Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / drivers / base / regmap / regmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38         return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46                                unsigned int mask, unsigned int val,
47                                bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50                                 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52                             unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54                                        unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56                                  unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58                                  unsigned int val);
59
60 bool regmap_reg_in_ranges(unsigned int reg,
61                           const struct regmap_range *ranges,
62                           unsigned int nranges)
63 {
64         const struct regmap_range *r;
65         int i;
66
67         for (i = 0, r = ranges; i < nranges; i++, r++)
68                 if (regmap_reg_in_range(reg, r))
69                         return true;
70         return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75                               const struct regmap_access_table *table)
76 {
77         /* Check "no ranges" first */
78         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79                 return false;
80
81         /* In case zero "yes ranges" are supplied, any reg is OK */
82         if (!table->n_yes_ranges)
83                 return true;
84
85         return regmap_reg_in_ranges(reg, table->yes_ranges,
86                                     table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92         if (map->max_register && reg > map->max_register)
93                 return false;
94
95         if (map->writeable_reg)
96                 return map->writeable_reg(map->dev, reg);
97
98         if (map->wr_table)
99                 return regmap_check_range_table(map, reg, map->wr_table);
100
101         return true;
102 }
103
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106         int ret;
107         unsigned int val;
108
109         if (map->cache_type == REGCACHE_NONE)
110                 return false;
111
112         if (!map->cache_ops)
113                 return false;
114
115         if (map->max_register && reg > map->max_register)
116                 return false;
117
118         map->lock(map->lock_arg);
119         ret = regcache_read(map, reg, &val);
120         map->unlock(map->lock_arg);
121         if (ret)
122                 return false;
123
124         return true;
125 }
126
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129         if (!map->reg_read)
130                 return false;
131
132         if (map->max_register && reg > map->max_register)
133                 return false;
134
135         if (map->format.format_write)
136                 return false;
137
138         if (map->readable_reg)
139                 return map->readable_reg(map->dev, reg);
140
141         if (map->rd_table)
142                 return regmap_check_range_table(map, reg, map->rd_table);
143
144         return true;
145 }
146
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149         if (!map->format.format_write && !regmap_readable(map, reg))
150                 return false;
151
152         if (map->volatile_reg)
153                 return map->volatile_reg(map->dev, reg);
154
155         if (map->volatile_table)
156                 return regmap_check_range_table(map, reg, map->volatile_table);
157
158         if (map->cache_ops)
159                 return false;
160         else
161                 return true;
162 }
163
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166         if (!regmap_readable(map, reg))
167                 return false;
168
169         if (map->precious_reg)
170                 return map->precious_reg(map->dev, reg);
171
172         if (map->precious_table)
173                 return regmap_check_range_table(map, reg, map->precious_table);
174
175         return false;
176 }
177
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180         if (map->writeable_noinc_reg)
181                 return map->writeable_noinc_reg(map->dev, reg);
182
183         if (map->wr_noinc_table)
184                 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186         return true;
187 }
188
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191         if (map->readable_noinc_reg)
192                 return map->readable_noinc_reg(map->dev, reg);
193
194         if (map->rd_noinc_table)
195                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197         return true;
198 }
199
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201         size_t num)
202 {
203         unsigned int i;
204
205         for (i = 0; i < num; i++)
206                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207                         return false;
208
209         return true;
210 }
211
212 static void regmap_format_12_20_write(struct regmap *map,
213                                      unsigned int reg, unsigned int val)
214 {
215         u8 *out = map->work_buf;
216
217         out[0] = reg >> 4;
218         out[1] = (reg << 4) | (val >> 16);
219         out[2] = val >> 8;
220         out[3] = val;
221 }
222
223
224 static void regmap_format_2_6_write(struct regmap *map,
225                                      unsigned int reg, unsigned int val)
226 {
227         u8 *out = map->work_buf;
228
229         *out = (reg << 6) | val;
230 }
231
232 static void regmap_format_4_12_write(struct regmap *map,
233                                      unsigned int reg, unsigned int val)
234 {
235         __be16 *out = map->work_buf;
236         *out = cpu_to_be16((reg << 12) | val);
237 }
238
239 static void regmap_format_7_9_write(struct regmap *map,
240                                     unsigned int reg, unsigned int val)
241 {
242         __be16 *out = map->work_buf;
243         *out = cpu_to_be16((reg << 9) | val);
244 }
245
246 static void regmap_format_7_17_write(struct regmap *map,
247                                     unsigned int reg, unsigned int val)
248 {
249         u8 *out = map->work_buf;
250
251         out[2] = val;
252         out[1] = val >> 8;
253         out[0] = (val >> 16) | (reg << 1);
254 }
255
256 static void regmap_format_10_14_write(struct regmap *map,
257                                     unsigned int reg, unsigned int val)
258 {
259         u8 *out = map->work_buf;
260
261         out[2] = val;
262         out[1] = (val >> 8) | (reg << 6);
263         out[0] = reg >> 2;
264 }
265
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268         u8 *b = buf;
269
270         b[0] = val << shift;
271 }
272
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275         put_unaligned_be16(val << shift, buf);
276 }
277
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280         put_unaligned_le16(val << shift, buf);
281 }
282
283 static void regmap_format_16_native(void *buf, unsigned int val,
284                                     unsigned int shift)
285 {
286         u16 v = val << shift;
287
288         memcpy(buf, &v, sizeof(v));
289 }
290
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293         put_unaligned_be24(val << shift, buf);
294 }
295
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298         put_unaligned_be32(val << shift, buf);
299 }
300
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303         put_unaligned_le32(val << shift, buf);
304 }
305
306 static void regmap_format_32_native(void *buf, unsigned int val,
307                                     unsigned int shift)
308 {
309         u32 v = val << shift;
310
311         memcpy(buf, &v, sizeof(v));
312 }
313
314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317
318 static unsigned int regmap_parse_8(const void *buf)
319 {
320         const u8 *b = buf;
321
322         return b[0];
323 }
324
325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327         return get_unaligned_be16(buf);
328 }
329
330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332         return get_unaligned_le16(buf);
333 }
334
335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337         u16 v = get_unaligned_be16(buf);
338
339         memcpy(buf, &v, sizeof(v));
340 }
341
342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344         u16 v = get_unaligned_le16(buf);
345
346         memcpy(buf, &v, sizeof(v));
347 }
348
349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351         u16 v;
352
353         memcpy(&v, buf, sizeof(v));
354         return v;
355 }
356
357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359         return get_unaligned_be24(buf);
360 }
361
362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364         return get_unaligned_be32(buf);
365 }
366
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369         return get_unaligned_le32(buf);
370 }
371
372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374         u32 v = get_unaligned_be32(buf);
375
376         memcpy(buf, &v, sizeof(v));
377 }
378
379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381         u32 v = get_unaligned_le32(buf);
382
383         memcpy(buf, &v, sizeof(v));
384 }
385
386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388         u32 v;
389
390         memcpy(&v, buf, sizeof(v));
391         return v;
392 }
393
394 static void regmap_lock_hwlock(void *__map)
395 {
396         struct regmap *map = __map;
397
398         hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400
401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403         struct regmap *map = __map;
404
405         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407
408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410         struct regmap *map = __map;
411
412         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413                                     &map->spinlock_flags);
414 }
415
416 static void regmap_unlock_hwlock(void *__map)
417 {
418         struct regmap *map = __map;
419
420         hwspin_unlock(map->hwlock);
421 }
422
423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425         struct regmap *map = __map;
426
427         hwspin_unlock_irq(map->hwlock);
428 }
429
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432         struct regmap *map = __map;
433
434         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436
437 static void regmap_lock_unlock_none(void *__map)
438 {
439
440 }
441
442 static void regmap_lock_mutex(void *__map)
443 {
444         struct regmap *map = __map;
445         mutex_lock(&map->mutex);
446 }
447
448 static void regmap_unlock_mutex(void *__map)
449 {
450         struct regmap *map = __map;
451         mutex_unlock(&map->mutex);
452 }
453
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457         struct regmap *map = __map;
458         unsigned long flags;
459
460         spin_lock_irqsave(&map->spinlock, flags);
461         map->spinlock_flags = flags;
462 }
463
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467         struct regmap *map = __map;
468         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474         struct regmap *map = __map;
475         unsigned long flags;
476
477         raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478         map->raw_spinlock_flags = flags;
479 }
480
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484         struct regmap *map = __map;
485         raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487
488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490         /*
491          * We don't actually have anything to do here; the goal here
492          * is not to manage the regmap but to provide a simple way to
493          * get the regmap back given a struct device.
