv[i] = drv;
2091                 return i;
2092         }
2093         return -1;
2094 }
2095
2096 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2097 {
2098         kfree(h->drv[drv_index]);
2099         h->drv[drv_index] = NULL;
2100 }
2101
2102 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2103 {
2104         put_disk(h->gendisk[drv_index]);
2105         h->gendisk[drv_index] = NULL;
2106 }
2107
2108 /* cciss_add_gendisk finds a free hba[]->drv structure
2109  * and allocates a gendisk if needed, and sets the lunid
2110  * in the drvinfo structure.   It returns the index into
2111  * the ->drv[] array, or -1 if none are free.
2112  * is_controller_node indicates whether highest_lun should
2113  * count this disk, or if it's only being added to provide
2114  * a means to talk to the controller in case no logical
2115  * drives have yet been configured.
2116  */
2117 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2118         int controller_node)
2119 {
2120         int drv_index;
2121
2122         drv_index = cciss_alloc_drive_info(h, controller_node);
2123         if (drv_index == -1)
2124                 return -1;
2125
2126         /*Check if the gendisk needs to be allocated */
2127         if (!h->gendisk[drv_index]) {
2128                 h->gendisk[drv_index] =
2129                         alloc_disk(1 << NWD_SHIFT);
2130                 if (!h->gendisk[drv_index]) {
2131                         printk(KERN_ERR "cciss%d: could not "
2132                                 "allocate a new disk %d\n",
2133                                 h->ctlr, drv_index);
2134                         goto err_free_drive_info;
2135                 }
2136         }
2137         memcpy(h->drv[drv_index]->LunID, lunid,
2138                 sizeof(h->drv[drv_index]->LunID));
2139         if (cciss_create_ld_sysfs_entry(h, drv_index))
2140                 goto err_free_disk;
2141         /* Don't need to mark this busy because nobody */
2142         /* else knows about this disk yet to contend */
2143         /* for access to it. */
2144         h->drv[drv_index]->busy_configuring = 0;
2145         wmb();
2146         return drv_index;
2147
2148 err_free_disk:
2149         cciss_free_gendisk(h, drv_index);
2150 err_free_drive_info:
2151         cciss_free_drive_info(h, drv_index);
2152         return -1;
2153 }
2154
2155 /* This is for the special case of a controller which
2156  * has no logical drives.  In this case, we still need
2157  * to register a disk so the controller can be accessed
2158  * by the Array Config Utility.
2159  */
2160 static void cciss_add_controller_node(ctlr_info_t *h)
2161 {
2162         struct gendisk *disk;
2163         int drv_index;
2164
2165         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2166                 return;
2167
2168         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2169         if (drv_index == -1)
2170                 goto error;
2171         h->drv[drv_index]->block_size = 512;
2172         h->drv[drv_index]->nr_blocks = 0;
2173         h->drv[drv_index]->heads = 0;
2174         h->drv[drv_index]->sectors = 0;
2175         h->drv[drv_index]->cylinders = 0;
2176         h->drv[drv_index]->raid_level = -1;
2177         memset(h->drv[drv_index]->serial_no, 0, 16);
2178         disk = h->gendisk[drv_index];
2179         if (cciss_add_disk(h, disk, drv_index) == 0)
2180                 return;
2181         cciss_free_gendisk(h, drv_index);
2182         cciss_free_drive_info(h, drv_index);
2183 error:
2184         printk(KERN_WARNING "cciss%d: could not "
2185                 "add disk 0.\n", h->ctlr);
2186         return;
2187 }
2188
2189 /* This function will add and remove logical drives from the Logical
2190  * drive array of the controller and maintain persistency of ordering
2191  * so that mount points are preserved until the next reboot.  This allows
2192  * for the removal of logical drives in the middle of the drive array
2193  * without a re-ordering of those drives.
2194  * INPUT
2195  * h            = The controller to perform the operations on
2196  */
2197 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2198         int via_ioctl)
2199 {
2200         int ctlr = h->ctlr;
2201         int num_luns;
2202         ReportLunData_struct *ld_buff = NULL;
2203         int return_code;
2204         int listlength = 0;
2205         int i;
2206         int drv_found;
2207         int drv_index = 0;
2208         unsigned char lunid[8] = CTLR_LUNID;
2209         unsigned long flags;
2210
2211         if (!capable(CAP_SYS_RAWIO))
2212                 return -EPERM;
2213
2214         /* Set busy_configuring flag for this operation */
2215         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2216         if (h->busy_configuring) {
2217                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2218                 return -EBUSY;
2219         }
2220         h->busy_configuring = 1;
2221         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2222
2223         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2224         if (ld_buff == NULL)
2225                 goto mem_msg;
2226
2227         return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2228                                       sizeof(ReportLunData_struct),
2229                                       0, CTLR_LUNID, TYPE_CMD);
2230
2231         if (return_code == IO_OK)
2232                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2233         else {  /* reading number of logical volumes failed */
2234                 printk(KERN_WARNING "cciss: report logical volume"
2235                        " command failed\n");
2236                 listlength = 0;
2237                 goto freeret;
2238         }
2239
2240         num_luns = listlength / 8;      /* 8 bytes per entry */
2241         if (num_luns > CISS_MAX_LUN) {
2242                 num_luns = CISS_MAX_LUN;
2243                 printk(KERN_WARNING "cciss: more luns configured"
2244                        " on controller than can be handled by"
2245                        " this driver.\n");
2246         }
2247
2248         if (num_luns == 0)
2249                 cciss_add_controller_node(h);
2250
2251         /* Compare controller drive array to driver's drive array
2252          * to see if any drives are missing on the controller due
2253          * to action of Array Config Utility (user deletes drive)
2254          * and deregister logical drives which have disappeared.
2255          */
2256         for (i = 0; i <= h->highest_lun; i++) {
2257                 int j;
2258                 drv_found = 0;
2259
2260                 /* skip holes in the array from already deleted drives */
2261                 if (h->drv[i] == NULL)
2262                         continue;
2263
2264                 for (j = 0; j < num_luns; j++) {
2265                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2266                         if (memcmp(h->drv[i]->LunID, lunid,
2267                                 sizeof(lunid)) == 0) {
2268                                 drv_found = 1;
2269                                 break;
2270                         }
2271                 }
2272                 if (!drv_found) {
2273                         /* Deregister it from the OS, it's gone. */
2274                         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2275                         h->drv[i]->busy_configuring = 1;
2276                         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2277                         return_code = deregister_disk(h, i, 1, via_ioctl);
2278                         if (h->drv[i] != NULL)
2279                                 h->drv[i]->busy_configuring = 0;
2280                 }
2281         }
2282
2283         /* Compare controller drive array to driver's drive array.
2284          * Check for updates in the drive information and any new drives
2285          * on the controller due to ACU adding logical drives, or changing
2286          * a logical drive's size, etc.  Reregister any new/changed drives
2287          */
2288         for (i = 0; i < num_luns; i++) {
2289                 int j;
2290
2291                 drv_found = 0;
2292
2293                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2294                 /* Find if the LUN is already in the drive array
2295                  * of the driver.  If so then update its info
2296                  * if not in use.  If it does not exist then find
2297                  * the first free index and add it.
2298                  */
2299                 for (j = 0; j <= h->highest_lun; j++) {
2300                         if (h->drv[j] != NULL &&
2301                                 memcmp(h->drv[j]->LunID, lunid,
2302                                         sizeof(h->drv[j]->LunID)) == 0) {
2303                                 drv_index = j;
2304                                 drv_found = 1;
2305                                 break;
2306                         }
2307                 }
2308
2309                 /* check if the drive was found already in the array */
2310                 if (!drv_found) {
2311                         drv_index = cciss_add_gendisk(h, lunid, 0);
2312                         if (drv_index == -1)
2313                                 goto freeret;
2314                 }
2315                 cciss_update_drive_info(ctlr, drv_index, first_time,
2316                         via_ioctl);
2317         }               /* end for */
2318
2319 freeret:
2320         kfree(ld_buff);
2321         h->busy_configuring = 0;
2322         /* We return -1 here to tell the ACU that we have registered/updated
2323          * all of the drives that we can and to keep it from calling us
2324          * additional times.
2325          */
2326         return -1;
2327 mem_msg:
2328         printk(KERN_ERR "cciss: out of memory\n");
2329         h->busy_configuring = 0;
2330         goto freeret;
2331 }
2332
2333 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2334 {
2335         /* zero out the disk size info */
2336         drive_info->nr_blocks = 0;
2337         drive_info->block_size = 0;
2338         drive_info->heads = 0;
2339         drive_info->sectors = 0;
2340         drive_info->cylinders = 0;
2341         drive_info->raid_level = -1;
2342         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2343         memset(drive_info->model, 0, sizeof(drive_info->model));
2344         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2345         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2346         /*
2347          * don't clear the LUNID though, we need to remember which
2348          * one this one is.
2349          */
2350 }
2351
2352 /* This function will deregister the disk and it's queue from the
2353  * kernel.  It must be called with the controller lock held and the
2354  * drv structures busy_configuring flag set.  It's parameters are:
2355  *
2356  * disk = This is the disk to be deregistered
2357  * drv  = This is the drive_info_struct associated with the disk to be
2358  *        deregistered.  It contains information about the disk used
2359  *        by the driver.
2360  * clear_all = This flag determines whether or not the disk information
2361  *             is going to be completely cleared out and the highest_lun
2362  *             reset.  Sometimes we want to clear out information about
2363  *             the disk in preparation for re-adding it.  In this case
2364  *             the highest_lun should be left unchanged and the LunID
2365  *             should not be cleared.
2366  * via_ioctl
2367  *    This indicates whether we've reached this path via ioctl.
2368  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2369  *    If this path is reached via ioctl(), then the max_usage_count will
2370  *    be 1, as the process calling ioctl() has got to have the device open.
2371  *    If we get here via sysfs, then the max usage count will be zero.
2372 */
2373 static int deregister_disk(ctlr_info_t *h, int drv_index,
2374                            int clear_all, int via_ioctl)
2375 {
2376         int i;
2377         struct gendisk *disk;
2378         drive_info_struct *drv;
2379         int recalculate_highest_lun;
2380
2381         if (!capable(CAP_SYS_RAWIO))
2382                 return -EPERM;
2383
2384         drv = h->drv[drv_index];
2385         disk = h->gendisk[drv_index];
2386
2387         /* make sure logical volume is NOT is use */
2388         if (clear_all || (h->gendisk[0] == disk)) {
2389                 if (drv->usage_count > via_ioctl)
2390                         return -EBUSY;
2391         } else if (drv->usage_count > 0)
2392                 return -EBUSY;
2393
2394         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2395
2396         /* invalidate the devices and deregister the disk.  If it is disk
2397          * zero do not deregister it but just zero out it's values.  This
2398          * allows us to delete disk zero but keep the controller registered.
