2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
24 #define CREATE_TRACE_POINTS
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 unsigned int mask, unsigned int val,
39 bool *change, bool force_write);
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
43 static int _regmap_bus_read(void *context, unsigned int reg,
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
52 bool regmap_reg_in_ranges(unsigned int reg,
53 const struct regmap_range *ranges,
56 const struct regmap_range *r;
59 for (i = 0, r = ranges; i < nranges; i++, r++)
60 if (regmap_reg_in_range(reg, r))
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 const struct regmap_access_table *table)
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table->n_yes_ranges)
77 return regmap_reg_in_ranges(reg, table->yes_ranges,
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
84 if (map->max_register && reg > map->max_register)
87 if (map->writeable_reg)
88 return map->writeable_reg(map->dev, reg);
91 return regmap_check_range_table(map, reg, map->wr_table);
96 bool regmap_readable(struct regmap *map, unsigned int reg)
101 if (map->max_register && reg > map->max_register)
104 if (map->format.format_write)
107 if (map->readable_reg)
108 return map->readable_reg(map->dev, reg);
111 return regmap_check_range_table(map, reg, map->rd_table);
116 bool regmap_volatile(struct regmap *map, unsigned int reg)
118 if (!map->format.format_write && !regmap_readable(map, reg))
121 if (map->volatile_reg)
122 return map->volatile_reg(map->dev, reg);
124 if (map->volatile_table)
125 return regmap_check_range_table(map, reg, map->volatile_table);
133 bool regmap_precious(struct regmap *map, unsigned int reg)
135 if (!regmap_readable(map, reg))
138 if (map->precious_reg)
139 return map->precious_reg(map->dev, reg);
141 if (map->precious_table)
142 return regmap_check_range_table(map, reg, map->precious_table);
147 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
152 for (i = 0; i < num; i++)
153 if (!regmap_volatile(map, reg + i))
159 static void regmap_format_2_6_write(struct regmap *map,
160 unsigned int reg, unsigned int val)
162 u8 *out = map->work_buf;
164 *out = (reg << 6) | val;
167 static void regmap_format_4_12_write(struct regmap *map,
168 unsigned int reg, unsigned int val)
170 __be16 *out = map->work_buf;
171 *out = cpu_to_be16((reg << 12) | val);
174 static void regmap_format_7_9_write(struct regmap *map,
175 unsigned int reg, unsigned int val)
177 __be16 *out = map->work_buf;
178 *out = cpu_to_be16((reg << 9) | val);
181 static void regmap_format_10_14_write(struct regmap *map,
182 unsigned int reg, unsigned int val)
184 u8 *out = map->work_buf;
187 out[1] = (val >> 8) | (reg << 6);
191 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
198 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
202 b[0] = cpu_to_be16(val << shift);
205 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
209 b[0] = cpu_to_le16(val << shift);
212 static void regmap_format_16_native(void *buf, unsigned int val,
215 *(u16 *)buf = val << shift;
218 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
229 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
233 b[0] = cpu_to_be32(val << shift);
236 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
240 b[0] = cpu_to_le32(val << shift);
243 static void regmap_format_32_native(void *buf, unsigned int val,
246 *(u32 *)buf = val << shift;
250 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
254 b[0] = cpu_to_be64((u64)val << shift);
257 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
261 b[0] = cpu_to_le64((u64)val << shift);
264 static void regmap_format_64_native(void *buf, unsigned int val,
267 *(u64 *)buf = (u64)val << shift;
271 static void regmap_parse_inplace_noop(void *buf)
275 static unsigned int regmap_parse_8(const void *buf)
282 static unsigned int regmap_parse_16_be(const void *buf)
284 const __be16 *b = buf;
286 return be16_to_cpu(b[0]);
289 static unsigned int regmap_parse_16_le(const void *buf)
291 const __le16 *b = buf;
293 return le16_to_cpu(b[0]);
296 static void regmap_parse_16_be_inplace(void *buf)
300 b[0] = be16_to_cpu(b[0]);
303 static void regmap_parse_16_le_inplace(void *buf)
307 b[0] = le16_to_cpu(b[0]);
310 static unsigned int regmap_parse_16_native(const void *buf)
315 static unsigned int regmap_parse_24(const void *buf)
318 unsigned int ret = b[2];
319 ret |= ((unsigned int)b[1]) << 8;
320 ret |= ((unsigned int)b[0]) << 16;
325 static unsigned int regmap_parse_32_be(const void *buf)
327 const __be32 *b = buf;
329 return be32_to_cpu(b[0]);
332 static unsigned int regmap_parse_32_le(const void *buf)
334 const __le32 *b = buf;
336 return le32_to_cpu(b[0]);
339 static void regmap_parse_32_be_inplace(void *buf)
343 b[0] = be32_to_cpu(b[0]);
346 static void regmap_parse_32_le_inplace(void *buf)
350 b[0] = le32_to_cpu(b[0]);
353 static unsigned int regmap_parse_32_native(const void *buf)
359 static unsigned int regmap_parse_64_be(const void *buf)
361 const __be64 *b = buf;
363 return be64_to_cpu(b[0]);
366 static unsigned int regmap_parse_64_le(const void *buf)
368 const __le64 *b = buf;
370 return le64_to_cpu(b[0]);
373 static void regmap_parse_64_be_inplace(void *buf)
377 b[0] = be64_to_cpu(b[0]);
380 static void regmap_parse_64_le_inplace(void *buf)
384 b[0] = le64_to_cpu(b[0]);
387 static unsigned int regmap_parse_64_native(const void *buf)
393 static void regmap_lock_mutex(void *__map)
395 struct regmap *map = __map;
396 mutex_lock(&map->mutex);
399 static void regmap_unlock_mutex(void *__map)
401 struct regmap *map = __map;
402 mutex_unlock(&map->mutex);
405 static void regmap_lock_spinlock(void *__map)
406 __acquires(&map->spinlock)
408 struct regmap *map = __map;
411 spin_lock_irqsave(&map->spinlock, flags);
412 map->spinlock_flags = flags;
415 static void regmap_unlock_spinlock(void *__map)
416 __releases(&map->spinlock)
418 struct regmap *map = __map;
419 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
422 static void dev_get_regmap_release(struct device *dev, void *res)
425 * We don't actually have anything to do here; the goal here
426 * is not to manage the regmap but to provide a simple way to
427 * get the regmap back given a struct device.
