1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
51 static int _regmap_bus_read(void *context, unsigned int reg,
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
64 const struct regmap_range *r;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register && reg > map->max_register)
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
99 return regmap_check_range_table(map, reg, map->wr_table);
104 bool regmap_cached(struct regmap *map, unsigned int reg)
109 if (map->cache_type == REGCACHE_NONE)
115 if (map->max_register && reg > map->max_register)
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
127 bool regmap_readable(struct regmap *map, unsigned int reg)
132 if (map->max_register && reg > map->max_register)
135 if (map->format.format_write)
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
142 return regmap_check_range_table(map, reg, map->rd_table);
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
218 out[1] = (reg << 4) | (val >> 16);
224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
227 u8 *out = map->work_buf;
229 *out = (reg << 6) | val;
232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
249 u8 *out = map->work_buf;
253 out[0] = (val >> 16) | (reg << 1);
256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
259 u8 *out = map->work_buf;
262 out[1] = (val >> 8) | (reg << 6);
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
275 put_unaligned_be16(val << shift, buf);
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
280 put_unaligned_le16(val << shift, buf);
283 static void regmap_format_16_native(void *buf, unsigned int val,
286 u16 v = val << shift;
288 memcpy(buf, &v, sizeof(v));
291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
304 put_unaligned_be32(val << shift, buf);
307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
309 put_unaligned_le32(val << shift, buf);
312 static void regmap_format_32_native(void *buf, unsigned int val,
315 u32 v = val << shift;
317 memcpy(buf, &v, sizeof(v));
321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
323 put_unaligned_be64((u64) val << shift, buf);
326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
328 put_unaligned_le64((u64) val << shift, buf);
331 static void regmap_format_64_native(void *buf, unsigned int val,
334 u64 v = (u64) val << shift;
336 memcpy(buf, &v, sizeof(v));
340 static void regmap_parse_inplace_noop(void *buf)
344 static unsigned int regmap_parse_8(const void *buf)
351 static unsigned int regmap_parse_16_be(const void *buf)
353 return get_unaligned_be16(buf);
356 static unsigned int regmap_parse_16_le(const void *buf)
358 return get_unaligned_le16(buf);
361 static void regmap_parse_16_be_inplace(void *buf)
363 u16 v = get_unaligned_be16(buf);
365 memcpy(buf, &v, sizeof(v));
368 static void regmap_parse_16_le_inplace(void *buf)
370 u16 v = get_unaligned_le16(buf);
372 memcpy(buf, &v, sizeof(v));
375 static unsigned int regmap_parse_16_native(const void *buf)
379 memcpy(&v, buf, sizeof(v));
383 static unsigned int regmap_parse_24(const void *buf)
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
393 static unsigned int regmap_parse_32_be(const void *buf)
395 return get_unaligned_be32(buf);
398 static unsigned int regmap_parse_32_le(const void *buf)
400 return get_unaligned_le32(buf);
403 static void regmap_parse_32_be_inplace(void *buf)
405 u32 v = get_unaligned_be32(buf);
407 memcpy(buf, &v, sizeof(v));
410 static void regmap_parse_32_le_inplace(void *buf)
412 u32 v = get_unaligned_le32(buf);
414 memcpy(buf, &v, sizeof(v));
417 static unsigned int regmap_parse_32_native(const void *buf)
421 memcpy(&v, buf, sizeof(v));
426 static unsigned int regmap_parse_64_be(const void *buf)
428 return get_unaligned_be64(buf);
431 static unsigned int regmap_parse_64_le(const void *buf)
433 return get_unaligned_le64(buf);
436 static void regmap_parse_64_be_inplace(void *buf)
438 u64 v = get_unaligned_be64(buf);
440 memcpy(buf, &v, sizeof(v));
443 static void regmap_parse_64_le_inplace(void *buf)
445 u64 v = get_unaligned_le64(buf);
447 memcpy(buf, &v, sizeof(v));
450 static unsigned int regmap_parse_64_native(const void *buf)
454 memcpy(&v, buf, sizeof(v));
459 static void regmap_lock_hwlock(void *__map)
461 struct regmap *map = __map;
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
466 static void regmap_lock_hwlock_irq(void *__map)
468 struct regmap *map = __map;
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
473 static void regmap_lock_hwlock_irqsave(void *__map)
475 struct regmap *map = __map;
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
481 static void regmap_unlock_hwlock(void *__map)
483 struct regmap *map = __map;
485 hwspin_unlock(map->hwlock);
488 static void regmap_unlock_hwlock_irq(void *__map)
490 struct regmap *map = __map;
492 hwspin_unlock_irq(map->hwlock);
495 static void regmap_unlock_hwlock_irqrestore(void *__map)
497 struct regmap *map = __map;
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
502 static void regmap_lock_unlock_none(void *__map)
507 static void regmap_lock_mutex(void *__map)
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
513 static void regmap_unlock_mutex(void *__map)
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
522 struct regmap *map = __map;
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
539 struct regmap *map = __map;
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
553 static void dev_get_regmap_release(struct device *dev, void *res)
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
562 static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
590 struct rb_node *node = map->range_tree.rb_node;
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
607 static void regmap_range_exit(struct regmap *map)
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
612 next = rb_first(&map->range_tree);
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
620 kfree(map->selector_work_buf);
623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
631 kfree_const(map->name);
638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
646 ret = regmap_set_name(map, config);
650 regmap_debugfs_init(map);
652 /* Add a devres resource for dev_get_regmap() */
653 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 regmap_debugfs_exit(map);
663 EXPORT_SYMBOL_GPL(regmap_attach_dev);
665 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
666 const struct regmap_config *config)
668 enum regmap_endian endian;
670 /* Retrieve the endianness specification from the regmap config */
671 endian = config->reg_format_endian;
673 /* If the regmap config specified a non-default value, use that */
674 if (endian != REGMAP_ENDIAN_DEFAULT)
677 /* Retrieve the endianness specification from the bus config */
678 if (bus && bus->reg_format_endian_default)
679 endian = bus->reg_format_endian_default;
681 /* If the bus specified a non-default value, use that */
682 if (endian != REGMAP_ENDIAN_DEFAULT)
685 /* Use this if no other value was found */
686 return REGMAP_ENDIAN_BIG;
689 enum regmap_endian regmap_get_val_endian(struct device *dev,
690 const struct regmap_bus *bus,
691 const struct regmap_config *config)
693 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
694 enum regmap_endian endian;
696 /* Retrieve the endianness specification from the regmap config */
697 endian = config->val_format_endian;
699 /* If the regmap config specified a non-default value, use that */
700 if (endian != REGMAP_ENDIAN_DEFAULT)
703 /* If the firmware node exist try to get endianness from it */
704 if (fwnode_property_read_bool(fwnode, "big-endian"))
705 endian = REGMAP_ENDIAN_BIG;
706 else if (fwnode_property_read_bool(fwnode, "little-endian"))
707 endian = REGMAP_ENDIAN_LITTLE;
708 else if (fwnode_property_read_bool(fwnode, "native-endian"))
709 endian = REGMAP_ENDIAN_NATIVE;
711 /* If the endianness was specified in fwnode, use that */
712 if (endian != REGMAP_ENDIAN_DEFAULT)
715 /* Retrieve the endianness specification from the bus config */
716 if (bus && bus->val_format_endian_default)
717 endian = bus->val_format_endian_default;
719 /* If the bus specified a non-default value, use that */
720 if (endian != REGMAP_ENDIAN_DEFAULT)
723 /* Use this if no other value was found */
724 return REGMAP_ENDIAN_BIG;
726 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728 struct regmap *__regmap_init(struct device *dev,
729 const struct regmap_bus *bus,
731 const struct regmap_config *config,
732 struct lock_class_key *lock_key,
733 const char *lock_name)
737 enum regmap_endian reg_endian, val_endian;
743 map = kzalloc(sizeof(*map), GFP_KERNEL);
749 ret = regmap_set_name(map, config);
753 ret = -EINVAL; /* Later error paths rely on this */
755 if (config->disable_locking) {
756 map->lock = map->unlock = regmap_lock_unlock_none;
757 map->can_sleep = config->can_sleep;
758 regmap_debugfs_disable(map);
759 } else if (config->lock && config->unlock) {
760 map->lock = config->lock;
761 map->unlock = config->unlock;
762 map->lock_arg = config->lock_arg;
763 map->can_sleep = config->can_sleep;
764 } else if (config->use_hwlock) {
765 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
771 switch (config->hwlock_mode) {
772 case HWLOCK_IRQSTATE:
773 map->lock = regmap_lock_hwlock_irqsave;
774 map->unlock = regmap_unlock_hwlock_irqrestore;
777 map->lock = regmap_lock_hwlock_irq;
778 map->unlock = regmap_unlock_hwlock_irq;
781 map->lock = regmap_lock_hwlock;
782 map->unlock = regmap_unlock_hwlock;
788 if ((bus && bus->fast_io) ||
790 if (config->use_raw_spinlock) {
791 raw_spin_lock_init(&map->raw_spinlock);
792 map->lock = regmap_lock_raw_spinlock;
793 map->unlock = regmap_unlock_raw_spinlock;
794 lockdep_set_class_and_name(&map->raw_spinlock,
795 lock_key, lock_name);
797 spin_lock_init(&map->spinlock);
798 map->lock = regmap_lock_spinlock;
799 map->unlock = regmap_unlock_spinlock;
800 lockdep_set_class_and_name(&map->spinlock,
801 lock_key, lock_name);
804 mutex_init(&map->mutex);
805 map->lock = regmap_lock_mutex;
806 map->unlock = regmap_unlock_mutex;
807 map->can_sleep = true;
808 lockdep_set_class_and_name(&map->mutex,
809 lock_key, lock_name);
815 * When we write in fast-paths with regmap_bulk_write() don't allocate
816 * scratch buffers with sleeping allocations.