494          */
495 }
496
497 static bool _regmap_range_add(struct regmap *map,
498                               struct regmap_range_node *data)
499 {
500         struct rb_root *root = &map->range_tree;
501         struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503         while (*new) {
504                 struct regmap_range_node *this =
505                         rb_entry(*new, struct regmap_range_node, node);
506
507                 parent = *new;
508                 if (data->range_max < this->range_min)
509                         new = &((*new)->rb_left);
510                 else if (data->range_min > this->range_max)
511                         new = &((*new)->rb_right);
512                 else
513                         return false;
514         }
515
516         rb_link_node(&data->node, parent, new);
517         rb_insert_color(&data->node, root);
518
519         return true;
520 }
521
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523                                                       unsigned int reg)
524 {
525         struct rb_node *node = map->range_tree.rb_node;
526
527         while (node) {
528                 struct regmap_range_node *this =
529                         rb_entry(node, struct regmap_range_node, node);
530
531                 if (reg < this->range_min)
532                         node = node->rb_left;
533                 else if (reg > this->range_max)
534                         node = node->rb_right;
535                 else
536                         return this;
537         }
538
539         return NULL;
540 }
541
542 static void regmap_range_exit(struct regmap *map)
543 {
544         struct rb_node *next;
545         struct regmap_range_node *range_node;
546
547         next = rb_first(&map->range_tree);
548         while (next) {
549                 range_node = rb_entry(next, struct regmap_range_node, node);
550                 next = rb_next(&range_node->node);
551                 rb_erase(&range_node->node, &map->range_tree);
552                 kfree(range_node);
553         }
554
555         kfree(map->selector_work_buf);
556 }
557
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560         if (config->name) {
561                 const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563                 if (!name)
564                         return -ENOMEM;
565
566                 kfree_const(map->name);
567                 map->name = name;
568         }
569
570         return 0;
571 }
572
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574                       const struct regmap_config *config)
575 {
576         struct regmap **m;
577         int ret;
578
579         map->dev = dev;
580
581         ret = regmap_set_name(map, config);
582         if (ret)
583                 return ret;
584
585         regmap_debugfs_exit(map);
586         regmap_debugfs_init(map);
587
588         /* Add a devres resource for dev_get_regmap() */
589         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590         if (!m) {
591                 regmap_debugfs_exit(map);
592                 return -ENOMEM;
593         }
594         *m = map;
595         devres_add(dev, m);
596
597         return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602                                         const struct regmap_config *config)
603 {
604         enum regmap_endian endian;
605
606         /* Retrieve the endianness specification from the regmap config */
607         endian = config->reg_format_endian;
608
609         /* If the regmap config specified a non-default value, use that */
610         if (endian != REGMAP_ENDIAN_DEFAULT)
611                 return endian;
612
613         /* Retrieve the endianness specification from the bus config */
614         if (bus && bus->reg_format_endian_default)
615                 endian = bus->reg_format_endian_default;
616
617         /* If the bus specified a non-default value, use that */
618         if (endian != REGMAP_ENDIAN_DEFAULT)
619                 return endian;
620
621         /* Use this if no other value was found */
622         return REGMAP_ENDIAN_BIG;
623 }
624
625 enum regmap_endian regmap_get_val_endian(struct device *dev,
626                                          const struct regmap_bus *bus,
627                                          const struct regmap_config *config)
628 {
629         struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630         enum regmap_endian endian;
631
632         /* Retrieve the endianness specification from the regmap config */
633         endian = config->val_format_endian;
634
635         /* If the regmap config specified a non-default value, use that */
636         if (endian != REGMAP_ENDIAN_DEFAULT)
637                 return endian;
638
639         /* If the firmware node exist try to get endianness from it */
640         if (fwnode_property_read_bool(fwnode, "big-endian"))
641                 endian = REGMAP_ENDIAN_BIG;
642         else if (fwnode_property_read_bool(fwnode, "little-endian"))
643                 endian = REGMAP_ENDIAN_LITTLE;
644         else if (fwnode_property_read_bool(fwnode, "native-endian"))
645                 endian = REGMAP_ENDIAN_NATIVE;
646
647         /* If the endianness was specified in fwnode, use that */
648         if (endian != REGMAP_ENDIAN_DEFAULT)
649                 return endian;
650
651         /* Retrieve the endianness specification from the bus config */
652         if (bus && bus->val_format_endian_default)
653                 endian = bus->val_format_endian_default;
654
655         /* If the bus specified a non-default value, use that */
656         if (endian != REGMAP_ENDIAN_DEFAULT)
657                 return endian;
658
659         /* Use this if no other value was found */
660         return REGMAP_ENDIAN_BIG;
661 }
662 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663
664 struct regmap *__regmap_init(struct device *dev,
665                              const struct regmap_bus *bus,
666                              void *bus_context,
667                              const struct regmap_config *config,
668                              struct lock_class_key *lock_key,
669                              const char *lock_name)
670 {
671         struct regmap *map;
672         int ret = -EINVAL;
673         enum regmap_endian reg_endian, val_endian;
674         int i, j;
675
676         if (!config)
677                 goto err;
678
679         map = kzalloc(sizeof(*map), GFP_KERNEL);
680         if (map == NULL) {
681                 ret = -ENOMEM;
682                 goto err;
683         }
684
685         ret = regmap_set_name(map, config);
686         if (ret)
687                 goto err_map;
688
689         ret = -EINVAL; /* Later error paths rely on this */
690
691         if (config->disable_locking) {
692                 map->lock = map->unlock = regmap_lock_unlock_none;
693                 map->can_sleep = config->can_sleep;
694                 regmap_debugfs_disable(map);
695         } else if (config->lock && config->unlock) {
696                 map->lock = config->lock;
697                 map->unlock = config->unlock;
698                 map->lock_arg = config->lock_arg;
699                 map->can_sleep = config->can_sleep;
700         } else if (config->use_hwlock) {
701                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702                 if (!map->hwlock) {
703                         ret = -ENXIO;
704                         goto err_name;
705                 }
706
707                 switch (config->hwlock_mode) {
708                 case HWLOCK_IRQSTATE:
709                         map->lock = regmap_lock_hwlock_irqsave;
710                         map->unlock = regmap_unlock_hwlock_irqrestore;
711                         break;
712                 case HWLOCK_IRQ:
713                         map->lock = regmap_lock_hwlock_irq;
714                         map->unlock = regmap_unlock_hwlock_irq;
715                         break;
716                 default:
717                         map->lock = regmap_lock_hwlock;
718                         map->unlock = regmap_unlock_hwlock;
719                         break;
720                 }
721
722                 map->lock_arg = map;
723         } else {
724                 if ((bus && bus->fast_io) ||
725                     config->fast_io) {
726                         if (config->use_raw_spinlock) {
727                                 raw_spin_lock_init(&map->raw_spinlock);
728                                 map->lock = regmap_lock_raw_spinlock;
729                                 map->unlock = regmap_unlock_raw_spinlock;
730                                 lockdep_set_class_and_name(&map->raw_spinlock,
731                                                            lock_key, lock_name);
732                         } else {
733                                 spin_lock_init(&map->spinlock);
734                                 map->lock = regmap_lock_spinlock;
735                                 map->unlock = regmap_unlock_spinlock;
736                                 lockdep_set_class_and_name(&map->spinlock,
737                                                            lock_key, lock_name);
738                         }
739                 } else {
740                         mutex_init(&map->mutex);
741                         map->lock = regmap_lock_mutex;
742                         map->unlock = regmap_unlock_mutex;
743                         map->can_sleep = true;
744                         lockdep_set_class_and_name(&map->mutex,
745                                                    lock_key, lock_name);
746                 }
747                 map->lock_arg = map;
748         }
749
750         /*
751          * When we write in fast-paths with regmap_bulk_write() don't allocate
752          * scratch buffers with sleeping allocations.
753          */
754         if ((bus && bus->fast_io) || config->fast_io)
755                 map->alloc_flags = GFP_ATOMIC;
756         else
757                 map->alloc_flags = GFP_KERNEL;
758
759         map->reg_base = config->reg_base;
760
761         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762         map->format.pad_bytes = config->pad_bits / 8;
763         map->format.reg_shift = config->reg_shift;
764         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766                         config->val_bits + config->pad_bits, 8);
767         map->reg_shift = config->pad_bits % 8;
768         if (config->reg_stride)
769                 map->reg_stride = config->reg_stride;
770         else
771                 map->reg_stride = 1;
772         if (is_power_of_2(map->reg_stride))
773                 map->reg_stride_order = ilog2(map->reg_stride);
774         else
775                 map->reg_stride_order = -1;
776         map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777         map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778         map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
779         if (bus) {
780                 map->max_raw_read = bus->max_raw_read;
781                 map->max_raw_write = bus->max_raw_write;
782         } else if (config->max_raw_read && config->max_raw_write) {
783                 map->max_raw_read = config->max_raw_read;
784                 map->max_raw_write = config->max_raw_write;
785         }
786         map->dev = dev;
787         map->bus = bus;
788         map->bus_context = bus_context;
789         map->max_register = config->max_register;
790         map->wr_table = config->wr_table;
791         map->rd_table = config->rd_table;
792         map->volatile_table = config->volatile_table;
793         map->precious_table = config->precious_table;
794         map->wr_noinc_table = config->wr_noinc_table;
795         map->rd_noinc_table = config->rd_noinc_table;
796         map->writeable_reg = config->writeable_reg;
797         map->readable_reg = config->readable_reg;
798         map->volatile_reg = config->volatile_reg;
799         map->precious_reg = config->precious_reg;
800         map->writeable_noinc_reg = config->writeable_noinc_reg;
801         map->readable_noinc_reg = config->readable_noinc_reg;
802         map->cache_type = config->cache_type;
803
804         spin_lock_init(&map->async_lock);
805         INIT_LIST_HEAD(&map->async_list);
806         INIT_LIST_HEAD(&map->async_free);
807         init_waitqueue_head(&map->async_waitq);
808
809         if (config->read_flag_mask ||
810             config->write_flag_mask ||
811             config->zero_flag_mask) {
812                 map->read_flag_mask = config->read_flag_mask;
813                 map->write_flag_mask = config->write_flag_mask;
814         } else if (bus) {
815                 map->read_flag_mask = bus->read_flag_mask;
816         }
817
818         if (config && config->read && config->write) {
819                 map->reg_read  = _regmap_bus_read;
820                 if (config->reg_update_bits)
821                         map->reg_update_bits = config->reg_update_bits;
822
823                 /* Bulk read/write */
824                 map->read = config->read;
825                 map->write = config->write;
826
827                 reg_endian = REGMAP_ENDIAN_NATIVE;
828                 val_endian = REGMAP_ENDIAN_NATIVE;
829         } else if (!bus) {
830                 map->reg_read  = config->reg_read;
831                 map->reg_write = config->reg_write;
832                 map->reg_update_bits = config->reg_update_bits;
833
834                 map->defer_caching = false;
835                 goto skip_format_initialization;
836         } else if (!bus->read || !bus->write) {
837                 map->reg_read = _regmap_bus_reg_read;
838                 map->reg_write = _regmap_bus_reg_write;
839                 map->reg_update_bits = bus->reg_update_bits;
840
841                 map->defer_caching = false;
842                 goto skip_format_initialization;
843         } else {
844                 map->reg_read  = _regmap_bus_read;
845                 map->reg_update_bits = bus->reg_update_bits;
846                 /* Bulk read/write */
847                 map->read = bus->read;
848                 map->write = bus->write;
849
850                 reg_endian = regmap_get_reg_endian(bus, config);
851                 val_endian = regmap_get_val_endian(dev, bus, config);
852         }
853
854         switch (config->reg_bits + map->reg_shift) {
855         case 2:
856                 switch (config->val_bits) {
857                 case 6:
858                         map->format.format_write = regmap_format_2_6_write;
859                         break;
860                 default:
861                         goto err_hwlock;
862                 }
863                 break;
864
865         case 4:
866                 switch (config->val_bits) {
867                 case 12:
868                         map->format.format_write = regmap_format_4_12_write;
869                         break;
870                 default:
871                         goto err_hwlock;
872                 }
873                 break;
874
875         case 7:
876                 switch (config->val_bits) {
877                 case 9:
878                         map->format.format_write = regmap_format_7_9_write;
879                         break;
880                 case 17:
881                         map->format.format_write = regmap_format_7_17_write;
882                         break;
883                 default:
884                         goto err_hwlock;
885                 }
886                 break;
887
888         case 10:
889                 switch (config->val_bits) {
890                 case 14:
891                         map->format.format_write = regmap_format_10_14_write;
892                         break;
893                 default:
894                         goto err_hwlock;
895                 }
896                 break;
897
898         case 12:
899                 switch (config->val_bits) {
900                 case 20:
901                         map->format.format_write = regmap_format_12_20_write;
902                         break;
903                 default:
904                         goto err_hwlock;
905                 }
906                 break;
907
908         case 8:
909                 map->format.format_reg = regmap_format_8;
910                 break;
911
912         case 16:
913                 switch (reg_endian) {
914                 case REGMAP_ENDIAN_BIG:
915                         map->format.format_reg = regmap_format_16_be;
916                         break;
917                 case REGMAP_ENDIAN_LITTLE:
918                         map->format.format_reg = regmap_format_16_le;
919                         break;
920                 case REGMAP_ENDIAN_NATIVE:
921                         map->format.format_reg = regmap_format_16_native;
922                         break;
923                 default:
924                         goto err_hwlock;
925                 }
926                 break;
927
928         case 24:
929                 switch (reg_endian) {
930                 case REGMAP_ENDIAN_BIG:
931                         map->format.format_reg = regmap_format_24_be;
932                         break;
933                 default:
934                         goto err_hwlock;
935                 }
936                 break;
937
938         case 32:
939                 switch (reg_endian) {
940                 case REGMAP_ENDIAN_BIG:
941                         map->format.format_reg = regmap_format_32_be;