2399          */
2400         if (h->gendisk[0] != disk) {
2401                 struct request_queue *q = disk->queue;
2402                 if (disk->flags & GENHD_FL_UP) {
2403                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2404                         del_gendisk(disk);
2405                 }
2406                 if (q)
2407                         blk_cleanup_queue(q);
2408                 /* If clear_all is set then we are deleting the logical
2409                  * drive, not just refreshing its info.  For drives
2410                  * other than disk 0 we will call put_disk.  We do not
2411                  * do this for disk 0 as we need it to be able to
2412                  * configure the controller.
2413                  */
2414                 if (clear_all){
2415                         /* This isn't pretty, but we need to find the
2416                          * disk in our array and NULL our the pointer.
2417                          * This is so that we will call alloc_disk if
2418                          * this index is used again later.
2419                          */
2420                         for (i=0; i < CISS_MAX_LUN; i++){
2421                                 if (h->gendisk[i] == disk) {
2422                                         h->gendisk[i] = NULL;
2423                                         break;
2424                                 }
2425                         }
2426                         put_disk(disk);
2427                 }
2428         } else {
2429                 set_capacity(disk, 0);
2430                 cciss_clear_drive_info(drv);
2431         }
2432
2433         --h->num_luns;
2434
2435         /* if it was the last disk, find the new hightest lun */
2436         if (clear_all && recalculate_highest_lun) {
2437                 int i, newhighest = -1;
2438                 for (i = 0; i <= h->highest_lun; i++) {
2439                         /* if the disk has size > 0, it is available */
2440                         if (h->drv[i] && h->drv[i]->heads)
2441                                 newhighest = i;
2442                 }
2443                 h->highest_lun = newhighest;
2444         }
2445         return 0;
2446 }
2447
2448 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2449                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2450                 int cmd_type)
2451 {
2452         ctlr_info_t *h = hba[ctlr];
2453         u64bit buff_dma_handle;
2454         int status = IO_OK;
2455
2456         c->cmd_type = CMD_IOCTL_PEND;
2457         c->Header.ReplyQueue = 0;
2458         if (buff != NULL) {
2459                 c->Header.SGList = 1;
2460                 c->Header.SGTotal = 1;
2461         } else {
2462                 c->Header.SGList = 0;
2463                 c->Header.SGTotal = 0;
2464         }
2465         c->Header.Tag.lower = c->busaddr;
2466         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2467
2468         c->Request.Type.Type = cmd_type;
2469         if (cmd_type == TYPE_CMD) {
2470                 switch (cmd) {
2471                 case CISS_INQUIRY:
2472                         /* are we trying to read a vital product page */
2473                         if (page_code != 0) {
2474                                 c->Request.CDB[1] = 0x01;
2475                                 c->Request.CDB[2] = page_code;
2476                         }
2477                         c->Request.CDBLen = 6;
2478                         c->Request.Type.Attribute = ATTR_SIMPLE;
2479                         c->Request.Type.Direction = XFER_READ;
2480                         c->Request.Timeout = 0;
2481                         c->Request.CDB[0] = CISS_INQUIRY;
2482                         c->Request.CDB[4] = size & 0xFF;
2483                         break;
2484                 case CISS_REPORT_LOG:
2485                 case CISS_REPORT_PHYS:
2486                         /* Talking to controller so It's a physical command
2487                            mode = 00 target = 0.  Nothing to write.
2488                          */
2489                         c->Request.CDBLen = 12;
2490                         c->Request.Type.Attribute = ATTR_SIMPLE;
2491                         c->Request.Type.Direction = XFER_READ;
2492                         c->Request.Timeout = 0;
2493                         c->Request.CDB[0] = cmd;
2494                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2495                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2496                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2497                         c->Request.CDB[9] = size & 0xFF;
2498                         break;
2499
2500                 case CCISS_READ_CAPACITY:
2501                         c->Request.CDBLen = 10;
2502                         c->Request.Type.Attribute = ATTR_SIMPLE;
2503                         c->Request.Type.Direction = XFER_READ;
2504                         c->Request.Timeout = 0;
2505                         c->Request.CDB[0] = cmd;
2506                         break;
2507                 case CCISS_READ_CAPACITY_16:
2508                         c->Request.CDBLen = 16;
2509                         c->Request.Type.Attribute = ATTR_SIMPLE;
2510                         c->Request.Type.Direction = XFER_READ;
2511                         c->Request.Timeout = 0;
2512                         c->Request.CDB[0] = cmd;
2513                         c->Request.CDB[1] = 0x10;
2514                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2515                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2516                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2517                         c->Request.CDB[13] = size & 0xFF;
2518                         c->Request.Timeout = 0;
2519                         c->Request.CDB[0] = cmd;
2520                         break;
2521                 case CCISS_CACHE_FLUSH:
2522                         c->Request.CDBLen = 12;
2523                         c->Request.Type.Attribute = ATTR_SIMPLE;
2524                         c->Request.Type.Direction = XFER_WRITE;
2525                         c->Request.Timeout = 0;
2526                         c->Request.CDB[0] = BMIC_WRITE;
2527                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2528                         break;
2529                 case TEST_UNIT_READY:
2530                         c->Request.CDBLen = 6;
2531                         c->Request.Type.Attribute = ATTR_SIMPLE;
2532                         c->Request.Type.Direction = XFER_NONE;
2533                         c->Request.Timeout = 0;
2534                         break;
2535                 default:
2536                         printk(KERN_WARNING
2537                                "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
2538                         return IO_ERROR;
2539                 }
2540         } else if (cmd_type == TYPE_MSG) {
2541                 switch (cmd) {
2542                 case 0: /* ABORT message */
2543                         c->Request.CDBLen = 12;
2544                         c->Request.Type.Attribute = ATTR_SIMPLE;
2545                         c->Request.Type.Direction = XFER_WRITE;
2546                         c->Request.Timeout = 0;
2547                         c->Request.CDB[0] = cmd;        /* abort */
2548                         c->Request.CDB[1] = 0;  /* abort a command */
2549                         /* buff contains the tag of the command to abort */
2550                         memcpy(&c->Request.CDB[4], buff, 8);
2551                         break;
2552                 case 1: /* RESET message */
2553                         c->Request.CDBLen = 16;
2554                         c->Request.Type.Attribute = ATTR_SIMPLE;
2555                         c->Request.Type.Direction = XFER_NONE;
2556                         c->Request.Timeout = 0;
2557                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2558                         c->Request.CDB[0] = cmd;        /* reset */
2559                         c->Request.CDB[1] = 0x03;       /* reset a target */
2560                         break;
2561                 case 3: /* No-Op message */
2562                         c->Request.CDBLen = 1;
2563                         c->Request.Type.Attribute = ATTR_SIMPLE;
2564                         c->Request.Type.Direction = XFER_WRITE;
2565                         c->Request.Timeout = 0;
2566                         c->Request.CDB[0] = cmd;
2567                         break;
2568                 default:
2569                         printk(KERN_WARNING
2570                                "cciss%d: unknown message type %d\n", ctlr, cmd);
2571                         return IO_ERROR;
2572                 }
2573         } else {
2574                 printk(KERN_WARNING
2575                        "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2576                 return IO_ERROR;
2577         }
2578         /* Fill in the scatter gather information */
2579         if (size > 0) {
2580                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2581                                                              buff, size,
2582                                                              PCI_DMA_BIDIRECTIONAL);
2583                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2584                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2585                 c->SG[0].Len = size;
2586                 c->SG[0].Ext = 0;       /* we are not chaining */
2587         }
2588         return status;
2589 }
2590
2591 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2592 {
2593         switch (c->err_info->ScsiStatus) {
2594         case SAM_STAT_GOOD:
2595                 return IO_OK;
2596         case SAM_STAT_CHECK_CONDITION:
2597                 switch (0xf & c->err_info->SenseInfo[2]) {
2598                 case 0: return IO_OK; /* no sense */
2599                 case 1: return IO_OK; /* recovered error */
2600                 default:
2601                         if (check_for_unit_attention(h, c))
2602                                 return IO_NEEDS_RETRY;
2603                         printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2604                                 "check condition, sense key = 0x%02x\n",
2605                                 h->ctlr, c->Request.CDB[0],
2606                                 c->err_info->SenseInfo[2]);
2607                 }
2608                 break;
2609         default:
2610                 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2611                         "scsi status = 0x%02x\n", h->ctlr,
2612                         c->Request.CDB[0], c->err_info->ScsiStatus);
2613                 break;
2614         }
2615         return IO_ERROR;
2616 }
2617
2618 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2619 {
2620         int return_status = IO_OK;
2621
2622         if (c->err_info->CommandStatus == CMD_SUCCESS)
2623                 return IO_OK;
2624
2625         switch (c->err_info->CommandStatus) {
2626         case CMD_TARGET_STATUS:
2627                 return_status = check_target_status(h, c);
2628                 break;
2629         case CMD_DATA_UNDERRUN:
2630         case CMD_DATA_OVERRUN:
2631                 /* expected for inquiry and report lun commands */
2632                 break;
2633         case CMD_INVALID:
2634                 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2635                        "reported invalid\n", c->Request.CDB[0]);
2636                 return_status = IO_ERROR;
2637                 break;
2638         case CMD_PROTOCOL_ERR:
2639                 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2640                        "protocol error \n", c->Request.CDB[0]);
2641                 return_status = IO_ERROR;
2642                 break;
2643         case CMD_HARDWARE_ERR:
2644                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2645                        " hardware error\n", c->Request.CDB[0]);
2646                 return_status = IO_ERROR;
2647                 break;
2648         case CMD_CONNECTION_LOST:
2649                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2650                        "connection lost\n", c->Request.CDB[0]);
2651                 return_status = IO_ERROR;
2652                 break;
2653         case CMD_ABORTED:
2654                 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2655                        "aborted\n", c->Request.CDB[0]);
2656                 return_status = IO_ERROR;
2657                 break;
2658         case CMD_ABORT_FAILED:
2659                 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2660                        "abort failed\n", c->Request.CDB[0]);
2661                 return_status = IO_ERROR;
2662                 break;
2663         case CMD_UNSOLICITED_ABORT:
2664                 printk(KERN_WARNING
2665                        "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2666                         c->Request.CDB[0]);
2667                 return_status = IO_NEEDS_RETRY;
2668                 break;
2669         default:
2670                 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2671                        "unknown status %x\n", c->Request.CDB[0],
2672                        c->err_info->CommandStatus);
2673                 return_status = IO_ERROR;
2674         }
2675         return return_status;
2676 }
2677
2678 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2679         int attempt_retry)
2680 {
2681         DECLARE_COMPLETION_ONSTACK(wait);
2682         u64bit buff_dma_handle;