431 static bool _regmap_range_add(struct regmap *map,
432 struct regmap_range_node *data)
434 struct rb_root *root = &map->range_tree;
435 struct rb_node **new = &(root->rb_node), *parent = NULL;
438 struct regmap_range_node *this =
439 container_of(*new, struct regmap_range_node, node);
442 if (data->range_max < this->range_min)
443 new = &((*new)->rb_left);
444 else if (data->range_min > this->range_max)
445 new = &((*new)->rb_right);
450 rb_link_node(&data->node, parent, new);
451 rb_insert_color(&data->node, root);
456 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
459 struct rb_node *node = map->range_tree.rb_node;
462 struct regmap_range_node *this =
463 container_of(node, struct regmap_range_node, node);
465 if (reg < this->range_min)
466 node = node->rb_left;
467 else if (reg > this->range_max)
468 node = node->rb_right;
476 static void regmap_range_exit(struct regmap *map)
478 struct rb_node *next;
479 struct regmap_range_node *range_node;
481 next = rb_first(&map->range_tree);
483 range_node = rb_entry(next, struct regmap_range_node, node);
484 next = rb_next(&range_node->node);
485 rb_erase(&range_node->node, &map->range_tree);
489 kfree(map->selector_work_buf);
492 int regmap_attach_dev(struct device *dev, struct regmap *map,
493 const struct regmap_config *config)
499 regmap_debugfs_init(map, config->name);
501 /* Add a devres resource for dev_get_regmap() */
502 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
504 regmap_debugfs_exit(map);
512 EXPORT_SYMBOL_GPL(regmap_attach_dev);
514 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
515 const struct regmap_config *config)
517 enum regmap_endian endian;
519 /* Retrieve the endianness specification from the regmap config */
520 endian = config->reg_format_endian;
522 /* If the regmap config specified a non-default value, use that */
523 if (endian != REGMAP_ENDIAN_DEFAULT)
526 /* Retrieve the endianness specification from the bus config */
527 if (bus && bus->reg_format_endian_default)
528 endian = bus->reg_format_endian_default;
530 /* If the bus specified a non-default value, use that */
531 if (endian != REGMAP_ENDIAN_DEFAULT)
534 /* Use this if no other value was found */
535 return REGMAP_ENDIAN_BIG;
538 enum regmap_endian regmap_get_val_endian(struct device *dev,
539 const struct regmap_bus *bus,
540 const struct regmap_config *config)
542 struct device_node *np;
543 enum regmap_endian endian;
545 /* Retrieve the endianness specification from the regmap config */
546 endian = config->val_format_endian;
548 /* If the regmap config specified a non-default value, use that */
549 if (endian != REGMAP_ENDIAN_DEFAULT)
552 /* If the dev and dev->of_node exist try to get endianness from DT */
553 if (dev && dev->of_node) {
556 /* Parse the device's DT node for an endianness specification */
557 if (of_property_read_bool(np, "big-endian"))
558 endian = REGMAP_ENDIAN_BIG;
559 else if (of_property_read_bool(np, "little-endian"))
560 endian = REGMAP_ENDIAN_LITTLE;
561 else if (of_property_read_bool(np, "native-endian"))
562 endian = REGMAP_ENDIAN_NATIVE;
564 /* If the endianness was specified in DT, use that */
565 if (endian != REGMAP_ENDIAN_DEFAULT)
569 /* Retrieve the endianness specification from the bus config */
570 if (bus && bus->val_format_endian_default)
571 endian = bus->val_format_endian_default;
573 /* If the bus specified a non-default value, use that */
574 if (endian != REGMAP_ENDIAN_DEFAULT)
577 /* Use this if no other value was found */
578 return REGMAP_ENDIAN_BIG;
580 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
582 struct regmap *__regmap_init(struct device *dev,
583 const struct regmap_bus *bus,
585 const struct regmap_config *config,
586 struct lock_class_key *lock_key,
587 const char *lock_name)
591 enum regmap_endian reg_endian, val_endian;
597 map = kzalloc(sizeof(*map), GFP_KERNEL);
603 if (config->lock && config->unlock) {
604 map->lock = config->lock;
605 map->unlock = config->unlock;
606 map->lock_arg = config->lock_arg;
608 if ((bus && bus->fast_io) ||
610 spin_lock_init(&map->spinlock);
611 map->lock = regmap_lock_spinlock;
612 map->unlock = regmap_unlock_spinlock;
613 lockdep_set_class_and_name(&map->spinlock,
614 lock_key, lock_name);
616 mutex_init(&map->mutex);
617 map->lock = regmap_lock_mutex;
618 map->unlock = regmap_unlock_mutex;
619 lockdep_set_class_and_name(&map->mutex,
620 lock_key, lock_name);
626 * When we write in fast-paths with regmap_bulk_write() don't allocate
627 * scratch buffers with sleeping allocations.
629 if ((bus && bus->fast_io) || config->fast_io)
630 map->alloc_flags = GFP_ATOMIC;
632 map->alloc_flags = GFP_KERNEL;
634 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
635 map->format.pad_bytes = config->pad_bits / 8;
636 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
637 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
638 config->val_bits + config->pad_bits, 8);
639 map->reg_shift = config->pad_bits % 8;
640 if (config->reg_stride)
641 map->reg_stride = config->reg_stride;
644 if (is_power_of_2(map->reg_stride))
645 map->reg_stride_order = ilog2(map->reg_stride);
647 map->reg_stride_order = -1;
648 map->use_single_read = config->use_single_rw || !bus || !bus->read;
649 map->use_single_write = config->use_single_rw || !bus || !bus->write;
650 map->can_multi_write = config->can_multi_write && bus && bus->write;
652 map->max_raw_read = bus->max_raw_read;
653 map->max_raw_write = bus->max_raw_write;
657 map->bus_context = bus_context;
658 map->max_register = config->max_register;
659 map->wr_table = config->wr_table;
660 map->rd_table = config->rd_table;
661 map->volatile_table = config->volatile_table;
662 map->precious_table = config->precious_table;
663 map->writeable_reg = config->writeable_reg;
664 map->readable_reg = config->readable_reg;
665 map->volatile_reg = config->volatile_reg;
666 map->precious_reg = config->precious_reg;
667 map->cache_type = config->cache_type;
668 map->name = config->name;
670 spin_lock_init(&map->async_lock);
671 INIT_LIST_HEAD(&map->async_list);
672 INIT_LIST_HEAD(&map->async_free);
673 init_waitqueue_head(&map->async_waitq);
675 if (config->read_flag_mask || config->write_flag_mask) {
676 map->read_flag_mask = config->read_flag_mask;
677 map->write_flag_mask = config->write_flag_mask;
679 map->read_flag_mask = bus->read_flag_mask;
683 map->reg_read = config->reg_read;
684 map->reg_write = config->reg_write;
686 map->defer_caching = false;
687 goto skip_format_initialization;
688 } else if (!bus->read || !bus->write) {
689 map->reg_read = _regmap_bus_reg_read;
690 map->reg_write = _regmap_bus_reg_write;
692 map->defer_caching = false;
693 goto skip_format_initialization;
695 map->reg_read = _regmap_bus_read;
696 map->reg_update_bits = bus->reg_update_bits;
699 reg_endian = regmap_get_reg_endian(bus, config);
700 val_endian = regmap_get_val_endian(dev, bus, config);
702 switch (config->reg_bits + map->reg_shift) {
704 switch (config->val_bits) {
706 map->format.format_write = regmap_format_2_6_write;
714 switch (config->val_bits) {
716 map->format.format_write = regmap_format_4_12_write;
724 switch (config->val_bits) {
726 map->format.format_write = regmap_format_7_9_write;
734 switch (config->val_bits) {
736 map->format.format_write = regmap_format_10_14_write;
744 map->format.format_reg = regmap_format_8;
748 switch (reg_endian) {
749 case REGMAP_ENDIAN_BIG:
