RISCV: config: tizen_visionfive2: Disable JH7110 crypto driver
[platform/kernel/linux-starfive.git] / drivers / base / regmap / regmap-irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21         struct mutex lock;
22         struct irq_chip irq_chip;
23
24         struct regmap *map;
25         const struct regmap_irq_chip *chip;
26
27         int irq_base;
28         struct irq_domain *domain;
29
30         int irq;
31         int wake_count;
32
33         void *status_reg_buf;
34         unsigned int *main_status_buf;
35         unsigned int *status_buf;
36         unsigned int *mask_buf;
37         unsigned int *mask_buf_def;
38         unsigned int *wake_buf;
39         unsigned int *type_buf;
40         unsigned int *type_buf_def;
41         unsigned int **config_buf;
42
43         unsigned int irq_reg_stride;
44
45         unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46                                     unsigned int base, int index);
47
48         unsigned int clear_status:1;
49 };
50
51 static inline const
52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53                                      int irq)
54 {
55         return &data->chip->irqs[irq];
56 }
57
58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59 {
60         struct regmap *map = data->map;
61
62         /*
63          * While possible that a user-defined ->get_irq_reg() callback might
64          * be linear enough to support bulk reads, most of the time it won't.
65          * Therefore only allow them if the default callback is being used.
66          */
67         return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68                data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69                !map->use_single_read;
70 }
71
72 static void regmap_irq_lock(struct irq_data *data)
73 {
74         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
76         mutex_lock(&d->lock);
77 }
78
79 static void regmap_irq_sync_unlock(struct irq_data *data)
80 {
81         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82         struct regmap *map = d->map;
83         int i, j, ret;
84         u32 reg;
85         u32 val;
86
87         if (d->chip->runtime_pm) {
88                 ret = pm_runtime_get_sync(map->dev);
89                 if (ret < 0)
90                         dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91                                 ret);
92         }
93
94         if (d->clear_status) {
95                 for (i = 0; i < d->chip->num_regs; i++) {
96                         reg = d->get_irq_reg(d, d->chip->status_base, i);
97
98                         ret = regmap_read(map, reg, &val);
99                         if (ret)
100                                 dev_err(d->map->dev,
101                                         "Failed to clear the interrupt status bits\n");
102                 }
103
104                 d->clear_status = false;
105         }
106
107         /*
108          * If there's been a change in the mask write it back to the
109          * hardware.  We rely on the use of the regmap core cache to
110          * suppress pointless writes.
111          */
112         for (i = 0; i < d->chip->num_regs; i++) {
113                 if (d->chip->handle_mask_sync)
114                         d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115                                                   d->mask_buf[i],
116                                                   d->chip->irq_drv_data);
117
118                 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119                         reg = d->get_irq_reg(d, d->chip->mask_base, i);
120                         ret = regmap_update_bits(d->map, reg,
121                                                  d->mask_buf_def[i],
122                                                  d->mask_buf[i]);
123                         if (ret)
124                                 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125                 }
126
127                 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128                         reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129                         ret = regmap_update_bits(d->map, reg,
130                                         d->mask_buf_def[i], ~d->mask_buf[i]);
131                         if (ret)
132                                 dev_err(d->map->dev, "Failed to sync masks in %x\n",
133                                         reg);
134                 }
135
136                 reg = d->get_irq_reg(d, d->chip->wake_base, i);
137                 if (d->wake_buf) {
138                         if (d->chip->wake_invert)
139                                 ret = regmap_update_bits(d->map, reg,
140                                                          d->mask_buf_def[i],
141                                                          ~d->wake_buf[i]);
142                         else
143                                 ret = regmap_update_bits(d->map, reg,
144                                                          d->mask_buf_def[i],
145                                                          d->wake_buf[i]);
146                         if (ret != 0)
147                                 dev_err(d->map->dev,
148                                         "Failed to sync wakes in %x: %d\n",
149                                         reg, ret);
150                 }
151
152                 if (!d->chip->init_ack_masked)
153                         continue;
154                 /*
155                  * Ack all the masked interrupts unconditionally,
156                  * OR if there is masked interrupt which hasn't been Acked,
157                  * it'll be ignored in irq handler, then may introduce irq storm
158                  */
159                 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160                         reg = d->get_irq_reg(d, d->chip->ack_base, i);
161
162                         /* some chips ack by write 0 */
163                         if (d->chip->ack_invert)
164                                 ret = regmap_write(map, reg, ~d->mask_buf[i]);
165                         else
166                                 ret = regmap_write(map, reg, d->mask_buf[i]);