818 if ((bus && bus->fast_io) || config->fast_io)
819 map->alloc_flags = GFP_ATOMIC;
821 map->alloc_flags = GFP_KERNEL;
823 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
824 map->format.pad_bytes = config->pad_bits / 8;
825 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
826 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
827 config->val_bits + config->pad_bits, 8);
828 map->reg_shift = config->pad_bits % 8;
829 if (config->reg_stride)
830 map->reg_stride = config->reg_stride;
833 if (is_power_of_2(map->reg_stride))
834 map->reg_stride_order = ilog2(map->reg_stride);
836 map->reg_stride_order = -1;
837 map->use_single_read = config->use_single_read || !bus || !bus->read;
838 map->use_single_write = config->use_single_write || !bus || !bus->write;
839 map->can_multi_write = config->can_multi_write && bus && bus->write;
841 map->max_raw_read = bus->max_raw_read;
842 map->max_raw_write = bus->max_raw_write;
846 map->bus_context = bus_context;
847 map->max_register = config->max_register;
848 map->wr_table = config->wr_table;
849 map->rd_table = config->rd_table;
850 map->volatile_table = config->volatile_table;
851 map->precious_table = config->precious_table;
852 map->wr_noinc_table = config->wr_noinc_table;
853 map->rd_noinc_table = config->rd_noinc_table;
854 map->writeable_reg = config->writeable_reg;
855 map->readable_reg = config->readable_reg;
856 map->volatile_reg = config->volatile_reg;
857 map->precious_reg = config->precious_reg;
858 map->writeable_noinc_reg = config->writeable_noinc_reg;
859 map->readable_noinc_reg = config->readable_noinc_reg;
860 map->cache_type = config->cache_type;
862 spin_lock_init(&map->async_lock);
863 INIT_LIST_HEAD(&map->async_list);
864 INIT_LIST_HEAD(&map->async_free);
865 init_waitqueue_head(&map->async_waitq);
867 if (config->read_flag_mask ||
868 config->write_flag_mask ||
869 config->zero_flag_mask) {
870 map->read_flag_mask = config->read_flag_mask;
871 map->write_flag_mask = config->write_flag_mask;
873 map->read_flag_mask = bus->read_flag_mask;
877 map->reg_read = config->reg_read;
878 map->reg_write = config->reg_write;
880 map->defer_caching = false;
881 goto skip_format_initialization;
882 } else if (!bus->read || !bus->write) {
883 map->reg_read = _regmap_bus_reg_read;
884 map->reg_write = _regmap_bus_reg_write;
885 map->reg_update_bits = bus->reg_update_bits;
887 map->defer_caching = false;
888 goto skip_format_initialization;
890 map->reg_read = _regmap_bus_read;
891 map->reg_update_bits = bus->reg_update_bits;
894 reg_endian = regmap_get_reg_endian(bus, config);
895 val_endian = regmap_get_val_endian(dev, bus, config);
897 switch (config->reg_bits + map->reg_shift) {
899 switch (config->val_bits) {
901 map->format.format_write = regmap_format_2_6_write;
909 switch (config->val_bits) {
911 map->format.format_write = regmap_format_4_12_write;
919 switch (config->val_bits) {
921 map->format.format_write = regmap_format_7_9_write;
924 map->format.format_write = regmap_format_7_17_write;
932 switch (config->val_bits) {
934 map->format.format_write = regmap_format_10_14_write;
942 switch (config->val_bits) {
944 map->format.format_write = regmap_format_12_20_write;
952 map->format.format_reg = regmap_format_8;
956 switch (reg_endian) {
957 case REGMAP_ENDIAN_BIG:
958 map->format.format_reg = regmap_format_16_be;
960 case REGMAP_ENDIAN_LITTLE:
961 map->format.format_reg = regmap_format_16_le;
963 case REGMAP_ENDIAN_NATIVE:
964 map->format.format_reg = regmap_format_16_native;
972 if (reg_endian != REGMAP_ENDIAN_BIG)
974 map->format.format_reg = regmap_format_24;
978 switch (reg_endian) {
979 case REGMAP_ENDIAN_BIG:
980 map->format.format_reg = regmap_format_32_be;
982 case REGMAP_ENDIAN_LITTLE:
983 map->format.format_reg = regmap_format_32_le;
985 case REGMAP_ENDIAN_NATIVE:
986 map->format.format_reg = regmap_format_32_native;
995 switch (reg_endian) {
996 case REGMAP_ENDIAN_BIG:
997 map->format.format_reg = regmap_format_64_be;
999 case REGMAP_ENDIAN_LITTLE:
1000 map->format.format_reg = regmap_format_64_le;
1002 case REGMAP_ENDIAN_NATIVE:
1003 map->format.format_reg = regmap_format_64_native;
1015 if (val_endian == REGMAP_ENDIAN_NATIVE)
1016 map->format.parse_inplace = regmap_parse_inplace_noop;
1018 switch (config->val_bits) {
1020 map->format.format_val = regmap_format_8;
1021 map->format.parse_val = regmap_parse_8;
1022 map->format.parse_inplace = regmap_parse_inplace_noop;
1025 switch (val_endian) {
1026 case REGMAP_ENDIAN_BIG:
1027 map->format.format_val = regmap_format_16_be;
1028 map->format.parse_val = regmap_parse_16_be;
1029 map->format.parse_inplace = regmap_parse_16_be_inplace;
1031 case REGMAP_ENDIAN_LITTLE:
1032 map->format.format_val = regmap_format_16_le;
1033 map->format.parse_val = regmap_parse_16_le;
1034 map->format.parse_inplace = regmap_parse_16_le_inplace;
1036 case REGMAP_ENDIAN_NATIVE:
1037 map->format.format_val = regmap_format_16_native;
1038 map->format.parse_val = regmap_parse_16_native;
1045 if (val_endian != REGMAP_ENDIAN_BIG)
1047 map->format.format_val = regmap_format_24;
1048 map->format.parse_val = regmap_parse_24;
1051 switch (val_endian) {
1052 case REGMAP_ENDIAN_BIG:
1053 map->format.format_val = regmap_format_32_be;
1054 map->format.parse_val = regmap_parse_32_be;
1055 map->format.parse_inplace = regmap_parse_32_be_inplace;
1057 case REGMAP_ENDIAN_LITTLE:
1058 map->format.format_val = regmap_format_32_le;
1059 map->format.parse_val = regmap_parse_32_le;
1060 map->format.parse_inplace = regmap_parse_32_le_inplace;
1062 case REGMAP_ENDIAN_NATIVE:
1063 map->format.format_val = regmap_format_32_native;
1064 map->format.parse_val = regmap_parse_32_native;
1072 switch (val_endian) {
1073 case REGMAP_ENDIAN_BIG:
1074 map->format.format_val = regmap_format_64_be;
1075 map->format.parse_val = regmap_parse_64_be;
1076 map->format.parse_inplace = regmap_parse_64_be_inplace;
1078 case REGMAP_ENDIAN_LITTLE:
1079 map->format.format_val = regmap_format_64_le;
1080 map->format.parse_val = regmap_parse_64_le;
1081 map->format.parse_inplace = regmap_parse_64_le_inplace;
1083 case REGMAP_ENDIAN_NATIVE:
1084 map->format.format_val = regmap_format_64_native;
1085 map->format.parse_val = regmap_parse_64_native;
1094 if (map->format.format_write) {
1095 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1096 (val_endian != REGMAP_ENDIAN_BIG))
1098 map->use_single_write = true;
1101 if (!map->format.format_write &&
1102 !(map->format.format_reg && map->format.format_val))
1105 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1106 if (map->work_buf == NULL) {
1111 if (map->format.format_write) {