942                         break;
943                 case REGMAP_ENDIAN_LITTLE:
944                         map->format.format_reg = regmap_format_32_le;
945                         break;
946                 case REGMAP_ENDIAN_NATIVE:
947                         map->format.format_reg = regmap_format_32_native;
948                         break;
949                 default:
950                         goto err_hwlock;
951                 }
952                 break;
953
954         default:
955                 goto err_hwlock;
956         }
957
958         if (val_endian == REGMAP_ENDIAN_NATIVE)
959                 map->format.parse_inplace = regmap_parse_inplace_noop;
960
961         switch (config->val_bits) {
962         case 8:
963                 map->format.format_val = regmap_format_8;
964                 map->format.parse_val = regmap_parse_8;
965                 map->format.parse_inplace = regmap_parse_inplace_noop;
966                 break;
967         case 16:
968                 switch (val_endian) {
969                 case REGMAP_ENDIAN_BIG:
970                         map->format.format_val = regmap_format_16_be;
971                         map->format.parse_val = regmap_parse_16_be;
972                         map->format.parse_inplace = regmap_parse_16_be_inplace;
973                         break;
974                 case REGMAP_ENDIAN_LITTLE:
975                         map->format.format_val = regmap_format_16_le;
976                         map->format.parse_val = regmap_parse_16_le;
977                         map->format.parse_inplace = regmap_parse_16_le_inplace;
978                         break;
979                 case REGMAP_ENDIAN_NATIVE:
980                         map->format.format_val = regmap_format_16_native;
981                         map->format.parse_val = regmap_parse_16_native;
982                         break;
983                 default:
984                         goto err_hwlock;
985                 }
986                 break;
987         case 24:
988                 switch (val_endian) {
989                 case REGMAP_ENDIAN_BIG:
990                         map->format.format_val = regmap_format_24_be;
991                         map->format.parse_val = regmap_parse_24_be;
992                         break;
993                 default:
994                         goto err_hwlock;
995                 }
996                 break;
997         case 32:
998                 switch (val_endian) {
999                 case REGMAP_ENDIAN_BIG:
1000                         map->format.format_val = regmap_format_32_be;
1001                         map->format.parse_val = regmap_parse_32_be;
1002                         map->format.parse_inplace = regmap_parse_32_be_inplace;
1003                         break;
1004                 case REGMAP_ENDIAN_LITTLE:
1005                         map->format.format_val = regmap_format_32_le;
1006                         map->format.parse_val = regmap_parse_32_le;
1007                         map->format.parse_inplace = regmap_parse_32_le_inplace;
1008                         break;
1009                 case REGMAP_ENDIAN_NATIVE:
1010                         map->format.format_val = regmap_format_32_native;
1011                         map->format.parse_val = regmap_parse_32_native;
1012                         break;
1013                 default:
1014                         goto err_hwlock;
1015                 }
1016                 break;
1017         }
1018
1019         if (map->format.format_write) {
1020                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1021                     (val_endian != REGMAP_ENDIAN_BIG))
1022                         goto err_hwlock;
1023                 map->use_single_write = true;
1024         }
1025
1026         if (!map->format.format_write &&
1027             !(map->format.format_reg && map->format.format_val))
1028                 goto err_hwlock;
1029
1030         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1031         if (map->work_buf == NULL) {
1032                 ret = -ENOMEM;
1033                 goto err_hwlock;
1034         }
1035
1036         if (map->format.format_write) {
1037                 map->defer_caching = false;
1038                 map->reg_write = _regmap_bus_formatted_write;
1039         } else if (map->format.format_val) {
1040                 map->defer_caching = true;
1041                 map->reg_write = _regmap_bus_raw_write;
1042         }
1043
1044 skip_format_initialization:
1045
1046         map->range_tree = RB_ROOT;
1047         for (i = 0; i < config->num_ranges; i++) {
1048                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1049                 struct regmap_range_node *new;
1050
1051                 /* Sanity check */
1052                 if (range_cfg->range_max < range_cfg->range_min) {
1053                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1054                                 range_cfg->range_max, range_cfg->range_min);
1055                         goto err_range;
1056                 }
1057
1058                 if (range_cfg->range_max > map->max_register) {
1059                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1060                                 range_cfg->range_max, map->max_register);
1061                         goto err_range;
1062                 }
1063
1064                 if (range_cfg->selector_reg > map->max_register) {
1065                         dev_err(map->dev,
1066                                 "Invalid range %d: selector out of map\n", i);
1067                         goto err_range;
1068                 }
1069
1070                 if (range_cfg->window_len == 0) {
1071                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1072                                 i);
1073                         goto err_range;
1074                 }
1075
1076                 /* Make sure, that this register range has no selector
1077                    or data window within its boundary */
1078                 for (j = 0; j < config->num_ranges; j++) {
1079                         unsigned int sel_reg = config->ranges[j].selector_reg;
1080                         unsigned int win_min = config->ranges[j].window_start;
1081                         unsigned int win_max = win_min +
1082                                                config->ranges[j].window_len - 1;
1083
1084                         /* Allow data window inside its own virtual range */
1085                         if (j == i)
1086                                 continue;
1087
1088                         if (range_cfg->range_min <= sel_reg &&
1089                             sel_reg <= range_cfg->range_max) {
1090                                 dev_err(map->dev,
1091                                         "Range %d: selector for %d in window\n",
1092                                         i, j);
1093                                 goto err_range;
1094                         }
1095
1096                         if (!(win_max < range_cfg->range_min ||
1097                               win_min > range_cfg->range_max)) {
1098                                 dev_err(map->dev,
1099                                         "Range %d: window for %d in window\n",
1100                                         i, j);
1101                                 goto err_range;
1102                         }
1103                 }
1104
1105                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1106                 if (new == NULL) {
1107                         ret = -ENOMEM;
1108                         goto err_range;
1109                 }
1110
1111                 new->map = map;
1112                 new->name = range_cfg->name;
1113                 new->range_min = range_cfg->range_min;
1114                 new->range_max = range_cfg->range_max;
1115                 new->selector_reg = range_cfg->selector_reg;
1116                 new->selector_mask = range_cfg->selector_mask;
1117                 new->selector_shift = range_cfg->selector_shift;
1118                 new->window_start = range_cfg->window_start;
1119                 new->window_len = range_cfg->window_len;
1120
1121                 if (!_regmap_range_add(map, new)) {
1122                         dev_err(map->dev, "Failed to add range %d\n", i);
1123                         kfree(new);
1124                         goto err_range;
1125                 }
1126
1127                 if (map->selector_work_buf == NULL) {
1128                         map->selector_work_buf =
1129                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1130                         if (map->selector_work_buf == NULL) {
1131                                 ret = -ENOMEM;
1132                                 goto err_range;
1133                         }
1134                 }
1135         }
1136
1137         ret = regcache_init(map, config);
1138         if (ret != 0)
1139                 goto err_range;
1140
1141         if (dev) {
1142                 ret = regmap_attach_dev(dev, map, config);
1143                 if (ret != 0)
1144                         goto err_regcache;
1145         } else {
1146                 regmap_debugfs_init(map);
1147         }
1148
1149         return map;
1150
1151 err_regcache:
1152         regcache_exit(map);
1153 err_range:
1154         regmap_range_exit(map);
1155         kfree(map->work_buf);
1156 err_hwlock:
1157         if (map->hwlock)
1158                 hwspin_lock_free(map->hwlock);
1159 err_name:
1160         kfree_const(map->name);
1161 err_map:
1162         kfree(map);
1163 err:
1164         return ERR_PTR(ret);
1165 }
1166 EXPORT_SYMBOL_GPL(__regmap_init);
1167
1168 static void devm_regmap_release(struct device *dev, void *res)
1169 {
1170         regmap_exit(*(struct regmap **)res);
1171 }
1172
1173 struct regmap *__devm_regmap_init(struct device *dev,
1174                                   const struct regmap_bus *bus,
1175                                   void *bus_context,
1176                                   const struct regmap_config *config,
1177                                   struct lock_class_key *lock_key,
1178                                   const char *lock_name)
1179 {
1180         struct regmap **ptr, *regmap;
1181
1182         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1183         if (!ptr)
1184                 return ERR_PTR(-ENOMEM);
1185
1186         regmap = __regmap_init(dev, bus, bus_context, config,
1187                                lock_key, lock_name);
1188         if (!IS_ERR(regmap)) {
1189                 *ptr = regmap;
1190                 devres_add(dev, ptr);
1191         } else {
1192                 devres_free(ptr);
1193         }
1194
1195         return regmap;
1196 }
1197 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1198
1199 static void regmap_field_init(struct regmap_field *rm_field,
1200         struct regmap *regmap, struct reg_field reg_field)
1201 {
1202         rm_field->regmap = regmap;
1203         rm_field->reg = reg_field.reg;
1204         rm_field->shift = reg_field.lsb;
1205         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1206
1207         WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1208
1209         rm_field->id_size = reg_field.id_size;
1210         rm_field->id_offset = reg_field.id_offset;
1211 }
1212
1213 /**
1214  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1215  *
1216  * @dev: Device that will be interacted with
1217  * @regmap: regmap bank in which this register field is located.
1218  * @reg_field: Register field with in the bank.
1219  *
1220  * The return value will be an ERR_PTR() on error or a valid pointer
1221  * to a struct regmap_field. The regmap_field will be automatically freed
1222  * by the device management code.
1223  */
1224 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1225                 struct regmap *regmap, struct reg_field reg_field)
1226 {
1227         struct regmap_field *rm_field = devm_kzalloc(dev,
1228                                         sizeof(*rm_field), GFP_KERNEL);
1229         if (!rm_field)
1230                 return ERR_PTR(-ENOMEM);
1231
1232         regmap_field_init(rm_field, regmap, reg_field);
1233
1234         return rm_field;
1235
1236 }
1237 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1238
1239
1240 /**
1241  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1242  *
1243  * @regmap: regmap bank in which this register field is located.
1244  * @rm_field: regmap register fields within the bank.
1245  * @reg_field: Register fields within the bank.
1246  * @num_fields: Number of register fields.
1247  *
1248  * The return value will be an -ENOMEM on error or zero for success.
1249  * Newly allocated regmap_fields should be freed by calling
1250  * regmap_field_bulk_free()
1251  */
1252 int regmap_field_bulk_alloc(struct regmap *regmap,
1253                             struct regmap_field **rm_field,
1254                             const struct reg_field *reg_field,
1255                             int num_fields)
1256 {
1257         struct regmap_field *rf;
1258         int i;
1259
1260         rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1261         if (!rf)
1262                 return -ENOMEM;
1263
1264         for (i = 0; i < num_fields; i++) {
1265                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1266                 rm_field[i] = &rf[i];
1267         }
1268
1269         return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1272
1273 /**
1274  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1275  * fields.
1276  *
1277  * @dev: Device that will be interacted with
1278  * @regmap: regmap bank in which this register field is located.
1279  * @rm_field: regmap register fields within the bank.
1280  * @reg_field: Register fields within the bank.
1281  * @num_fields: Number of register fields.
1282  *
1283  * The return value will be an -ENOMEM on error or zero for success.
1284  * Newly allocated regmap_fields will be automatically freed by the
1285  * device management code.
1286  */
1287 int devm_regmap_field_bulk_alloc(struct device *dev,
1288                                  struct regmap *regmap,
1289                                  struct regmap_field **rm_field,
1290                                  const struct reg_field *reg_field,
1291                                  int num_fields)
1292 {
1293         struct regmap_field *rf;
1294         int i;
1295
1296         rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1297         if (!rf)
1298                 return -ENOMEM;
1299
1300         for (i = 0; i < num_fields; i++) {
1301                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1302                 rm_field[i] = &rf[i];
1303         }
1304
1305         return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1308
1309 /**
1310  * regmap_field_bulk_free() - Free register field allocated using
1311  *                       regmap_field_bulk_alloc.
1312  *
1313  * @field: regmap fields which should be freed.
1314  */
1315 void regmap_field_bulk_free(struct regmap_field *field)
1316 {
1317         kfree(field);
1318 }
1319 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1320
1321 /**
1322  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1323  *                            devm_regmap_field_bulk_alloc.
1324  *
1325  * @dev: Device that will be interacted with
1326  * @field: regmap field which should be freed.
1327  *
1328  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1329  * drivers need not call this function, as the memory allocated via devm
1330  * will be freed as per device-driver life-cycle.
1331  */
1332 void devm_regmap_field_bulk_free(struct device *dev,
1333                                  struct regmap_field *field)
1334 {
1335         devm_kfree(dev, field);
1336 }
1337 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1338
1339 /**
1340  * devm_regmap_field_free() - Free a register field allocated using
1341  *                            devm_regmap_field_alloc.
1342  *
1343  * @dev: Device that will be interacted with
1344  * @field: regmap field which should be freed.
1345  *
1346  * Free register field allocated using devm_regmap_field_alloc(). Usually
1347  * drivers need not call this function, as the memory allocated via devm
1348  * will be freed as per device-driver life-cyle.
1349  */
1350 void devm_regmap_field_free(struct device *dev,
1351         struct regmap_field *field)
1352 {
1353         devm_kfree(dev, field);
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1356
1357 /**
1358  * regmap_field_alloc() - Allocate and initialise a register field.
1359  *
1360  * @regmap: regmap bank in which this register field is located.
1361  * @reg_field: Register field with in the bank.
1362  *
1363  * The return value will be an ERR_PTR() on error or a valid pointer
1364  * to a struct regmap_field. The regmap_field should be freed by the
1365  * user once its finished working with it using regmap_field_free().
1366  */
1367 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1368                 struct reg_field reg_field)
1369 {
1370         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1371
1372         if (!rm_field)
1373                 return ERR_PTR(-ENOMEM);
1374
1375         regmap_field_init(rm_field, regmap, reg_field);
1376
1377         return rm_field;
1378 }
1379 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1380
1381 /**
1382  * regmap_field_free() - Free register field allocated using
1383  *                       regmap_field_alloc.