167                         if (d->chip->clear_ack) {
168                                 if (d->chip->ack_invert && !ret)
169                                         ret = regmap_write(map, reg, UINT_MAX);
170                                 else if (!ret)
171                                         ret = regmap_write(map, reg, 0);
172                         }
173                         if (ret != 0)
174                                 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175                                         reg, ret);
176                 }
177         }
178
179         for (i = 0; i < d->chip->num_config_bases; i++) {
180                 for (j = 0; j < d->chip->num_config_regs; j++) {
181                         reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182                         ret = regmap_write(map, reg, d->config_buf[i][j]);
183                         if (ret)
184                                 dev_err(d->map->dev,
185                                         "Failed to write config %x: %d\n",
186                                         reg, ret);
187                 }
188         }
189
190         if (d->chip->runtime_pm)
191                 pm_runtime_put(map->dev);
192
193         /* If we've changed our wakeup count propagate it to the parent */
194         if (d->wake_count < 0)
195                 for (i = d->wake_count; i < 0; i++)
196                         irq_set_irq_wake(d->irq, 0);
197         else if (d->wake_count > 0)
198                 for (i = 0; i < d->wake_count; i++)
199                         irq_set_irq_wake(d->irq, 1);
200
201         d->wake_count = 0;
202
203         mutex_unlock(&d->lock);
204 }
205
206 static void regmap_irq_enable(struct irq_data *data)
207 {
208         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209         struct regmap *map = d->map;
210         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211         unsigned int reg = irq_data->reg_offset / map->reg_stride;
212         unsigned int mask;
213
214         /*
215          * The type_in_mask flag means that the underlying hardware uses
216          * separate mask bits for each interrupt trigger type, but we want
217          * to have a single logical interrupt with a configurable type.
218          *
219          * If the interrupt we're enabling defines any supported types
220          * then instead of using the regular mask bits for this interrupt,
221          * use the value previously written to the type buffer at the
222          * corresponding offset in regmap_irq_set_type().
223          */
224         if (d->chip->type_in_mask && irq_data->type.types_supported)
225                 mask = d->type_buf[reg] & irq_data->mask;
226         else
227                 mask = irq_data->mask;
228
229         if (d->chip->clear_on_unmask)
230                 d->clear_status = true;
231
232         d->mask_buf[reg] &= ~mask;
233 }
234
235 static void regmap_irq_disable(struct irq_data *data)
236 {
237         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238         struct regmap *map = d->map;
239         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240
241         d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242 }
243
244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245 {
246         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247         struct regmap *map = d->map;
248         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249         int reg, ret;
250         const struct regmap_irq_type *t = &irq_data->type;
251
252         if ((t->types_supported & type) != type)
253                 return 0;
254
255         reg = t->type_reg_offset / map->reg_stride;
256
257         if (d->chip->type_in_mask) {
258                 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259                                                         irq_data, reg, d->chip->irq_drv_data);
260                 if (ret)
261                         return ret;
262         }
263
264         if (d->chip->set_type_config) {
265                 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266                                                reg, d->chip->irq_drv_data);
267                 if (ret)
268                         return ret;
269         }
270
271         return 0;
272 }
273
274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275 {
276         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277         struct regmap *map = d->map;
278         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280         if (on) {
281                 if (d->wake_buf)
282                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
283                                 &= ~irq_data->mask;
284                 d->wake_count++;
285         } else {
286                 if (d->wake_buf)
287                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
288                                 |= irq_data->mask;
289                 d->wake_count--;
290         }
291
292         return 0;
293 }
294
295 static const struct irq_chip regmap_irq_chip = {
296         .irq_bus_lock           = regmap_irq_lock,
297         .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
298         .irq_disable            = regmap_irq_disable,
299         .irq_enable             = regmap_irq_enable,
300         .irq_set_type           = regmap_irq_set_type,
301         .irq_set_wake           = regmap_irq_set_wake,
302 };
303
304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305                                            unsigned int b)
306 {
307         const struct regmap_irq_chip *chip = data->chip;
308         struct regmap *map = data->map;
309         struct regmap_irq_sub_irq_map *subreg;
310         unsigned int reg;
311         int i, ret = 0;
312
313         if (!chip->sub_reg_offsets) {
314                 reg = data->get_irq_reg(data, chip->status_base, b);
315                 ret = regmap_read(map, reg, &data->status_buf[b]);
316         } else {
317                 /*
318                  * Note we can't use ->get_irq_reg() here because the offsets
319                  * in 'subreg' are *not* interchangeable with indices.