1112 map->defer_caching = false;
1113 map->reg_write = _regmap_bus_formatted_write;
1114 } else if (map->format.format_val) {
1115 map->defer_caching = true;
1116 map->reg_write = _regmap_bus_raw_write;
1119 skip_format_initialization:
1121 map->range_tree = RB_ROOT;
1122 for (i = 0; i < config->num_ranges; i++) {
1123 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1124 struct regmap_range_node *new;
1127 if (range_cfg->range_max < range_cfg->range_min) {
1128 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1129 range_cfg->range_max, range_cfg->range_min);
1133 if (range_cfg->range_max > map->max_register) {
1134 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1135 range_cfg->range_max, map->max_register);
1139 if (range_cfg->selector_reg > map->max_register) {
1141 "Invalid range %d: selector out of map\n", i);
1145 if (range_cfg->window_len == 0) {
1146 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1151 /* Make sure, that this register range has no selector
1152 or data window within its boundary */
1153 for (j = 0; j < config->num_ranges; j++) {
1154 unsigned int sel_reg = config->ranges[j].selector_reg;
1155 unsigned int win_min = config->ranges[j].window_start;
1156 unsigned int win_max = win_min +
1157 config->ranges[j].window_len - 1;
1159 /* Allow data window inside its own virtual range */
1163 if (range_cfg->range_min <= sel_reg &&
1164 sel_reg <= range_cfg->range_max) {
1166 "Range %d: selector for %d in window\n",
1171 if (!(win_max < range_cfg->range_min ||
1172 win_min > range_cfg->range_max)) {
1174 "Range %d: window for %d in window\n",
1180 new = kzalloc(sizeof(*new), GFP_KERNEL);
1187 new->name = range_cfg->name;
1188 new->range_min = range_cfg->range_min;
1189 new->range_max = range_cfg->range_max;
1190 new->selector_reg = range_cfg->selector_reg;
1191 new->selector_mask = range_cfg->selector_mask;
1192 new->selector_shift = range_cfg->selector_shift;
1193 new->window_start = range_cfg->window_start;
1194 new->window_len = range_cfg->window_len;
1196 if (!_regmap_range_add(map, new)) {
1197 dev_err(map->dev, "Failed to add range %d\n", i);
1202 if (map->selector_work_buf == NULL) {
1203 map->selector_work_buf =
1204 kzalloc(map->format.buf_size, GFP_KERNEL);
1205 if (map->selector_work_buf == NULL) {
1212 ret = regcache_init(map, config);
1217 ret = regmap_attach_dev(dev, map, config);
1221 regmap_debugfs_init(map);
1229 regmap_range_exit(map);
1230 kfree(map->work_buf);
1233 hwspin_lock_free(map->hwlock);
1235 kfree_const(map->name);
1239 return ERR_PTR(ret);
1241 EXPORT_SYMBOL_GPL(__regmap_init);
1243 static void devm_regmap_release(struct device *dev, void *res)
1245 regmap_exit(*(struct regmap **)res);
1248 struct regmap *__devm_regmap_init(struct device *dev,
1249 const struct regmap_bus *bus,
1251 const struct regmap_config *config,
1252 struct lock_class_key *lock_key,
1253 const char *lock_name)
1255 struct regmap **ptr, *regmap;
1257 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1259 return ERR_PTR(-ENOMEM);
1261 regmap = __regmap_init(dev, bus, bus_context, config,
1262 lock_key, lock_name);
1263 if (!IS_ERR(regmap)) {
1265 devres_add(dev, ptr);
1272 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1274 static void regmap_field_init(struct regmap_field *rm_field,
1275 struct regmap *regmap, struct reg_field reg_field)
1277 rm_field->regmap = regmap;
1278 rm_field->reg = reg_field.reg;
1279 rm_field->shift = reg_field.lsb;
1280 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1281 rm_field->id_size = reg_field.id_size;
1282 rm_field->id_offset = reg_field.id_offset;
1286 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1288 * @dev: Device that will be interacted with
1289 * @regmap: regmap bank in which this register field is located.
1290 * @reg_field: Register field with in the bank.
1292 * The return value will be an ERR_PTR() on error or a valid pointer
1293 * to a struct regmap_field. The regmap_field will be automatically freed
1294 * by the device management code.
1296 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1297 struct regmap *regmap, struct reg_field reg_field)
1299 struct regmap_field *rm_field = devm_kzalloc(dev,
1300 sizeof(*rm_field), GFP_KERNEL);
1302 return ERR_PTR(-ENOMEM);
1304 regmap_field_init(rm_field, regmap, reg_field);
1309 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1313 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1315 * @regmap: regmap bank in which this register field is located.
1316 * @rm_field: regmap register fields within the bank.
1317 * @reg_field: Register fields within the bank.
1318 * @num_fields: Number of register fields.
1320 * The return value will be an -ENOMEM on error or zero for success.
1321 * Newly allocated regmap_fields should be freed by calling
1322 * regmap_field_bulk_free()
1324 int regmap_field_bulk_alloc(struct regmap *regmap,
1325 struct regmap_field **rm_field,
1326 const struct reg_field *reg_field,
1329 struct regmap_field *rf;
1332 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1336 for (i = 0; i < num_fields; i++) {
1337 regmap_field_init(&rf[i], regmap, reg_field[i]);
1338 rm_field[i] = &rf[i];
1343 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1346 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1349 * @dev: Device that will be interacted with
1350 * @regmap: regmap bank in which this register field is located.
1351 * @rm_field: regmap register fields within the bank.
1352 * @reg_field: Register fields within the bank.
1353 * @num_fields: Number of register fields.
1355 * The return value will be an -ENOMEM on error or zero for success.
1356 * Newly allocated regmap_fields will be automatically freed by the
1357 * device management code.
1359 int devm_regmap_field_bulk_alloc(struct device *dev,
1360 struct regmap *regmap,
1361 struct regmap_field **rm_field,
1362 const struct reg_field *reg_field,
1365 struct regmap_field *rf;
1368 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1372 for (i = 0; i < num_fields; i++) {
1373 regmap_field_init(&rf[i], regmap, reg_field[i]);
1374 rm_field[i] = &rf[i];
1379 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1382 * regmap_field_bulk_free() - Free register field allocated using
1383 * regmap_field_bulk_alloc.
1385 * @field: regmap fields which should be freed.
1387 void regmap_field_bulk_free(struct regmap_field *field)
1391 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1394 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1395 * devm_regmap_field_bulk_alloc.
1397 * @dev: Device that will be interacted with
1398 * @field: regmap field which should be freed.