1384  *
1385  * @field: regmap field which should be freed.
1386  */
1387 void regmap_field_free(struct regmap_field *field)
1388 {
1389         kfree(field);
1390 }
1391 EXPORT_SYMBOL_GPL(regmap_field_free);
1392
1393 /**
1394  * regmap_reinit_cache() - Reinitialise the current register cache
1395  *
1396  * @map: Register map to operate on.
1397  * @config: New configuration.  Only the cache data will be used.
1398  *
1399  * Discard any existing register cache for the map and initialize a
1400  * new cache.  This can be used to restore the cache to defaults or to
1401  * update the cache configuration to reflect runtime discovery of the
1402  * hardware.
1403  *
1404  * No explicit locking is done here, the user needs to ensure that
1405  * this function will not race with other calls to regmap.
1406  */
1407 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1408 {
1409         int ret;
1410
1411         regcache_exit(map);
1412         regmap_debugfs_exit(map);
1413
1414         map->max_register = config->max_register;
1415         map->writeable_reg = config->writeable_reg;
1416         map->readable_reg = config->readable_reg;
1417         map->volatile_reg = config->volatile_reg;
1418         map->precious_reg = config->precious_reg;
1419         map->writeable_noinc_reg = config->writeable_noinc_reg;
1420         map->readable_noinc_reg = config->readable_noinc_reg;
1421         map->cache_type = config->cache_type;
1422
1423         ret = regmap_set_name(map, config);
1424         if (ret)
1425                 return ret;
1426
1427         regmap_debugfs_init(map);
1428
1429         map->cache_bypass = false;
1430         map->cache_only = false;
1431
1432         return regcache_init(map, config);
1433 }
1434 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1435
1436 /**
1437  * regmap_exit() - Free a previously allocated register map
1438  *
1439  * @map: Register map to operate on.
1440  */
1441 void regmap_exit(struct regmap *map)
1442 {
1443         struct regmap_async *async;
1444
1445         regcache_exit(map);
1446         regmap_debugfs_exit(map);
1447         regmap_range_exit(map);
1448         if (map->bus && map->bus->free_context)
1449                 map->bus->free_context(map->bus_context);
1450         kfree(map->work_buf);
1451         while (!list_empty(&map->async_free)) {
1452                 async = list_first_entry_or_null(&map->async_free,
1453                                                  struct regmap_async,
1454                                                  list);
1455                 list_del(&async->list);
1456                 kfree(async->work_buf);
1457                 kfree(async);
1458         }
1459         if (map->hwlock)
1460                 hwspin_lock_free(map->hwlock);
1461         if (map->lock == regmap_lock_mutex)
1462                 mutex_destroy(&map->mutex);
1463         kfree_const(map->name);
1464         kfree(map->patch);
1465         if (map->bus && map->bus->free_on_exit)
1466                 kfree(map->bus);
1467         kfree(map);
1468 }
1469 EXPORT_SYMBOL_GPL(regmap_exit);
1470
1471 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1472 {
1473         struct regmap **r = res;
1474         if (!r || !*r) {
1475                 WARN_ON(!r || !*r);
1476                 return 0;
1477         }
1478
1479         /* If the user didn't specify a name match any */
1480         if (data)
1481                 return (*r)->name && !strcmp((*r)->name, data);
1482         else
1483                 return 1;
1484 }
1485
1486 /**
1487  * dev_get_regmap() - Obtain the regmap (if any) for a device
1488  *
1489  * @dev: Device to retrieve the map for
1490  * @name: Optional name for the register map, usually NULL.
1491  *
1492  * Returns the regmap for the device if one is present, or NULL.  If
1493  * name is specified then it must match the name specified when
1494  * registering the device, if it is NULL then the first regmap found
1495  * will be used.  Devices with multiple register maps are very rare,
1496  * generic code should normally not need to specify a name.
1497  */
1498 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1499 {
1500         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1501                                         dev_get_regmap_match, (void *)name);
1502
1503         if (!r)
1504                 return NULL;
1505         return *r;
1506 }
1507 EXPORT_SYMBOL_GPL(dev_get_regmap);
1508
1509 /**
1510  * regmap_get_device() - Obtain the device from a regmap
1511  *
1512  * @map: Register map to operate on.
1513  *
1514  * Returns the underlying device that the regmap has been created for.
1515  */
1516 struct device *regmap_get_device(struct regmap *map)
1517 {
1518         return map->dev;
1519 }
1520 EXPORT_SYMBOL_GPL(regmap_get_device);
1521
1522 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1523                                struct regmap_range_node *range,
1524                                unsigned int val_num)
1525 {
1526         void *orig_work_buf;
1527         unsigned int win_offset;
1528         unsigned int win_page;
1529         bool page_chg;
1530         int ret;
1531
1532         win_offset = (*reg - range->range_min) % range->window_len;
1533         win_page = (*reg - range->range_min) / range->window_len;
1534
1535         if (val_num > 1) {
1536                 /* Bulk write shouldn't cross range boundary */
1537                 if (*reg + val_num - 1 > range->range_max)
1538                         return -EINVAL;
1539
1540                 /* ... or single page boundary */
1541                 if (val_num > range->window_len - win_offset)
1542                         return -EINVAL;
1543         }
1544
1545         /* It is possible to have selector register inside data window.
1546            In that case, selector register is located on every page and
1547            it needs no page switching, when accessed alone. */
1548         if (val_num > 1 ||
1549             range->window_start + win_offset != range->selector_reg) {
1550                 /* Use separate work_buf during page switching */
1551                 orig_work_buf = map->work_buf;
1552                 map->work_buf = map->selector_work_buf;
1553
1554                 ret = _regmap_update_bits(map, range->selector_reg,
1555                                           range->selector_mask,
1556                                           win_page << range->selector_shift,
1557                                           &page_chg, false);
1558
1559                 map->work_buf = orig_work_buf;
1560
1561                 if (ret != 0)
1562                         return ret;
1563         }
1564
1565         *reg = range->window_start + win_offset;
1566
1567         return 0;
1568 }
1569
1570 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1571                                           unsigned long mask)
1572 {
1573         u8 *buf;
1574         int i;
1575
1576         if (!mask || !map->work_buf)
1577                 return;
1578
1579         buf = map->work_buf;
1580
1581         for (i = 0; i < max_bytes; i++)
1582                 buf[i] |= (mask >> (8 * i)) & 0xff;
1583 }
1584
1585 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1586 {
1587         reg += map->reg_base;
1588
1589         if (map->format.reg_shift > 0)
1590                 reg >>= map->format.reg_shift;
1591         else if (map->format.reg_shift < 0)
1592                 reg <<= -(map->format.reg_shift);
1593
1594         return reg;
1595 }
1596
1597 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1598                                   const void *val, size_t val_len, bool noinc)
1599 {
1600         struct regmap_range_node *range;
1601         unsigned long flags;
1602         void *work_val = map->work_buf + map->format.reg_bytes +
1603                 map->format.pad_bytes;
1604         void *buf;
1605         int ret = -ENOTSUPP;
1606         size_t len;
1607         int i;
1608
1609         /* Check for unwritable or noinc registers in range
1610          * before we start
1611          */
1612         if (!regmap_writeable_noinc(map, reg)) {
1613                 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1614                         unsigned int element =
1615                                 reg + regmap_get_offset(map, i);
1616                         if (!regmap_writeable(map, element) ||
1617                                 regmap_writeable_noinc(map, element))
1618                                 return -EINVAL;
1619                 }
1620         }
1621
1622         if (!map->cache_bypass && map->format.parse_val) {
1623                 unsigned int ival;
1624                 int val_bytes = map->format.val_bytes;
1625                 for (i = 0; i < val_len / val_bytes; i++) {
1626                         ival = map->format.parse_val(val + (i * val_bytes));
1627                         ret = regcache_write(map,
1628                                              reg + regmap_get_offset(map, i),
1629                                              ival);
1630                         if (ret) {
1631                                 dev_err(map->dev,
1632                                         "Error in caching of register: %x ret: %d\n",
1633                                         reg + regmap_get_offset(map, i), ret);
1634                                 return ret;
1635                         }
1636                 }
1637                 if (map->cache_only) {
1638                         map->cache_dirty = true;
1639                         return 0;
1640                 }
1641         }
1642
1643         range = _regmap_range_lookup(map, reg);
1644         if (range) {
1645                 int val_num = val_len / map->format.val_bytes;
1646                 int win_offset = (reg - range->range_min) % range->window_len;
1647                 int win_residue = range->window_len - win_offset;
1648
1649                 /* If the write goes beyond the end of the window split it */
1650                 while (val_num > win_residue) {
1651                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1652                                 win_residue, val_len / map->format.val_bytes);
1653                         ret = _regmap_raw_write_impl(map, reg, val,
1654                                                      win_residue *
1655                                                      map->format.val_bytes, noinc);
1656                         if (ret != 0)
1657                                 return ret;
1658
1659                         reg += win_residue;
1660                         val_num -= win_residue;
1661                         val += win_residue * map->format.val_bytes;
1662                         val_len -= win_residue * map->format.val_bytes;
1663
1664                         win_offset = (reg - range->range_min) %
1665                                 range->window_len;
1666                         win_residue = range->window_len - win_offset;
1667                 }
1668
1669                 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1670                 if (ret != 0)
1671                         return ret;
1672         }
1673
1674         reg = regmap_reg_addr(map, reg);
1675         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1676         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1677                                       map->write_flag_mask);
1678
1679         /*
1680          * Essentially all I/O mechanisms will be faster with a single
1681          * buffer to write.  Since register syncs often generate raw
1682          * writes of single registers optimise that case.
1683          */
1684         if (val != work_val && val_len == map->format.val_bytes) {
1685                 memcpy(work_val, val, map->format.val_bytes);
1686                 val = work_val;
1687         }
1688
1689         if (map->async && map->bus && map->bus->async_write) {
1690                 struct regmap_async *async;
1691
1692                 trace_regmap_async_write_start(map, reg, val_len);
1693
1694                 spin_lock_irqsave(&map->async_lock, flags);
1695                 async = list_first_entry_or_null(&map->async_free,
1696                                                  struct regmap_async,
1697                                                  list);
1698                 if (async)
1699                         list_del(&async->list);
1700                 spin_unlock_irqrestore(&map->async_lock, flags);
1701
1702                 if (!async) {
1703                         async = map->bus->async_alloc();
1704                         if (!async)
1705                                 return -ENOMEM;
1706
1707                         async->work_buf = kzalloc(map->format.buf_size,
1708                                                   GFP_KERNEL | GFP_DMA);
1709                         if (!async->work_buf) {
1710                                 kfree(async);
1711                                 return -ENOMEM;
1712                         }
1713                 }
1714
1715                 async->map = map;
1716
1717                 /* If the caller supplied the value we can use it safely. */
1718                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1719                        map->format.reg_bytes + map->format.val_bytes);
1720
1721                 spin_lock_irqsave(&map->async_lock, flags);
1722                 list_add_tail(&async->list, &map->async_list);
1723                 spin_unlock_irqrestore(&map->async_lock, flags);
1724
1725                 if (val != work_val)
1726                         ret = map->bus->async_write(map->bus_context,
1727                                                     async->work_buf,
1728                                                     map->format.reg_bytes +
1729                                                     map->format.pad_bytes,
1730                                                     val, val_len, async);
1731                 else
1732                         ret = map->bus->async_write(map->bus_context,
1733                                                     async->work_buf,
1734                                                     map->format.reg_bytes +
1735                                                     map->format.pad_bytes +
1736                                                     val_len, NULL, 0, async);
1737
1738                 if (ret != 0) {
1739                         dev_err(map->dev, "Failed to schedule write: %d\n",
1740                                 ret);
1741
1742                         spin_lock_irqsave(&map->async_lock, flags);
1743                         list_move(&async->list, &map->async_free);
1744                         spin_unlock_irqrestore(&map->async_lock, flags);
1745                 }
1746
1747                 return ret;
1748         }
1749
1750         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1751
1752         /* If we're doing a single register write we can probably just
1753          * send the work_buf directly, otherwise try to do a gather
1754          * write.
