1 // SPDX-License-Identifier: GPL-2.0
3 // regmap based irq_chip
5 // Copyright 2011 Wolfson Microelectronics plc
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
20 struct regmap_irq_chip_data {
22 struct irq_chip irq_chip;
25 const struct regmap_irq_chip *chip;
28 struct irq_domain *domain;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41 unsigned int **config_buf;
43 unsigned int irq_reg_stride;
45 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46 unsigned int base, int index);
48 unsigned int clear_status:1;
52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
55 return &data->chip->irqs[irq];
58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
60 struct regmap *map = data->map;
63 * While possible that a user-defined ->get_irq_reg() callback might
64 * be linear enough to support bulk reads, most of the time it won't.
65 * Therefore only allow them if the default callback is being used.
67 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69 !map->use_single_read;
72 static void regmap_irq_lock(struct irq_data *data)
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79 static void regmap_irq_sync_unlock(struct irq_data *data)
81 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82 struct regmap *map = d->map;
87 if (d->chip->runtime_pm) {
88 ret = pm_runtime_get_sync(map->dev);
90 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
94 if (d->clear_status) {
95 for (i = 0; i < d->chip->num_regs; i++) {
96 reg = d->get_irq_reg(d, d->chip->status_base, i);
98 ret = regmap_read(map, reg, &val);
101 "Failed to clear the interrupt status bits\n");
104 d->clear_status = false;
108 * If there's been a change in the mask write it back to the
109 * hardware. We rely on the use of the regmap core cache to
110 * suppress pointless writes.
112 for (i = 0; i < d->chip->num_regs; i++) {
113 if (d->chip->handle_mask_sync)
114 d->chip->handle_mask_sync(i, d->mask_buf_def[i],
116 d->chip->irq_drv_data);
118 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119 reg = d->get_irq_reg(d, d->chip->mask_base, i);
120 ret = regmap_update_bits(d->map, reg,
124 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
127 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128 reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129 ret = regmap_update_bits(d->map, reg,
130 d->mask_buf_def[i], ~d->mask_buf[i]);
132 dev_err(d->map->dev, "Failed to sync masks in %x\n",
136 reg = d->get_irq_reg(d, d->chip->wake_base, i);
138 if (d->chip->wake_invert)
139 ret = regmap_update_bits(d->map, reg,
143 ret = regmap_update_bits(d->map, reg,
148 "Failed to sync wakes in %x: %d\n",
152 if (!d->chip->init_ack_masked)
155 * Ack all the masked interrupts unconditionally,
156 * OR if there is masked interrupt which hasn't been Acked,
157 * it'll be ignored in irq handler, then may introduce irq storm
159 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160 reg = d->get_irq_reg(d, d->chip->ack_base, i);
162 /* some chips ack by write 0 */
163 if (d->chip->ack_invert)
164 ret = regmap_write(map, reg, ~d->mask_buf[i]);
166 ret = regmap_write(map, reg, d->mask_buf[i]);
167 if (d->chip->clear_ack) {
168 if (d->chip->ack_invert && !ret)
169 ret = regmap_write(map, reg, UINT_MAX);
171 ret = regmap_write(map, reg, 0);
174 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
179 for (i = 0; i < d->chip->num_config_bases; i++) {
180 for (j = 0; j < d->chip->num_config_regs; j++) {
181 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182 ret = regmap_write(map, reg, d->config_buf[i][j]);
185 "Failed to write config %x: %d\n",
190 if (d->chip->runtime_pm)
191 pm_runtime_put(map->dev);
193 /* If we've changed our wakeup count propagate it to the parent */
194 if (d->wake_count < 0)
195 for (i = d->wake_count; i < 0; i++)
196 irq_set_irq_wake(d->irq, 0);
197 else if (d->wake_count > 0)
198 for (i = 0; i < d->wake_count; i++)
199 irq_set_irq_wake(d->irq, 1);
203 mutex_unlock(&d->lock);
206 static void regmap_irq_enable(struct irq_data *data)
208 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209 struct regmap *map = d->map;
210 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211 unsigned int reg = irq_data->reg_offset / map->reg_stride;
215 * The type_in_mask flag means that the underlying hardware uses
216 * separate mask bits for each interrupt trigger type, but we want
217 * to have a single logical interrupt with a configurable type.