2683         unsigned long flags;
2684         int return_status = IO_OK;
2685
2686 resend_cmd2:
2687         c->waiting = &wait;
2688         /* Put the request on the tail of the queue and send it */
2689         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2690         addQ(&h->reqQ, c);
2691         h->Qdepth++;
2692         start_io(h);
2693         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2694
2695         wait_for_completion(&wait);
2696
2697         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2698                 goto command_done;
2699
2700         return_status = process_sendcmd_error(h, c);
2701
2702         if (return_status == IO_NEEDS_RETRY &&
2703                 c->retry_count < MAX_CMD_RETRIES) {
2704                 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2705                         c->Request.CDB[0]);
2706                 c->retry_count++;
2707                 /* erase the old error information */
2708                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2709                 return_status = IO_OK;
2710                 INIT_COMPLETION(wait);
2711                 goto resend_cmd2;
2712         }
2713
2714 command_done:
2715         /* unlock the buffers from DMA */
2716         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2717         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2718         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2719                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2720         return return_status;
2721 }
2722
2723 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2724                            __u8 page_code, unsigned char scsi3addr[],
2725                         int cmd_type)
2726 {
2727         ctlr_info_t *h = hba[ctlr];
2728         CommandList_struct *c;
2729         int return_status;
2730
2731         c = cmd_alloc(h, 0);
2732         if (!c)
2733                 return -ENOMEM;
2734         return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2735                 scsi3addr, cmd_type);
2736         if (return_status == IO_OK)
2737                 return_status = sendcmd_withirq_core(h, c, 1);
2738
2739         cmd_free(h, c, 0);
2740         return return_status;
2741 }
2742
2743 static void cciss_geometry_inquiry(int ctlr, int logvol,
2744                                    sector_t total_size,
2745                                    unsigned int block_size,
2746                                    InquiryData_struct *inq_buff,
2747                                    drive_info_struct *drv)
2748 {
2749         int return_code;
2750         unsigned long t;
2751         unsigned char scsi3addr[8];
2752
2753         memset(inq_buff, 0, sizeof(InquiryData_struct));
2754         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2755         return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2756                         sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2757         if (return_code == IO_OK) {
2758                 if (inq_buff->data_byte[8] == 0xFF) {
2759                         printk(KERN_WARNING
2760                                "cciss: reading geometry failed, volume "
2761                                "does not support reading geometry\n");
2762                         drv->heads = 255;
2763                         drv->sectors = 32;      /* Sectors per track */
2764                         drv->cylinders = total_size + 1;
2765                         drv->raid_level = RAID_UNKNOWN;
2766                 } else {
2767                         drv->heads = inq_buff->data_byte[6];
2768                         drv->sectors = inq_buff->data_byte[7];
2769                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2770                         drv->cylinders += inq_buff->data_byte[5];
2771                         drv->raid_level = inq_buff->data_byte[8];
2772                 }
2773                 drv->block_size = block_size;
2774                 drv->nr_blocks = total_size + 1;
2775                 t = drv->heads * drv->sectors;
2776                 if (t > 1) {
2777                         sector_t real_size = total_size + 1;
2778                         unsigned long rem = sector_div(real_size, t);
2779                         if (rem)
2780                                 real_size++;
2781                         drv->cylinders = real_size;
2782                 }
2783         } else {                /* Get geometry failed */
2784                 printk(KERN_WARNING "cciss: reading geometry failed\n");
2785         }
2786 }
2787
2788 static void
2789 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2790                     unsigned int *block_size)
2791 {
2792         ReadCapdata_struct *buf;
2793         int return_code;
2794         unsigned char scsi3addr[8];
2795
2796         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2797         if (!buf) {
2798                 printk(KERN_WARNING "cciss: out of memory\n");
2799                 return;
2800         }
2801
2802         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2803         return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2804                 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2805         if (return_code == IO_OK) {
2806                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2807                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2808         } else {                /* read capacity command failed */
2809                 printk(KERN_WARNING "cciss: read capacity failed\n");
2810                 *total_size = 0;
2811                 *block_size = BLOCK_SIZE;
2812         }
2813         kfree(buf);
2814 }
2815
2816 static void cciss_read_capacity_16(int ctlr, int logvol,
2817         sector_t *total_size, unsigned int *block_size)
2818 {
2819         ReadCapdata_struct_16 *buf;
2820         int return_code;
2821         unsigned char scsi3addr[8];
2822
2823         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2824         if (!buf) {
2825                 printk(KERN_WARNING "cciss: out of memory\n");
2826                 return;
2827         }
2828
2829         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2830         return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2831                 ctlr, buf, sizeof(ReadCapdata_struct_16),
2832                         0, scsi3addr, TYPE_CMD);
2833         if (return_code == IO_OK) {
2834                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2835                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2836         } else {                /* read capacity command failed */
2837                 printk(KERN_WARNING "cciss: read capacity failed\n");
2838                 *total_size = 0;
2839                 *block_size = BLOCK_SIZE;
2840         }
2841         printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2842                (unsigned long long)*total_size+1, *block_size);
2843         kfree(buf);
2844 }
2845
2846 static int cciss_revalidate(struct gendisk *disk)
2847 {
2848         ctlr_info_t *h = get_host(disk);
2849         drive_info_struct *drv = get_drv(disk);
2850         int logvol;
2851         int FOUND = 0;
2852         unsigned int block_size;
2853         sector_t total_size;
2854         InquiryData_struct *inq_buff = NULL;
2855
2856         for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2857                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2858                         sizeof(drv->LunID)) == 0) {
2859                         FOUND = 1;
2860                         break;
2861                 }
2862         }
2863
2864         if (!FOUND)
2865                 return 1;
2866
2867         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2868         if (inq_buff == NULL) {
2869                 printk(KERN_WARNING "cciss: out of memory\n");
2870                 return 1;
2871         }
2872         if (h->cciss_read == CCISS_READ_10) {
2873                 cciss_read_capacity(h->ctlr, logvol,
2874                                         &total_size, &block_size);
2875         } else {
2876                 cciss_read_capacity_16(h->ctlr, logvol,
2877                                         &total_size, &block_size);
2878         }
2879         cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2880                                inq_buff, drv);
2881
2882         blk_queue_logical_block_size(drv->queue, drv->block_size);
2883         set_capacity(disk, drv->nr_blocks);
2884
2885         kfree(inq_buff);
2886         return 0;
2887 }
2888
2889 /*
2890  * Map (physical) PCI mem into (virtual) kernel space
2891  */
2892 static void __iomem *remap_pci_mem(ulong base, ulong size)
2893 {
2894         ulong page_base = ((ulong) base) & PAGE_MASK;
2895         ulong page_offs = ((ulong) base) - page_base;
2896         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2897
2898         return page_remapped ? (page_remapped + page_offs) : NULL;
2899 }
2900
2901 /*
2902  * Takes jobs of the Q and sends them to the hardware, then puts it on
2903  * the Q to wait for completion.
2904  */
2905 static void start_io(ctlr_info_t *h)
2906 {
2907         CommandList_struct *c;
2908
2909         while (!hlist_empty(&h->reqQ)) {
2910                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2911                 /* can't do anything if fifo is full */
2912                 if ((h->access.fifo_full(h))) {
2913                         printk(KERN_WARNING "cciss: fifo full\n");
2914                         break;
2915                 }
2916
2917                 /* Get the first entry from the Request Q */
2918                 removeQ(c);
2919                 h->Qdepth--;
2920
2921                 /* Tell the controller execute command */
2922                 h->access.submit_command(h, c);
2923
2924                 /* Put job onto the completed Q */
2925                 addQ(&h->cmpQ, c);
2926         }
2927 }
2928
2929 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2930 /* Zeros out the error record and then resends the command back */
2931 /* to the controller */
2932 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2933 {
2934         /* erase the old error information */
2935         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2936
2937         /* add it to software queue and then send it to the controller */
2938         addQ(&h->reqQ, c);
2939         h->Qdepth++;
2940         if (h->Qdepth > h->maxQsinceinit)
2941                 h->maxQsinceinit = h->Qdepth;
2942
2943         start_io(h);
2944 }
2945
2946 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2947         unsigned int msg_byte, unsigned int host_byte,
2948         unsigned int driver_byte)
2949 {
2950         /* inverse of macros in scsi.h */
2951         return (scsi_status_byte & 0xff) |
2952                 ((msg_byte & 0xff) << 8) |
2953                 ((host_byte & 0xff) << 16) |
2954                 ((driver_byte & 0xff) << 24);
2955 }
2956
2957 static inline int evaluate_target_status(ctlr_info_t *h,
2958                         CommandList_struct *cmd, int *retry_cmd)
2959 {
2960         unsigned char sense_key;
2961         unsigned char status_byte, msg_byte, host_byte, driver_byte;
2962         int error_value;
2963
2964         *retry_cmd = 0;
2965         /* If we get in here, it means we got "target status", that is, scsi status */
2966         status_byte = cmd->err_info->ScsiStatus;
2967         driver_byte = DRIVER_OK;
2968         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
2969
2970         if (blk_pc_request(cmd->rq))
2971                 host_byte = DID_PASSTHROUGH;
2972         else
2973                 host_byte = DID_OK;
2974
2975         error_value = make_status_bytes(status_byte, msg_byte,
2976                 host_byte, driver_byte);
2977
2978         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2979                 if (!blk_pc_request(cmd->rq))
2980                         printk(KERN_WARNING "cciss: cmd %p "
2981                                "has SCSI Status 0x%x\n",
2982                                cmd, cmd->err_info->ScsiStatus);
2983                 return error_value;
2984         }
2985
2986         /* check the sense key */
2987         sense_key = 0xf & cmd->err_info->SenseInfo[2];
2988         /* no status or recovered error */
2989         if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2990                 error_value = 0;
2991
2992         if (check_for_unit_attention(h, cmd)) {
2993                 *retry_cmd = !blk_pc_request(cmd->rq);
2994                 return 0;
2995         }
2996
2997         if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2998                 if (error_value != 0)
2999                         printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3000                                " sense key = 0x%x\n", cmd, sense_key);
3001                 return error_value;
3002         }
3003
3004         /* SG_IO or similar, copy sense data back */
3005         if (cmd->rq->sense) {
3006                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3007                         cmd->rq->sense_len = cmd->err_info->SenseLen;
3008                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3009                         cmd->rq->sense_len);
3010         } else
3011                 cmd->rq->sense_len = 0;
3012
3013         return error_value;
3014 }
3015
3016 /* checks the status of the job and calls complete buffers to mark all
3017  * buffers for the completed job. Note that this function does not need
3018  * to hold the hba/queue lock.
