Merge remote-tracking branch 'stable/linux-5.15.y' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / drivers / base / property.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20
21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23         return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24                 of_fwnode_handle(dev->of_node) : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27
28 /**
29  * device_property_present - check if a property of a device is present
30  * @dev: Device whose property is being checked
31  * @propname: Name of the property
32  *
33  * Check if property @propname is present in the device firmware description.
34  */
35 bool device_property_present(struct device *dev, const char *propname)
36 {
37         return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40
41 /**
42  * fwnode_property_present - check if a property of a firmware node is present
43  * @fwnode: Firmware node whose property to check
44  * @propname: Name of the property
45  */
46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47                              const char *propname)
48 {
49         bool ret;
50
51         if (IS_ERR_OR_NULL(fwnode))
52                 return false;
53
54         ret = fwnode_call_bool_op(fwnode, property_present, propname);
55         if (ret)
56                 return ret;
57
58         return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
59 }
60 EXPORT_SYMBOL_GPL(fwnode_property_present);
61
62 /**
63  * device_property_read_u8_array - return a u8 array property of a device
64  * @dev: Device to get the property of
65  * @propname: Name of the property
66  * @val: The values are stored here or %NULL to return the number of values
67  * @nval: Size of the @val array
68  *
69  * Function reads an array of u8 properties with @propname from the device
70  * firmware description and stores them to @val if found.
71  *
72  * Return: number of values if @val was %NULL,
73  *         %0 if the property was found (success),
74  *         %-EINVAL if given arguments are not valid,
75  *         %-ENODATA if the property does not have a value,
76  *         %-EPROTO if the property is not an array of numbers,
77  *         %-EOVERFLOW if the size of the property is not as expected.
78  *         %-ENXIO if no suitable firmware interface is present.
79  */
80 int device_property_read_u8_array(struct device *dev, const char *propname,
81                                   u8 *val, size_t nval)
82 {
83         return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
84 }
85 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
86
87 /**
88  * device_property_read_u16_array - return a u16 array property of a device
89  * @dev: Device to get the property of
90  * @propname: Name of the property
91  * @val: The values are stored here or %NULL to return the number of values
92  * @nval: Size of the @val array
93  *
94  * Function reads an array of u16 properties with @propname from the device
95  * firmware description and stores them to @val if found.
96  *
97  * Return: number of values if @val was %NULL,
98  *         %0 if the property was found (success),
99  *         %-EINVAL if given arguments are not valid,
100  *         %-ENODATA if the property does not have a value,
101  *         %-EPROTO if the property is not an array of numbers,
102  *         %-EOVERFLOW if the size of the property is not as expected.
103  *         %-ENXIO if no suitable firmware interface is present.
104  */
105 int device_property_read_u16_array(struct device *dev, const char *propname,
106                                    u16 *val, size_t nval)
107 {
108         return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
109 }
110 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
111
112 /**
113  * device_property_read_u32_array - return a u32 array property of a device
114  * @dev: Device to get the property of
115  * @propname: Name of the property
116  * @val: The values are stored here or %NULL to return the number of values
117  * @nval: Size of the @val array
118  *
119  * Function reads an array of u32 properties with @propname from the device
120  * firmware description and stores them to @val if found.
121  *
122  * Return: number of values if @val was %NULL,
123  *         %0 if the property was found (success),
124  *         %-EINVAL if given arguments are not valid,
125  *         %-ENODATA if the property does not have a value,
126  *         %-EPROTO if the property is not an array of numbers,
127  *         %-EOVERFLOW if the size of the property is not as expected.
128  *         %-ENXIO if no suitable firmware interface is present.
129  */
130 int device_property_read_u32_array(struct device *dev, const char *propname,
131                                    u32 *val, size_t nval)
132 {
133         return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
134 }
135 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
136
137 /**
138  * device_property_read_u64_array - return a u64 array property of a device
139  * @dev: Device to get the property of
140  * @propname: Name of the property
141  * @val: The values are stored here or %NULL to return the number of values
142  * @nval: Size of the @val array
143  *
144  * Function reads an array of u64 properties with @propname from the device
145  * firmware description and stores them to @val if found.
146  *
147  * Return: number of values if @val was %NULL,
148  *         %0 if the property was found (success),
149  *         %-EINVAL if given arguments are not valid,
150  *         %-ENODATA if the property does not have a value,
151  *         %-EPROTO if the property is not an array of numbers,
152  *         %-EOVERFLOW if the size of the property is not as expected.
153  *         %-ENXIO if no suitable firmware interface is present.
154  */
155 int device_property_read_u64_array(struct device *dev, const char *propname,
156                                    u64 *val, size_t nval)
157 {
158         return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
159 }
160 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
161
162 /**
163  * device_property_read_string_array - return a string array property of device
164  * @dev: Device to get the property of
165  * @propname: Name of the property
166  * @val: The values are stored here or %NULL to return the number of values
167  * @nval: Size of the @val array
168  *
169  * Function reads an array of string properties with @propname from the device
170  * firmware description and stores them to @val if found.