320                  */
321                 subreg = &chip->sub_reg_offsets[b];
322                 for (i = 0; i < subreg->num_regs; i++) {
323                         unsigned int offset = subreg->offset[i];
324                         unsigned int index = offset / map->reg_stride;
325
326                         ret = regmap_read(map, chip->status_base + offset,
327                                           &data->status_buf[index]);
328                         if (ret)
329                                 break;
330                 }
331         }
332         return ret;
333 }
334
335 static irqreturn_t regmap_irq_thread(int irq, void *d)
336 {
337         struct regmap_irq_chip_data *data = d;
338         const struct regmap_irq_chip *chip = data->chip;
339         struct regmap *map = data->map;
340         int ret, i;
341         bool handled = false;
342         u32 reg;
343
344         if (chip->handle_pre_irq)
345                 chip->handle_pre_irq(chip->irq_drv_data);
346
347         if (chip->runtime_pm) {
348                 ret = pm_runtime_get_sync(map->dev);
349                 if (ret < 0) {
350                         dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351                                 ret);
352                         goto exit;
353                 }
354         }
355
356         /*
357          * Read only registers with active IRQs if the chip has 'main status
358          * register'. Else read in the statuses, using a single bulk read if
359          * possible in order to reduce the I/O overheads.
360          */
361
362         if (chip->no_status) {
363                 /* no status register so default to all active */
364                 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365         } else if (chip->num_main_regs) {
366                 unsigned int max_main_bits;
367                 unsigned long size;
368
369                 size = chip->num_regs * sizeof(unsigned int);
370
371                 max_main_bits = (chip->num_main_status_bits) ?
372                                  chip->num_main_status_bits : chip->num_regs;
373                 /* Clear the status buf as we don't read all status regs */
374                 memset(data->status_buf, 0, size);
375
376                 /* We could support bulk read for main status registers
377                  * but I don't expect to see devices with really many main
378                  * status registers so let's only support single reads for the
379                  * sake of simplicity. and add bulk reads only if needed
380                  */
381                 for (i = 0; i < chip->num_main_regs; i++) {
382                         reg = data->get_irq_reg(data, chip->main_status, i);
383                         ret = regmap_read(map, reg, &data->main_status_buf[i]);
384                         if (ret) {
385                                 dev_err(map->dev,
386                                         "Failed to read IRQ status %d\n",
387                                         ret);
388                                 goto exit;
389                         }
390                 }
391
392                 /* Read sub registers with active IRQs */
393                 for (i = 0; i < chip->num_main_regs; i++) {
394                         unsigned int b;
395                         const unsigned long mreg = data->main_status_buf[i];
396
397                         for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
398                                 if (i * map->format.val_bytes * 8 + b >
399                                     max_main_bits)
400                                         break;
401                                 ret = read_sub_irq_data(data, b);
402
403                                 if (ret != 0) {
404                                         dev_err(map->dev,
405                                                 "Failed to read IRQ status %d\n",
406                                                 ret);
407                                         goto exit;
408                                 }
409                         }
410
411                 }
412         } else if (regmap_irq_can_bulk_read_status(data)) {
413
414                 u8 *buf8 = data->status_reg_buf;
415                 u16 *buf16 = data->status_reg_buf;
416                 u32 *buf32 = data->status_reg_buf;
417
418                 BUG_ON(!data->status_reg_buf);
419
420                 ret = regmap_bulk_read(map, chip->status_base,
421                                        data->status_reg_buf,
422                                        chip->num_regs);
423                 if (ret != 0) {
424                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
425                                 ret);
426                         goto exit;
427                 }
428
429                 for (i = 0; i < data->chip->num_regs; i++) {
430                         switch (map->format.val_bytes) {
431                         case 1:
432                                 data->status_buf[i] = buf8[i];
433                                 break;
434                         case 2:
435                                 data->status_buf[i] = buf16[i];
436                                 break;
437                         case 4:
438                                 data->status_buf[i] = buf32[i];
439                                 break;
440                         default:
441                                 BUG();
442                                 goto exit;
443                         }
444                 }
445
446         } else {
447                 for (i = 0; i < data->chip->num_regs; i++) {
448                         unsigned int reg = data->get_irq_reg(data,
449                                         data->chip->status_base, i);
450                         ret = regmap_read(map, reg, &data->status_buf[i]);
451
452                         if (ret != 0) {
453                                 dev_err(map->dev,
454                                         "Failed to read IRQ status: %d\n",
455                                         ret);
456                                 goto exit;
457                         }
458                 }
459         }
460
461         if (chip->status_invert)
462                 for (i = 0; i < data->chip->num_regs; i++)
463                         data->status_buf[i] = ~data->status_buf[i];
464
465         /*
466          * Ignore masked IRQs and ack if we need to; we ack early so
467          * there is no race between handling and acknowledging the
468          * interrupt.  We assume that typically few of the interrupts
469          * will fire simultaneously so don't worry about overhead from
470          * doing a write per register.
471          */
472         for (i = 0; i < data->chip->num_regs; i++) {
473                 data->status_buf[i] &= ~data->mask_buf[i];
474
475                 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
476                         reg = data->get_irq_reg(data, data->chip->ack_base, i);
477
478                         if (chip->ack_invert)
479                                 ret = regmap_write(map, reg,
480                                                 ~data->status_buf[i]);
481                         else
482                                 ret = regmap_write(map, reg,
483                                                 data->status_buf[i]);
484                         if (chip->clear_ack) {
485                                 if (chip->ack_invert && !ret)
486                                         ret = regmap_write(map, reg, UINT_MAX);
487                                 else if (!ret)
488                                         ret = regmap_write(map, reg, 0);
489                         }
490                         if (ret != 0)
491                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
492                                         reg, ret);
493                 }
494         }
495
496         for (i = 0; i < chip->num_irqs; i++) {
497                 if (data->status_buf[chip->irqs[i].reg_offset /
498                                      map->reg_stride] & chip->irqs[i].mask) {
499                         handle_nested_irq(irq_find_mapping(data->domain, i));
500                         handled = true;
501                 }
502         }
503
504 exit:
505         if (chip->handle_post_irq)
506                 chip->handle_post_irq(chip->irq_drv_data);
507
508         if (chip->runtime_pm)
509                 pm_runtime_put(map->dev);
510
511         if (handled)
512                 return IRQ_HANDLED;
513         else
514                 return IRQ_NONE;
515 }
516
517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518                           irq_hw_number_t hw)
519 {
520         struct regmap_irq_chip_data *data = h->host_data;
521
522         irq_set_chip_data(virq, data);
523         irq_set_chip(virq, &data->irq_chip);
524         irq_set_nested_thread(virq, 1);
525         irq_set_parent(virq, data->irq);
526         irq_set_noprobe(virq);
527
528         return 0;
529 }
530
531 static const struct irq_domain_ops regmap_domain_ops = {
532         .map    = regmap_irq_map,
533         .xlate  = irq_domain_xlate_onetwocell,
534 };
535
536 /**
537  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
538  * @data: Data for the &struct regmap_irq_chip
539  * @base: Base register
540  * @index: Register index
541  *
542  * Returns the register address corresponding to the given @base and @index
543  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
544  */
545 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
546                                            unsigned int base, int index)
547 {
548         struct regmap *map = data->map;
549
550         return base + index * map->reg_stride * data->irq_reg_stride;
551 }
552 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
553
554 /**
555  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
556  * @buf: Buffer containing configuration register values, this is a 2D array of
557  *       `num_config_bases` rows, each of `num_config_regs` elements.
558  * @type: The requested IRQ type.
559  * @irq_data: The IRQ being configured.
560  * @idx: Index of the irq's config registers within each array `buf[i]`
561  * @irq_drv_data: Driver specific IRQ data
562  *
563  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
564  * chips with one config register. Register values are updated according to
565  * the &struct regmap_irq_type data associated with an IRQ.