1400 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1401 * drivers need not call this function, as the memory allocated via devm
1402 * will be freed as per device-driver life-cycle.
1404 void devm_regmap_field_bulk_free(struct device *dev,
1405 struct regmap_field *field)
1407 devm_kfree(dev, field);
1409 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1412 * devm_regmap_field_free() - Free a register field allocated using
1413 * devm_regmap_field_alloc.
1415 * @dev: Device that will be interacted with
1416 * @field: regmap field which should be freed.
1418 * Free register field allocated using devm_regmap_field_alloc(). Usually
1419 * drivers need not call this function, as the memory allocated via devm
1420 * will be freed as per device-driver life-cyle.
1422 void devm_regmap_field_free(struct device *dev,
1423 struct regmap_field *field)
1425 devm_kfree(dev, field);
1427 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1430 * regmap_field_alloc() - Allocate and initialise a register field.
1432 * @regmap: regmap bank in which this register field is located.
1433 * @reg_field: Register field with in the bank.
1435 * The return value will be an ERR_PTR() on error or a valid pointer
1436 * to a struct regmap_field. The regmap_field should be freed by the
1437 * user once its finished working with it using regmap_field_free().
1439 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1440 struct reg_field reg_field)
1442 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1445 return ERR_PTR(-ENOMEM);
1447 regmap_field_init(rm_field, regmap, reg_field);
1451 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1454 * regmap_field_free() - Free register field allocated using
1455 * regmap_field_alloc.
1457 * @field: regmap field which should be freed.
1459 void regmap_field_free(struct regmap_field *field)
1463 EXPORT_SYMBOL_GPL(regmap_field_free);
1466 * regmap_reinit_cache() - Reinitialise the current register cache
1468 * @map: Register map to operate on.
1469 * @config: New configuration. Only the cache data will be used.
1471 * Discard any existing register cache for the map and initialize a
1472 * new cache. This can be used to restore the cache to defaults or to
1473 * update the cache configuration to reflect runtime discovery of the
1476 * No explicit locking is done here, the user needs to ensure that
1477 * this function will not race with other calls to regmap.
1479 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1484 regmap_debugfs_exit(map);
1486 map->max_register = config->max_register;
1487 map->writeable_reg = config->writeable_reg;
1488 map->readable_reg = config->readable_reg;
1489 map->volatile_reg = config->volatile_reg;
1490 map->precious_reg = config->precious_reg;
1491 map->writeable_noinc_reg = config->writeable_noinc_reg;
1492 map->readable_noinc_reg = config->readable_noinc_reg;
1493 map->cache_type = config->cache_type;
1495 ret = regmap_set_name(map, config);
1499 regmap_debugfs_init(map);
1501 map->cache_bypass = false;
1502 map->cache_only = false;
1504 return regcache_init(map, config);
1506 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1509 * regmap_exit() - Free a previously allocated register map
1511 * @map: Register map to operate on.
1513 void regmap_exit(struct regmap *map)
1515 struct regmap_async *async;
1518 regmap_debugfs_exit(map);
1519 regmap_range_exit(map);
1520 if (map->bus && map->bus->free_context)
1521 map->bus->free_context(map->bus_context);
1522 kfree(map->work_buf);
1523 while (!list_empty(&map->async_free)) {
1524 async = list_first_entry_or_null(&map->async_free,
1525 struct regmap_async,
1527 list_del(&async->list);
1528 kfree(async->work_buf);
1532 hwspin_lock_free(map->hwlock);
1533 if (map->lock == regmap_lock_mutex)
1534 mutex_destroy(&map->mutex);
1535 kfree_const(map->name);
1537 if (map->bus && map->bus->free_on_exit)
1541 EXPORT_SYMBOL_GPL(regmap_exit);
1543 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1545 struct regmap **r = res;
1551 /* If the user didn't specify a name match any */
1553 return !strcmp((*r)->name, data);
1559 * dev_get_regmap() - Obtain the regmap (if any) for a device
1561 * @dev: Device to retrieve the map for
1562 * @name: Optional name for the register map, usually NULL.
1564 * Returns the regmap for the device if one is present, or NULL. If
1565 * name is specified then it must match the name specified when
1566 * registering the device, if it is NULL then the first regmap found
1567 * will be used. Devices with multiple register maps are very rare,
1568 * generic code should normally not need to specify a name.
1570 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1572 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1573 dev_get_regmap_match, (void *)name);
1579 EXPORT_SYMBOL_GPL(dev_get_regmap);
1582 * regmap_get_device() - Obtain the device from a regmap
1584 * @map: Register map to operate on.
1586 * Returns the underlying device that the regmap has been created for.
1588 struct device *regmap_get_device(struct regmap *map)
1592 EXPORT_SYMBOL_GPL(regmap_get_device);
1594 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1595 struct regmap_range_node *range,
1596 unsigned int val_num)
1598 void *orig_work_buf;
1599 unsigned int win_offset;
1600 unsigned int win_page;
1604 win_offset = (*reg - range->range_min) % range->window_len;
1605 win_page = (*reg - range->range_min) / range->window_len;
1608 /* Bulk write shouldn't cross range boundary */
1609 if (*reg + val_num - 1 > range->range_max)
1612 /* ... or single page boundary */
1613 if (val_num > range->window_len - win_offset)
1617 /* It is possible to have selector register inside data window.
1618 In that case, selector register is located on every page and
1619 it needs no page switching, when accessed alone. */
1621 range->window_start + win_offset != range->selector_reg) {
1622 /* Use separate work_buf during page switching */
1623 orig_work_buf = map->work_buf;
1624 map->work_buf = map->selector_work_buf;
1626 ret = _regmap_update_bits(map, range->selector_reg,
1627 range->selector_mask,
1628 win_page << range->selector_shift,
1631 map->work_buf = orig_work_buf;
1637 *reg = range->window_start + win_offset;
1642 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1648 if (!mask || !map->work_buf)
1651 buf = map->work_buf;
1653 for (i = 0; i < max_bytes; i++)
1654 buf[i] |= (mask >> (8 * i)) & 0xff;
1657 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1658 const void *val, size_t val_len, bool noinc)
1660 struct regmap_range_node *range;
1661 unsigned long flags;
1662 void *work_val = map->work_buf + map->format.reg_bytes +
1663 map->format.pad_bytes;
1665 int ret = -ENOTSUPP;
1671 /* Check for unwritable or noinc registers in range
1674 if (!regmap_writeable_noinc(map, reg)) {
1675 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1676 unsigned int element =
1677 reg + regmap_get_offset(map, i);
1678 if (!regmap_writeable(map, element) ||
1679 regmap_writeable_noinc(map, element))
1684 if (!map->cache_bypass && map->format.parse_val) {
1686 int val_bytes = map->format.val_bytes;
1687 for (i = 0; i < val_len / val_bytes; i++) {
1688 ival = map->format.parse_val(val + (i * val_bytes));
1689 ret = regcache_write(map,
1690 reg + regmap_get_offset(map, i),
1694 "Error in caching of register: %x ret: %d\n",
1695 reg + regmap_get_offset(map, i), ret);
1699 if (map->cache_only) {
1700 map->cache_dirty = true;
1705 range = _regmap_range_lookup(map, reg);
1707 int val_num = val_len / map->format.val_bytes;
1708 int win_offset = (reg - range->range_min) % range->window_len;
1709 int win_residue = range->window_len - win_offset;
1711 /* If the write goes beyond the end of the window split it */
1712 while (val_num > win_residue) {
1713 dev_dbg(map->dev, "Writing window %d/%zu\n",
1714 win_residue, val_len / map->format.val_bytes);
1715 ret = _regmap_raw_write_impl(map, reg, val,
1717 map->format.val_bytes, noinc);
1722 val_num -= win_residue;
1723 val += win_residue * map->format.val_bytes;
1724 val_len -= win_residue * map->format.val_bytes;
1726 win_offset = (reg - range->range_min) %
1728 win_residue = range->window_len - win_offset;
1731 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1736 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1737 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1738 map->write_flag_mask);
1741 * Essentially all I/O mechanisms will be faster with a single
1742 * buffer to write. Since register syncs often generate raw
1743 * writes of single registers optimise that case.