750 map->format.format_reg = regmap_format_16_be;
752 case REGMAP_ENDIAN_NATIVE:
753 map->format.format_reg = regmap_format_16_native;
761 if (reg_endian != REGMAP_ENDIAN_BIG)
763 map->format.format_reg = regmap_format_24;
767 switch (reg_endian) {
768 case REGMAP_ENDIAN_BIG:
769 map->format.format_reg = regmap_format_32_be;
771 case REGMAP_ENDIAN_NATIVE:
772 map->format.format_reg = regmap_format_32_native;
781 switch (reg_endian) {
782 case REGMAP_ENDIAN_BIG:
783 map->format.format_reg = regmap_format_64_be;
785 case REGMAP_ENDIAN_NATIVE:
786 map->format.format_reg = regmap_format_64_native;
798 if (val_endian == REGMAP_ENDIAN_NATIVE)
799 map->format.parse_inplace = regmap_parse_inplace_noop;
801 switch (config->val_bits) {
803 map->format.format_val = regmap_format_8;
804 map->format.parse_val = regmap_parse_8;
805 map->format.parse_inplace = regmap_parse_inplace_noop;
808 switch (val_endian) {
809 case REGMAP_ENDIAN_BIG:
810 map->format.format_val = regmap_format_16_be;
811 map->format.parse_val = regmap_parse_16_be;
812 map->format.parse_inplace = regmap_parse_16_be_inplace;
814 case REGMAP_ENDIAN_LITTLE:
815 map->format.format_val = regmap_format_16_le;
816 map->format.parse_val = regmap_parse_16_le;
817 map->format.parse_inplace = regmap_parse_16_le_inplace;
819 case REGMAP_ENDIAN_NATIVE:
820 map->format.format_val = regmap_format_16_native;
821 map->format.parse_val = regmap_parse_16_native;
828 if (val_endian != REGMAP_ENDIAN_BIG)
830 map->format.format_val = regmap_format_24;
831 map->format.parse_val = regmap_parse_24;
834 switch (val_endian) {
835 case REGMAP_ENDIAN_BIG:
836 map->format.format_val = regmap_format_32_be;
837 map->format.parse_val = regmap_parse_32_be;
838 map->format.parse_inplace = regmap_parse_32_be_inplace;
840 case REGMAP_ENDIAN_LITTLE:
841 map->format.format_val = regmap_format_32_le;
842 map->format.parse_val = regmap_parse_32_le;
843 map->format.parse_inplace = regmap_parse_32_le_inplace;
845 case REGMAP_ENDIAN_NATIVE:
846 map->format.format_val = regmap_format_32_native;
847 map->format.parse_val = regmap_parse_32_native;
855 switch (val_endian) {
856 case REGMAP_ENDIAN_BIG:
857 map->format.format_val = regmap_format_64_be;
858 map->format.parse_val = regmap_parse_64_be;
859 map->format.parse_inplace = regmap_parse_64_be_inplace;
861 case REGMAP_ENDIAN_LITTLE:
862 map->format.format_val = regmap_format_64_le;
863 map->format.parse_val = regmap_parse_64_le;
864 map->format.parse_inplace = regmap_parse_64_le_inplace;
866 case REGMAP_ENDIAN_NATIVE:
867 map->format.format_val = regmap_format_64_native;
868 map->format.parse_val = regmap_parse_64_native;
877 if (map->format.format_write) {
878 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
879 (val_endian != REGMAP_ENDIAN_BIG))
881 map->use_single_write = true;
884 if (!map->format.format_write &&
885 !(map->format.format_reg && map->format.format_val))
888 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
889 if (map->work_buf == NULL) {
894 if (map->format.format_write) {
895 map->defer_caching = false;
896 map->reg_write = _regmap_bus_formatted_write;
897 } else if (map->format.format_val) {
898 map->defer_caching = true;
899 map->reg_write = _regmap_bus_raw_write;
902 skip_format_initialization:
904 map->range_tree = RB_ROOT;
905 for (i = 0; i < config->num_ranges; i++) {
906 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
907 struct regmap_range_node *new;
910 if (range_cfg->range_max < range_cfg->range_min) {
911 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
912 range_cfg->range_max, range_cfg->range_min);
916 if (range_cfg->range_max > map->max_register) {
917 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
918 range_cfg->range_max, map->max_register);
922 if (range_cfg->selector_reg > map->max_register) {
924 "Invalid range %d: selector out of map\n", i);
928 if (range_cfg->window_len == 0) {
929 dev_err(map->dev, "Invalid range %d: window_len 0\n",
934 /* Make sure, that this register range has no selector
935 or data window within its boundary */
936 for (j = 0; j < config->num_ranges; j++) {
937 unsigned sel_reg = config->ranges[j].selector_reg;
938 unsigned win_min = config->ranges[j].window_start;
939 unsigned win_max = win_min +
940 config->ranges[j].window_len - 1;
942 /* Allow data window inside its own virtual range */
946 if (range_cfg->range_min <= sel_reg &&
947 sel_reg <= range_cfg->range_max) {
949 "Range %d: selector for %d in window\n",
954 if (!(win_max < range_cfg->range_min ||
955 win_min > range_cfg->range_max)) {
957 "Range %d: window for %d in window\n",
963 new = kzalloc(sizeof(*new), GFP_KERNEL);
970 new->name = range_cfg->name;
971 new->range_min = range_cfg->range_min;
972 new->range_max = range_cfg->range_max;
973 new->selector_reg = range_cfg->selector_reg;
974 new->selector_mask = range_cfg->selector_mask;
975 new->selector_shift = range_cfg->selector_shift;
976 new->window_start = range_cfg->window_start;
977 new->window_len = range_cfg->window_len;
979 if (!_regmap_range_add(map, new)) {
980 dev_err(map->dev, "Failed to add range %d\n", i);
985 if (map->selector_work_buf == NULL) {
986 map->selector_work_buf =
987 kzalloc(map->format.buf_size, GFP_KERNEL);
988 if (map->selector_work_buf == NULL) {
995 ret = regcache_init(map, config);
1000 ret = regmap_attach_dev(dev, map, config);
1010 regmap_range_exit(map);
1011 kfree(map->work_buf);
1015 return ERR_PTR(ret);
1017 EXPORT_SYMBOL_GPL(__regmap_init);
1019 static void devm_regmap_release(struct device *dev, void *res)
1021 regmap_exit(*(struct regmap **)res);
1024 struct regmap *__devm_regmap_init(struct device *dev,
1025 const struct regmap_bus *bus,
1027 const struct regmap_config *config,
1028 struct lock_class_key *lock_key,
1029 const char *lock_name)
1031 struct regmap **ptr, *regmap;
1033 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1035 return ERR_PTR(-ENOMEM);
1037 regmap = __regmap_init(dev, bus, bus_context, config,
1038 lock_key, lock_name);
1039 if (!IS_ERR(regmap)) {
1041 devres_add(dev, ptr);
1048 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1050 static void regmap_field_init(struct regmap_field *rm_field,
1051 struct regmap *regmap, struct reg_field reg_field)
1053 rm_field->regmap = regmap;
1054 rm_field->reg = reg_field.reg;
1055 rm_field->shift = reg_field.lsb;
1056 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057 rm_field->id_size = reg_field.id_size;
1058 rm_field->id_offset = reg_field.id_offset;
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1073 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074 struct regmap *regmap, struct reg_field reg_field)
1076 struct regmap_field *rm_field = devm_kzalloc(dev,
1077 sizeof(*rm_field), GFP_KERNEL);
1079 return ERR_PTR(-ENOMEM);
1081 regmap_field_init(rm_field, regmap, reg_field);
1086 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1097 void devm_regmap_field_free(struct device *dev,
1098 struct regmap_field *field)
1100 devm_kfree(dev, field);
1102 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1115 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116 struct reg_field reg_field)
1118 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1121 return ERR_PTR(-ENOMEM);
1123 regmap_field_init(rm_field, regmap, reg_field);
1127 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1132 * @field: regmap field which should be freed.