3019  */
3020 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3021                                     int timeout)
3022 {
3023         int retry_cmd = 0;
3024         struct request *rq = cmd->rq;
3025
3026         rq->errors = 0;
3027
3028         if (timeout)
3029                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3030
3031         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3032                 goto after_error_processing;
3033
3034         switch (cmd->err_info->CommandStatus) {
3035         case CMD_TARGET_STATUS:
3036                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3037                 break;
3038         case CMD_DATA_UNDERRUN:
3039                 if (blk_fs_request(cmd->rq)) {
3040                         printk(KERN_WARNING "cciss: cmd %p has"
3041                                " completed with data underrun "
3042                                "reported\n", cmd);
3043                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3044                 }
3045                 break;
3046         case CMD_DATA_OVERRUN:
3047                 if (blk_fs_request(cmd->rq))
3048                         printk(KERN_WARNING "cciss: cmd %p has"
3049                                " completed with data overrun "
3050                                "reported\n", cmd);
3051                 break;
3052         case CMD_INVALID:
3053                 printk(KERN_WARNING "cciss: cmd %p is "
3054                        "reported invalid\n", cmd);
3055                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3056                         cmd->err_info->CommandStatus, DRIVER_OK,
3057                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3058                 break;
3059         case CMD_PROTOCOL_ERR:
3060                 printk(KERN_WARNING "cciss: cmd %p has "
3061                        "protocol error \n", cmd);
3062                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3063                         cmd->err_info->CommandStatus, DRIVER_OK,
3064                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3065                 break;
3066         case CMD_HARDWARE_ERR:
3067                 printk(KERN_WARNING "cciss: cmd %p had "
3068                        " hardware error\n", cmd);
3069                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3070                         cmd->err_info->CommandStatus, DRIVER_OK,
3071                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3072                 break;
3073         case CMD_CONNECTION_LOST:
3074                 printk(KERN_WARNING "cciss: cmd %p had "
3075                        "connection lost\n", cmd);
3076                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3077                         cmd->err_info->CommandStatus, DRIVER_OK,
3078                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3079                 break;
3080         case CMD_ABORTED:
3081                 printk(KERN_WARNING "cciss: cmd %p was "
3082                        "aborted\n", cmd);
3083                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3084                         cmd->err_info->CommandStatus, DRIVER_OK,
3085                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3086                 break;
3087         case CMD_ABORT_FAILED:
3088                 printk(KERN_WARNING "cciss: cmd %p reports "
3089                        "abort failed\n", cmd);
3090                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3091                         cmd->err_info->CommandStatus, DRIVER_OK,
3092                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3093                 break;
3094         case CMD_UNSOLICITED_ABORT:
3095                 printk(KERN_WARNING "cciss%d: unsolicited "
3096                        "abort %p\n", h->ctlr, cmd);
3097                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3098                         retry_cmd = 1;
3099                         printk(KERN_WARNING
3100                                "cciss%d: retrying %p\n", h->ctlr, cmd);
3101                         cmd->retry_count++;
3102                 } else
3103                         printk(KERN_WARNING
3104                                "cciss%d: %p retried too "
3105                                "many times\n", h->ctlr, cmd);
3106                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3107                         cmd->err_info->CommandStatus, DRIVER_OK,
3108                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3109                 break;
3110         case CMD_TIMEOUT:
3111                 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3112                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3113                         cmd->err_info->CommandStatus, DRIVER_OK,
3114                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3115                 break;
3116         default:
3117                 printk(KERN_WARNING "cciss: cmd %p returned "
3118                        "unknown status %x\n", cmd,
3119                        cmd->err_info->CommandStatus);
3120                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3121                         cmd->err_info->CommandStatus, DRIVER_OK,
3122                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3123         }
3124
3125 after_error_processing:
3126
3127         /* We need to return this command */
3128         if (retry_cmd) {
3129                 resend_cciss_cmd(h, cmd);
3130                 return;
3131         }
3132         cmd->rq->completion_data = cmd;
3133         blk_complete_request(cmd->rq);
3134 }
3135
3136 /*
3137  * Get a request and submit it to the controller.
3138  */
3139 static void do_cciss_request(struct request_queue *q)
3140 {
3141         ctlr_info_t *h = q->queuedata;
3142         CommandList_struct *c;
3143         sector_t start_blk;
3144         int seg;
3145         struct request *creq;
3146         u64bit temp64;
3147         struct scatterlist *tmp_sg;
3148         SGDescriptor_struct *curr_sg;
3149         drive_info_struct *drv;
3150         int i, dir;
3151         int sg_index = 0;
3152         int chained = 0;
3153
3154         /* We call start_io here in case there is a command waiting on the
3155          * queue that has not been sent.
3156          */
3157         if (blk_queue_plugged(q))
3158                 goto startio;
3159
3160       queue:
3161         creq = blk_peek_request(q);
3162         if (!creq)
3163                 goto startio;
3164
3165         BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3166
3167         if ((c = cmd_alloc(h, 1)) == NULL)
3168                 goto full;
3169
3170         blk_start_request(creq);
3171
3172         tmp_sg = h->scatter_list[c->cmdindex];
3173         spin_unlock_irq(q->queue_lock);
3174
3175         c->cmd_type = CMD_RWREQ;
3176         c->rq = creq;
3177
3178         /* fill in the request */
3179         drv = creq->rq_disk->private_data;
3180         c->Header.ReplyQueue = 0;       /* unused in simple mode */
3181         /* got command from pool, so use the command block index instead */
3182         /* for direct lookups. */
3183         /* The first 2 bits are reserved for controller error reporting. */
3184         c->Header.Tag.lower = (c->cmdindex << 3);
3185         c->Header.Tag.lower |= 0x04;    /* flag for direct lookup. */
3186         memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3187         c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3188         c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3189         c->Request.Type.Attribute = ATTR_SIMPLE;
3190         c->Request.Type.Direction =
3191             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3192         c->Request.Timeout = 0; /* Don't time out */
3193         c->Request.CDB[0] =
3194             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3195         start_blk = blk_rq_pos(creq);
3196 #ifdef CCISS_DEBUG
3197         printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3198                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3199 #endif                          /* CCISS_DEBUG */
3200
3201         sg_init_table(tmp_sg, h->maxsgentries);
3202         seg = blk_rq_map_sg(q, creq, tmp_sg);
3203
3204         /* get the DMA records for the setup */
3205         if (c->Request.Type.Direction == XFER_READ)
3206                 dir = PCI_DMA_FROMDEVICE;
3207         else
3208                 dir = PCI_DMA_TODEVICE;
3209
3210         curr_sg = c->SG;
3211         sg_index = 0;
3212         chained = 0;
3213
3214         for (i = 0; i < seg; i++) {
3215                 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3216                         !chained && ((seg - i) > 1)) {
3217                         /* Point to next chain block. */
3218                         curr_sg = h->cmd_sg_list[c->cmdindex];
3219                         sg_index = 0;
3220                         chained = 1;
3221                 }
3222                 curr_sg[sg_index].Len = tmp_sg[i].length;
3223                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3224                                                 tmp_sg[i].offset,
3225                                                 tmp_sg[i].length, dir);
3226                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3227                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3228                 curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3229                 ++sg_index;
3230         }
3231         if (chained)
3232                 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3233                         (seg - (h->max_cmd_sgentries - 1)) *
3234                                 sizeof(SGDescriptor_struct));
3235
3236         /* track how many SG entries we are using */
3237         if (seg > h->maxSG)
3238                 h->maxSG = seg;
3239
3240 #ifdef CCISS_DEBUG
3241         printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3242                         "chained[%d]\n",
3243                         blk_rq_sectors(creq), seg, chained);
3244 #endif                          /* CCISS_DEBUG */
3245
3246         c->Header.SGList = c->Header.SGTotal = seg + chained;
3247         if (seg > h->max_cmd_sgentries)
3248                 c->Header.SGList = h->max_cmd_sgentries;
3249
3250         if (likely(blk_fs_request(creq))) {
3251                 if(h->cciss_read == CCISS_READ_10) {
3252                         c->Request.CDB[1] = 0;
3253                         c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3254                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3255                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3256                         c->Request.CDB[5] = start_blk & 0xff;
3257                         c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3258                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3259                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3260                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3261                 } else {
3262                         u32 upper32 = upper_32_bits(start_blk);
3263
3264                         c->Request.CDBLen = 16;
3265                         c->Request.CDB[1]= 0;
3266                         c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3267                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3268                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3269                         c->Request.CDB[5]= upper32 & 0xff;
3270                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3271                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3272                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3273                         c->Request.CDB[9]= start_blk & 0xff;
3274                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3275                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3276                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3277                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3278                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3279                 }
3280         } else if (blk_pc_request(creq)) {
3281                 c->Request.CDBLen = creq->cmd_len;
3282                 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3283         } else {
3284                 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3285                 BUG();
3286         }
3287
3288         spin_lock_irq(q->queue_lock);
3289
3290         addQ(&h->reqQ, c);
3291         h->Qdepth++;
3292         if (h->Qdepth > h->maxQsinceinit)
3293                 h->maxQsinceinit = h->Qdepth;
3294
3295         goto queue;
3296 full:
3297         blk_stop_queue(q);
3298 startio:
3299         /* We will already have the driver lock here so not need
3300          * to lock it.
3301          */
3302         start_io(h);
3303 }
3304
3305 static inline unsigned long get_next_completion(ctlr_info_t *h)
3306 {
3307         return h->access.command_completed(h);
3308 }
3309
3310 static inline int interrupt_pending(ctlr_info_t *h)
3311 {
3312         return h->access.intr_pending(h);
3313 }
3314
3315 static inline long interrupt_not_for_us(ctlr_info_t *h)
3316 {
3317         return (((h->access.intr_pending(h) == 0) ||
3318                  (h->interrupts_enabled == 0)));
3319 }
3320
3321 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3322 {
3323         ctlr_info_t *h = dev_id;
3324         CommandList_struct *c;
3325         unsigned long flags;
3326         __u32 a, a1, a2;
3327
3328         if (interrupt_not_for_us(h))
3329                 return IRQ_NONE;
3330         /*
3331          * If there are completed commands in the completion queue,
3332          * we had better do something about it.