566  */
567 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
568                                       const struct regmap_irq *irq_data,
569                                       int idx, void *irq_drv_data)
570 {
571         const struct regmap_irq_type *t = &irq_data->type;
572
573         if (t->type_reg_mask)
574                 buf[0][idx] &= ~t->type_reg_mask;
575         else
576                 buf[0][idx] &= ~(t->type_falling_val |
577                                  t->type_rising_val |
578                                  t->type_level_low_val |
579                                  t->type_level_high_val);
580
581         switch (type) {
582         case IRQ_TYPE_EDGE_FALLING:
583                 buf[0][idx] |= t->type_falling_val;
584                 break;
585
586         case IRQ_TYPE_EDGE_RISING:
587                 buf[0][idx] |= t->type_rising_val;
588                 break;
589
590         case IRQ_TYPE_EDGE_BOTH:
591                 buf[0][idx] |= (t->type_falling_val |
592                                 t->type_rising_val);
593                 break;
594
595         case IRQ_TYPE_LEVEL_HIGH:
596                 buf[0][idx] |= t->type_level_high_val;
597                 break;
598
599         case IRQ_TYPE_LEVEL_LOW:
600                 buf[0][idx] |= t->type_level_low_val;
601                 break;
602
603         default:
604                 return -EINVAL;
605         }
606
607         return 0;
608 }
609 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
610
611 /**
612  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
613  *
614  * @fwnode: The firmware node where the IRQ domain should be added to.
615  * @map: The regmap for the device.
616  * @irq: The IRQ the device uses to signal interrupts.
617  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
618  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
619  * @chip: Configuration for the interrupt controller.
620  * @data: Runtime data structure for the controller, allocated on success.
621  *
622  * Returns 0 on success or an errno on failure.
623  *
624  * In order for this to be efficient the chip really should use a
625  * register cache.  The chip driver is responsible for restoring the
626  * register values used by the IRQ controller over suspend and resume.
627  */
628 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
629                                struct regmap *map, int irq,
630                                int irq_flags, int irq_base,
631                                const struct regmap_irq_chip *chip,
632                                struct regmap_irq_chip_data **data)
633 {
634         struct regmap_irq_chip_data *d;
635         int i;
636         int ret = -ENOMEM;
637         u32 reg;
638
639         if (chip->num_regs <= 0)
640                 return -EINVAL;
641
642         if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
643                 return -EINVAL;
644
645         if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
646                 return -EINVAL;
647
648         for (i = 0; i < chip->num_irqs; i++) {
649                 if (chip->irqs[i].reg_offset % map->reg_stride)
650                         return -EINVAL;
651                 if (chip->irqs[i].reg_offset / map->reg_stride >=
652                     chip->num_regs)
653                         return -EINVAL;
654         }
655
656         if (irq_base) {
657                 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
658                 if (irq_base < 0) {
659                         dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
660                                  irq_base);
661                         return irq_base;
662                 }
663         }
664
665         d = kzalloc(sizeof(*d), GFP_KERNEL);
666         if (!d)
667                 return -ENOMEM;
668
669         if (chip->num_main_regs) {
670                 d->main_status_buf = kcalloc(chip->num_main_regs,
671                                              sizeof(*d->main_status_buf),
672                                              GFP_KERNEL);
673
674                 if (!d->main_status_buf)
675                         goto err_alloc;
676         }
677
678         d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
679                                 GFP_KERNEL);
680         if (!d->status_buf)
681                 goto err_alloc;
682
683         d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
684                               GFP_KERNEL);
685         if (!d->mask_buf)
686                 goto err_alloc;
687
688         d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
689                                   GFP_KERNEL);
690         if (!d->mask_buf_def)
691                 goto err_alloc;
692
693         if (chip->wake_base) {
694                 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
695                                       GFP_KERNEL);
696                 if (!d->wake_buf)
697                         goto err_alloc;
698         }
699
700         if (chip->type_in_mask) {
701                 d->type_buf_def = kcalloc(chip->num_regs,
702                                           sizeof(*d->type_buf_def), GFP_KERNEL);
703                 if (!d->type_buf_def)
704                         goto err_alloc;
705
706                 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
707                 if (!d->type_buf)
708                         goto err_alloc;
709         }
710
711         if (chip->num_config_bases && chip->num_config_regs) {
712                 /*
713                  * Create config_buf[num_config_bases][num_config_regs]
714                  */
715                 d->config_buf = kcalloc(chip->num_config_bases,
716                                         sizeof(*d->config_buf), GFP_KERNEL);