1745 if (val != work_val && val_len == map->format.val_bytes) {
1746 memcpy(work_val, val, map->format.val_bytes);
1750 if (map->async && map->bus->async_write) {
1751 struct regmap_async *async;
1753 trace_regmap_async_write_start(map, reg, val_len);
1755 spin_lock_irqsave(&map->async_lock, flags);
1756 async = list_first_entry_or_null(&map->async_free,
1757 struct regmap_async,
1760 list_del(&async->list);
1761 spin_unlock_irqrestore(&map->async_lock, flags);
1764 async = map->bus->async_alloc();
1768 async->work_buf = kzalloc(map->format.buf_size,
1769 GFP_KERNEL | GFP_DMA);
1770 if (!async->work_buf) {
1778 /* If the caller supplied the value we can use it safely. */
1779 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1780 map->format.reg_bytes + map->format.val_bytes);
1782 spin_lock_irqsave(&map->async_lock, flags);
1783 list_add_tail(&async->list, &map->async_list);
1784 spin_unlock_irqrestore(&map->async_lock, flags);
1786 if (val != work_val)
1787 ret = map->bus->async_write(map->bus_context,
1789 map->format.reg_bytes +
1790 map->format.pad_bytes,
1791 val, val_len, async);
1793 ret = map->bus->async_write(map->bus_context,
1795 map->format.reg_bytes +
1796 map->format.pad_bytes +
1797 val_len, NULL, 0, async);
1800 dev_err(map->dev, "Failed to schedule write: %d\n",
1803 spin_lock_irqsave(&map->async_lock, flags);
1804 list_move(&async->list, &map->async_free);
1805 spin_unlock_irqrestore(&map->async_lock, flags);
1811 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1813 /* If we're doing a single register write we can probably just
1814 * send the work_buf directly, otherwise try to do a gather
1817 if (val == work_val)
1818 ret = map->bus->write(map->bus_context, map->work_buf,
1819 map->format.reg_bytes +
1820 map->format.pad_bytes +
1822 else if (map->bus->gather_write)
1823 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1824 map->format.reg_bytes +
1825 map->format.pad_bytes,
1830 /* If that didn't work fall back on linearising by hand. */
1831 if (ret == -ENOTSUPP) {
1832 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1833 buf = kzalloc(len, GFP_KERNEL);
1837 memcpy(buf, map->work_buf, map->format.reg_bytes);
1838 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1840 ret = map->bus->write(map->bus_context, buf, len);
1843 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1844 /* regcache_drop_region() takes lock that we already have,
1845 * thus call map->cache_ops->drop() directly
1847 if (map->cache_ops && map->cache_ops->drop)
1848 map->cache_ops->drop(map, reg, reg + 1);
1851 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1857 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1859 * @map: Map to check.
1861 bool regmap_can_raw_write(struct regmap *map)
1863 return map->bus && map->bus->write && map->format.format_val &&
1864 map->format.format_reg;
1866 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1869 * regmap_get_raw_read_max - Get the maximum size we can read
1871 * @map: Map to check.
1873 size_t regmap_get_raw_read_max(struct regmap *map)
1875 return map->max_raw_read;
1877 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1880 * regmap_get_raw_write_max - Get the maximum size we can read
1882 * @map: Map to check.
1884 size_t regmap_get_raw_write_max(struct regmap *map)
1886 return map->max_raw_write;
1888 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1890 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1894 struct regmap_range_node *range;
1895 struct regmap *map = context;
1897 WARN_ON(!map->bus || !map->format.format_write);
1899 range = _regmap_range_lookup(map, reg);
1901 ret = _regmap_select_page(map, ®, range, 1);
1906 map->format.format_write(map, reg, val);
1908 trace_regmap_hw_write_start(map, reg, 1);
1910 ret = map->bus->write(map->bus_context, map->work_buf,
1911 map->format.buf_size);
1913 trace_regmap_hw_write_done(map, reg, 1);
1918 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1921 struct regmap *map = context;
1923 return map->bus->reg_write(map->bus_context, reg, val);
1926 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1929 struct regmap *map = context;
1931 WARN_ON(!map->bus || !map->format.format_val);
1933 map->format.format_val(map->work_buf + map->format.reg_bytes
1934 + map->format.pad_bytes, val, 0);
1935 return _regmap_raw_write_impl(map, reg,
1937 map->format.reg_bytes +
1938 map->format.pad_bytes,
1939 map->format.val_bytes,
1943 static inline void *_regmap_map_get_context(struct regmap *map)
1945 return (map->bus) ? map : map->bus_context;
1948 int _regmap_write(struct regmap *map, unsigned int reg,
1952 void *context = _regmap_map_get_context(map);
1954 if (!regmap_writeable(map, reg))
1957 if (!map->cache_bypass && !map->defer_caching) {
1958 ret = regcache_write(map, reg, val);
1961 if (map->cache_only) {
1962 map->cache_dirty = true;
1967 ret = map->reg_write(context, reg, val);
1969 if (regmap_should_log(map))
1970 dev_info(map->dev, "%x <= %x\n", reg, val);
1972 trace_regmap_reg_write(map, reg, val);
1979 * regmap_write() - Write a value to a single register
1981 * @map: Register map to write to
1982 * @reg: Register to write to
1983 * @val: Value to be written
1985 * A value of zero will be returned on success, a negative errno will
1986 * be returned in error cases.
1988 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1992 if (!IS_ALIGNED(reg, map->reg_stride))
1995 map->lock(map->lock_arg);
1997 ret = _regmap_write(map, reg, val);
1999 map->unlock(map->lock_arg);
2003 EXPORT_SYMBOL_GPL(regmap_write);
2006 * regmap_write_async() - Write a value to a single register asynchronously
2008 * @map: Register map to write to
2009 * @reg: Register to write to
2010 * @val: Value to be written
2012 * A value of zero will be returned on success, a negative errno will
2013 * be returned in error cases.
2015 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2019 if (!IS_ALIGNED(reg, map->reg_stride))
2022 map->lock(map->lock_arg);
2026 ret = _regmap_write(map, reg, val);
2030 map->unlock(map->lock_arg);
2034 EXPORT_SYMBOL_GPL(regmap_write_async);
2036 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2037 const void *val, size_t val_len, bool noinc)
2039 size_t val_bytes = map->format.val_bytes;
2040 size_t val_count = val_len / val_bytes;
2041 size_t chunk_count, chunk_bytes;
2042 size_t chunk_regs = val_count;
2048 if (map->use_single_write)
2050 else if (map->max_raw_write && val_len > map->max_raw_write)
2051 chunk_regs = map->max_raw_write / val_bytes;
2053 chunk_count = val_count / chunk_regs;
2054 chunk_bytes = chunk_regs * val_bytes;
2056 /* Write as many bytes as possible with chunk_size */
2057 for (i = 0; i < chunk_count; i++) {
2058 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2062 reg += regmap_get_offset(map, chunk_regs);
2064 val_len -= chunk_bytes;
2067 /* Write remaining bytes */
2069 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2075 * regmap_raw_write() - Write raw values to one or more registers
2077 * @map: Register map to write to
2078 * @reg: Initial register to write to
2079 * @val: Block of data to be written, laid out for direct transmission to the
2081 * @val_len: Length of data pointed to by val.
2083 * This function is intended to be used for things like firmware
2084 * download where a large block of data needs to be transferred to the
2085 * device. No formatting will be done on the data provided.
2087 * A value of zero will be returned on success, a negative errno will
2088 * be returned in error cases.