3333          */
3334         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3335         while (interrupt_pending(h)) {
3336                 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3337                         a1 = a;
3338                         if ((a & 0x04)) {
3339                                 a2 = (a >> 3);
3340                                 if (a2 >= h->nr_cmds) {
3341                                         printk(KERN_WARNING
3342                                                "cciss: controller cciss%d failed, stopping.\n",
3343                                                h->ctlr);
3344                                         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3345                                         fail_all_cmds(h->ctlr);
3346                                         return IRQ_HANDLED;
3347                                 }
3348
3349                                 c = h->cmd_pool + a2;
3350                                 a = c->busaddr;
3351
3352                         } else {
3353                                 struct hlist_node *tmp;
3354
3355                                 a &= ~3;
3356                                 c = NULL;
3357                                 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3358                                         if (c->busaddr == a)
3359                                                 break;
3360                                 }
3361                         }
3362                         /*
3363                          * If we've found the command, take it off the
3364                          * completion Q and free it
3365                          */
3366                         if (c && c->busaddr == a) {
3367                                 removeQ(c);
3368                                 if (c->cmd_type == CMD_RWREQ) {
3369                                         complete_command(h, c, 0);
3370                                 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3371                                         complete(c->waiting);
3372                                 }
3373 #                               ifdef CONFIG_CISS_SCSI_TAPE
3374                                 else if (c->cmd_type == CMD_SCSI)
3375                                         complete_scsi_command(c, 0, a1);
3376 #                               endif
3377                                 continue;
3378                         }
3379                 }
3380         }
3381
3382         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3383         return IRQ_HANDLED;
3384 }
3385
3386 /**
3387  * add_to_scan_list() - add controller to rescan queue
3388  * @h:                Pointer to the controller.
3389  *
3390  * Adds the controller to the rescan queue if not already on the queue.
3391  *
3392  * returns 1 if added to the queue, 0 if skipped (could be on the
3393  * queue already, or the controller could be initializing or shutting
3394  * down).
3395  **/
3396 static int add_to_scan_list(struct ctlr_info *h)
3397 {
3398         struct ctlr_info *test_h;
3399         int found = 0;
3400         int ret = 0;
3401
3402         if (h->busy_initializing)
3403                 return 0;
3404
3405         if (!mutex_trylock(&h->busy_shutting_down))
3406                 return 0;
3407
3408         mutex_lock(&scan_mutex);
3409         list_for_each_entry(test_h, &scan_q, scan_list) {
3410                 if (test_h == h) {
3411                         found = 1;
3412                         break;
3413                 }
3414         }
3415         if (!found && !h->busy_scanning) {
3416                 INIT_COMPLETION(h->scan_wait);
3417                 list_add_tail(&h->scan_list, &scan_q);
3418                 ret = 1;
3419         }
3420         mutex_unlock(&scan_mutex);
3421         mutex_unlock(&h->busy_shutting_down);
3422
3423         return ret;
3424 }
3425
3426 /**
3427  * remove_from_scan_list() - remove controller from rescan queue
3428  * @h:                     Pointer to the controller.
3429  *
3430  * Removes the controller from the rescan queue if present. Blocks if
3431  * the controller is currently conducting a rescan.  The controller
3432  * can be in one of three states:
3433  * 1. Doesn't need a scan
3434  * 2. On the scan list, but not scanning yet (we remove it)
3435  * 3. Busy scanning (and not on the list). In this case we want to wait for
3436  *    the scan to complete to make sure the scanning thread for this
3437  *    controller is completely idle.
3438  **/
3439 static void remove_from_scan_list(struct ctlr_info *h)
3440 {
3441         struct ctlr_info *test_h, *tmp_h;
3442
3443         mutex_lock(&scan_mutex);
3444         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3445                 if (test_h == h) { /* state 2. */
3446                         list_del(&h->scan_list);
3447                         complete_all(&h->scan_wait);
3448                         mutex_unlock(&scan_mutex);
3449                         return;
3450                 }
3451         }
3452         if (h->busy_scanning) { /* state 3. */
3453                 mutex_unlock(&scan_mutex);
3454                 wait_for_completion(&h->scan_wait);
3455         } else { /* state 1, nothing to do. */
3456                 mutex_unlock(&scan_mutex);
3457         }
3458 }
3459
3460 /**
3461  * scan_thread() - kernel thread used to rescan controllers
3462  * @data:        Ignored.
3463  *
3464  * A kernel thread used scan for drive topology changes on
3465  * controllers. The thread processes only one controller at a time
3466  * using a queue.  Controllers are added to the queue using
3467  * add_to_scan_list() and removed from the queue either after done
3468  * processing or using remove_from_scan_list().
3469  *
3470  * returns 0.
3471  **/
3472 static int scan_thread(void *data)
3473 {
3474         struct ctlr_info *h;
3475
3476         while (1) {
3477                 set_current_state(TASK_INTERRUPTIBLE);
3478                 schedule();
3479                 if (kthread_should_stop())
3480                         break;
3481
3482                 while (1) {
3483                         mutex_lock(&scan_mutex);
3484                         if (list_empty(&scan_q)) {
3485                                 mutex_unlock(&scan_mutex);
3486                                 break;
3487                         }
3488
3489                         h = list_entry(scan_q.next,
3490                                        struct ctlr_info,
3491                                        scan_list);
3492                         list_del(&h->scan_list);
3493                         h->busy_scanning = 1;
3494                         mutex_unlock(&scan_mutex);
3495
3496                         rebuild_lun_table(h, 0, 0);
3497                         complete_all(&h->scan_wait);
3498                         mutex_lock(&scan_mutex);
3499                         h->busy_scanning = 0;
3500                         mutex_unlock(&scan_mutex);
3501                 }
3502         }
3503
3504         return 0;
3505 }
3506
3507 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3508 {
3509         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3510                 return 0;
3511
3512         switch (c->err_info->SenseInfo[12]) {
3513         case STATE_CHANGED:
3514                 printk(KERN_WARNING "cciss%d: a state change "
3515                         "detected, command retried\n", h->ctlr);
3516                 return 1;
3517         break;
3518         case LUN_FAILED:
3519                 printk(KERN_WARNING "cciss%d: LUN failure "
3520                         "detected, action required\n", h->ctlr);
3521                 return 1;
3522         break;
3523         case REPORT_LUNS_CHANGED:
3524                 printk(KERN_WARNING "cciss%d: report LUN data "
3525                         "changed\n", h->ctlr);
3526         /*
3527          * Here, we could call add_to_scan_list and wake up the scan thread,
3528          * except that it's quite likely that we will get more than one
3529          * REPORT_LUNS_CHANGED condition in quick succession, which means
3530          * that those which occur after the first one will likely happen
3531          * *during* the scan_thread's rescan.  And the rescan code is not
3532          * robust enough to restart in the middle, undoing what it has already
3533          * done, and it's not clear that it's even possible to do this, since
3534          * part of what it does is notify the block layer, which starts
3535          * doing it's own i/o to read partition tables and so on, and the
3536          * driver doesn't have visibility to know what might need undoing.
3537          * In any event, if possible, it is horribly complicated to get right
3538          * so we just don't do it for now.
3539          *
3540          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3541          */
3542                 return 1;
3543         break;
3544         case POWER_OR_RESET:
3545                 printk(KERN_WARNING "cciss%d: a power on "
3546                         "or device reset detected\n", h->ctlr);
3547                 return 1;
3548         break;
3549         case UNIT_ATTENTION_CLEARED:
3550                 printk(KERN_WARNING "cciss%d: unit attention "
3551                     "cleared by another initiator\n", h->ctlr);
3552                 return 1;
3553         break;
3554         default:
3555                 printk(KERN_WARNING "cciss%d: unknown "
3556                         "unit attention detected\n", h->ctlr);
3557                                 return 1;
3558         }
3559 }
3560
3561 /*
3562  *  We cannot read the structure directly, for portability we must use
3563  *   the io functions.
3564  *   This is for debug only.
3565  */
3566 #ifdef CCISS_DEBUG
3567 static void print_cfg_table(CfgTable_struct *tb)
3568 {
3569         int i;
3570         char temp_name[17];
3571
3572         printk("Controller Configuration information\n");
3573         printk("------------------------------------\n");
3574         for (i = 0; i < 4; i++)
3575                 temp_name[i] = readb(&(tb->Signature[i]));
3576         temp_name[4] = '\0';
3577         printk("   Signature = %s\n", temp_name);
3578         printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
3579         printk("   Transport methods supported = 0x%x\n",
3580                readl(&(tb->TransportSupport)));
3581         printk("   Transport methods active = 0x%x\n",
3582                readl(&(tb->TransportActive)));
3583         printk("   Requested transport Method = 0x%x\n",
3584                readl(&(tb->HostWrite.TransportRequest)));
3585         printk("   Coalesce Interrupt Delay = 0x%x\n",
3586                readl(&(tb->HostWrite.CoalIntDelay)));
3587         printk("   Coalesce Interrupt Count = 0x%x\n",
3588                readl(&(tb->HostWrite.CoalIntCount)));
3589         printk("   Max outstanding commands = 0x%d\n",
3590                readl(&(tb->CmdsOutMax)));
3591         printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3592         for (i = 0; i < 16; i++)
3593                 temp_name[i] = readb(&(tb->ServerName[i]));
3594         temp_name[16] = '\0';
3595         printk("   Server Name = %s\n", temp_name);
3596         printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3597 }
3598 #endif                          /* CCISS_DEBUG */
3599
3600 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3601 {
3602         int i, offset, mem_type, bar_type;
3603         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3604                 return 0;
3605         offset = 0;
3606         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3607                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3608                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3609                         offset += 4;
3610                 else {
3611                         mem_type = pci_resource_flags(pdev, i) &
3612                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3613                         switch (mem_type) {
3614                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3615                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3616                                 offset += 4;    /* 32 bit */
3617                                 break;
3618                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3619                                 offset += 8;
3620                                 break;
3621                         default:        /* reserved in PCI 2.2 */
3622                                 printk(KERN_WARNING
3623                                        "Base address is invalid\n");
3624                                 return -1;
3625                                 break;
3626                         }
3627                 }
3628                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3629                         return i + 1;
3630         }
3631         return -1;
3632 }
3633
3634 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3635  * controllers that are capable. If not, we use IO-APIC mode.