1755          */
1756         if (val == work_val)
1757                 ret = map->write(map->bus_context, map->work_buf,
1758                                  map->format.reg_bytes +
1759                                  map->format.pad_bytes +
1760                                  val_len);
1761         else if (map->bus && map->bus->gather_write)
1762                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1763                                              map->format.reg_bytes +
1764                                              map->format.pad_bytes,
1765                                              val, val_len);
1766         else
1767                 ret = -ENOTSUPP;
1768
1769         /* If that didn't work fall back on linearising by hand. */
1770         if (ret == -ENOTSUPP) {
1771                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1772                 buf = kzalloc(len, GFP_KERNEL);
1773                 if (!buf)
1774                         return -ENOMEM;
1775
1776                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1777                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1778                        val, val_len);
1779                 ret = map->write(map->bus_context, buf, len);
1780
1781                 kfree(buf);
1782         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1783                 /* regcache_drop_region() takes lock that we already have,
1784                  * thus call map->cache_ops->drop() directly
1785                  */
1786                 if (map->cache_ops && map->cache_ops->drop)
1787                         map->cache_ops->drop(map, reg, reg + 1);
1788         }
1789
1790         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1791
1792         return ret;
1793 }
1794
1795 /**
1796  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1797  *
1798  * @map: Map to check.
1799  */
1800 bool regmap_can_raw_write(struct regmap *map)
1801 {
1802         return map->write && map->format.format_val && map->format.format_reg;
1803 }
1804 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1805
1806 /**
1807  * regmap_get_raw_read_max - Get the maximum size we can read
1808  *
1809  * @map: Map to check.
1810  */
1811 size_t regmap_get_raw_read_max(struct regmap *map)
1812 {
1813         return map->max_raw_read;
1814 }
1815 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1816
1817 /**
1818  * regmap_get_raw_write_max - Get the maximum size we can read
1819  *
1820  * @map: Map to check.
1821  */
1822 size_t regmap_get_raw_write_max(struct regmap *map)
1823 {
1824         return map->max_raw_write;
1825 }
1826 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1827
1828 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1829                                        unsigned int val)
1830 {
1831         int ret;
1832         struct regmap_range_node *range;
1833         struct regmap *map = context;
1834
1835         WARN_ON(!map->format.format_write);
1836
1837         range = _regmap_range_lookup(map, reg);
1838         if (range) {
1839                 ret = _regmap_select_page(map, &reg, range, 1);
1840                 if (ret != 0)
1841                         return ret;
1842         }
1843
1844         reg = regmap_reg_addr(map, reg);
1845         map->format.format_write(map, reg, val);
1846
1847         trace_regmap_hw_write_start(map, reg, 1);
1848
1849         ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1850
1851         trace_regmap_hw_write_done(map, reg, 1);
1852
1853         return ret;
1854 }
1855
1856 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1857                                  unsigned int val)
1858 {
1859         struct regmap *map = context;
1860         struct regmap_range_node *range;
1861         int ret;
1862
1863         range = _regmap_range_lookup(map, reg);
1864         if (range) {
1865                 ret = _regmap_select_page(map, &reg, range, 1);
1866                 if (ret != 0)
1867                         return ret;
1868         }
1869
1870         reg = regmap_reg_addr(map, reg);
1871         return map->bus->reg_write(map->bus_context, reg, val);
1872 }
1873
1874 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1875                                  unsigned int val)
1876 {
1877         struct regmap *map = context;
1878
1879         WARN_ON(!map->format.format_val);
1880
1881         map->format.format_val(map->work_buf + map->format.reg_bytes
1882                                + map->format.pad_bytes, val, 0);
1883         return _regmap_raw_write_impl(map, reg,
1884                                       map->work_buf +
1885                                       map->format.reg_bytes +
1886                                       map->format.pad_bytes,
1887                                       map->format.val_bytes,
1888                                       false);
1889 }
1890
1891 static inline void *_regmap_map_get_context(struct regmap *map)
1892 {
1893         return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1894 }
1895
1896 int _regmap_write(struct regmap *map, unsigned int reg,
1897                   unsigned int val)
1898 {
1899         int ret;
1900         void *context = _regmap_map_get_context(map);
1901
1902         if (!regmap_writeable(map, reg))
1903                 return -EIO;
1904
1905         if (!map->cache_bypass && !map->defer_caching) {
1906                 ret = regcache_write(map, reg, val);
1907                 if (ret != 0)
1908                         return ret;
1909                 if (map->cache_only) {
1910                         map->cache_dirty = true;
1911                         return 0;
1912                 }
1913         }
1914
1915         ret = map->reg_write(context, reg, val);
1916         if (ret == 0) {
1917                 if (regmap_should_log(map))
1918                         dev_info(map->dev, "%x <= %x\n", reg, val);
1919
1920                 trace_regmap_reg_write(map, reg, val);
1921         }
1922
1923         return ret;
1924 }
1925
1926 /**
1927  * regmap_write() - Write a value to a single register
1928  *
1929  * @map: Register map to write to
1930  * @reg: Register to write to
1931  * @val: Value to be written
1932  *
1933  * A value of zero will be returned on success, a negative errno will
1934  * be returned in error cases.
1935  */
1936 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1937 {
1938         int ret;
1939
1940         if (!IS_ALIGNED(reg, map->reg_stride))
1941                 return -EINVAL;
1942
1943         map->lock(map->lock_arg);
1944
1945         ret = _regmap_write(map, reg, val);
1946
1947         map->unlock(map->lock_arg);
1948
1949         return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(regmap_write);
1952
1953 /**
1954  * regmap_write_async() - Write a value to a single register asynchronously
1955  *
1956  * @map: Register map to write to
1957  * @reg: Register to write to
1958  * @val: Value to be written
1959  *
1960  * A value of zero will be returned on success, a negative errno will
1961  * be returned in error cases.
1962  */
1963 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1964 {
1965         int ret;
1966
1967         if (!IS_ALIGNED(reg, map->reg_stride))
1968                 return -EINVAL;
1969
1970         map->lock(map->lock_arg);
1971
1972         map->async = true;
1973
1974         ret = _regmap_write(map, reg, val);
1975
1976         map->async = false;
1977
1978         map->unlock(map->lock_arg);
1979
1980         return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(regmap_write_async);
1983
1984 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1985                       const void *val, size_t val_len, bool noinc)
1986 {
1987         size_t val_bytes = map->format.val_bytes;
1988         size_t val_count = val_len / val_bytes;
1989         size_t chunk_count, chunk_bytes;
1990         size_t chunk_regs = val_count;
1991         int ret, i;
1992
1993         if (!val_count)
1994                 return -EINVAL;
1995
1996         if (map->use_single_write)
1997                 chunk_regs = 1;
1998         else if (map->max_raw_write && val_len > map->max_raw_write)
1999                 chunk_regs = map->max_raw_write / val_bytes;
2000
2001         chunk_count = val_count / chunk_regs;
2002         chunk_bytes = chunk_regs * val_bytes;
2003
2004         /* Write as many bytes as possible with chunk_size */
2005         for (i = 0; i < chunk_count; i++) {
2006                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2007                 if (ret)
2008                         return ret;
2009
2010                 reg += regmap_get_offset(map, chunk_regs);
2011                 val += chunk_bytes;
2012                 val_len -= chunk_bytes;
2013         }
2014
2015         /* Write remaining bytes */
2016         if (val_len)
2017                 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2018
2019         return ret;
2020 }
2021
2022 /**
2023  * regmap_raw_write() - Write raw values to one or more registers
2024  *
2025  * @map: Register map to write to
2026  * @reg: Initial register to write to
2027  * @val: Block of data to be written, laid out for direct transmission to the
2028  *       device
2029  * @val_len: Length of data pointed to by val.
2030  *
2031  * This function is intended to be used for things like firmware
2032  * download where a large block of data needs to be transferred to the
2033  * device.  No formatting will be done on the data provided.
2034  *
2035  * A value of zero will be returned on success, a negative errno will
2036  * be returned in error cases.
2037  */
2038 int regmap_raw_write(struct regmap *map, unsigned int reg,
2039                      const void *val, size_t val_len)
2040 {
2041         int ret;
2042
2043         if (!regmap_can_raw_write(map))
2044                 return -EINVAL;
2045         if (val_len % map->format.val_bytes)
2046                 return -EINVAL;
2047
2048         map->lock(map->lock_arg);
2049
2050         ret = _regmap_raw_write(map, reg, val, val_len, false);
2051
2052         map->unlock(map->lock_arg);
2053
2054         return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(regmap_raw_write);
2057
2058 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2059                                   void *val, unsigned int val_len, bool write)
2060 {
2061         size_t val_bytes = map->format.val_bytes;
2062         size_t val_count = val_len / val_bytes;
2063         unsigned int lastval;
2064         u8 *u8p;
2065         u16 *u16p;
2066         u32 *u32p;
2067         int ret;
2068         int i;
2069
2070         switch (val_bytes) {
2071         case 1:
2072                 u8p = val;
2073                 if (write)
2074                         lastval = (unsigned int)u8p[val_count - 1];
2075                 break;
2076         case 2:
2077                 u16p = val;
2078                 if (write)
2079                         lastval = (unsigned int)u16p[val_count - 1];
2080                 break;
2081         case 4:
2082                 u32p = val;
2083                 if (write)
2084                         lastval = (unsigned int)u32p[val_count - 1];
2085                 break;
2086         default:
2087                 return -EINVAL;
2088         }
2089
2090         /*
2091          * Update the cache with the last value we write, the rest is just
2092          * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2093          * sure a single read from the cache will work.
2094          */
2095         if (write) {
2096                 if (!map->cache_bypass && !map->defer_caching) {
2097                         ret = regcache_write(map, reg, lastval);
2098                         if (ret != 0)
2099                                 return ret;
2100                         if (map->cache_only) {
2101                                 map->cache_dirty = true;
2102                                 return 0;
2103                         }
2104                 }
2105                 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2106         } else {
2107                 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2108         }
2109
2110         if (!ret && regmap_should_log(map)) {
2111                 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2112                 for (i = 0; i < val_count; i++) {
2113                         switch (val_bytes) {
2114                         case 1:
2115                                 pr_cont("%x", u8p[i]);
2116                                 break;
2117                         case 2:
2118                                 pr_cont("%x", u16p[i]);
2119                                 break;
2120                         case 4:
2121                                 pr_cont("%x", u32p[i]);
2122                                 break;
2123                         default:
2124                                 break;
2125                         }
2126                         if (i == (val_count - 1))
2127                                 pr_cont("]\n");
2128                         else
2129                                 pr_cont(",");
2130                 }
2131         }
2132
2133         return 0;
2134 }
2135
2136 /**
2137  * regmap_noinc_write(): Write data from a register without incrementing the
2138  *                      register number
2139  *
2140  * @map: Register map to write to
2141  * @reg: Register to write to
2142  * @val: Pointer to data buffer
2143  * @val_len: Length of output buffer in bytes.
2144  *
2145  * The regmap API usually assumes that bulk bus write operations will write a
2146  * range of registers. Some devices have certain registers for which a write
2147  * operation can write to an internal FIFO.
2148  *
2149  * The target register must be volatile but registers after it can be
2150  * completely unrelated cacheable registers.
2151  *
2152  * This will attempt multiple writes as required to write val_len bytes.
2153  *
2154  * A value of zero will be returned on success, a negative errno will be
2155  * returned in error cases.