219 * If the interrupt we're enabling defines any supported types
220 * then instead of using the regular mask bits for this interrupt,
221 * use the value previously written to the type buffer at the
222 * corresponding offset in regmap_irq_set_type().
224 if (d->chip->type_in_mask && irq_data->type.types_supported)
225 mask = d->type_buf[reg] & irq_data->mask;
227 mask = irq_data->mask;
229 if (d->chip->clear_on_unmask)
230 d->clear_status = true;
232 d->mask_buf[reg] &= ~mask;
235 static void regmap_irq_disable(struct irq_data *data)
237 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238 struct regmap *map = d->map;
239 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
241 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
246 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247 struct regmap *map = d->map;
248 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
250 const struct regmap_irq_type *t = &irq_data->type;
252 if ((t->types_supported & type) != type)
255 reg = t->type_reg_offset / map->reg_stride;
257 if (d->chip->type_in_mask) {
258 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259 irq_data, reg, d->chip->irq_drv_data);
264 if (d->chip->set_type_config) {
265 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266 reg, d->chip->irq_drv_data);
274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 struct regmap *map = d->map;
278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
282 d->wake_buf[irq_data->reg_offset / map->reg_stride]
287 d->wake_buf[irq_data->reg_offset / map->reg_stride]
295 static const struct irq_chip regmap_irq_chip = {
296 .irq_bus_lock = regmap_irq_lock,
297 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
298 .irq_disable = regmap_irq_disable,
299 .irq_enable = regmap_irq_enable,
300 .irq_set_type = regmap_irq_set_type,
301 .irq_set_wake = regmap_irq_set_wake,
304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
307 const struct regmap_irq_chip *chip = data->chip;
308 struct regmap *map = data->map;
309 struct regmap_irq_sub_irq_map *subreg;
313 if (!chip->sub_reg_offsets) {
314 reg = data->get_irq_reg(data, chip->status_base, b);
315 ret = regmap_read(map, reg, &data->status_buf[b]);
318 * Note we can't use ->get_irq_reg() here because the offsets
319 * in 'subreg' are *not* interchangeable with indices.
321 subreg = &chip->sub_reg_offsets[b];
322 for (i = 0; i < subreg->num_regs; i++) {
323 unsigned int offset = subreg->offset[i];
324 unsigned int index = offset / map->reg_stride;
326 ret = regmap_read(map, chip->status_base + offset,
327 &data->status_buf[index]);
335 static irqreturn_t regmap_irq_thread(int irq, void *d)
337 struct regmap_irq_chip_data *data = d;
338 const struct regmap_irq_chip *chip = data->chip;
339 struct regmap *map = data->map;
341 bool handled = false;
344 if (chip->handle_pre_irq)
345 chip->handle_pre_irq(chip->irq_drv_data);
347 if (chip->runtime_pm) {
348 ret = pm_runtime_get_sync(map->dev);
350 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
357 * Read only registers with active IRQs if the chip has 'main status
358 * register'. Else read in the statuses, using a single bulk read if
359 * possible in order to reduce the I/O overheads.
362 if (chip->no_status) {
363 /* no status register so default to all active */
364 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365 } else if (chip->num_main_regs) {
366 unsigned int max_main_bits;
369 size = chip->num_regs * sizeof(unsigned int);
371 max_main_bits = (chip->num_main_status_bits) ?