2090 int regmap_raw_write(struct regmap *map, unsigned int reg,
2091 const void *val, size_t val_len)
2095 if (!regmap_can_raw_write(map))
2097 if (val_len % map->format.val_bytes)
2100 map->lock(map->lock_arg);
2102 ret = _regmap_raw_write(map, reg, val, val_len, false);
2104 map->unlock(map->lock_arg);
2108 EXPORT_SYMBOL_GPL(regmap_raw_write);
2111 * regmap_noinc_write(): Write data from a register without incrementing the
2114 * @map: Register map to write to
2115 * @reg: Register to write to
2116 * @val: Pointer to data buffer
2117 * @val_len: Length of output buffer in bytes.
2119 * The regmap API usually assumes that bulk bus write operations will write a
2120 * range of registers. Some devices have certain registers for which a write
2121 * operation can write to an internal FIFO.
2123 * The target register must be volatile but registers after it can be
2124 * completely unrelated cacheable registers.
2126 * This will attempt multiple writes as required to write val_len bytes.
2128 * A value of zero will be returned on success, a negative errno will be
2129 * returned in error cases.
2131 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2132 const void *val, size_t val_len)
2139 if (!map->bus->write)
2141 if (val_len % map->format.val_bytes)
2143 if (!IS_ALIGNED(reg, map->reg_stride))
2148 map->lock(map->lock_arg);
2150 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2156 if (map->max_raw_write && map->max_raw_write < val_len)
2157 write_len = map->max_raw_write;
2159 write_len = val_len;
2160 ret = _regmap_raw_write(map, reg, val, write_len, true);
2163 val = ((u8 *)val) + write_len;
2164 val_len -= write_len;
2168 map->unlock(map->lock_arg);
2171 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2174 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2177 * @field: Register field to write to
2178 * @mask: Bitmask to change
2179 * @val: Value to be written
2180 * @change: Boolean indicating if a write was done
2181 * @async: Boolean indicating asynchronously
2182 * @force: Boolean indicating use force update
2184 * Perform a read/modify/write cycle on the register field with change,
2185 * async, force option.
2187 * A value of zero will be returned on success, a negative errno will
2188 * be returned in error cases.
2190 int regmap_field_update_bits_base(struct regmap_field *field,
2191 unsigned int mask, unsigned int val,
2192 bool *change, bool async, bool force)
2194 mask = (mask << field->shift) & field->mask;
2196 return regmap_update_bits_base(field->regmap, field->reg,
2197 mask, val << field->shift,
2198 change, async, force);
2200 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2203 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2204 * register field with port ID
2206 * @field: Register field to write to
2208 * @mask: Bitmask to change
2209 * @val: Value to be written
2210 * @change: Boolean indicating if a write was done
2211 * @async: Boolean indicating asynchronously
2212 * @force: Boolean indicating use force update
2214 * A value of zero will be returned on success, a negative errno will
2215 * be returned in error cases.
2217 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2218 unsigned int mask, unsigned int val,
2219 bool *change, bool async, bool force)
2221 if (id >= field->id_size)
2224 mask = (mask << field->shift) & field->mask;
2226 return regmap_update_bits_base(field->regmap,
2227 field->reg + (field->id_offset * id),
2228 mask, val << field->shift,
2229 change, async, force);
2231 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2234 * regmap_bulk_write() - Write multiple registers to the device
2236 * @map: Register map to write to
2237 * @reg: First register to be write from
2238 * @val: Block of data to be written, in native register size for device
2239 * @val_count: Number of registers to write
2241 * This function is intended to be used for writing a large block of
2242 * data to the device either in single transfer or multiple transfer.
2244 * A value of zero will be returned on success, a negative errno will
2245 * be returned in error cases.
2247 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2251 size_t val_bytes = map->format.val_bytes;
2253 if (!IS_ALIGNED(reg, map->reg_stride))
2257 * Some devices don't support bulk write, for them we have a series of
2258 * single write operations.
2260 if (!map->bus || !map->format.parse_inplace) {
2261 map->lock(map->lock_arg);
2262 for (i = 0; i < val_count; i++) {
2265 switch (val_bytes) {
2267 ival = *(u8 *)(val + (i * val_bytes));
2270 ival = *(u16 *)(val + (i * val_bytes));
2273 ival = *(u32 *)(val + (i * val_bytes));
2277 ival = *(u64 *)(val + (i * val_bytes));
2285 ret = _regmap_write(map,
2286 reg + regmap_get_offset(map, i),
2292 map->unlock(map->lock_arg);
2296 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2300 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2301 map->format.parse_inplace(wval + i);
2303 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2309 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2312 * _regmap_raw_multi_reg_write()
2314 * the (register,newvalue) pairs in regs have not been formatted, but
2315 * they are all in the same page and have been changed to being page
2316 * relative. The page register has been written if that was necessary.
2318 static int _regmap_raw_multi_reg_write(struct regmap *map,
2319 const struct reg_sequence *regs,
2326 size_t val_bytes = map->format.val_bytes;
2327 size_t reg_bytes = map->format.reg_bytes;
2328 size_t pad_bytes = map->format.pad_bytes;
2329 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2330 size_t len = pair_size * num_regs;
2335 buf = kzalloc(len, GFP_KERNEL);
2339 /* We have to linearise by hand. */
2343 for (i = 0; i < num_regs; i++) {
2344 unsigned int reg = regs[i].reg;
2345 unsigned int val = regs[i].def;
2346 trace_regmap_hw_write_start(map, reg, 1);
2347 map->format.format_reg(u8, reg, map->reg_shift);
2348 u8 += reg_bytes + pad_bytes;
2349 map->format.format_val(u8, val, 0);
2353 *u8 |= map->write_flag_mask;
2355 ret = map->bus->write(map->bus_context, buf, len);
2359 for (i = 0; i < num_regs; i++) {
2360 int reg = regs[i].reg;
2361 trace_regmap_hw_write_done(map, reg, 1);
2366 static unsigned int _regmap_register_page(struct regmap *map,
2368 struct regmap_range_node *range)
2370 unsigned int win_page = (reg - range->range_min) / range->window_len;
2375 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2376 struct reg_sequence *regs,
2381 struct reg_sequence *base;
2382 unsigned int this_page = 0;
2383 unsigned int page_change = 0;
2385 * the set of registers are not neccessarily in order, but
2386 * since the order of write must be preserved this algorithm
2387 * chops the set each time the page changes. This also applies
2388 * if there is a delay required at any point in the sequence.
2391 for (i = 0, n = 0; i < num_regs; i++, n++) {
2392 unsigned int reg = regs[i].reg;
2393 struct regmap_range_node *range;
2395 range = _regmap_range_lookup(map, reg);
2397 unsigned int win_page = _regmap_register_page(map, reg,
2401 this_page = win_page;
2402 if (win_page != this_page) {
2403 this_page = win_page;
2408 /* If we have both a page change and a delay make sure to
2409 * write the regs and apply the delay before we change the
2413 if (page_change || regs[i].delay_us) {
2415 /* For situations where the first write requires
2416 * a delay we need to make sure we don't call
2417 * raw_multi_reg_write with n=0
2418 * This can't occur with page breaks as we
2419 * never write on the first iteration
2421 if (regs[i].delay_us && i == 0)
2424 ret = _regmap_raw_multi_reg_write(map, base, n);
2428 if (regs[i].delay_us) {
2430 fsleep(regs[i].delay_us);
2432 udelay(regs[i].delay_us);
2439 ret = _regmap_select_page(map,
2452 return _regmap_raw_multi_reg_write(map, base, n);
2456 static int _regmap_multi_reg_write(struct regmap *map,
2457 const struct reg_sequence *regs,
2463 if (!map->can_multi_write) {
2464 for (i = 0; i < num_regs; i++) {
2465 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2469 if (regs[i].delay_us) {
2471 fsleep(regs[i].delay_us);
2473 udelay(regs[i].delay_us);
2479 if (!map->format.parse_inplace)
2482 if (map->writeable_reg)
2483 for (i = 0; i < num_regs; i++) {
2484 int reg = regs[i].reg;
2485 if (!map->writeable_reg(map->dev, reg))
2487 if (!IS_ALIGNED(reg, map->reg_stride))
2491 if (!map->cache_bypass) {
2492 for (i = 0; i < num_regs; i++) {
2493 unsigned int val = regs[i].def;
2494 unsigned int reg = regs[i].reg;
2495 ret = regcache_write(map, reg, val);
2498 "Error in caching of register: %x ret: %d\n",
2503 if (map->cache_only) {
2504 map->cache_dirty = true;
2511 for (i = 0; i < num_regs; i++) {
2512 unsigned int reg = regs[i].reg;
2513 struct regmap_range_node *range;
2515 /* Coalesce all the writes between a page break or a delay
2518 range = _regmap_range_lookup(map, reg);
2519 if (range || regs[i].delay_us) {
2520 size_t len = sizeof(struct reg_sequence)*num_regs;
2521 struct reg_sequence *base = kmemdup(regs, len,
2525 ret = _regmap_range_multi_paged_reg_write(map, base,
2532 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2536 * regmap_multi_reg_write() - Write multiple registers to the device
2538 * @map: Register map to write to
2539 * @regs: Array of structures containing register,value to be written
2540 * @num_regs: Number of registers to write
2542 * Write multiple registers to the device where the set of register, value
2543 * pairs are supplied in any order, possibly not all in a single range.