1134 void regmap_field_free(struct regmap_field *field)
1138 EXPORT_SYMBOL_GPL(regmap_field_free);
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1143 * @map: Register map to operate on.
1144 * @config: New configuration. Only the cache data will be used.
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache. This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1154 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1157 regmap_debugfs_exit(map);
1159 map->max_register = config->max_register;
1160 map->writeable_reg = config->writeable_reg;
1161 map->readable_reg = config->readable_reg;
1162 map->volatile_reg = config->volatile_reg;
1163 map->precious_reg = config->precious_reg;
1164 map->cache_type = config->cache_type;
1166 regmap_debugfs_init(map, config->name);
1168 map->cache_bypass = false;
1169 map->cache_only = false;
1171 return regcache_init(map, config);
1173 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1176 * regmap_exit(): Free a previously allocated register map
1178 void regmap_exit(struct regmap *map)
1180 struct regmap_async *async;
1183 regmap_debugfs_exit(map);
1184 regmap_range_exit(map);
1185 if (map->bus && map->bus->free_context)
1186 map->bus->free_context(map->bus_context);
1187 kfree(map->work_buf);
1188 while (!list_empty(&map->async_free)) {
1189 async = list_first_entry_or_null(&map->async_free,
1190 struct regmap_async,
1192 list_del(&async->list);
1193 kfree(async->work_buf);
1198 EXPORT_SYMBOL_GPL(regmap_exit);
1200 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1202 struct regmap **r = res;
1208 /* If the user didn't specify a name match any */
1210 return (*r)->name == data;
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1221 * Returns the regmap for the device if one is present, or NULL. If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used. Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1227 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1229 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230 dev_get_regmap_match, (void *)name);
1236 EXPORT_SYMBOL_GPL(dev_get_regmap);
1239 * regmap_get_device(): Obtain the device from a regmap
1241 * @map: Register map to operate on.
1243 * Returns the underlying device that the regmap has been created for.
1245 struct device *regmap_get_device(struct regmap *map)
1249 EXPORT_SYMBOL_GPL(regmap_get_device);
1251 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252 struct regmap_range_node *range,
1253 unsigned int val_num)
1255 void *orig_work_buf;
1256 unsigned int win_offset;
1257 unsigned int win_page;
1261 win_offset = (*reg - range->range_min) % range->window_len;
1262 win_page = (*reg - range->range_min) / range->window_len;
1265 /* Bulk write shouldn't cross range boundary */
1266 if (*reg + val_num - 1 > range->range_max)
1269 /* ... or single page boundary */
1270 if (val_num > range->window_len - win_offset)
1274 /* It is possible to have selector register inside data window.
1275 In that case, selector register is located on every page and
1276 it needs no page switching, when accessed alone. */
1278 range->window_start + win_offset != range->selector_reg) {
1279 /* Use separate work_buf during page switching */
1280 orig_work_buf = map->work_buf;
1281 map->work_buf = map->selector_work_buf;
1283 ret = _regmap_update_bits(map, range->selector_reg,
1284 range->selector_mask,
1285 win_page << range->selector_shift,
1288 map->work_buf = orig_work_buf;
1294 *reg = range->window_start + win_offset;
1299 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300 const void *val, size_t val_len)
1302 struct regmap_range_node *range;
1303 unsigned long flags;
1304 u8 *u8 = map->work_buf;
1305 void *work_val = map->work_buf + map->format.reg_bytes +
1306 map->format.pad_bytes;
1308 int ret = -ENOTSUPP;
1314 /* Check for unwritable registers before we start */
1315 if (map->writeable_reg)
1316 for (i = 0; i < val_len / map->format.val_bytes; i++)
1317 if (!map->writeable_reg(map->dev,
1318 reg + regmap_get_offset(map, i)))
1321 if (!map->cache_bypass && map->format.parse_val) {
1323 int val_bytes = map->format.val_bytes;
1324 for (i = 0; i < val_len / val_bytes; i++) {
1325 ival = map->format.parse_val(val + (i * val_bytes));
1326 ret = regcache_write(map,
1327 reg + regmap_get_offset(map, i),
1331 "Error in caching of register: %x ret: %d\n",
1336 if (map->cache_only) {
1337 map->cache_dirty = true;
1342 range = _regmap_range_lookup(map, reg);
1344 int val_num = val_len / map->format.val_bytes;
1345 int win_offset = (reg - range->range_min) % range->window_len;
1346 int win_residue = range->window_len - win_offset;
1348 /* If the write goes beyond the end of the window split it */
1349 while (val_num > win_residue) {
1350 dev_dbg(map->dev, "Writing window %d/%zu\n",
1351 win_residue, val_len / map->format.val_bytes);
1352 ret = _regmap_raw_write(map, reg, val, win_residue *
1353 map->format.val_bytes);
1358 val_num -= win_residue;
1359 val += win_residue * map->format.val_bytes;
1360 val_len -= win_residue * map->format.val_bytes;
1362 win_offset = (reg - range->range_min) %
1364 win_residue = range->window_len - win_offset;
1367 ret = _regmap_select_page(map, ®, range, val_num);
1372 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1374 u8[0] |= map->write_flag_mask;
1377 * Essentially all I/O mechanisms will be faster with a single
1378 * buffer to write. Since register syncs often generate raw
1379 * writes of single registers optimise that case.
1381 if (val != work_val && val_len == map->format.val_bytes) {
1382 memcpy(work_val, val, map->format.val_bytes);
1386 if (map->async && map->bus->async_write) {
1387 struct regmap_async *async;
1389 trace_regmap_async_write_start(map, reg, val_len);
1391 spin_lock_irqsave(&map->async_lock, flags);
1392 async = list_first_entry_or_null(&map->async_free,
1393 struct regmap_async,
1396 list_del(&async->list);
1397 spin_unlock_irqrestore(&map->async_lock, flags);
1400 async = map->bus->async_alloc();
1404 async->work_buf = kzalloc(map->format.buf_size,
1405 GFP_KERNEL | GFP_DMA);
1406 if (!async->work_buf) {
1414 /* If the caller supplied the value we can use it safely. */
1415 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416 map->format.reg_bytes + map->format.val_bytes);
1418 spin_lock_irqsave(&map->async_lock, flags);
1419 list_add_tail(&async->list, &map->async_list);
1420 spin_unlock_irqrestore(&map->async_lock, flags);
1422 if (val != work_val)
1423 ret = map->bus->async_write(map->bus_context,
1425 map->format.reg_bytes +
1426 map->format.pad_bytes,
1427 val, val_len, async);
1429 ret = map->bus->async_write(map->bus_context,
1431 map->format.reg_bytes +
1432 map->format.pad_bytes +
1433 val_len, NULL, 0, async);
1436 dev_err(map->dev, "Failed to schedule write: %d\n",
1439 spin_lock_irqsave(&map->async_lock, flags);
1440 list_move(&async->list, &map->async_free);
1441 spin_unlock_irqrestore(&map->async_lock, flags);
1447 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1449 /* If we're doing a single register write we can probably just
1450 * send the work_buf directly, otherwise try to do a gather
1453 if (val == work_val)
1454 ret = map->bus->write(map->bus_context, map->work_buf,
1455 map->format.reg_bytes +
1456 map->format.pad_bytes +
1458 else if (map->bus->gather_write)
1459 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460 map->format.reg_bytes +
1461 map->format.pad_bytes,
1464 /* If that didn't work fall back on linearising by hand. */
1465 if (ret == -ENOTSUPP) {
1466 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467 buf = kzalloc(len, GFP_KERNEL);
1471 memcpy(buf, map->work_buf, map->format.reg_bytes);
1472 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1474 ret = map->bus->write(map->bus_context, buf, len);
1477 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1478 /* regcache_drop_region() takes lock that we already have,
1479 * thus call map->cache_ops->drop() directly
1481 if (map->cache_ops && map->cache_ops->drop)
1482 map->cache_ops->drop(map, reg, reg + 1);
1485 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1491 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1493 * @map: Map to check.