717                 if (!d->config_buf)
718                         goto err_alloc;
719
720                 for (i = 0; i < chip->num_config_bases; i++) {
721                         d->config_buf[i] = kcalloc(chip->num_config_regs,
722                                                    sizeof(**d->config_buf),
723                                                    GFP_KERNEL);
724                         if (!d->config_buf[i])
725                                 goto err_alloc;
726                 }
727         }
728
729         d->irq_chip = regmap_irq_chip;
730         d->irq_chip.name = chip->name;
731         d->irq = irq;
732         d->map = map;
733         d->chip = chip;
734         d->irq_base = irq_base;
735
736         if (chip->irq_reg_stride)
737                 d->irq_reg_stride = chip->irq_reg_stride;
738         else
739                 d->irq_reg_stride = 1;
740
741         if (chip->get_irq_reg)
742                 d->get_irq_reg = chip->get_irq_reg;
743         else
744                 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
745
746         if (regmap_irq_can_bulk_read_status(d)) {
747                 d->status_reg_buf = kmalloc_array(chip->num_regs,
748                                                   map->format.val_bytes,
749                                                   GFP_KERNEL);
750                 if (!d->status_reg_buf)
751                         goto err_alloc;
752         }
753
754         mutex_init(&d->lock);
755
756         for (i = 0; i < chip->num_irqs; i++)
757                 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
758                         |= chip->irqs[i].mask;
759
760         /* Mask all the interrupts by default */
761         for (i = 0; i < chip->num_regs; i++) {
762                 d->mask_buf[i] = d->mask_buf_def[i];
763
764                 if (chip->handle_mask_sync) {
765                         ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
766                                                      d->mask_buf[i],
767                                                      chip->irq_drv_data);
768                         if (ret)
769                                 goto err_alloc;
770                 }
771
772                 if (chip->mask_base && !chip->handle_mask_sync) {
773                         reg = d->get_irq_reg(d, chip->mask_base, i);
774                         ret = regmap_update_bits(d->map, reg,
775                                                  d->mask_buf_def[i],
776                                                  d->mask_buf[i]);
777                         if (ret) {
778                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
779                                         reg, ret);
780                                 goto err_alloc;
781                         }
782                 }
783
784                 if (chip->unmask_base && !chip->handle_mask_sync) {
785                         reg = d->get_irq_reg(d, chip->unmask_base, i);
786                         ret = regmap_update_bits(d->map, reg,
787                                         d->mask_buf_def[i], ~d->mask_buf[i]);
788                         if (ret) {
789                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
790                                         reg, ret);
791                                 goto err_alloc;
792                         }
793                 }
794
795                 if (!chip->init_ack_masked)
796                         continue;
797
798                 /* Ack masked but set interrupts */
799                 if (d->chip->no_status) {
800                         /* no status register so default to all active */
801                         d->status_buf[i] = GENMASK(31, 0);
802                 } else {
803                         reg = d->get_irq_reg(d, d->chip->status_base, i);
804                         ret = regmap_read(map, reg, &d->status_buf[i]);
805                         if (ret != 0) {
806                                 dev_err(map->dev, "Failed to read IRQ status: %d\n",
807                                         ret);
808                                 goto err_alloc;
809                         }
810                 }
811
812                 if (chip->status_invert)
813                         d->status_buf[i] = ~d->status_buf[i];
814
815                 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
816                         reg = d->get_irq_reg(d, d->chip->ack_base, i);
817                         if (chip->ack_invert)
818                                 ret = regmap_write(map, reg,
819                                         ~(d->status_buf[i] & d->mask_buf[i]));
820                         else
821                                 ret = regmap_write(map, reg,
822                                         d->status_buf[i] & d->mask_buf[i]);
823                         if (chip->clear_ack) {
824                                 if (chip->ack_invert && !ret)
825                                         ret = regmap_write(map, reg, UINT_MAX);
826                                 else if (!ret)
827                                         ret = regmap_write(map, reg, 0);
828                         }
829                         if (ret != 0) {
830                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
831                                         reg, ret);
832                                 goto err_alloc;
833                         }
834                 }
835         }
836
837         /* Wake is disabled by default */
838         if (d->wake_buf) {
839                 for (i = 0; i < chip->num_regs; i++) {
840                         d->wake_buf[i] = d->mask_buf_def[i];
841                         reg = d->get_irq_reg(d, d->chip->wake_base, i);
842