372 chip->num_main_status_bits : chip->num_regs;
373 /* Clear the status buf as we don't read all status regs */
374 memset(data->status_buf, 0, size);
376 /* We could support bulk read for main status registers
377 * but I don't expect to see devices with really many main
378 * status registers so let's only support single reads for the
379 * sake of simplicity. and add bulk reads only if needed
381 for (i = 0; i < chip->num_main_regs; i++) {
382 reg = data->get_irq_reg(data, chip->main_status, i);
383 ret = regmap_read(map, reg, &data->main_status_buf[i]);
386 "Failed to read IRQ status %d\n",
392 /* Read sub registers with active IRQs */
393 for (i = 0; i < chip->num_main_regs; i++) {
395 const unsigned long mreg = data->main_status_buf[i];
397 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
398 if (i * map->format.val_bytes * 8 + b >
401 ret = read_sub_irq_data(data, b);
405 "Failed to read IRQ status %d\n",
412 } else if (regmap_irq_can_bulk_read_status(data)) {
414 u8 *buf8 = data->status_reg_buf;
415 u16 *buf16 = data->status_reg_buf;
416 u32 *buf32 = data->status_reg_buf;
418 BUG_ON(!data->status_reg_buf);
420 ret = regmap_bulk_read(map, chip->status_base,
421 data->status_reg_buf,
424 dev_err(map->dev, "Failed to read IRQ status: %d\n",
429 for (i = 0; i < data->chip->num_regs; i++) {
430 switch (map->format.val_bytes) {
432 data->status_buf[i] = buf8[i];
435 data->status_buf[i] = buf16[i];
438 data->status_buf[i] = buf32[i];
447 for (i = 0; i < data->chip->num_regs; i++) {
448 unsigned int reg = data->get_irq_reg(data,
449 data->chip->status_base, i);
450 ret = regmap_read(map, reg, &data->status_buf[i]);
454 "Failed to read IRQ status: %d\n",
461 if (chip->status_invert)
462 for (i = 0; i < data->chip->num_regs; i++)
463 data->status_buf[i] = ~data->status_buf[i];
466 * Ignore masked IRQs and ack if we need to; we ack early so
467 * there is no race between handling and acknowledging the
468 * interrupt. We assume that typically few of the interrupts
469 * will fire simultaneously so don't worry about overhead from
470 * doing a write per register.
472 for (i = 0; i < data->chip->num_regs; i++) {
473 data->status_buf[i] &= ~data->mask_buf[i];
475 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
476 reg = data->get_irq_reg(data, data->chip->ack_base, i);
478 if (chip->ack_invert)
479 ret = regmap_write(map, reg,
480 ~data->status_buf[i]);
482 ret = regmap_write(map, reg,
483 data->status_buf[i]);
484 if (chip->clear_ack) {
485 if (chip->ack_invert && !ret)
486 ret = regmap_write(map, reg, UINT_MAX);
488 ret = regmap_write(map, reg, 0);
491 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
496 for (i = 0; i < chip->num_irqs; i++) {
497 if (data->status_buf[chip->irqs[i].reg_offset /
498 map->reg_stride] & chip->irqs[i].mask) {
499 handle_nested_irq(irq_find_mapping(data->domain, i));
505 if (chip->handle_post_irq)
506 chip->handle_post_irq(chip->irq_drv_data);
508 if (chip->runtime_pm)
509 pm_runtime_put(map->dev);
517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
520 struct regmap_irq_chip_data *data = h->host_data;
522 irq_set_chip_data(virq, data);
523 irq_set_chip(virq, &data->irq_chip);
524 irq_set_nested_thread(virq, 1);
525 irq_set_parent(virq, data->irq);
526 irq_set_noprobe(virq);
531 static const struct irq_domain_ops regmap_domain_ops = {
532 .map = regmap_irq_map,
533 .xlate = irq_domain_xlate_onetwocell,
537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
538 * @data: Data for the &struct regmap_irq_chip
539 * @base: Base register
540 * @index: Register index
542 * Returns the register address corresponding to the given @base and @index
543 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
545 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
546 unsigned int base, int index)
548 struct regmap *map = data->map;
550 return base + index * map->reg_stride * data->irq_reg_stride;
552 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
556 * @buf: Buffer containing configuration register values, this is a 2D array of
557 * `num_config_bases` rows, each of `num_config_regs` elements.