1495 bool regmap_can_raw_write(struct regmap *map)
1497 return map->bus && map->bus->write && map->format.format_val &&
1498 map->format.format_reg;
1500 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1503 * regmap_get_raw_read_max - Get the maximum size we can read
1505 * @map: Map to check.
1507 size_t regmap_get_raw_read_max(struct regmap *map)
1509 return map->max_raw_read;
1511 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1514 * regmap_get_raw_write_max - Get the maximum size we can read
1516 * @map: Map to check.
1518 size_t regmap_get_raw_write_max(struct regmap *map)
1520 return map->max_raw_write;
1522 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1524 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1528 struct regmap_range_node *range;
1529 struct regmap *map = context;
1531 WARN_ON(!map->bus || !map->format.format_write);
1533 range = _regmap_range_lookup(map, reg);
1535 ret = _regmap_select_page(map, ®, range, 1);
1540 map->format.format_write(map, reg, val);
1542 trace_regmap_hw_write_start(map, reg, 1);
1544 ret = map->bus->write(map->bus_context, map->work_buf,
1545 map->format.buf_size);
1547 trace_regmap_hw_write_done(map, reg, 1);
1552 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1555 struct regmap *map = context;
1557 return map->bus->reg_write(map->bus_context, reg, val);
1560 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1563 struct regmap *map = context;
1565 WARN_ON(!map->bus || !map->format.format_val);
1567 map->format.format_val(map->work_buf + map->format.reg_bytes
1568 + map->format.pad_bytes, val, 0);
1569 return _regmap_raw_write(map, reg,
1571 map->format.reg_bytes +
1572 map->format.pad_bytes,
1573 map->format.val_bytes);
1576 static inline void *_regmap_map_get_context(struct regmap *map)
1578 return (map->bus) ? map : map->bus_context;
1581 int _regmap_write(struct regmap *map, unsigned int reg,
1585 void *context = _regmap_map_get_context(map);
1587 if (!regmap_writeable(map, reg))
1590 if (!map->cache_bypass && !map->defer_caching) {
1591 ret = regcache_write(map, reg, val);
1594 if (map->cache_only) {
1595 map->cache_dirty = true;
1601 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1602 dev_info(map->dev, "%x <= %x\n", reg, val);
1605 trace_regmap_reg_write(map, reg, val);
1607 return map->reg_write(context, reg, val);
1611 * regmap_write(): Write a value to a single register
1613 * @map: Register map to write to
1614 * @reg: Register to write to
1615 * @val: Value to be written
1617 * A value of zero will be returned on success, a negative errno will
1618 * be returned in error cases.
1620 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1624 if (!IS_ALIGNED(reg, map->reg_stride))
1627 map->lock(map->lock_arg);
1629 ret = _regmap_write(map, reg, val);
1631 map->unlock(map->lock_arg);
1635 EXPORT_SYMBOL_GPL(regmap_write);
1638 * regmap_write_async(): Write a value to a single register asynchronously
1640 * @map: Register map to write to
1641 * @reg: Register to write to
1642 * @val: Value to be written
1644 * A value of zero will be returned on success, a negative errno will
1645 * be returned in error cases.
1647 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1651 if (!IS_ALIGNED(reg, map->reg_stride))
1654 map->lock(map->lock_arg);
1658 ret = _regmap_write(map, reg, val);
1662 map->unlock(map->lock_arg);
1666 EXPORT_SYMBOL_GPL(regmap_write_async);
1669 * regmap_raw_write(): Write raw values to one or more registers
1671 * @map: Register map to write to
1672 * @reg: Initial register to write to
1673 * @val: Block of data to be written, laid out for direct transmission to the
1675 * @val_len: Length of data pointed to by val.
1677 * This function is intended to be used for things like firmware
1678 * download where a large block of data needs to be transferred to the
1679 * device. No formatting will be done on the data provided.
1681 * A value of zero will be returned on success, a negative errno will
1682 * be returned in error cases.
1684 int regmap_raw_write(struct regmap *map, unsigned int reg,
1685 const void *val, size_t val_len)
1689 if (!regmap_can_raw_write(map))
1691 if (val_len % map->format.val_bytes)
1693 if (map->max_raw_write && map->max_raw_write > val_len)
1696 map->lock(map->lock_arg);
1698 ret = _regmap_raw_write(map, reg, val, val_len);
1700 map->unlock(map->lock_arg);
1704 EXPORT_SYMBOL_GPL(regmap_raw_write);
1707 * regmap_field_update_bits_base():
1708 * Perform a read/modify/write cycle on the register field
1709 * with change, async, force option
1711 * @field: Register field to write to
1712 * @mask: Bitmask to change
1713 * @val: Value to be written
1714 * @change: Boolean indicating if a write was done
1715 * @async: Boolean indicating asynchronously
1716 * @force: Boolean indicating use force update
1718 * A value of zero will be returned on success, a negative errno will
1719 * be returned in error cases.
1721 int regmap_field_update_bits_base(struct regmap_field *field,
1722 unsigned int mask, unsigned int val,
1723 bool *change, bool async, bool force)
1725 mask = (mask << field->shift) & field->mask;
1727 return regmap_update_bits_base(field->regmap, field->reg,
1728 mask, val << field->shift,
1729 change, async, force);
1731 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1734 * regmap_fields_update_bits_base():
1735 * Perform a read/modify/write cycle on the register field
1736 * with change, async, force option
1738 * @field: Register field to write to
1740 * @mask: Bitmask to change
1741 * @val: Value to be written
1742 * @change: Boolean indicating if a write was done
1743 * @async: Boolean indicating asynchronously
1744 * @force: Boolean indicating use force update
1746 * A value of zero will be returned on success, a negative errno will
1747 * be returned in error cases.
1749 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1750 unsigned int mask, unsigned int val,
1751 bool *change, bool async, bool force)
1753 if (id >= field->id_size)
1756 mask = (mask << field->shift) & field->mask;
1758 return regmap_update_bits_base(field->regmap,
1759 field->reg + (field->id_offset * id),
1760 mask, val << field->shift,
1761 change, async, force);
1763 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1766 * regmap_bulk_write(): Write multiple registers to the device
1768 * @map: Register map to write to
1769 * @reg: First register to be write from
1770 * @val: Block of data to be written, in native register size for device
1771 * @val_count: Number of registers to write
1773 * This function is intended to be used for writing a large block of
1774 * data to the device either in single transfer or multiple transfer.