3636  */
3637
3638 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3639                                            struct pci_dev *pdev, __u32 board_id)
3640 {
3641 #ifdef CONFIG_PCI_MSI
3642         int err;
3643         struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3644         {0, 2}, {0, 3}
3645         };
3646
3647         /* Some boards advertise MSI but don't really support it */
3648         if ((board_id == 0x40700E11) ||
3649             (board_id == 0x40800E11) ||
3650             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3651                 goto default_int_mode;
3652
3653         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3654                 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3655                 if (!err) {
3656                         c->intr[0] = cciss_msix_entries[0].vector;
3657                         c->intr[1] = cciss_msix_entries[1].vector;
3658                         c->intr[2] = cciss_msix_entries[2].vector;
3659                         c->intr[3] = cciss_msix_entries[3].vector;
3660                         c->msix_vector = 1;
3661                         return;
3662                 }
3663                 if (err > 0) {
3664                         printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3665                                "available\n", err);
3666                         goto default_int_mode;
3667                 } else {
3668                         printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3669                                err);
3670                         goto default_int_mode;
3671                 }
3672         }
3673         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3674                 if (!pci_enable_msi(pdev)) {
3675                         c->msi_vector = 1;
3676                 } else {
3677                         printk(KERN_WARNING "cciss: MSI init failed\n");
3678                 }
3679         }
3680 default_int_mode:
3681 #endif                          /* CONFIG_PCI_MSI */
3682         /* if we get here we're going to use the default interrupt mode */
3683         c->intr[SIMPLE_MODE_INT] = pdev->irq;
3684         return;
3685 }
3686
3687 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3688 {
3689         ushort subsystem_vendor_id, subsystem_device_id, command;
3690         __u32 board_id, scratchpad = 0;
3691         __u64 cfg_offset;
3692         __u32 cfg_base_addr;
3693         __u64 cfg_base_addr_index;
3694         int i, prod_index, err;
3695
3696         subsystem_vendor_id = pdev->subsystem_vendor;
3697         subsystem_device_id = pdev->subsystem_device;
3698         board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3699                     subsystem_vendor_id);
3700
3701         for (i = 0; i < ARRAY_SIZE(products); i++) {
3702                 /* Stand aside for hpsa driver on request */
3703                 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3704                         return -ENODEV;
3705                 if (board_id == products[i].board_id)
3706                         break;
3707         }
3708         prod_index = i;
3709         if (prod_index == ARRAY_SIZE(products)) {
3710                 dev_warn(&pdev->dev,
3711                         "unrecognized board ID: 0x%08lx, ignoring.\n",
3712                         (unsigned long) board_id);
3713                 return -ENODEV;
3714         }
3715
3716         /* check to see if controller has been disabled */
3717         /* BEFORE trying to enable it */
3718         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3719         if (!(command & 0x02)) {
3720                 printk(KERN_WARNING
3721                        "cciss: controller appears to be disabled\n");
3722                 return -ENODEV;
3723         }
3724
3725         err = pci_enable_device(pdev);
3726         if (err) {
3727                 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3728                 return err;
3729         }
3730
3731         err = pci_request_regions(pdev, "cciss");
3732         if (err) {
3733                 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3734                        "aborting\n");
3735                 return err;
3736         }
3737
3738 #ifdef CCISS_DEBUG
3739         printk("command = %x\n", command);
3740         printk("irq = %x\n", pdev->irq);
3741         printk("board_id = %x\n", board_id);
3742 #endif                          /* CCISS_DEBUG */
3743
3744 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3745  * else we use the IO-APIC interrupt assigned to us by system ROM.
3746  */
3747         cciss_interrupt_mode(c, pdev, board_id);
3748
3749         /* find the memory BAR */
3750         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3751                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3752                         break;
3753         }
3754         if (i == DEVICE_COUNT_RESOURCE) {
3755                 printk(KERN_WARNING "cciss: No memory BAR found\n");
3756                 err = -ENODEV;
3757                 goto err_out_free_res;
3758         }
3759
3760         c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3761                                                  * already removed
3762                                                  */
3763
3764 #ifdef CCISS_DEBUG
3765         printk("address 0 = %lx\n", c->paddr);
3766 #endif                          /* CCISS_DEBUG */
3767         c->vaddr = remap_pci_mem(c->paddr, 0x250);
3768
3769         /* Wait for the board to become ready.  (PCI hotplug needs this.)
3770          * We poll for up to 120 secs, once per 100ms. */
3771         for (i = 0; i < 1200; i++) {
3772                 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3773                 if (scratchpad == CCISS_FIRMWARE_READY)
3774                         break;
3775                 set_current_state(TASK_INTERRUPTIBLE);
3776                 schedule_timeout(msecs_to_jiffies(100));        /* wait 100ms */
3777         }
3778         if (scratchpad != CCISS_FIRMWARE_READY) {
3779                 printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
3780                 err = -ENODEV;
3781                 goto err_out_free_res;
3782         }
3783
3784         /* get the address index number */
3785         cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3786         cfg_base_addr &= (__u32) 0x0000ffff;
3787 #ifdef CCISS_DEBUG
3788         printk("cfg base address = %x\n", cfg_base_addr);
3789 #endif                          /* CCISS_DEBUG */
3790         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3791 #ifdef CCISS_DEBUG
3792         printk("cfg base address index = %llx\n",
3793                 (unsigned long long)cfg_base_addr_index);
3794 #endif                          /* CCISS_DEBUG */
3795         if (cfg_base_addr_index == -1) {
3796                 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3797                 err = -ENODEV;
3798                 goto err_out_free_res;
3799         }
3800
3801         cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3802 #ifdef CCISS_DEBUG
3803         printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3804 #endif                          /* CCISS_DEBUG */
3805         c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3806                                                        cfg_base_addr_index) +
3807                                     cfg_offset, sizeof(CfgTable_struct));
3808         c->board_id = board_id;
3809
3810 #ifdef CCISS_DEBUG
3811         print_cfg_table(c->cfgtable);
3812 #endif                          /* CCISS_DEBUG */
3813
3814         /* Some controllers support Zero Memory Raid (ZMR).
3815          * When configured in ZMR mode the number of supported
3816          * commands drops to 64. So instead of just setting an
3817          * arbitrary value we make the driver a little smarter.
3818          * We read the config table to tell us how many commands
3819          * are supported on the controller then subtract 4 to
3820          * leave a little room for ioctl calls.
3821          */
3822         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3823         c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
3824
3825         /*
3826          * Limit native command to 32 s/g elements to save dma'able memory.
3827          * Howvever spec says if 0, use 31
3828          */
3829
3830         c->max_cmd_sgentries = 31;
3831         if (c->maxsgentries > 512) {
3832                 c->max_cmd_sgentries = 32;
3833                 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
3834                 c->maxsgentries -= 1;   /* account for chain pointer */
3835         } else {
3836                 c->maxsgentries = 31;   /* Default to traditional value */
3837                 c->chainsize = 0;       /* traditional */
3838         }
3839
3840         c->product_name = products[prod_index].product_name;
3841         c->access = *(products[prod_index].access);
3842         c->nr_cmds = c->max_commands - 4;
3843         if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3844             (readb(&c->cfgtable->Signature[1]) != 'I') ||
3845             (readb(&c->cfgtable->Signature[2]) != 'S') ||
3846             (readb(&c->cfgtable->Signature[3]) != 'S')) {
3847                 printk("Does not appear to be a valid CISS config table\n");
3848                 err = -ENODEV;
3849                 goto err_out_free_res;
3850         }
3851 #ifdef CONFIG_X86
3852         {
3853                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3854                 __u32 prefetch;
3855                 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3856                 prefetch |= 0x100;
3857                 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3858         }
3859 #endif
3860
3861         /* Disabling DMA prefetch and refetch for the P600.
3862          * An ASIC bug may result in accesses to invalid memory addresses.
3863          * We've disabled prefetch for some time now. Testing with XEN
3864          * kernels revealed a bug in the refetch if dom0 resides on a P600.
3865          */
3866         if(board_id == 0x3225103C) {
3867                 __u32 dma_prefetch;
3868                 __u32 dma_refetch;
3869                 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3870                 dma_prefetch |= 0x8000;
3871                 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3872                 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3873                 dma_refetch |= 0x1;
3874                 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3875         }
3876
3877 #ifdef CCISS_DEBUG
3878         printk("Trying to put board into Simple mode\n");
3879 #endif                          /* CCISS_DEBUG */
3880         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3881         /* Update the field, and then ring the doorbell */
3882         writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3883         writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3884
3885         /* under certain very rare conditions, this can take awhile.
3886          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3887          * as we enter this code.) */
3888         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3889                 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3890                         break;
3891                 /* delay and try again */
3892                 set_current_state(TASK_INTERRUPTIBLE);
3893                 schedule_timeout(msecs_to_jiffies(1));
3894         }
3895
3896 #ifdef CCISS_DEBUG
3897         printk(KERN_DEBUG "I counter got to %d %x\n", i,
3898                readl(c->vaddr + SA5_DOORBELL));
3899 #endif                          /* CCISS_DEBUG */
3900 #ifdef CCISS_DEBUG
3901         print_cfg_table(c->cfgtable);
3902 #endif                          /* CCISS_DEBUG */
3903
3904         if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3905                 printk(KERN_WARNING "cciss: unable to get board into"
3906                        " simple mode\n");
3907                 err = -ENODEV;
3908                 goto err_out_free_res;
3909         }
3910         return 0;
3911
3912 err_out_free_res:
3913         /*
3914          * Deliberately omit pci_disable_device(): it does something nasty to
3915          * Smart Array controllers that pci_enable_device does not undo
3916          */
3917         pci_release_regions(pdev);
3918         return err;
3919 }
3920
3921 /* Function to find the first free pointer into our hba[] array
3922  * Returns -1 if no free entries are left.