558 * @type: The requested IRQ type.
559 * @irq_data: The IRQ being configured.
560 * @idx: Index of the irq's config registers within each array `buf[i]`
561 * @irq_drv_data: Driver specific IRQ data
563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
564 * chips with one config register. Register values are updated according to
565 * the &struct regmap_irq_type data associated with an IRQ.
567 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
568 const struct regmap_irq *irq_data,
569 int idx, void *irq_drv_data)
571 const struct regmap_irq_type *t = &irq_data->type;
573 if (t->type_reg_mask)
574 buf[0][idx] &= ~t->type_reg_mask;
576 buf[0][idx] &= ~(t->type_falling_val |
578 t->type_level_low_val |
579 t->type_level_high_val);
582 case IRQ_TYPE_EDGE_FALLING:
583 buf[0][idx] |= t->type_falling_val;
586 case IRQ_TYPE_EDGE_RISING:
587 buf[0][idx] |= t->type_rising_val;
590 case IRQ_TYPE_EDGE_BOTH:
591 buf[0][idx] |= (t->type_falling_val |
595 case IRQ_TYPE_LEVEL_HIGH:
596 buf[0][idx] |= t->type_level_high_val;
599 case IRQ_TYPE_LEVEL_LOW:
600 buf[0][idx] |= t->type_level_low_val;
609 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
614 * @fwnode: The firmware node where the IRQ domain should be added to.
615 * @map: The regmap for the device.
616 * @irq: The IRQ the device uses to signal interrupts.
617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
619 * @chip: Configuration for the interrupt controller.
620 * @data: Runtime data structure for the controller, allocated on success.
622 * Returns 0 on success or an errno on failure.
624 * In order for this to be efficient the chip really should use a
625 * register cache. The chip driver is responsible for restoring the
626 * register values used by the IRQ controller over suspend and resume.
628 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
629 struct regmap *map, int irq,
630 int irq_flags, int irq_base,
631 const struct regmap_irq_chip *chip,
632 struct regmap_irq_chip_data **data)
634 struct regmap_irq_chip_data *d;
639 if (chip->num_regs <= 0)
642 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
645 if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
648 for (i = 0; i < chip->num_irqs; i++) {
649 if (chip->irqs[i].reg_offset % map->reg_stride)
651 if (chip->irqs[i].reg_offset / map->reg_stride >=
657 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
659 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
665 d = kzalloc(sizeof(*d), GFP_KERNEL);
669 if (chip->num_main_regs) {
670 d->main_status_buf = kcalloc(chip->num_main_regs,
671 sizeof(*d->main_status_buf),
674 if (!d->main_status_buf)
678 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
683 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
688 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
690 if (!d->mask_buf_def)
693 if (chip->wake_base) {
694 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
700 if (chip->type_in_mask) {
701 d->type_buf_def = kcalloc(chip->num_regs,
702 sizeof(*d->type_buf_def), GFP_KERNEL);
703 if (!d->type_buf_def)
706 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
711 if (chip->num_config_bases && chip->num_config_regs) {
713 * Create config_buf[num_config_bases][num_config_regs]
715 d->config_buf = kcalloc(chip->num_config_bases,
716 sizeof(*d->config_buf), GFP_KERNEL);
720 for (i = 0; i < chip->num_config_bases; i++) {
721 d->config_buf[i] = kcalloc(chip->num_config_regs,
722 sizeof(**d->config_buf),
724 if (!d->config_buf[i])
729 d->irq_chip = regmap_irq_chip;
730 d->irq_chip.name = chip->name;
734 d->irq_base = irq_base;
736 if (chip->irq_reg_stride)
737 d->irq_reg_stride = chip->irq_reg_stride;