1776 * A value of zero will be returned on success, a negative errno will
1777 * be returned in error cases.
1779 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1783 size_t val_bytes = map->format.val_bytes;
1784 size_t total_size = val_bytes * val_count;
1786 if (!IS_ALIGNED(reg, map->reg_stride))
1790 * Some devices don't support bulk write, for
1791 * them we have a series of single write operations in the first two if
1794 * The first if block is used for memory mapped io. It does not allow
1795 * val_bytes of 3 for example.
1796 * The second one is for busses that do not provide raw I/O.
1797 * The third one is used for busses which do not have these limitations
1798 * and can write arbitrary value lengths.
1801 map->lock(map->lock_arg);
1802 for (i = 0; i < val_count; i++) {
1805 switch (val_bytes) {
1807 ival = *(u8 *)(val + (i * val_bytes));
1810 ival = *(u16 *)(val + (i * val_bytes));
1813 ival = *(u32 *)(val + (i * val_bytes));
1817 ival = *(u64 *)(val + (i * val_bytes));
1825 ret = _regmap_write(map,
1826 reg + regmap_get_offset(map, i),
1832 map->unlock(map->lock_arg);
1833 } else if (map->bus && !map->format.parse_inplace) {
1835 const u16 *u16 = val;
1836 const u32 *u32 = val;
1839 for (i = 0; i < val_count; i++) {
1840 switch (map->format.val_bytes) {
1854 ret = regmap_write(map, reg + (i * map->reg_stride),
1859 } else if (map->use_single_write ||
1860 (map->max_raw_write && map->max_raw_write < total_size)) {
1861 int chunk_stride = map->reg_stride;
1862 size_t chunk_size = val_bytes;
1863 size_t chunk_count = val_count;
1865 if (!map->use_single_write) {
1866 chunk_size = map->max_raw_write;
1867 if (chunk_size % val_bytes)
1868 chunk_size -= chunk_size % val_bytes;
1869 chunk_count = total_size / chunk_size;
1870 chunk_stride *= chunk_size / val_bytes;
1873 map->lock(map->lock_arg);
1874 /* Write as many bytes as possible with chunk_size */
1875 for (i = 0; i < chunk_count; i++) {
1876 ret = _regmap_raw_write(map,
1877 reg + (i * chunk_stride),
1878 val + (i * chunk_size),
1884 /* Write remaining bytes */
1885 if (!ret && chunk_size * i < total_size) {
1886 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1887 val + (i * chunk_size),
1888 total_size - i * chunk_size);
1890 map->unlock(map->lock_arg);
1897 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1899 dev_err(map->dev, "Error in memory allocation\n");
1902 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1903 map->format.parse_inplace(wval + i);
1905 map->lock(map->lock_arg);
1906 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1907 map->unlock(map->lock_arg);
1913 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1916 * _regmap_raw_multi_reg_write()
1918 * the (register,newvalue) pairs in regs have not been formatted, but
1919 * they are all in the same page and have been changed to being page
1920 * relative. The page register has been written if that was necessary.
1922 static int _regmap_raw_multi_reg_write(struct regmap *map,
1923 const struct reg_sequence *regs,
1930 size_t val_bytes = map->format.val_bytes;
1931 size_t reg_bytes = map->format.reg_bytes;
1932 size_t pad_bytes = map->format.pad_bytes;
1933 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1934 size_t len = pair_size * num_regs;
1939 buf = kzalloc(len, GFP_KERNEL);
1943 /* We have to linearise by hand. */
1947 for (i = 0; i < num_regs; i++) {
1948 unsigned int reg = regs[i].reg;
1949 unsigned int val = regs[i].def;
1950 trace_regmap_hw_write_start(map, reg, 1);
1951 map->format.format_reg(u8, reg, map->reg_shift);
1952 u8 += reg_bytes + pad_bytes;
1953 map->format.format_val(u8, val, 0);
1957 *u8 |= map->write_flag_mask;
1959 ret = map->bus->write(map->bus_context, buf, len);
1963 for (i = 0; i < num_regs; i++) {
1964 int reg = regs[i].reg;
1965 trace_regmap_hw_write_done(map, reg, 1);
1970 static unsigned int _regmap_register_page(struct regmap *map,
1972 struct regmap_range_node *range)
1974 unsigned int win_page = (reg - range->range_min) / range->window_len;
1979 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1980 struct reg_sequence *regs,
1985 struct reg_sequence *base;
1986 unsigned int this_page = 0;
1987 unsigned int page_change = 0;
1989 * the set of registers are not neccessarily in order, but
1990 * since the order of write must be preserved this algorithm
1991 * chops the set each time the page changes. This also applies
1992 * if there is a delay required at any point in the sequence.
1995 for (i = 0, n = 0; i < num_regs; i++, n++) {
1996 unsigned int reg = regs[i].reg;
1997 struct regmap_range_node *range;
1999 range = _regmap_range_lookup(map, reg);
2001 unsigned int win_page = _regmap_register_page(map, reg,
2005 this_page = win_page;
2006 if (win_page != this_page) {
2007 this_page = win_page;
2012 /* If we have both a page change and a delay make sure to
2013 * write the regs and apply the delay before we change the
2017 if (page_change || regs[i].delay_us) {
2019 /* For situations where the first write requires
2020 * a delay we need to make sure we don't call
2021 * raw_multi_reg_write with n=0
2022 * This can't occur with page breaks as we
2023 * never write on the first iteration
2025 if (regs[i].delay_us && i == 0)
2028 ret = _regmap_raw_multi_reg_write(map, base, n);
2032 if (regs[i].delay_us)
2033 udelay(regs[i].delay_us);
2039 ret = _regmap_select_page(map,
2052 return _regmap_raw_multi_reg_write(map, base, n);
2056 static int _regmap_multi_reg_write(struct regmap *map,
2057 const struct reg_sequence *regs,
2063 if (!map->can_multi_write) {
2064 for (i = 0; i < num_regs; i++) {
2065 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2069 if (regs[i].delay_us)
2070 udelay(regs[i].delay_us);
2075 if (!map->format.parse_inplace)
2078 if (map->writeable_reg)
2079 for (i = 0; i < num_regs; i++) {
2080 int reg = regs[i].reg;
2081 if (!map->writeable_reg(map->dev, reg))
2083 if (!IS_ALIGNED(reg, map->reg_stride))
2087 if (!map->cache_bypass) {
2088 for (i = 0; i < num_regs; i++) {
2089 unsigned int val = regs[i].def;
2090 unsigned int reg = regs[i].reg;
2091 ret = regcache_write(map, reg, val);
2094 "Error in caching of register: %x ret: %d\n",
2099 if (map->cache_only) {
2100 map->cache_dirty = true;
2107 for (i = 0; i < num_regs; i++) {
2108 unsigned int reg = regs[i].reg;
2109 struct regmap_range_node *range;
2111 /* Coalesce all the writes between a page break or a delay
2114 range = _regmap_range_lookup(map, reg);
2115 if (range || regs[i].delay_us) {
2116 size_t len = sizeof(struct reg_sequence)*num_regs;
2117 struct reg_sequence *base = kmemdup(regs, len,
2121 ret = _regmap_range_multi_paged_reg_write(map, base,
2128 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2132 * regmap_multi_reg_write(): Write multiple registers to the device
2134 * where the set of register,value pairs are supplied in any order,
2135 * possibly not all in a single range.