3923  */
3924 static int alloc_cciss_hba(void)
3925 {
3926         int i;
3927
3928         for (i = 0; i < MAX_CTLR; i++) {
3929                 if (!hba[i]) {
3930                         ctlr_info_t *p;
3931
3932                         p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3933                         if (!p)
3934                                 goto Enomem;
3935                         hba[i] = p;
3936                         return i;
3937                 }
3938         }
3939         printk(KERN_WARNING "cciss: This driver supports a maximum"
3940                " of %d controllers.\n", MAX_CTLR);
3941         return -1;
3942 Enomem:
3943         printk(KERN_ERR "cciss: out of memory.\n");
3944         return -1;
3945 }
3946
3947 static void free_hba(int n)
3948 {
3949         ctlr_info_t *h = hba[n];
3950         int i;
3951
3952         hba[n] = NULL;
3953         for (i = 0; i < h->highest_lun + 1; i++)
3954                 if (h->gendisk[i] != NULL)
3955                         put_disk(h->gendisk[i]);
3956         kfree(h);
3957 }
3958
3959 /* Send a message CDB to the firmware. */
3960 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3961 {
3962         typedef struct {
3963                 CommandListHeader_struct CommandHeader;
3964                 RequestBlock_struct Request;
3965                 ErrDescriptor_struct ErrorDescriptor;
3966         } Command;
3967         static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3968         Command *cmd;
3969         dma_addr_t paddr64;
3970         uint32_t paddr32, tag;
3971         void __iomem *vaddr;
3972         int i, err;
3973
3974         vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3975         if (vaddr == NULL)
3976                 return -ENOMEM;
3977
3978         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3979            CCISS commands, so they must be allocated from the lower 4GiB of
3980            memory. */
3981         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3982         if (err) {
3983                 iounmap(vaddr);
3984                 return -ENOMEM;
3985         }
3986
3987         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3988         if (cmd == NULL) {
3989                 iounmap(vaddr);
3990                 return -ENOMEM;
3991         }
3992
3993         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3994            although there's no guarantee, we assume that the address is at
3995            least 4-byte aligned (most likely, it's page-aligned). */
3996         paddr32 = paddr64;
3997
3998         cmd->CommandHeader.ReplyQueue = 0;
3999         cmd->CommandHeader.SGList = 0;
4000         cmd->CommandHeader.SGTotal = 0;
4001         cmd->CommandHeader.Tag.lower = paddr32;
4002         cmd->CommandHeader.Tag.upper = 0;
4003         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4004
4005         cmd->Request.CDBLen = 16;
4006         cmd->Request.Type.Type = TYPE_MSG;
4007         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4008         cmd->Request.Type.Direction = XFER_NONE;
4009         cmd->Request.Timeout = 0; /* Don't time out */
4010         cmd->Request.CDB[0] = opcode;
4011         cmd->Request.CDB[1] = type;
4012         memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4013
4014         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4015         cmd->ErrorDescriptor.Addr.upper = 0;
4016         cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4017
4018         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4019
4020         for (i = 0; i < 10; i++) {
4021                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4022                 if ((tag & ~3) == paddr32)
4023                         break;
4024                 schedule_timeout_uninterruptible(HZ);
4025         }
4026
4027         iounmap(vaddr);
4028
4029         /* we leak the DMA buffer here ... no choice since the controller could
4030            still complete the command. */
4031         if (i == 10) {
4032                 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4033                         opcode, type);
4034                 return -ETIMEDOUT;
4035         }
4036
4037         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4038
4039         if (tag & 2) {
4040                 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4041                         opcode, type);
4042                 return -EIO;
4043         }
4044
4045         printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4046                 opcode, type);
4047         return 0;
4048 }
4049
4050 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4051 #define cciss_noop(p) cciss_message(p, 3, 0)
4052
4053 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4054 {
4055 /* the #defines are stolen from drivers/pci/msi.h. */
4056 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
4057 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
4058
4059         int pos;
4060         u16 control = 0;
4061
4062         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4063         if (pos) {
4064                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4065                 if (control & PCI_MSI_FLAGS_ENABLE) {
4066                         printk(KERN_INFO "cciss: resetting MSI\n");
4067                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4068                 }
4069         }
4070
4071         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4072         if (pos) {
4073                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4074                 if (control & PCI_MSIX_FLAGS_ENABLE) {
4075                         printk(KERN_INFO "cciss: resetting MSI-X\n");
4076                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4077                 }
4078         }
4079
4080         return 0;
4081 }
4082
4083 /* This does a hard reset of the controller using PCI power management
4084  * states. */
4085 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4086 {
4087         u16 pmcsr, saved_config_space[32];
4088         int i, pos;
4089
4090         printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4091
4092         /* This is very nearly the same thing as
4093
4094            pci_save_state(pci_dev);
4095            pci_set_power_state(pci_dev, PCI_D3hot);
4096            pci_set_power_state(pci_dev, PCI_D0);
4097            pci_restore_state(pci_dev);
4098
4099            but we can't use these nice canned kernel routines on
4100            kexec, because they also check the MSI/MSI-X state in PCI
4101            configuration space and do the wrong thing when it is
4102            set/cleared.  Also, the pci_save/restore_state functions
4103            violate the ordering requirements for restoring the
4104            configuration space from the CCISS document (see the
4105            comment below).  So we roll our own .... */
4106
4107         for (i = 0; i < 32; i++)
4108                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4109
4110         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4111         if (pos == 0) {
4112                 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4113                 return -ENODEV;
4114         }
4115
4116         /* Quoting from the Open CISS Specification: "The Power
4117          * Management Control/Status Register (CSR) controls the power
4118          * state of the device.  The normal operating state is D0,
4119          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4120          * the controller, place the interface device in D3 then to
4121          * D0, this causes a secondary PCI reset which will reset the
4122          * controller." */
4123
4124         /* enter the D3hot power management state */
4125         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4126         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4127         pmcsr |= PCI_D3hot;
4128         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4129
4130         schedule_timeout_uninterruptible(HZ >> 1);
4131
4132         /* enter the D0 power management state */
4133         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4134         pmcsr |= PCI_D0;
4135         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4136
4137         schedule_timeout_uninterruptible(HZ >> 1);
4138
4139         /* Restore the PCI configuration space.  The Open CISS
4140          * Specification says, "Restore the PCI Configuration
4141          * Registers, offsets 00h through 60h. It is important to
4142          * restore the command register, 16-bits at offset 04h,
4143          * last. Do not restore the configuration status register,
4144          * 16-bits at offset 06h."  Note that the offset is 2*i. */
4145         for (i = 0; i < 32; i++) {
4146                 if (i == 2 || i == 3)
4147                         continue;
4148                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4149         }
4150         wmb();
4151         pci_write_config_word(pdev, 4, saved_config_space[2]);
4152
4153         return 0;
4154 }
4155
4156 /*
4157  *  This is it.  Find all the controllers and register them.  I really hate
4158  *  stealing all these major device numbers.
4159  *  returns the number of block devices registered.
4160  */
4161 static int __devinit cciss_init_one(struct pci_dev *pdev,
4162                                     const struct pci_device_id *ent)
4163 {
4164         int i;
4165         int j = 0;
4166         int k = 0;
4167         int rc;
4168         int dac, return_code;
4169         InquiryData_struct *inq_buff;
4170
4171         if (reset_devices) {
4172                 /* Reset the controller with a PCI power-cycle */
4173                 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4174                         return -ENODEV;
4175
4176                 /* Now try to get the controller to respond to a no-op. Some
4177                    devices (notably the HP Smart Array 5i Controller) need
4178                    up to 30 seconds to respond. */
4179                 for (i=0; i<30; i++) {
4180                         if (cciss_noop(pdev) == 0)
4181                                 break;
4182
4183                         schedule_timeout_uninterruptible(HZ);
4184                 }
4185                 if (i == 30) {
4186                         printk(KERN_ERR "cciss: controller seems dead\n");
4187                         return -EBUSY;
4188                 }
4189         }
4190
4191         i = alloc_cciss_hba();
4192         if (i < 0)
4193                 return -1;
4194
4195         hba[i]->busy_initializing = 1;
4196         INIT_HLIST_HEAD(&hba[i]->cmpQ);
4197         INIT_HLIST_HEAD(&hba[i]->reqQ);
4198         mutex_init(&hba[i]->busy_shutting_down);
4199
4200         if (cciss_pci_init(hba[i], pdev) != 0)
4201                 goto clean_no_release_regions;
4202
4203         sprintf(hba[i]->devname, "cciss%d", i);
4204         hba[i]->ctlr = i;
4205         hba[i]->pdev = pdev;
4206
4207         init_completion(&hba[i]->scan_wait);
4208
4209         if (cciss_create_hba_sysfs_entry(hba[i]))
4210                 goto clean0;
4211
4212         /* configure PCI DMA stuff */
4213         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4214                 dac = 1;
4215         else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4216                 dac = 0;
4217         else {
4218                 printk(KERN_ERR "cciss: no suitable DMA available\n");
4219                 goto clean1;
4220         }
4221
4222         /*
4223          * register with the major number, or get a dynamic major number
4224          * by passing 0 as argument.  This is done for greater than
4225          * 8 controller support.
4226          */
4227         if (i < MAX_CTLR_ORIG)
4228                 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4229         rc = register_blkdev(hba[i]->major, hba[i]->devname);
4230         if (rc == -EBUSY || rc == -EINVAL) {
4231                 printk(KERN_ERR
4232                        "cciss:  Unable to get major number %d for %s "
4233                        "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4234                 goto clean1;
4235         } else {
4236                 if (i >= MAX_CTLR_ORIG)
4237                         hba[i]->major = rc;
4238         }
4239
4240         /* make sure the board interrupts are off */
4241         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4242         if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4243                         IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4244                 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4245                        hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4246                 goto clean2;
4247         }
4248
4249         printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4250                hba[i]->devname, pdev->device, pci_name(pdev),
4251                hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4252
4253         hba[i]->cmd_pool_bits =
4254             kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4255                         * sizeof(unsigned long), GFP_KERNEL);
4256         hba[i]->cmd_pool = (CommandList_struct *)
4257             pci_alloc_consistent(hba[i]->pdev,
4258                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4259                     &(hba[i]->cmd_pool_dhandle));
4260         hba[i]->errinfo_pool = (ErrorInfo_struct *)
4261             pci_alloc_consistent(hba[i]->pdev,
4262                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4263                     &(hba[i]->errinfo_pool_dhandle));
4264         if ((hba[i]->cmd_pool_bits == NULL)
4265             || (hba[i]->cmd_pool == NULL)
4266             || (hba[i]->errinfo_pool == NULL)) {
4267                 printk(KERN_ERR "cciss: out of memory");
4268                 goto clean4;
4269         }
4270
4271         /* Need space for temp scatter list */
4272         hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4273                                                 sizeof(struct scatterlist *),
4274                                                 GFP_KERNEL);
4275         for (k = 0; k < hba[i]->nr_cmds; k++) {
4276                 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4277                                                         hba[i]->maxsgentries,
4278                                                         GFP_KERNEL);
4279                 if (hba[i]->scatter_list[k] == NULL) {
4280                         printk(KERN_ERR "cciss%d: could not allocate "
4281                                 "s/g lists\n", i);
4282                         goto clean4;
4283                 }
4284         }
4285         hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
4286                 hba[i]->chainsize, hba[i]->nr_cmds);
4287         if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
4288                 goto clean4;
4289
4290         spin_lock_init(&hba[i]->lock);
4291
4292         /* Initialize the pdev driver private data.