2156  */
2157 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2158                       const void *val, size_t val_len)
2159 {
2160         size_t write_len;
2161         int ret;
2162
2163         if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2164                 return -EINVAL;
2165         if (val_len % map->format.val_bytes)
2166                 return -EINVAL;
2167         if (!IS_ALIGNED(reg, map->reg_stride))
2168                 return -EINVAL;
2169         if (val_len == 0)
2170                 return -EINVAL;
2171
2172         map->lock(map->lock_arg);
2173
2174         if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2175                 ret = -EINVAL;
2176                 goto out_unlock;
2177         }
2178
2179         /*
2180          * Use the accelerated operation if we can. The val drops the const
2181          * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2182          */
2183         if (map->bus->reg_noinc_write) {
2184                 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2185                 goto out_unlock;
2186         }
2187
2188         while (val_len) {
2189                 if (map->max_raw_write && map->max_raw_write < val_len)
2190                         write_len = map->max_raw_write;
2191                 else
2192                         write_len = val_len;
2193                 ret = _regmap_raw_write(map, reg, val, write_len, true);
2194                 if (ret)
2195                         goto out_unlock;
2196                 val = ((u8 *)val) + write_len;
2197                 val_len -= write_len;
2198         }
2199
2200 out_unlock:
2201         map->unlock(map->lock_arg);
2202         return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2205
2206 /**
2207  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2208  *                                   register field.
2209  *
2210  * @field: Register field to write to
2211  * @mask: Bitmask to change
2212  * @val: Value to be written
2213  * @change: Boolean indicating if a write was done
2214  * @async: Boolean indicating asynchronously
2215  * @force: Boolean indicating use force update
2216  *
2217  * Perform a read/modify/write cycle on the register field with change,
2218  * async, force option.
2219  *
2220  * A value of zero will be returned on success, a negative errno will
2221  * be returned in error cases.
2222  */
2223 int regmap_field_update_bits_base(struct regmap_field *field,
2224                                   unsigned int mask, unsigned int val,
2225                                   bool *change, bool async, bool force)
2226 {
2227         mask = (mask << field->shift) & field->mask;
2228
2229         return regmap_update_bits_base(field->regmap, field->reg,
2230                                        mask, val << field->shift,
2231                                        change, async, force);
2232 }
2233 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2234
2235 /**
2236  * regmap_field_test_bits() - Check if all specified bits are set in a
2237  *                            register field.
2238  *
2239  * @field: Register field to operate on
2240  * @bits: Bits to test
2241  *
2242  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2243  * tested bits is not set and 1 if all tested bits are set.
2244  */
2245 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2246 {
2247         unsigned int val, ret;
2248
2249         ret = regmap_field_read(field, &val);
2250         if (ret)
2251                 return ret;
2252
2253         return (val & bits) == bits;
2254 }
2255 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2256
2257 /**
2258  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2259  *                                    register field with port ID
2260  *
2261  * @field: Register field to write to
2262  * @id: port ID
2263  * @mask: Bitmask to change
2264  * @val: Value to be written
2265  * @change: Boolean indicating if a write was done
2266  * @async: Boolean indicating asynchronously
2267  * @force: Boolean indicating use force update
2268  *
2269  * A value of zero will be returned on success, a negative errno will
2270  * be returned in error cases.
2271  */
2272 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2273                                    unsigned int mask, unsigned int val,
2274                                    bool *change, bool async, bool force)
2275 {
2276         if (id >= field->id_size)
2277                 return -EINVAL;
2278
2279         mask = (mask << field->shift) & field->mask;
2280
2281         return regmap_update_bits_base(field->regmap,
2282                                        field->reg + (field->id_offset * id),
2283                                        mask, val << field->shift,
2284                                        change, async, force);
2285 }
2286 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2287
2288 /**
2289  * regmap_bulk_write() - Write multiple registers to the device
2290  *
2291  * @map: Register map to write to
2292  * @reg: First register to be write from
2293  * @val: Block of data to be written, in native register size for device
2294  * @val_count: Number of registers to write
2295  *
2296  * This function is intended to be used for writing a large block of
2297  * data to the device either in single transfer or multiple transfer.
2298  *
2299  * A value of zero will be returned on success, a negative errno will
2300  * be returned in error cases.
2301  */
2302 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2303                      size_t val_count)
2304 {
2305         int ret = 0, i;
2306         size_t val_bytes = map->format.val_bytes;
2307
2308         if (!IS_ALIGNED(reg, map->reg_stride))
2309                 return -EINVAL;
2310
2311         /*
2312          * Some devices don't support bulk write, for them we have a series of
2313          * single write operations.
2314          */
2315         if (!map->write || !map->format.parse_inplace) {
2316                 map->lock(map->lock_arg);
2317                 for (i = 0; i < val_count; i++) {
2318                         unsigned int ival;
2319
2320                         switch (val_bytes) {
2321                         case 1:
2322                                 ival = *(u8 *)(val + (i * val_bytes));
2323                                 break;
2324                         case 2:
2325                                 ival = *(u16 *)(val + (i * val_bytes));
2326                                 break;
2327                         case 4:
2328                                 ival = *(u32 *)(val + (i * val_bytes));
2329                                 break;
2330                         default:
2331                                 ret = -EINVAL;
2332                                 goto out;
2333                         }
2334
2335                         ret = _regmap_write(map,
2336                                             reg + regmap_get_offset(map, i),
2337                                             ival);
2338                         if (ret != 0)
2339                                 goto out;
2340                 }
2341 out:
2342                 map->unlock(map->lock_arg);
2343         } else {
2344                 void *wval;
2345
2346                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2347                 if (!wval)
2348                         return -ENOMEM;
2349
2350                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2351                         map->format.parse_inplace(wval + i);
2352
2353                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2354
2355                 kfree(wval);
2356         }
2357
2358         if (!ret)
2359                 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2360
2361         return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2364
2365 /*
2366  * _regmap_raw_multi_reg_write()
2367  *
2368  * the (register,newvalue) pairs in regs have not been formatted, but
2369  * they are all in the same page and have been changed to being page
2370  * relative. The page register has been written if that was necessary.
2371  */
2372 static int _regmap_raw_multi_reg_write(struct regmap *map,
2373                                        const struct reg_sequence *regs,
2374                                        size_t num_regs)
2375 {
2376         int ret;
2377         void *buf;
2378         int i;
2379         u8 *u8;
2380         size_t val_bytes = map->format.val_bytes;
2381         size_t reg_bytes = map->format.reg_bytes;
2382         size_t pad_bytes = map->format.pad_bytes;
2383         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2384         size_t len = pair_size * num_regs;
2385
2386         if (!len)
2387                 return -EINVAL;
2388
2389         buf = kzalloc(len, GFP_KERNEL);
2390         if (!buf)
2391                 return -ENOMEM;
2392
2393         /* We have to linearise by hand. */
2394
2395         u8 = buf;
2396
2397         for (i = 0; i < num_regs; i++) {
2398                 unsigned int reg = regs[i].reg;
2399                 unsigned int val = regs[i].def;
2400                 trace_regmap_hw_write_start(map, reg, 1);
2401                 reg = regmap_reg_addr(map, reg);
2402                 map->format.format_reg(u8, reg, map->reg_shift);
2403                 u8 += reg_bytes + pad_bytes;
2404                 map->format.format_val(u8, val, 0);
2405                 u8 += val_bytes;
2406         }
2407         u8 = buf;
2408         *u8 |= map->write_flag_mask;
2409
2410         ret = map->write(map->bus_context, buf, len);
2411
2412         kfree(buf);
2413
2414         for (i = 0; i < num_regs; i++) {
2415                 int reg = regs[i].reg;
2416                 trace_regmap_hw_write_done(map, reg, 1);
2417         }
2418         return ret;
2419 }
2420
2421 static unsigned int _regmap_register_page(struct regmap *map,
2422                                           unsigned int reg,
2423                                           struct regmap_range_node *range)
2424 {
2425         unsigned int win_page = (reg - range->range_min) / range->window_len;
2426
2427         return win_page;
2428 }
2429
2430 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2431                                                struct reg_sequence *regs,
2432                                                size_t num_regs)
2433 {
2434         int ret;
2435         int i, n;
2436         struct reg_sequence *base;
2437         unsigned int this_page = 0;
2438         unsigned int page_change = 0;
2439         /*
2440          * the set of registers are not neccessarily in order, but
2441          * since the order of write must be preserved this algorithm
2442          * chops the set each time the page changes. This also applies
2443          * if there is a delay required at any point in the sequence.
2444          */
2445         base = regs;
2446         for (i = 0, n = 0; i < num_regs; i++, n++) {
2447                 unsigned int reg = regs[i].reg;
2448                 struct regmap_range_node *range;
2449
2450                 range = _regmap_range_lookup(map, reg);
2451                 if (range) {
2452                         unsigned int win_page = _regmap_register_page(map, reg,
2453                                                                       range);
2454
2455                         if (i == 0)
2456                                 this_page = win_page;
2457                         if (win_page != this_page) {
2458                                 this_page = win_page;
2459                                 page_change = 1;
2460                         }
2461                 }
2462
2463                 /* If we have both a page change and a delay make sure to
2464                  * write the regs and apply the delay before we change the
2465                  * page.
2466                  */
2467
2468                 if (page_change || regs[i].delay_us) {
2469
2470                                 /* For situations where the first write requires
2471                                  * a delay we need to make sure we don't call
2472                                  * raw_multi_reg_write with n=0
2473                                  * This can't occur with page breaks as we
2474                                  * never write on the first iteration
2475                                  */
2476                                 if (regs[i].delay_us && i == 0)
2477                                         n = 1;
2478
2479                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2480                                 if (ret != 0)
2481                                         return ret;
2482
2483                                 if (regs[i].delay_us) {
2484                                         if (map->can_sleep)
2485                                                 fsleep(regs[i].delay_us);
2486                                         else
2487                                                 udelay(regs[i].delay_us);
2488                                 }
2489
2490                                 base += n;
2491                                 n = 0;
2492
2493                                 if (page_change) {
2494                                         ret = _regmap_select_page(map,
2495                                                                   &base[n].reg,
2496                                                                   range, 1);
2497                                         if (ret != 0)
2498                                                 return ret;
2499
2500                                         page_change = 0;
2501                                 }
2502
2503                 }
2504
2505         }
2506         if (n > 0)
2507                 return _regmap_raw_multi_reg_write(map, base, n);
2508         return 0;
2509 }
2510
2511 static int _regmap_multi_reg_write(struct regmap *map,
2512                                    const struct reg_sequence *regs,
2513                                    size_t num_regs)
2514 {
2515         int i;
2516         int ret;
2517
2518         if (!map->can_multi_write) {
2519                 for (i = 0; i < num_regs; i++) {
2520                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2521                         if (ret != 0)
2522                                 return ret;
2523
2524                         if (regs[i].delay_us) {
2525                                 if (map->can_sleep)
2526                                         fsleep(regs[i].delay_us);
2527                                 else
2528                                         udelay(regs[i].delay_us);
2529                         }
2530                 }
2531                 return 0;
2532         }
2533
2534         if (!map->format.parse_inplace)
2535                 return -EINVAL;
2536
2537         if (map->writeable_reg)
2538                 for (i = 0; i < num_regs; i++) {
2539                         int reg = regs[i].reg;
2540                         if (!map->writeable_reg(map->dev, reg))
2541                                 return -EINVAL;
2542                         if (!IS_ALIGNED(reg, map->reg_stride))
2543                                 return -EINVAL;
2544                 }
2545
2546         if (!map->cache_bypass) {
2547                 for (i = 0; i < num_regs; i++) {
2548                         unsigned int val = regs[i].def;
2549                         unsigned int reg = regs[i].reg;
2550                         ret = regcache_write(map, reg, val);
2551                         if (ret) {
2552                                 dev_err(map->dev,
2553                                 "Error in caching of register: %x ret: %d\n",
2554                                                                 reg, ret);
2555                                 return ret;
2556                         }
2557                 }
2558                 if (map->cache_only) {
2559                         map->cache_dirty = true;
2560                         return 0;
2561                 }
2562         }
2563
2564         WARN_ON(!map->bus);
2565
2566         for (i = 0; i < num_regs; i++) {
2567                 unsigned int reg = regs[i].reg;
2568                 struct regmap_range_node *range;
2569
2570                 /* Coalesce all the writes between a page break or a delay
2571                  * in a sequence
2572                  */
2573                 range = _regmap_range_lookup(map, reg);
2574                 if (range || regs[i].delay_us) {
2575                         size_t len = sizeof(struct reg_sequence)*num_regs;
2576                         struct reg_sequence *base = kmemdup(regs, len,
2577                                                            GFP_KERNEL);
2578                         if (!base)
2579                                 return -ENOMEM;
2580                         ret = _regmap_range_multi_paged_reg_write(map, base,
2581                                                                   num_regs);
2582                         kfree(base);
2583
2584                         return ret;
2585                 }
2586         }
2587         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2588 }
2589
2590 /**
2591  * regmap_multi_reg_write() - Write multiple registers to the device
2592  *
2593  * @map: Register map to write to
2594  * @regs: Array of structures containing register,value to be written
2595  * @num_regs: Number of registers to write
2596  *
2597  * Write multiple registers to the device where the set of register, value
2598  * pairs are supplied in any order, possibly not all in a single range.