739 d->irq_reg_stride = 1;
741 if (chip->get_irq_reg)
742 d->get_irq_reg = chip->get_irq_reg;
744 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
746 if (regmap_irq_can_bulk_read_status(d)) {
747 d->status_reg_buf = kmalloc_array(chip->num_regs,
748 map->format.val_bytes,
750 if (!d->status_reg_buf)
754 mutex_init(&d->lock);
756 for (i = 0; i < chip->num_irqs; i++)
757 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
758 |= chip->irqs[i].mask;
760 /* Mask all the interrupts by default */
761 for (i = 0; i < chip->num_regs; i++) {
762 d->mask_buf[i] = d->mask_buf_def[i];
764 if (chip->handle_mask_sync) {
765 ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
772 if (chip->mask_base && !chip->handle_mask_sync) {
773 reg = d->get_irq_reg(d, chip->mask_base, i);
774 ret = regmap_update_bits(d->map, reg,
778 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
784 if (chip->unmask_base && !chip->handle_mask_sync) {
785 reg = d->get_irq_reg(d, chip->unmask_base, i);
786 ret = regmap_update_bits(d->map, reg,
787 d->mask_buf_def[i], ~d->mask_buf[i]);
789 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
795 if (!chip->init_ack_masked)
798 /* Ack masked but set interrupts */
799 if (d->chip->no_status) {
800 /* no status register so default to all active */
801 d->status_buf[i] = GENMASK(31, 0);
803 reg = d->get_irq_reg(d, d->chip->status_base, i);
804 ret = regmap_read(map, reg, &d->status_buf[i]);
806 dev_err(map->dev, "Failed to read IRQ status: %d\n",
812 if (chip->status_invert)
813 d->status_buf[i] = ~d->status_buf[i];
815 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
816 reg = d->get_irq_reg(d, d->chip->ack_base, i);
817 if (chip->ack_invert)
818 ret = regmap_write(map, reg,
819 ~(d->status_buf[i] & d->mask_buf[i]));
821 ret = regmap_write(map, reg,
822 d->status_buf[i] & d->mask_buf[i]);
823 if (chip->clear_ack) {
824 if (chip->ack_invert && !ret)
825 ret = regmap_write(map, reg, UINT_MAX);
827 ret = regmap_write(map, reg, 0);
830 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
837 /* Wake is disabled by default */
839 for (i = 0; i < chip->num_regs; i++) {
840 d->wake_buf[i] = d->mask_buf_def[i];
841 reg = d->get_irq_reg(d, d->chip->wake_base, i);
843 if (chip->wake_invert)
844 ret = regmap_update_bits(d->map, reg,
848 ret = regmap_update_bits(d->map, reg,
852 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
860 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
862 ®map_domain_ops, d);
864 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
865 ®map_domain_ops, d);
867 dev_err(map->dev, "Failed to create IRQ domain\n");
872 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
873 irq_flags | IRQF_ONESHOT,
876 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
877 irq, chip->name, ret);
886 /* Should really dispose of the domain but... */
889 kfree(d->type_buf_def);
891 kfree(d->mask_buf_def);
893 kfree(d->status_buf);
894 kfree(d->status_reg_buf);
896 for (i = 0; i < chip->num_config_bases; i++)
897 kfree(d->config_buf[i]);
898 kfree(d->config_buf);
903 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
906 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
908 * @map: The regmap for the device.
909 * @irq: The IRQ the device uses to signal interrupts.
910 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
911 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
912 * @chip: Configuration for the interrupt controller.
913 * @data: Runtime data structure for the controller, allocated on success.
915 * Returns 0 on success or an errno on failure.
917 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
918 * node of the regmap is used.