843                         if (chip->wake_invert)
844                                 ret = regmap_update_bits(d->map, reg,
845                                                          d->mask_buf_def[i],
846                                                          0);
847                         else
848                                 ret = regmap_update_bits(d->map, reg,
849                                                          d->mask_buf_def[i],
850                                                          d->wake_buf[i]);
851                         if (ret != 0) {
852                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
853                                         reg, ret);
854                                 goto err_alloc;
855                         }
856                 }
857         }
858
859         if (irq_base)
860                 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
861                                                      irq_base, 0,
862                                                      &regmap_domain_ops, d);
863         else
864                 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
865                                                      &regmap_domain_ops, d);
866         if (!d->domain) {
867                 dev_err(map->dev, "Failed to create IRQ domain\n");
868                 ret = -ENOMEM;
869                 goto err_alloc;
870         }
871
872         ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
873                                    irq_flags | IRQF_ONESHOT,
874                                    chip->name, d);
875         if (ret != 0) {
876                 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
877                         irq, chip->name, ret);
878                 goto err_domain;
879         }
880
881         *data = d;
882
883         return 0;
884
885 err_domain:
886         /* Should really dispose of the domain but... */
887 err_alloc:
888         kfree(d->type_buf);
889         kfree(d->type_buf_def);
890         kfree(d->wake_buf);
891         kfree(d->mask_buf_def);
892         kfree(d->mask_buf);
893         kfree(d->status_buf);
894         kfree(d->status_reg_buf);
895         if (d->config_buf) {
896                 for (i = 0; i < chip->num_config_bases; i++)
897                         kfree(d->config_buf[i]);
898                 kfree(d->config_buf);
899         }
900         kfree(d);
901         return ret;
902 }
903 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
904
905 /**
906  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
907  *
908  * @map: The regmap for the device.
909  * @irq: The IRQ the device uses to signal interrupts.
910  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
911  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
912  * @chip: Configuration for the interrupt controller.
913  * @data: Runtime data structure for the controller, allocated on success.
914  *
915  * Returns 0 on success or an errno on failure.
916  *
917  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
918  * node of the regmap is used.
919  */
920 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
921                         int irq_base, const struct regmap_irq_chip *chip,
922                         struct regmap_irq_chip_data **data)
923 {
924         return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
925                                           irq_flags, irq_base, chip, data);
926 }
927 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
928
929 /**
930  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
931  *
932  * @irq: Primary IRQ for the device
933  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
934  *
935  * This function also disposes of all mapped IRQs on the chip.
936  */
937 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
938 {
939         unsigned int virq;
940         int i, hwirq;
941
942         if (!d)
943                 return;
944
945         free_irq(irq, d);
946
947         /* Dispose all virtual irq from irq domain before removing it */
948         for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
949                 /* Ignore hwirq if holes in the IRQ list */
950                 if (!d->chip->irqs[hwirq].mask)
951                         continue;
952
953                 /*
954                  * Find the virtual irq of hwirq on chip and if it is
955                  * there then dispose it
956                  */
957                 virq = irq_find_mapping(d->domain, hwirq);
958                 if (virq)
959                         irq_dispose_mapping(virq);
960         }
961
962         irq_domain_remove(d->domain);
963         kfree(d->type_buf);
964         kfree(d->type_buf_def);
965         kfree(d->wake_buf);
966         kfree(d->mask_buf_def);
967         kfree(d->mask_buf);
968         kfree(d->status_reg_buf);
969         kfree(d->status_buf);
970         if (d->config_buf) {
971                 for (i = 0; i < d->chip->num_config_bases; i++)
972                         kfree(d->config_buf[i]);
973                 kfree(d->config_buf);
974         }
975         kfree(d);
976 }
977 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
978
979 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
980 {
981         struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
982
983         regmap_del_irq_chip(d->irq, d);
984 }
985
986 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
987
988 {
989         struct regmap_irq_chip_data **r = res;
990
991         if (!r || !*r) {
992                 WARN_ON(!r || !*r);
993                 return 0;
994         }
995         return *r == data;
996 }
997
998 /**
999  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000  *
1001  * @dev: The device pointer on which irq_chip belongs to.