2599  *
2600  * The 'normal' block write mode will send ultimately send data on the
2601  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2602  * addressed. However, this alternative block multi write mode will send
2603  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2604  * must of course support the mode.
2605  *
2606  * A value of zero will be returned on success, a negative errno will be
2607  * returned in error cases.
2608  */
2609 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2610                            int num_regs)
2611 {
2612         int ret;
2613
2614         map->lock(map->lock_arg);
2615
2616         ret = _regmap_multi_reg_write(map, regs, num_regs);
2617
2618         map->unlock(map->lock_arg);
2619
2620         return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2623
2624 /**
2625  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2626  *                                     device but not the cache
2627  *
2628  * @map: Register map to write to
2629  * @regs: Array of structures containing register,value to be written
2630  * @num_regs: Number of registers to write
2631  *
2632  * Write multiple registers to the device but not the cache where the set
2633  * of register are supplied in any order.
2634  *
2635  * This function is intended to be used for writing a large block of data
2636  * atomically to the device in single transfer for those I2C client devices
2637  * that implement this alternative block write mode.
2638  *
2639  * A value of zero will be returned on success, a negative errno will
2640  * be returned in error cases.
2641  */
2642 int regmap_multi_reg_write_bypassed(struct regmap *map,
2643                                     const struct reg_sequence *regs,
2644                                     int num_regs)
2645 {
2646         int ret;
2647         bool bypass;
2648
2649         map->lock(map->lock_arg);
2650
2651         bypass = map->cache_bypass;
2652         map->cache_bypass = true;
2653
2654         ret = _regmap_multi_reg_write(map, regs, num_regs);
2655
2656         map->cache_bypass = bypass;
2657
2658         map->unlock(map->lock_arg);
2659
2660         return ret;
2661 }
2662 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2663
2664 /**
2665  * regmap_raw_write_async() - Write raw values to one or more registers
2666  *                            asynchronously
2667  *
2668  * @map: Register map to write to
2669  * @reg: Initial register to write to
2670  * @val: Block of data to be written, laid out for direct transmission to the
2671  *       device.  Must be valid until regmap_async_complete() is called.
2672  * @val_len: Length of data pointed to by val.
2673  *
2674  * This function is intended to be used for things like firmware
2675  * download where a large block of data needs to be transferred to the
2676  * device.  No formatting will be done on the data provided.
2677  *
2678  * If supported by the underlying bus the write will be scheduled
2679  * asynchronously, helping maximise I/O speed on higher speed buses
2680  * like SPI.  regmap_async_complete() can be called to ensure that all
2681  * asynchrnous writes have been completed.
2682  *
2683  * A value of zero will be returned on success, a negative errno will
2684  * be returned in error cases.
2685  */
2686 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2687                            const void *val, size_t val_len)
2688 {
2689         int ret;
2690
2691         if (val_len % map->format.val_bytes)
2692                 return -EINVAL;
2693         if (!IS_ALIGNED(reg, map->reg_stride))
2694                 return -EINVAL;
2695
2696         map->lock(map->lock_arg);
2697
2698         map->async = true;
2699
2700         ret = _regmap_raw_write(map, reg, val, val_len, false);
2701
2702         map->async = false;
2703
2704         map->unlock(map->lock_arg);
2705
2706         return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2709
2710 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2711                             unsigned int val_len, bool noinc)
2712 {
2713         struct regmap_range_node *range;
2714         int ret;
2715
2716         if (!map->read)
2717                 return -EINVAL;
2718
2719         range = _regmap_range_lookup(map, reg);
2720         if (range) {
2721                 ret = _regmap_select_page(map, &reg, range,
2722                                           noinc ? 1 : val_len / map->format.val_bytes);
2723                 if (ret != 0)
2724                         return ret;
2725         }
2726
2727         reg = regmap_reg_addr(map, reg);
2728         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2729         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2730                                       map->read_flag_mask);
2731         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2732
2733         ret = map->read(map->bus_context, map->work_buf,
2734                         map->format.reg_bytes + map->format.pad_bytes,
2735                         val, val_len);
2736
2737         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2738
2739         return ret;
2740 }
2741
2742 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2743                                 unsigned int *val)
2744 {
2745         struct regmap *map = context;
2746         struct regmap_range_node *range;
2747         int ret;
2748
2749         range = _regmap_range_lookup(map, reg);
2750         if (range) {
2751                 ret = _regmap_select_page(map, &reg, range, 1);
2752                 if (ret != 0)
2753                         return ret;
2754         }
2755
2756         reg = regmap_reg_addr(map, reg);
2757         return map->bus->reg_read(map->bus_context, reg, val);
2758 }
2759
2760 static int _regmap_bus_read(void *context, unsigned int reg,
2761                             unsigned int *val)
2762 {
2763         int ret;
2764         struct regmap *map = context;
2765         void *work_val = map->work_buf + map->format.reg_bytes +
2766                 map->format.pad_bytes;
2767
2768         if (!map->format.parse_val)
2769                 return -EINVAL;
2770
2771         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2772         if (ret == 0)
2773                 *val = map->format.parse_val(work_val);
2774
2775         return ret;
2776 }
2777
2778 static int _regmap_read(struct regmap *map, unsigned int reg,
2779                         unsigned int *val)
2780 {
2781         int ret;
2782         void *context = _regmap_map_get_context(map);
2783
2784         if (!map->cache_bypass) {
2785                 ret = regcache_read(map, reg, val);
2786                 if (ret == 0)
2787                         return 0;
2788         }
2789
2790         if (map->cache_only)
2791                 return -EBUSY;
2792
2793         if (!regmap_readable(map, reg))
2794                 return -EIO;
2795
2796         ret = map->reg_read(context, reg, val);
2797         if (ret == 0) {
2798                 if (regmap_should_log(map))
2799                         dev_info(map->dev, "%x => %x\n", reg, *val);
2800
2801                 trace_regmap_reg_read(map, reg, *val);
2802
2803                 if (!map->cache_bypass)
2804                         regcache_write(map, reg, *val);
2805         }
2806
2807         return ret;
2808 }
2809
2810 /**
2811  * regmap_read() - Read a value from a single register
2812  *
2813  * @map: Register map to read from
2814  * @reg: Register to be read from
2815  * @val: Pointer to store read value
2816  *
2817  * A value of zero will be returned on success, a negative errno will
2818  * be returned in error cases.
2819  */
2820 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2821 {
2822         int ret;
2823
2824         if (!IS_ALIGNED(reg, map->reg_stride))
2825                 return -EINVAL;
2826
2827         map->lock(map->lock_arg);
2828
2829         ret = _regmap_read(map, reg, val);
2830
2831         map->unlock(map->lock_arg);
2832
2833         return ret;
2834 }
2835 EXPORT_SYMBOL_GPL(regmap_read);
2836
2837 /**
2838  * regmap_raw_read() - Read raw data from the device
2839  *
2840  * @map: Register map to read from
2841  * @reg: First register to be read from
2842  * @val: Pointer to store read value
2843  * @val_len: Size of data to read
2844  *
2845  * A value of zero will be returned on success, a negative errno will
2846  * be returned in error cases.
2847  */
2848 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2849                     size_t val_len)
2850 {
2851         size_t val_bytes = map->format.val_bytes;
2852         size_t val_count = val_len / val_bytes;
2853         unsigned int v;
2854         int ret, i;
2855
2856         if (val_len % map->format.val_bytes)
2857                 return -EINVAL;
2858         if (!IS_ALIGNED(reg, map->reg_stride))
2859                 return -EINVAL;
2860         if (val_count == 0)
2861                 return -EINVAL;
2862
2863         map->lock(map->lock_arg);
2864
2865         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2866             map->cache_type == REGCACHE_NONE) {
2867                 size_t chunk_count, chunk_bytes;
2868                 size_t chunk_regs = val_count;
2869
2870                 if (!map->cache_bypass && map->cache_only) {
2871                         ret = -EBUSY;
2872                         goto out;
2873                 }
2874
2875                 if (!map->read) {
2876                         ret = -ENOTSUPP;
2877                         goto out;
2878                 }
2879
2880                 if (map->use_single_read)
2881                         chunk_regs = 1;
2882                 else if (map->max_raw_read && val_len > map->max_raw_read)
2883                         chunk_regs = map->max_raw_read / val_bytes;
2884
2885                 chunk_count = val_count / chunk_regs;
2886                 chunk_bytes = chunk_regs * val_bytes;
2887
2888                 /* Read bytes that fit into whole chunks */
2889                 for (i = 0; i < chunk_count; i++) {
2890                         ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2891                         if (ret != 0)
2892                                 goto out;
2893
2894                         reg += regmap_get_offset(map, chunk_regs);
2895                         val += chunk_bytes;
2896                         val_len -= chunk_bytes;
2897                 }
2898
2899                 /* Read remaining bytes */
2900                 if (val_len) {
2901                         ret = _regmap_raw_read(map, reg, val, val_len, false);
2902                         if (ret != 0)
2903                                 goto out;
2904                 }
2905         } else {
2906                 /* Otherwise go word by word for the cache; should be low
2907                  * cost as we expect to hit the cache.
2908                  */
2909                 for (i = 0; i < val_count; i++) {
2910                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2911                                            &v);
2912                         if (ret != 0)
2913                                 goto out;
2914
2915                         map->format.format_val(val + (i * val_bytes), v, 0);
2916                 }
2917         }
2918
2919  out:
2920         map->unlock(map->lock_arg);
2921
2922         return ret;
2923 }
2924 EXPORT_SYMBOL_GPL(regmap_raw_read);
2925
2926 /**
2927  * regmap_noinc_read(): Read data from a register without incrementing the
2928  *                      register number
2929  *
2930  * @map: Register map to read from
2931  * @reg: Register to read from
2932  * @val: Pointer to data buffer
2933  * @val_len: Length of output buffer in bytes.
2934  *
2935  * The regmap API usually assumes that bulk read operations will read a
2936  * range of registers. Some devices have certain registers for which a read
2937  * operation read will read from an internal FIFO.
2938  *
2939  * The target register must be volatile but registers after it can be
2940  * completely unrelated cacheable registers.
2941  *
2942  * This will attempt multiple reads as required to read val_len bytes.
2943  *
2944  * A value of zero will be returned on success, a negative errno will be
2945  * returned in error cases.
2946  */
2947 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2948                       void *val, size_t val_len)
2949 {
2950         size_t read_len;
2951         int ret;
2952
2953         if (!map->read)
2954                 return -ENOTSUPP;
2955
2956         if (val_len % map->format.val_bytes)
2957                 return -EINVAL;
2958         if (!IS_ALIGNED(reg, map->reg_stride))
2959                 return -EINVAL;
2960         if (val_len == 0)
2961                 return -EINVAL;
2962
2963         map->lock(map->lock_arg);
2964
2965         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2966                 ret = -EINVAL;
2967                 goto out_unlock;
2968         }
2969
2970         /*
2971          * We have not defined the FIFO semantics for cache, as the
2972          * cache is just one value deep. Should we return the last
2973          * written value? Just avoid this by always reading the FIFO
2974          * even when using cache. Cache only will not work.