2137 * @map: Register map to write to
2138 * @regs: Array of structures containing register,value to be written
2139 * @num_regs: Number of registers to write
2141 * The 'normal' block write mode will send ultimately send data on the
2142 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2143 * addressed. However, this alternative block multi write mode will send
2144 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2145 * must of course support the mode.
2147 * A value of zero will be returned on success, a negative errno will be
2148 * returned in error cases.
2150 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2155 map->lock(map->lock_arg);
2157 ret = _regmap_multi_reg_write(map, regs, num_regs);
2159 map->unlock(map->lock_arg);
2163 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2166 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2167 * device but not the cache
2169 * where the set of register are supplied in any order
2171 * @map: Register map to write to
2172 * @regs: Array of structures containing register,value to be written
2173 * @num_regs: Number of registers to write
2175 * This function is intended to be used for writing a large block of data
2176 * atomically to the device in single transfer for those I2C client devices
2177 * that implement this alternative block write mode.
2179 * A value of zero will be returned on success, a negative errno will
2180 * be returned in error cases.
2182 int regmap_multi_reg_write_bypassed(struct regmap *map,
2183 const struct reg_sequence *regs,
2189 map->lock(map->lock_arg);
2191 bypass = map->cache_bypass;
2192 map->cache_bypass = true;
2194 ret = _regmap_multi_reg_write(map, regs, num_regs);
2196 map->cache_bypass = bypass;
2198 map->unlock(map->lock_arg);
2202 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2205 * regmap_raw_write_async(): Write raw values to one or more registers
2208 * @map: Register map to write to
2209 * @reg: Initial register to write to
2210 * @val: Block of data to be written, laid out for direct transmission to the
2211 * device. Must be valid until regmap_async_complete() is called.
2212 * @val_len: Length of data pointed to by val.
2214 * This function is intended to be used for things like firmware
2215 * download where a large block of data needs to be transferred to the
2216 * device. No formatting will be done on the data provided.
2218 * If supported by the underlying bus the write will be scheduled
2219 * asynchronously, helping maximise I/O speed on higher speed buses
2220 * like SPI. regmap_async_complete() can be called to ensure that all
2221 * asynchrnous writes have been completed.
2223 * A value of zero will be returned on success, a negative errno will
2224 * be returned in error cases.
2226 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2227 const void *val, size_t val_len)
2231 if (val_len % map->format.val_bytes)
2233 if (!IS_ALIGNED(reg, map->reg_stride))
2236 map->lock(map->lock_arg);
2240 ret = _regmap_raw_write(map, reg, val, val_len);
2244 map->unlock(map->lock_arg);
2248 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2250 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2251 unsigned int val_len)
2253 struct regmap_range_node *range;
2254 u8 *u8 = map->work_buf;
2259 if (!map->bus || !map->bus->read)
2262 range = _regmap_range_lookup(map, reg);
2264 ret = _regmap_select_page(map, ®, range,
2265 val_len / map->format.val_bytes);
2270 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2273 * Some buses or devices flag reads by setting the high bits in the
2274 * register address; since it's always the high bits for all
2275 * current formats we can do this here rather than in
2276 * formatting. This may break if we get interesting formats.
2278 u8[0] |= map->read_flag_mask;
2280 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2282 ret = map->bus->read(map->bus_context, map->work_buf,
2283 map->format.reg_bytes + map->format.pad_bytes,
2286 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2291 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2294 struct regmap *map = context;
2296 return map->bus->reg_read(map->bus_context, reg, val);
2299 static int _regmap_bus_read(void *context, unsigned int reg,
2303 struct regmap *map = context;
2305 if (!map->format.parse_val)
2308 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2310 *val = map->format.parse_val(map->work_buf);
2315 static int _regmap_read(struct regmap *map, unsigned int reg,
2319 void *context = _regmap_map_get_context(map);
2321 if (!map->cache_bypass) {
2322 ret = regcache_read(map, reg, val);
2327 if (map->cache_only)
2330 if (!regmap_readable(map, reg))
2333 ret = map->reg_read(context, reg, val);
2336 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2337 dev_info(map->dev, "%x => %x\n", reg, *val);
2340 trace_regmap_reg_read(map, reg, *val);
2342 if (!map->cache_bypass)
2343 regcache_write(map, reg, *val);
2350 * regmap_read(): Read a value from a single register
2352 * @map: Register map to read from
2353 * @reg: Register to be read from
2354 * @val: Pointer to store read value
2356 * A value of zero will be returned on success, a negative errno will
2357 * be returned in error cases.
2359 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2363 if (!IS_ALIGNED(reg, map->reg_stride))
2366 map->lock(map->lock_arg);
2368 ret = _regmap_read(map, reg, val);
2370 map->unlock(map->lock_arg);
2374 EXPORT_SYMBOL_GPL(regmap_read);
2377 * regmap_raw_read(): Read raw data from the device
2379 * @map: Register map to read from
2380 * @reg: First register to be read from
2381 * @val: Pointer to store read value
2382 * @val_len: Size of data to read
2384 * A value of zero will be returned on success, a negative errno will
2385 * be returned in error cases.
2387 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2390 size_t val_bytes = map->format.val_bytes;
2391 size_t val_count = val_len / val_bytes;
2397 if (val_len % map->format.val_bytes)
2399 if (!IS_ALIGNED(reg, map->reg_stride))
2404 map->lock(map->lock_arg);
2406 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2407 map->cache_type == REGCACHE_NONE) {
2408 if (!map->bus->read) {
2412 if (map->max_raw_read && map->max_raw_read < val_len) {
2417 /* Physical block read if there's no cache involved */
2418 ret = _regmap_raw_read(map, reg, val, val_len);
2421 /* Otherwise go word by word for the cache; should be low
2422 * cost as we expect to hit the cache.
2424 for (i = 0; i < val_count; i++) {
2425 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2430 map->format.format_val(val + (i * val_bytes), v, 0);
2435 map->unlock(map->lock_arg);
2439 EXPORT_SYMBOL_GPL(regmap_raw_read);
2442 * regmap_field_read(): Read a value to a single register field
2444 * @field: Register field to read from
2445 * @val: Pointer to store read value
2447 * A value of zero will be returned on success, a negative errno will
2448 * be returned in error cases.
2450 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2453 unsigned int reg_val;
2454 ret = regmap_read(field->regmap, field->reg, ®_val);
2458 reg_val &= field->mask;
2459 reg_val >>= field->shift;
2464 EXPORT_SYMBOL_GPL(regmap_field_read);
2467 * regmap_fields_read(): Read a value to a single register field with port ID
2469 * @field: Register field to read from
2471 * @val: Pointer to store read value
2473 * A value of zero will be returned on success, a negative errno will
2474 * be returned in error cases.
2476 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2480 unsigned int reg_val;
2482 if (id >= field->id_size)
2485 ret = regmap_read(field->regmap,
2486 field->reg + (field->id_offset * id),
2491 reg_val &= field->mask;
2492 reg_val >>= field->shift;
2497 EXPORT_SYMBOL_GPL(regmap_fields_read);
2500 * regmap_bulk_read(): Read multiple registers from the device
2502 * @map: Register map to read from
2503 * @reg: First register to be read from
2504 * @val: Pointer to store read value, in native register size for device
2505 * @val_count: Number of registers to read
2507 * A value of zero will be returned on success, a negative errno will
2508 * be returned in error cases.