920 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
921 int irq_base, const struct regmap_irq_chip *chip,
922 struct regmap_irq_chip_data **data)
924 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
925 irq_flags, irq_base, chip, data);
927 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
930 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
932 * @irq: Primary IRQ for the device
933 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
935 * This function also disposes of all mapped IRQs on the chip.
937 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
947 /* Dispose all virtual irq from irq domain before removing it */
948 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
949 /* Ignore hwirq if holes in the IRQ list */
950 if (!d->chip->irqs[hwirq].mask)
954 * Find the virtual irq of hwirq on chip and if it is
955 * there then dispose it
957 virq = irq_find_mapping(d->domain, hwirq);
959 irq_dispose_mapping(virq);
962 irq_domain_remove(d->domain);
964 kfree(d->type_buf_def);
966 kfree(d->mask_buf_def);
968 kfree(d->status_reg_buf);
969 kfree(d->status_buf);
971 for (i = 0; i < d->chip->num_config_bases; i++)
972 kfree(d->config_buf[i]);
973 kfree(d->config_buf);
977 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
979 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
981 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
983 regmap_del_irq_chip(d->irq, d);
986 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
989 struct regmap_irq_chip_data **r = res;
999 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1001 * @dev: The device pointer on which irq_chip belongs to.
1002 * @fwnode: The firmware node where the IRQ domain should be added to.
1003 * @map: The regmap for the device.
1004 * @irq: The IRQ the device uses to signal interrupts
1005 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007 * @chip: Configuration for the interrupt controller.
1008 * @data: Runtime data structure for the controller, allocated on success
1010 * Returns 0 on success or an errno on failure.
1012 * The ®map_irq_chip_data will be automatically released when the device is
1015 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016 struct fwnode_handle *fwnode,
1017 struct regmap *map, int irq,
1018 int irq_flags, int irq_base,
1019 const struct regmap_irq_chip *chip,
1020 struct regmap_irq_chip_data **data)
1022 struct regmap_irq_chip_data **ptr, *d;
1025 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1030 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1038 devres_add(dev, ptr);
1042 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1045 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1047 * @dev: The device pointer on which irq_chip belongs to.
1048 * @map: The regmap for the device.
1049 * @irq: The IRQ the device uses to signal interrupts
1050 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052 * @chip: Configuration for the interrupt controller.
1053 * @data: Runtime data structure for the controller, allocated on success
1055 * Returns 0 on success or an errno on failure.
1057 * The ®map_irq_chip_data will be automatically released when the device is
1060 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061 int irq_flags, int irq_base,
1062 const struct regmap_irq_chip *chip,
1063 struct regmap_irq_chip_data **data)
1065 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066 irq, irq_flags, irq_base, chip,
1069 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1072 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1074 * @dev: Device for which the resource was allocated.
1075 * @irq: Primary IRQ for the device.
1076 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1078 * A resource managed version of regmap_del_irq_chip().
1080 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081 struct regmap_irq_chip_data *data)
1085 WARN_ON(irq != data->irq);
1086 rc = devres_release(dev, devm_regmap_irq_chip_release,
1087 devm_regmap_irq_chip_match, data);
1092 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1095 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1097 * @data: regmap irq controller to operate on.
1099 * Useful for drivers to request their own IRQs.
1101 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1103 WARN_ON(!data->irq_base);
1104 return data->irq_base;
1106 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1109 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1111 * @data: regmap irq controller to operate on.
1112 * @irq: index of the interrupt requested in the chip IRQs.
1114 * Useful for drivers to request their own IRQs.
1116 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1118 /* Handle holes in the IRQ list */
1119 if (!data->chip->irqs[irq].mask)
1122 return irq_create_mapping(data->domain, irq);
1124 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1127 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1129 * @data: regmap_irq controller to operate on.
1131 * Useful for drivers to request their own IRQs and for integration
1132 * with subsystems. For ease of integration NULL is accepted as a
1133 * domain, allowing devices to just call this even if no domain is
1136 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1139 return data->domain;
1143 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);