2545 * The 'normal' block write mode will send ultimately send data on the
2546 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2547 * addressed. However, this alternative block multi write mode will send
2548 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2549 * must of course support the mode.
2551 * A value of zero will be returned on success, a negative errno will be
2552 * returned in error cases.
2554 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2559 map->lock(map->lock_arg);
2561 ret = _regmap_multi_reg_write(map, regs, num_regs);
2563 map->unlock(map->lock_arg);
2567 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2570 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2571 * device but not the cache
2573 * @map: Register map to write to
2574 * @regs: Array of structures containing register,value to be written
2575 * @num_regs: Number of registers to write
2577 * Write multiple registers to the device but not the cache where the set
2578 * of register are supplied in any order.
2580 * This function is intended to be used for writing a large block of data
2581 * atomically to the device in single transfer for those I2C client devices
2582 * that implement this alternative block write mode.
2584 * A value of zero will be returned on success, a negative errno will
2585 * be returned in error cases.
2587 int regmap_multi_reg_write_bypassed(struct regmap *map,
2588 const struct reg_sequence *regs,
2594 map->lock(map->lock_arg);
2596 bypass = map->cache_bypass;
2597 map->cache_bypass = true;
2599 ret = _regmap_multi_reg_write(map, regs, num_regs);
2601 map->cache_bypass = bypass;
2603 map->unlock(map->lock_arg);
2607 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2610 * regmap_raw_write_async() - Write raw values to one or more registers
2613 * @map: Register map to write to
2614 * @reg: Initial register to write to
2615 * @val: Block of data to be written, laid out for direct transmission to the
2616 * device. Must be valid until regmap_async_complete() is called.
2617 * @val_len: Length of data pointed to by val.
2619 * This function is intended to be used for things like firmware
2620 * download where a large block of data needs to be transferred to the
2621 * device. No formatting will be done on the data provided.
2623 * If supported by the underlying bus the write will be scheduled
2624 * asynchronously, helping maximise I/O speed on higher speed buses
2625 * like SPI. regmap_async_complete() can be called to ensure that all
2626 * asynchrnous writes have been completed.
2628 * A value of zero will be returned on success, a negative errno will
2629 * be returned in error cases.
2631 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2632 const void *val, size_t val_len)
2636 if (val_len % map->format.val_bytes)
2638 if (!IS_ALIGNED(reg, map->reg_stride))
2641 map->lock(map->lock_arg);
2645 ret = _regmap_raw_write(map, reg, val, val_len, false);
2649 map->unlock(map->lock_arg);
2653 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2655 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2656 unsigned int val_len, bool noinc)
2658 struct regmap_range_node *range;
2663 if (!map->bus || !map->bus->read)
2666 range = _regmap_range_lookup(map, reg);
2668 ret = _regmap_select_page(map, ®, range,
2669 noinc ? 1 : val_len / map->format.val_bytes);
2674 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2675 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2676 map->read_flag_mask);
2677 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2679 ret = map->bus->read(map->bus_context, map->work_buf,
2680 map->format.reg_bytes + map->format.pad_bytes,
2683 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2688 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2691 struct regmap *map = context;
2693 return map->bus->reg_read(map->bus_context, reg, val);
2696 static int _regmap_bus_read(void *context, unsigned int reg,
2700 struct regmap *map = context;
2701 void *work_val = map->work_buf + map->format.reg_bytes +
2702 map->format.pad_bytes;
2704 if (!map->format.parse_val)
2707 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2709 *val = map->format.parse_val(work_val);
2714 static int _regmap_read(struct regmap *map, unsigned int reg,
2718 void *context = _regmap_map_get_context(map);
2720 if (!map->cache_bypass) {
2721 ret = regcache_read(map, reg, val);
2726 if (map->cache_only)
2729 if (!regmap_readable(map, reg))
2732 ret = map->reg_read(context, reg, val);
2734 if (regmap_should_log(map))
2735 dev_info(map->dev, "%x => %x\n", reg, *val);
2737 trace_regmap_reg_read(map, reg, *val);
2739 if (!map->cache_bypass)
2740 regcache_write(map, reg, *val);
2747 * regmap_read() - Read a value from a single register
2749 * @map: Register map to read from
2750 * @reg: Register to be read from
2751 * @val: Pointer to store read value
2753 * A value of zero will be returned on success, a negative errno will
2754 * be returned in error cases.
2756 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2760 if (!IS_ALIGNED(reg, map->reg_stride))
2763 map->lock(map->lock_arg);
2765 ret = _regmap_read(map, reg, val);
2767 map->unlock(map->lock_arg);
2771 EXPORT_SYMBOL_GPL(regmap_read);
2774 * regmap_raw_read() - Read raw data from the device
2776 * @map: Register map to read from
2777 * @reg: First register to be read from
2778 * @val: Pointer to store read value
2779 * @val_len: Size of data to read
2781 * A value of zero will be returned on success, a negative errno will
2782 * be returned in error cases.
2784 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2787 size_t val_bytes = map->format.val_bytes;
2788 size_t val_count = val_len / val_bytes;
2794 if (val_len % map->format.val_bytes)
2796 if (!IS_ALIGNED(reg, map->reg_stride))
2801 map->lock(map->lock_arg);
2803 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2804 map->cache_type == REGCACHE_NONE) {
2805 size_t chunk_count, chunk_bytes;
2806 size_t chunk_regs = val_count;
2808 if (!map->bus->read) {
2813 if (map->use_single_read)
2815 else if (map->max_raw_read && val_len > map->max_raw_read)
2816 chunk_regs = map->max_raw_read / val_bytes;
2818 chunk_count = val_count / chunk_regs;
2819 chunk_bytes = chunk_regs * val_bytes;
2821 /* Read bytes that fit into whole chunks */
2822 for (i = 0; i < chunk_count; i++) {
2823 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2827 reg += regmap_get_offset(map, chunk_regs);
2829 val_len -= chunk_bytes;
2832 /* Read remaining bytes */
2834 ret = _regmap_raw_read(map, reg, val, val_len, false);
2839 /* Otherwise go word by word for the cache; should be low
2840 * cost as we expect to hit the cache.
2842 for (i = 0; i < val_count; i++) {
2843 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2848 map->format.format_val(val + (i * val_bytes), v, 0);
2853 map->unlock(map->lock_arg);
2857 EXPORT_SYMBOL_GPL(regmap_raw_read);
2860 * regmap_noinc_read(): Read data from a register without incrementing the
2863 * @map: Register map to read from
2864 * @reg: Register to read from
2865 * @val: Pointer to data buffer
2866 * @val_len: Length of output buffer in bytes.
2868 * The regmap API usually assumes that bulk bus read operations will read a
2869 * range of registers. Some devices have certain registers for which a read
2870 * operation read will read from an internal FIFO.
2872 * The target register must be volatile but registers after it can be
2873 * completely unrelated cacheable registers.
2875 * This will attempt multiple reads as required to read val_len bytes.