2510 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2514 size_t val_bytes = map->format.val_bytes;
2515 bool vol = regmap_volatile_range(map, reg, val_count);
2517 if (!IS_ALIGNED(reg, map->reg_stride))
2520 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2522 * Some devices does not support bulk read, for
2523 * them we have a series of single read operations.
2525 size_t total_size = val_bytes * val_count;
2527 if (!map->use_single_read &&
2528 (!map->max_raw_read || map->max_raw_read > total_size)) {
2529 ret = regmap_raw_read(map, reg, val,
2530 val_bytes * val_count);
2535 * Some devices do not support bulk read or do not
2536 * support large bulk reads, for them we have a series
2537 * of read operations.
2539 int chunk_stride = map->reg_stride;
2540 size_t chunk_size = val_bytes;
2541 size_t chunk_count = val_count;
2543 if (!map->use_single_read) {
2544 chunk_size = map->max_raw_read;
2545 if (chunk_size % val_bytes)
2546 chunk_size -= chunk_size % val_bytes;
2547 chunk_count = total_size / chunk_size;
2548 chunk_stride *= chunk_size / val_bytes;
2551 /* Read bytes that fit into a multiple of chunk_size */
2552 for (i = 0; i < chunk_count; i++) {
2553 ret = regmap_raw_read(map,
2554 reg + (i * chunk_stride),
2555 val + (i * chunk_size),
2561 /* Read remaining bytes */
2562 if (chunk_size * i < total_size) {
2563 ret = regmap_raw_read(map,
2564 reg + (i * chunk_stride),
2565 val + (i * chunk_size),
2566 total_size - i * chunk_size);
2572 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2573 map->format.parse_inplace(val + i);
2575 for (i = 0; i < val_count; i++) {
2577 ret = regmap_read(map, reg + regmap_get_offset(map, i),
2582 if (map->format.format_val) {
2583 map->format.format_val(val + (i * val_bytes), ival, 0);
2585 /* Devices providing read and write
2586 * operations can use the bulk I/O
2587 * functions if they define a val_bytes,
2588 * we assume that the values are native
2598 switch (map->format.val_bytes) {
2622 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2624 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2625 unsigned int mask, unsigned int val,
2626 bool *change, bool force_write)
2629 unsigned int tmp, orig;
2634 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2635 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2636 if (ret == 0 && change)
2639 ret = _regmap_read(map, reg, &orig);
2646 if (force_write || (tmp != orig)) {
2647 ret = _regmap_write(map, reg, tmp);
2648 if (ret == 0 && change)
2657 * regmap_update_bits_base:
2658 * Perform a read/modify/write cycle on the
2659 * register map with change, async, force option
2661 * @map: Register map to update
2662 * @reg: Register to update
2663 * @mask: Bitmask to change
2664 * @val: New value for bitmask
2665 * @change: Boolean indicating if a write was done
2666 * @async: Boolean indicating asynchronously
2667 * @force: Boolean indicating use force update
2669 * if async was true,
2670 * With most buses the read must be done synchronously so this is most
2671 * useful for devices with a cache which do not need to interact with
2672 * the hardware to determine the current register value.
2674 * Returns zero for success, a negative number on error.
2676 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2677 unsigned int mask, unsigned int val,
2678 bool *change, bool async, bool force)
2682 map->lock(map->lock_arg);
2686 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2690 map->unlock(map->lock_arg);
2694 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2696 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2698 struct regmap *map = async->map;
2701 trace_regmap_async_io_complete(map);
2703 spin_lock(&map->async_lock);
2704 list_move(&async->list, &map->async_free);
2705 wake = list_empty(&map->async_list);
2708 map->async_ret = ret;
2710 spin_unlock(&map->async_lock);
2713 wake_up(&map->async_waitq);
2715 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2717 static int regmap_async_is_done(struct regmap *map)
2719 unsigned long flags;
2722 spin_lock_irqsave(&map->async_lock, flags);
2723 ret = list_empty(&map->async_list);
2724 spin_unlock_irqrestore(&map->async_lock, flags);
2730 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2732 * @map: Map to operate on.
2734 * Blocks until any pending asynchronous I/O has completed. Returns
2735 * an error code for any failed I/O operations.
2737 int regmap_async_complete(struct regmap *map)
2739 unsigned long flags;
2742 /* Nothing to do with no async support */
2743 if (!map->bus || !map->bus->async_write)
2746 trace_regmap_async_complete_start(map);
2748 wait_event(map->async_waitq, regmap_async_is_done(map));
2750 spin_lock_irqsave(&map->async_lock, flags);
2751 ret = map->async_ret;
2753 spin_unlock_irqrestore(&map->async_lock, flags);
2755 trace_regmap_async_complete_done(map);
2759 EXPORT_SYMBOL_GPL(regmap_async_complete);
2762 * regmap_register_patch: Register and apply register updates to be applied
2763 * on device initialistion
2765 * @map: Register map to apply updates to.
2766 * @regs: Values to update.
2767 * @num_regs: Number of entries in regs.
2769 * Register a set of register updates to be applied to the device
2770 * whenever the device registers are synchronised with the cache and
2771 * apply them immediately. Typically this is used to apply
2772 * corrections to be applied to the device defaults on startup, such
2773 * as the updates some vendors provide to undocumented registers.
2775 * The caller must ensure that this function cannot be called
2776 * concurrently with either itself or regcache_sync().
2778 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2781 struct reg_sequence *p;
2785 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2789 p = krealloc(map->patch,
2790 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2793 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2795 map->patch_regs += num_regs;
2800 map->lock(map->lock_arg);
2802 bypass = map->cache_bypass;
2804 map->cache_bypass = true;
2807 ret = _regmap_multi_reg_write(map, regs, num_regs);
2810 map->cache_bypass = bypass;
2812 map->unlock(map->lock_arg);
2814 regmap_async_complete(map);
2818 EXPORT_SYMBOL_GPL(regmap_register_patch);
2821 * regmap_get_val_bytes(): Report the size of a register value
2823 * Report the size of a register value, mainly intended to for use by
2824 * generic infrastructure built on top of regmap.
2826 int regmap_get_val_bytes(struct regmap *map)
2828 if (map->format.format_write)
2831 return map->format.val_bytes;
2833 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2836 * regmap_get_max_register(): Report the max register value
2838 * Report the max register value, mainly intended to for use by
2839 * generic infrastructure built on top of regmap.
2841 int regmap_get_max_register(struct regmap *map)
2843 return map->max_register ? map->max_register : -EINVAL;
2845 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2848 * regmap_get_reg_stride(): Report the register address stride
2850 * Report the register address stride, mainly intended to for use by
2851 * generic infrastructure built on top of regmap.
2853 int regmap_get_reg_stride(struct regmap *map)
2855 return map->reg_stride;
2857 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2859 int regmap_parse_val(struct regmap *map, const void *buf,
2862 if (!map->format.parse_val)
2865 *val = map->format.parse_val(buf);
2869 EXPORT_SYMBOL_GPL(regmap_parse_val);
2871 static int __init regmap_initcall(void)
2873 regmap_debugfs_initcall();
2877 postcore_initcall(regmap_initcall);