1002  * @fwnode: The firmware node where the IRQ domain should be added to.
1003  * @map: The regmap for the device.
1004  * @irq: The IRQ the device uses to signal interrupts
1005  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007  * @chip: Configuration for the interrupt controller.
1008  * @data: Runtime data structure for the controller, allocated on success
1009  *
1010  * Returns 0 on success or an errno on failure.
1011  *
1012  * The &regmap_irq_chip_data will be automatically released when the device is
1013  * unbound.
1014  */
1015 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016                                     struct fwnode_handle *fwnode,
1017                                     struct regmap *map, int irq,
1018                                     int irq_flags, int irq_base,
1019                                     const struct regmap_irq_chip *chip,
1020                                     struct regmap_irq_chip_data **data)
1021 {
1022         struct regmap_irq_chip_data **ptr, *d;
1023         int ret;
1024
1025         ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026                            GFP_KERNEL);
1027         if (!ptr)
1028                 return -ENOMEM;
1029
1030         ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031                                          chip, &d);
1032         if (ret < 0) {
1033                 devres_free(ptr);
1034                 return ret;
1035         }
1036
1037         *ptr = d;
1038         devres_add(dev, ptr);
1039         *data = d;
1040         return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043
1044 /**
1045  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046  *
1047  * @dev: The device pointer on which irq_chip belongs to.
1048  * @map: The regmap for the device.
1049  * @irq: The IRQ the device uses to signal interrupts
1050  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052  * @chip: Configuration for the interrupt controller.
1053  * @data: Runtime data structure for the controller, allocated on success
1054  *
1055  * Returns 0 on success or an errno on failure.
1056  *
1057  * The &regmap_irq_chip_data will be automatically released when the device is
1058  * unbound.
1059  */
1060 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061                              int irq_flags, int irq_base,
1062                              const struct regmap_irq_chip *chip,
1063                              struct regmap_irq_chip_data **data)
1064 {
1065         return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066                                                irq, irq_flags, irq_base, chip,
1067                                                data);
1068 }
1069 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070
1071 /**
1072  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073  *
1074  * @dev: Device for which the resource was allocated.
1075  * @irq: Primary IRQ for the device.
1076  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1077  *
1078  * A resource managed version of regmap_del_irq_chip().
1079  */
1080 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081                               struct regmap_irq_chip_data *data)
1082 {
1083         int rc;
1084
1085         WARN_ON(irq != data->irq);
1086         rc = devres_release(dev, devm_regmap_irq_chip_release,
1087                             devm_regmap_irq_chip_match, data);
1088
1089         if (rc != 0)
1090                 WARN_ON(rc);
1091 }
1092 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093
1094 /**
1095  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096  *
1097  * @data: regmap irq controller to operate on.
1098  *
1099  * Useful for drivers to request their own IRQs.
1100  */
1101 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102 {
1103         WARN_ON(!data->irq_base);
1104         return data->irq_base;
1105 }
1106 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107
1108 /**
1109  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110  *
1111  * @data: regmap irq controller to operate on.
1112  * @irq: index of the interrupt requested in the chip IRQs.
1113  *
1114  * Useful for drivers to request their own IRQs.
1115  */
1116 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117 {
1118         /* Handle holes in the IRQ list */
1119         if (!data->chip->irqs[irq].mask)
1120                 return -EINVAL;
1121
1122         return irq_create_mapping(data->domain, irq);
1123 }
1124 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125
1126 /**
1127  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128  *
1129  * @data: regmap_irq controller to operate on.
1130  *
1131  * Useful for drivers to request their own IRQs and for integration
1132  * with subsystems.  For ease of integration NULL is accepted as a
1133  * domain, allowing devices to just call this even if no domain is
1134  * allocated.
1135  */
1136 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137 {
1138         if (data)
1139                 return data->domain;
1140         else
1141                 return NULL;
1142 }
1143 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);