4293            have it point to hba[i].  */
4294         pci_set_drvdata(pdev, hba[i]);
4295         /* command and error info recs zeroed out before
4296            they are used */
4297         memset(hba[i]->cmd_pool_bits, 0,
4298                DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4299                         * sizeof(unsigned long));
4300
4301         hba[i]->num_luns = 0;
4302         hba[i]->highest_lun = -1;
4303         for (j = 0; j < CISS_MAX_LUN; j++) {
4304                 hba[i]->drv[j] = NULL;
4305                 hba[i]->gendisk[j] = NULL;
4306         }
4307
4308         cciss_scsi_setup(i);
4309
4310         /* Turn the interrupts on so we can service requests */
4311         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4312
4313         /* Get the firmware version */
4314         inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4315         if (inq_buff == NULL) {
4316                 printk(KERN_ERR "cciss: out of memory\n");
4317                 goto clean4;
4318         }
4319
4320         return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4321                 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4322         if (return_code == IO_OK) {
4323                 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4324                 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4325                 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4326                 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4327         } else {         /* send command failed */
4328                 printk(KERN_WARNING "cciss: unable to determine firmware"
4329                         " version of controller\n");
4330         }
4331         kfree(inq_buff);
4332
4333         cciss_procinit(i);
4334
4335         hba[i]->cciss_max_sectors = 8192;
4336
4337         rebuild_lun_table(hba[i], 1, 0);
4338         hba[i]->busy_initializing = 0;
4339         return 1;
4340
4341 clean4:
4342         kfree(hba[i]->cmd_pool_bits);
4343         /* Free up sg elements */
4344         for (k = 0; k < hba[i]->nr_cmds; k++)
4345                 kfree(hba[i]->scatter_list[k]);
4346         kfree(hba[i]->scatter_list);
4347         cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4348         if (hba[i]->cmd_pool)
4349                 pci_free_consistent(hba[i]->pdev,
4350                                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4351                                     hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4352         if (hba[i]->errinfo_pool)
4353                 pci_free_consistent(hba[i]->pdev,
4354                                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4355                                     hba[i]->errinfo_pool,
4356                                     hba[i]->errinfo_pool_dhandle);
4357         free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4358 clean2:
4359         unregister_blkdev(hba[i]->major, hba[i]->devname);
4360 clean1:
4361         cciss_destroy_hba_sysfs_entry(hba[i]);
4362 clean0:
4363         pci_release_regions(pdev);
4364 clean_no_release_regions:
4365         hba[i]->busy_initializing = 0;
4366
4367         /*
4368          * Deliberately omit pci_disable_device(): it does something nasty to
4369          * Smart Array controllers that pci_enable_device does not undo
4370          */
4371         pci_set_drvdata(pdev, NULL);
4372         free_hba(i);
4373         return -1;
4374 }
4375
4376 static void cciss_shutdown(struct pci_dev *pdev)
4377 {
4378         ctlr_info_t *h;
4379         char *flush_buf;
4380         int return_code;
4381
4382         h = pci_get_drvdata(pdev);
4383         flush_buf = kzalloc(4, GFP_KERNEL);
4384         if (!flush_buf) {
4385                 printk(KERN_WARNING
4386                         "cciss:%d cache not flushed, out of memory.\n",
4387                         h->ctlr);
4388                 return;
4389         }
4390         /* write all data in the battery backed cache to disk */
4391         memset(flush_buf, 0, 4);
4392         return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4393                 4, 0, CTLR_LUNID, TYPE_CMD);
4394         kfree(flush_buf);
4395         if (return_code != IO_OK)
4396                 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4397                         h->ctlr);
4398         h->access.set_intr_mask(h, CCISS_INTR_OFF);
4399         free_irq(h->intr[2], h);
4400 }
4401
4402 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4403 {
4404         ctlr_info_t *tmp_ptr;
4405         int i, j;
4406
4407         if (pci_get_drvdata(pdev) == NULL) {
4408                 printk(KERN_ERR "cciss: Unable to remove device \n");
4409                 return;
4410         }
4411
4412         tmp_ptr = pci_get_drvdata(pdev);
4413         i = tmp_ptr->ctlr;
4414         if (hba[i] == NULL) {
4415                 printk(KERN_ERR "cciss: device appears to "
4416                        "already be removed \n");
4417                 return;
4418         }
4419
4420         mutex_lock(&hba[i]->busy_shutting_down);
4421
4422         remove_from_scan_list(hba[i]);
4423         remove_proc_entry(hba[i]->devname, proc_cciss);
4424         unregister_blkdev(hba[i]->major, hba[i]->devname);
4425
4426         /* remove it from the disk list */
4427         for (j = 0; j < CISS_MAX_LUN; j++) {
4428                 struct gendisk *disk = hba[i]->gendisk[j];
4429                 if (disk) {
4430                         struct request_queue *q = disk->queue;
4431
4432                         if (disk->flags & GENHD_FL_UP) {
4433                                 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4434                                 del_gendisk(disk);
4435                         }
4436                         if (q)
4437                                 blk_cleanup_queue(q);
4438                 }
4439         }
4440
4441 #ifdef CONFIG_CISS_SCSI_TAPE
4442         cciss_unregister_scsi(i);       /* unhook from SCSI subsystem */
4443 #endif
4444
4445         cciss_shutdown(pdev);
4446
4447 #ifdef CONFIG_PCI_MSI
4448         if (hba[i]->msix_vector)
4449                 pci_disable_msix(hba[i]->pdev);
4450         else if (hba[i]->msi_vector)
4451                 pci_disable_msi(hba[i]->pdev);
4452 #endif                          /* CONFIG_PCI_MSI */
4453
4454         iounmap(hba[i]->vaddr);
4455
4456         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4457                             hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4458         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4459                             hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4460         kfree(hba[i]->cmd_pool_bits);
4461         /* Free up sg elements */
4462         for (j = 0; j < hba[i]->nr_cmds; j++)
4463                 kfree(hba[i]->scatter_list[j]);
4464         kfree(hba[i]->scatter_list);
4465         cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4466         /*
4467          * Deliberately omit pci_disable_device(): it does something nasty to
4468          * Smart Array controllers that pci_enable_device does not undo
4469          */
4470         pci_release_regions(pdev);
4471         pci_set_drvdata(pdev, NULL);
4472         cciss_destroy_hba_sysfs_entry(hba[i]);
4473         mutex_unlock(&hba[i]->busy_shutting_down);
4474         free_hba(i);
4475 }
4476
4477 static struct pci_driver cciss_pci_driver = {
4478         .name = "cciss",
4479         .probe = cciss_init_one,
4480         .remove = __devexit_p(cciss_remove_one),
4481         .id_table = cciss_pci_device_id,        /* id_table */
4482         .shutdown = cciss_shutdown,
4483 };
4484
4485 /*
4486  *  This is it.  Register the PCI driver information for the cards we control
4487  *  the OS will call our registered routines when it finds one of our cards.
4488  */
4489 static int __init cciss_init(void)
4490 {
4491         int err;
4492
4493         /*
4494          * The hardware requires that commands are aligned on a 64-bit
4495          * boundary. Given that we use pci_alloc_consistent() to allocate an
4496          * array of them, the size must be a multiple of 8 bytes.
4497          */
4498         BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4499
4500         printk(KERN_INFO DRIVER_NAME "\n");
4501
4502         err = bus_register(&cciss_bus_type);
4503         if (err)
4504                 return err;
4505
4506         /* Start the scan thread */
4507         cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4508         if (IS_ERR(cciss_scan_thread)) {
4509                 err = PTR_ERR(cciss_scan_thread);
4510                 goto err_bus_unregister;
4511         }
4512
4513         /* Register for our PCI devices */
4514         err = pci_register_driver(&cciss_pci_driver);
4515         if (err)
4516                 goto err_thread_stop;
4517
4518         return err;
4519
4520 err_thread_stop:
4521         kthread_stop(cciss_scan_thread);
4522 err_bus_unregister:
4523         bus_unregister(&cciss_bus_type);
4524
4525         return err;
4526 }
4527
4528 static void __exit cciss_cleanup(void)
4529 {
4530         int i;
4531
4532         pci_unregister_driver(&cciss_pci_driver);
4533         /* double check that all controller entrys have been removed */
4534         for (i = 0; i < MAX_CTLR; i++) {
4535                 if (hba[i] != NULL) {
4536                         printk(KERN_WARNING "cciss: had to remove"
4537                                " controller %d\n", i);
4538                         cciss_remove_one(hba[i]->pdev);
4539                 }
4540         }
4541         kthread_stop(cciss_scan_thread);
4542         remove_proc_entry("driver/cciss", NULL);
4543         bus_unregister(&cciss_bus_type);
4544 }
4545
4546 static void fail_all_cmds(unsigned long ctlr)
4547 {
4548         /* If we get here, the board is apparently dead. */
4549         ctlr_info_t *h = hba[ctlr];
4550         CommandList_struct *c;
4551         unsigned long flags;
4552
4553         printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4554         h->alive = 0;           /* the controller apparently died... */
4555
4556         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4557
4558         pci_disable_device(h->pdev);    /* Make sure it is really dead. */
4559
4560         /* move everything off the request queue onto the completed queue */
4561         while (!hlist_empty(&h->reqQ)) {
4562                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4563                 removeQ(c);
4564                 h->Qdepth--;
4565                 addQ(&h->cmpQ, c);
4566         }
4567
4568         /* Now, fail everything on the completed queue with a HW error */
4569         while (!hlist_empty(&h->cmpQ)) {
4570                 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4571                 removeQ(c);
4572                 if (c->cmd_type != CMD_MSG_STALE)
4573                         c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4574                 if (c->cmd_type == CMD_RWREQ) {
4575                         complete_command(h, c, 0);
4576                 } else if (c->cmd_type == CMD_IOCTL_PEND)
4577                         complete(c->waiting);
4578 #ifdef CONFIG_CISS_SCSI_TAPE
4579                 else if (c->cmd_type == CMD_SCSI)
4580                         complete_scsi_command(c, 0, 0);
4581 #endif
4582         }
4583         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4584         return;
4585 }
4586
4587 module_init(cciss_init);
4588 module_exit(cciss_cleanup);