2975          */
2976         if (!map->cache_bypass && map->cache_only) {
2977                 ret = -EBUSY;
2978                 goto out_unlock;
2979         }
2980
2981         /* Use the accelerated operation if we can */
2982         if (map->bus->reg_noinc_read) {
2983                 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
2984                 goto out_unlock;
2985         }
2986
2987         while (val_len) {
2988                 if (map->max_raw_read && map->max_raw_read < val_len)
2989                         read_len = map->max_raw_read;
2990                 else
2991                         read_len = val_len;
2992                 ret = _regmap_raw_read(map, reg, val, read_len, true);
2993                 if (ret)
2994                         goto out_unlock;
2995                 val = ((u8 *)val) + read_len;
2996                 val_len -= read_len;
2997         }
2998
2999 out_unlock:
3000         map->unlock(map->lock_arg);
3001         return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3004
3005 /**
3006  * regmap_field_read(): Read a value to a single register field
3007  *
3008  * @field: Register field to read from
3009  * @val: Pointer to store read value
3010  *
3011  * A value of zero will be returned on success, a negative errno will
3012  * be returned in error cases.
3013  */
3014 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3015 {
3016         int ret;
3017         unsigned int reg_val;
3018         ret = regmap_read(field->regmap, field->reg, &reg_val);
3019         if (ret != 0)
3020                 return ret;
3021
3022         reg_val &= field->mask;
3023         reg_val >>= field->shift;
3024         *val = reg_val;
3025
3026         return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(regmap_field_read);
3029
3030 /**
3031  * regmap_fields_read() - Read a value to a single register field with port ID
3032  *
3033  * @field: Register field to read from
3034  * @id: port ID
3035  * @val: Pointer to store read value
3036  *
3037  * A value of zero will be returned on success, a negative errno will
3038  * be returned in error cases.
3039  */
3040 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3041                        unsigned int *val)
3042 {
3043         int ret;
3044         unsigned int reg_val;
3045
3046         if (id >= field->id_size)
3047                 return -EINVAL;
3048
3049         ret = regmap_read(field->regmap,
3050                           field->reg + (field->id_offset * id),
3051                           &reg_val);
3052         if (ret != 0)
3053                 return ret;
3054
3055         reg_val &= field->mask;
3056         reg_val >>= field->shift;
3057         *val = reg_val;
3058
3059         return ret;
3060 }
3061 EXPORT_SYMBOL_GPL(regmap_fields_read);
3062
3063 /**
3064  * regmap_bulk_read() - Read multiple registers from the device
3065  *
3066  * @map: Register map to read from
3067  * @reg: First register to be read from
3068  * @val: Pointer to store read value, in native register size for device
3069  * @val_count: Number of registers to read
3070  *
3071  * A value of zero will be returned on success, a negative errno will
3072  * be returned in error cases.
3073  */
3074 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3075                      size_t val_count)
3076 {
3077         int ret, i;
3078         size_t val_bytes = map->format.val_bytes;
3079         bool vol = regmap_volatile_range(map, reg, val_count);
3080
3081         if (!IS_ALIGNED(reg, map->reg_stride))
3082                 return -EINVAL;
3083         if (val_count == 0)
3084                 return -EINVAL;
3085
3086         if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3087                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3088                 if (ret != 0)
3089                         return ret;
3090
3091                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3092                         map->format.parse_inplace(val + i);
3093         } else {
3094                 u32 *u32 = val;
3095                 u16 *u16 = val;
3096                 u8 *u8 = val;
3097
3098                 map->lock(map->lock_arg);
3099
3100                 for (i = 0; i < val_count; i++) {
3101                         unsigned int ival;
3102
3103                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3104                                            &ival);
3105                         if (ret != 0)
3106                                 goto out;
3107
3108                         switch (map->format.val_bytes) {
3109                         case 4:
3110                                 u32[i] = ival;
3111                                 break;
3112                         case 2:
3113                                 u16[i] = ival;
3114                                 break;
3115                         case 1:
3116                                 u8[i] = ival;
3117                                 break;
3118                         default:
3119                                 ret = -EINVAL;
3120                                 goto out;
3121                         }
3122                 }
3123
3124 out:
3125                 map->unlock(map->lock_arg);
3126         }
3127
3128         if (!ret)
3129                 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3130
3131         return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3134
3135 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3136                                unsigned int mask, unsigned int val,
3137                                bool *change, bool force_write)
3138 {
3139         int ret;
3140         unsigned int tmp, orig;
3141
3142         if (change)
3143                 *change = false;
3144
3145         if (regmap_volatile(map, reg) && map->reg_update_bits) {
3146                 reg = regmap_reg_addr(map, reg);
3147                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3148                 if (ret == 0 && change)
3149                         *change = true;
3150         } else {
3151                 ret = _regmap_read(map, reg, &orig);
3152                 if (ret != 0)
3153                         return ret;
3154
3155                 tmp = orig & ~mask;
3156                 tmp |= val & mask;
3157
3158                 if (force_write || (tmp != orig) || map->force_write_field) {
3159                         ret = _regmap_write(map, reg, tmp);
3160                         if (ret == 0 && change)
3161                                 *change = true;
3162                 }
3163         }
3164
3165         return ret;
3166 }
3167
3168 /**
3169  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3170  *
3171  * @map: Register map to update
3172  * @reg: Register to update
3173  * @mask: Bitmask to change
3174  * @val: New value for bitmask
3175  * @change: Boolean indicating if a write was done
3176  * @async: Boolean indicating asynchronously
3177  * @force: Boolean indicating use force update
3178  *
3179  * Perform a read/modify/write cycle on a register map with change, async, force
3180  * options.
3181  *
3182  * If async is true:
3183  *
3184  * With most buses the read must be done synchronously so this is most useful
3185  * for devices with a cache which do not need to interact with the hardware to
3186  * determine the current register value.
3187  *
3188  * Returns zero for success, a negative number on error.
3189  */
3190 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3191                             unsigned int mask, unsigned int val,
3192                             bool *change, bool async, bool force)
3193 {
3194         int ret;
3195
3196         map->lock(map->lock_arg);
3197
3198         map->async = async;
3199
3200         ret = _regmap_update_bits(map, reg, mask, val, change, force);
3201
3202         map->async = false;
3203
3204         map->unlock(map->lock_arg);
3205
3206         return ret;
3207 }
3208 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3209
3210 /**
3211  * regmap_test_bits() - Check if all specified bits are set in a register.
3212  *
3213  * @map: Register map to operate on
3214  * @reg: Register to read from
3215  * @bits: Bits to test
3216  *
3217  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3218  * bits are set and a negative error number if the underlying regmap_read()
3219  * fails.
3220  */
3221 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3222 {
3223         unsigned int val, ret;
3224
3225         ret = regmap_read(map, reg, &val);
3226         if (ret)
3227                 return ret;
3228
3229         return (val & bits) == bits;
3230 }
3231 EXPORT_SYMBOL_GPL(regmap_test_bits);
3232
3233 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3234 {
3235         struct regmap *map = async->map;
3236         bool wake;
3237
3238         trace_regmap_async_io_complete(map);
3239
3240         spin_lock(&map->async_lock);
3241         list_move(&async->list, &map->async_free);
3242         wake = list_empty(&map->async_list);
3243
3244         if (ret != 0)
3245                 map->async_ret = ret;
3246
3247         spin_unlock(&map->async_lock);
3248
3249         if (wake)
3250                 wake_up(&map->async_waitq);
3251 }
3252 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3253
3254 static int regmap_async_is_done(struct regmap *map)
3255 {
3256         unsigned long flags;
3257         int ret;
3258
3259         spin_lock_irqsave(&map->async_lock, flags);
3260         ret = list_empty(&map->async_list);
3261         spin_unlock_irqrestore(&map->async_lock, flags);
3262
3263         return ret;
3264 }
3265
3266 /**
3267  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3268  *
3269  * @map: Map to operate on.
3270  *
3271  * Blocks until any pending asynchronous I/O has completed.  Returns
3272  * an error code for any failed I/O operations.
3273  */
3274 int regmap_async_complete(struct regmap *map)
3275 {
3276         unsigned long flags;
3277         int ret;
3278
3279         /* Nothing to do with no async support */
3280         if (!map->bus || !map->bus->async_write)
3281                 return 0;
3282
3283         trace_regmap_async_complete_start(map);
3284
3285         wait_event(map->async_waitq, regmap_async_is_done(map));
3286
3287         spin_lock_irqsave(&map->async_lock, flags);
3288         ret = map->async_ret;
3289         map->async_ret = 0;
3290         spin_unlock_irqrestore(&map->async_lock, flags);
3291
3292         trace_regmap_async_complete_done(map);
3293
3294         return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(regmap_async_complete);
3297
3298 /**
3299  * regmap_register_patch - Register and apply register updates to be applied
3300  *                         on device initialistion
3301  *
3302  * @map: Register map to apply updates to.
3303  * @regs: Values to update.
3304  * @num_regs: Number of entries in regs.
3305  *
3306  * Register a set of register updates to be applied to the device
3307  * whenever the device registers are synchronised with the cache and
3308  * apply them immediately.  Typically this is used to apply
3309  * corrections to be applied to the device defaults on startup, such
3310  * as the updates some vendors provide to undocumented registers.
3311  *
3312  * The caller must ensure that this function cannot be called
3313  * concurrently with either itself or regcache_sync().
3314  */
3315 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3316                           int num_regs)
3317 {
3318         struct reg_sequence *p;
3319         int ret;
3320         bool bypass;
3321
3322         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3323             num_regs))
3324                 return 0;
3325
3326         p = krealloc(map->patch,
3327                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3328                      GFP_KERNEL);
3329         if (p) {
3330                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3331                 map->patch = p;
3332                 map->patch_regs += num_regs;
3333         } else {
3334                 return -ENOMEM;
3335         }
3336
3337         map->lock(map->lock_arg);
3338
3339         bypass = map->cache_bypass;
3340
3341         map->cache_bypass = true;
3342         map->async = true;
3343
3344         ret = _regmap_multi_reg_write(map, regs, num_regs);
3345
3346         map->async = false;
3347         map->cache_bypass = bypass;
3348
3349         map->unlock(map->lock_arg);
3350
3351         regmap_async_complete(map);
3352
3353         return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(regmap_register_patch);
3356
3357 /**
3358  * regmap_get_val_bytes() - Report the size of a register value
3359  *
3360  * @map: Register map to operate on.
3361  *
3362  * Report the size of a register value, mainly intended to for use by
3363  * generic infrastructure built on top of regmap.
3364  */
3365 int regmap_get_val_bytes(struct regmap *map)
3366 {
3367         if (map->format.format_write)
3368                 return -EINVAL;
3369
3370         return map->format.val_bytes;
3371 }
3372 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3373
3374 /**
3375  * regmap_get_max_register() - Report the max register value
3376  *
3377  * @map: Register map to operate on.
3378  *
3379  * Report the max register value, mainly intended to for use by
3380  * generic infrastructure built on top of regmap.
3381  */
3382 int regmap_get_max_register(struct regmap *map)
3383 {
3384         return map->max_register ? map->max_register : -EINVAL;
3385 }
3386 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3387
3388 /**
3389  * regmap_get_reg_stride() - Report the register address stride
3390  *
3391  * @map: Register map to operate on.
3392  *
3393  * Report the register address stride, mainly intended to for use by
3394  * generic infrastructure built on top of regmap.
3395  */
3396 int regmap_get_reg_stride(struct regmap *map)
3397 {
3398         return map->reg_stride;
3399 }
3400 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3401
3402 /**
3403  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3404  *
3405  * @map: Register map to operate on.
3406  *
3407  * Returns true if an access to the register might sleep, else false.
3408  */
3409 bool regmap_might_sleep(struct regmap *map)
3410 {
3411         return map->can_sleep;
3412 }
3413 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3414
3415 int regmap_parse_val(struct regmap *map, const void *buf,
3416                         unsigned int *val)
3417 {
3418         if (!map->format.parse_val)
3419                 return -EINVAL;
3420
3421         *val = map->format.parse_val(buf);
3422
3423         return 0;
3424 }
3425 EXPORT_SYMBOL_GPL(regmap_parse_val);
3426
3427 static int __init regmap_initcall(void)
3428 {
3429         regmap_debugfs_initcall();
3430
3431         return 0;
3432 }
3433 postcore_initcall(regmap_initcall);