2877 * A value of zero will be returned on success, a negative errno will be
2878 * returned in error cases.
2880 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2881 void *val, size_t val_len)
2888 if (!map->bus->read)
2890 if (val_len % map->format.val_bytes)
2892 if (!IS_ALIGNED(reg, map->reg_stride))
2897 map->lock(map->lock_arg);
2899 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2905 if (map->max_raw_read && map->max_raw_read < val_len)
2906 read_len = map->max_raw_read;
2909 ret = _regmap_raw_read(map, reg, val, read_len, true);
2912 val = ((u8 *)val) + read_len;
2913 val_len -= read_len;
2917 map->unlock(map->lock_arg);
2920 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2923 * regmap_field_read(): Read a value to a single register field
2925 * @field: Register field to read from
2926 * @val: Pointer to store read value
2928 * A value of zero will be returned on success, a negative errno will
2929 * be returned in error cases.
2931 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2934 unsigned int reg_val;
2935 ret = regmap_read(field->regmap, field->reg, ®_val);
2939 reg_val &= field->mask;
2940 reg_val >>= field->shift;
2945 EXPORT_SYMBOL_GPL(regmap_field_read);
2948 * regmap_fields_read() - Read a value to a single register field with port ID
2950 * @field: Register field to read from
2952 * @val: Pointer to store read value
2954 * A value of zero will be returned on success, a negative errno will
2955 * be returned in error cases.
2957 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2961 unsigned int reg_val;
2963 if (id >= field->id_size)
2966 ret = regmap_read(field->regmap,
2967 field->reg + (field->id_offset * id),
2972 reg_val &= field->mask;
2973 reg_val >>= field->shift;
2978 EXPORT_SYMBOL_GPL(regmap_fields_read);
2981 * regmap_bulk_read() - Read multiple registers from the device
2983 * @map: Register map to read from
2984 * @reg: First register to be read from
2985 * @val: Pointer to store read value, in native register size for device
2986 * @val_count: Number of registers to read
2988 * A value of zero will be returned on success, a negative errno will
2989 * be returned in error cases.
2991 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2995 size_t val_bytes = map->format.val_bytes;
2996 bool vol = regmap_volatile_range(map, reg, val_count);
2998 if (!IS_ALIGNED(reg, map->reg_stride))
3003 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3004 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3008 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3009 map->format.parse_inplace(val + i);
3018 map->lock(map->lock_arg);
3020 for (i = 0; i < val_count; i++) {
3023 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3028 switch (map->format.val_bytes) {
3050 map->unlock(map->lock_arg);
3055 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3057 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3058 unsigned int mask, unsigned int val,
3059 bool *change, bool force_write)
3062 unsigned int tmp, orig;
3067 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3068 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3069 if (ret == 0 && change)
3072 ret = _regmap_read(map, reg, &orig);
3079 if (force_write || (tmp != orig)) {
3080 ret = _regmap_write(map, reg, tmp);
3081 if (ret == 0 && change)
3090 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3092 * @map: Register map to update
3093 * @reg: Register to update
3094 * @mask: Bitmask to change
3095 * @val: New value for bitmask
3096 * @change: Boolean indicating if a write was done
3097 * @async: Boolean indicating asynchronously
3098 * @force: Boolean indicating use force update
3100 * Perform a read/modify/write cycle on a register map with change, async, force
3105 * With most buses the read must be done synchronously so this is most useful
3106 * for devices with a cache which do not need to interact with the hardware to
3107 * determine the current register value.
3109 * Returns zero for success, a negative number on error.
3111 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3112 unsigned int mask, unsigned int val,
3113 bool *change, bool async, bool force)
3117 map->lock(map->lock_arg);
3121 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3125 map->unlock(map->lock_arg);
3129 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3132 * regmap_test_bits() - Check if all specified bits are set in a register.
3134 * @map: Register map to operate on
3135 * @reg: Register to read from
3136 * @bits: Bits to test
3138 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3139 * bits are set and a negative error number if the underlying regmap_read()
3142 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3144 unsigned int val, ret;
3146 ret = regmap_read(map, reg, &val);
3150 return (val & bits) == bits;
3152 EXPORT_SYMBOL_GPL(regmap_test_bits);
3154 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3156 struct regmap *map = async->map;
3159 trace_regmap_async_io_complete(map);
3161 spin_lock(&map->async_lock);
3162 list_move(&async->list, &map->async_free);
3163 wake = list_empty(&map->async_list);
3166 map->async_ret = ret;
3168 spin_unlock(&map->async_lock);
3171 wake_up(&map->async_waitq);
3173 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3175 static int regmap_async_is_done(struct regmap *map)
3177 unsigned long flags;
3180 spin_lock_irqsave(&map->async_lock, flags);
3181 ret = list_empty(&map->async_list);
3182 spin_unlock_irqrestore(&map->async_lock, flags);
3188 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3190 * @map: Map to operate on.
3192 * Blocks until any pending asynchronous I/O has completed. Returns
3193 * an error code for any failed I/O operations.
3195 int regmap_async_complete(struct regmap *map)
3197 unsigned long flags;
3200 /* Nothing to do with no async support */
3201 if (!map->bus || !map->bus->async_write)
3204 trace_regmap_async_complete_start(map);
3206 wait_event(map->async_waitq, regmap_async_is_done(map));
3208 spin_lock_irqsave(&map->async_lock, flags);
3209 ret = map->async_ret;
3211 spin_unlock_irqrestore(&map->async_lock, flags);
3213 trace_regmap_async_complete_done(map);
3217 EXPORT_SYMBOL_GPL(regmap_async_complete);
3220 * regmap_register_patch - Register and apply register updates to be applied
3221 * on device initialistion
3223 * @map: Register map to apply updates to.
3224 * @regs: Values to update.
3225 * @num_regs: Number of entries in regs.
3227 * Register a set of register updates to be applied to the device
3228 * whenever the device registers are synchronised with the cache and
3229 * apply them immediately. Typically this is used to apply
3230 * corrections to be applied to the device defaults on startup, such
3231 * as the updates some vendors provide to undocumented registers.
3233 * The caller must ensure that this function cannot be called
3234 * concurrently with either itself or regcache_sync().
3236 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3239 struct reg_sequence *p;
3243 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3247 p = krealloc(map->patch,
3248 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3251 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3253 map->patch_regs += num_regs;
3258 map->lock(map->lock_arg);
3260 bypass = map->cache_bypass;
3262 map->cache_bypass = true;
3265 ret = _regmap_multi_reg_write(map, regs, num_regs);
3268 map->cache_bypass = bypass;
3270 map->unlock(map->lock_arg);
3272 regmap_async_complete(map);
3276 EXPORT_SYMBOL_GPL(regmap_register_patch);
3279 * regmap_get_val_bytes() - Report the size of a register value
3281 * @map: Register map to operate on.
3283 * Report the size of a register value, mainly intended to for use by
3284 * generic infrastructure built on top of regmap.
3286 int regmap_get_val_bytes(struct regmap *map)
3288 if (map->format.format_write)
3291 return map->format.val_bytes;
3293 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3296 * regmap_get_max_register() - Report the max register value
3298 * @map: Register map to operate on.
3300 * Report the max register value, mainly intended to for use by
3301 * generic infrastructure built on top of regmap.
3303 int regmap_get_max_register(struct regmap *map)
3305 return map->max_register ? map->max_register : -EINVAL;
3307 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3310 * regmap_get_reg_stride() - Report the register address stride
3312 * @map: Register map to operate on.
3314 * Report the register address stride, mainly intended to for use by
3315 * generic infrastructure built on top of regmap.
3317 int regmap_get_reg_stride(struct regmap *map)
3319 return map->reg_stride;
3321 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3323 int regmap_parse_val(struct regmap *map, const void *buf,
3326 if (!map->format.parse_val)
3329 *val = map->format.parse_val(buf);
3333 EXPORT_SYMBOL_GPL(regmap_parse_val);
3335 static int __init regmap_initcall(void)
3337 regmap_debugfs_initcall();
3341 postcore_initcall(regmap_initcall);