171  *
172  * Return: number of values read on success if @val is non-NULL,
173  *         number of values available on success if @val is NULL,
174  *         %-EINVAL if given arguments are not valid,
175  *         %-ENODATA if the property does not have a value,
176  *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
177  *         %-EOVERFLOW if the size of the property is not as expected.
178  *         %-ENXIO if no suitable firmware interface is present.
179  */
180 int device_property_read_string_array(struct device *dev, const char *propname,
181                                       const char **val, size_t nval)
182 {
183         return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
184 }
185 EXPORT_SYMBOL_GPL(device_property_read_string_array);
186
187 /**
188  * device_property_read_string - return a string property of a device
189  * @dev: Device to get the property of
190  * @propname: Name of the property
191  * @val: The value is stored here
192  *
193  * Function reads property @propname from the device firmware description and
194  * stores the value into @val if found. The value is checked to be a string.
195  *
196  * Return: %0 if the property was found (success),
197  *         %-EINVAL if given arguments are not valid,
198  *         %-ENODATA if the property does not have a value,
199  *         %-EPROTO or %-EILSEQ if the property type is not a string.
200  *         %-ENXIO if no suitable firmware interface is present.
201  */
202 int device_property_read_string(struct device *dev, const char *propname,
203                                 const char **val)
204 {
205         return fwnode_property_read_string(dev_fwnode(dev), propname, val);
206 }
207 EXPORT_SYMBOL_GPL(device_property_read_string);
208
209 /**
210  * device_property_match_string - find a string in an array and return index
211  * @dev: Device to get the property of
212  * @propname: Name of the property holding the array
213  * @string: String to look for
214  *
215  * Find a given string in a string array and if it is found return the
216  * index back.
217  *
218  * Return: %0 if the property was found (success),
219  *         %-EINVAL if given arguments are not valid,
220  *         %-ENODATA if the property does not have a value,
221  *         %-EPROTO if the property is not an array of strings,
222  *         %-ENXIO if no suitable firmware interface is present.
223  */
224 int device_property_match_string(struct device *dev, const char *propname,
225                                  const char *string)
226 {
227         return fwnode_property_match_string(dev_fwnode(dev), propname, string);
228 }
229 EXPORT_SYMBOL_GPL(device_property_match_string);
230
231 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
232                                           const char *propname,
233                                           unsigned int elem_size, void *val,
234                                           size_t nval)
235 {
236         int ret;
237
238         if (IS_ERR_OR_NULL(fwnode))
239                 return -EINVAL;
240
241         ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
242                                  elem_size, val, nval);
243         if (ret != -EINVAL)
244                 return ret;
245
246         return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
247                                   elem_size, val, nval);
248 }
249
250 /**
251  * fwnode_property_read_u8_array - return a u8 array property of firmware node
252  * @fwnode: Firmware node to get the property of
253  * @propname: Name of the property
254  * @val: The values are stored here or %NULL to return the number of values
255  * @nval: Size of the @val array
256  *
257  * Read an array of u8 properties with @propname from @fwnode and stores them to
258  * @val if found.
259  *
260  * Return: number of values if @val was %NULL,
261  *         %0 if the property was found (success),
262  *         %-EINVAL if given arguments are not valid,
263  *         %-ENODATA if the property does not have a value,
264  *         %-EPROTO if the property is not an array of numbers,
265  *         %-EOVERFLOW if the size of the property is not as expected,
266  *         %-ENXIO if no suitable firmware interface is present.
267  */
268 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
269                                   const char *propname, u8 *val, size_t nval)
270 {
271         return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
272                                               val, nval);
273 }
274 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
275
276 /**
277  * fwnode_property_read_u16_array - return a u16 array property of firmware node
278  * @fwnode: Firmware node to get the property of
279  * @propname: Name of the property
280  * @val: The values are stored here or %NULL to return the number of values
281  * @nval: Size of the @val array
282  *
283  * Read an array of u16 properties with @propname from @fwnode and store them to
284  * @val if found.
285  *
286  * Return: number of values if @val was %NULL,
287  *         %0 if the property was found (success),
288  *         %-EINVAL if given arguments are not valid,
289  *         %-ENODATA if the property does not have a value,
290  *         %-EPROTO if the property is not an array of numbers,
291  *         %-EOVERFLOW if the size of the property is not as expected,
292  *         %-ENXIO if no suitable firmware interface is present.
293  */
294 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
295                                    const char *propname, u16 *val, size_t nval)
296 {
297         return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
298                                               val, nval);
299 }
300 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
301
302 /**
303  * fwnode_property_read_u32_array - return a u32 array property of firmware node
304  * @fwnode: Firmware node to get the property of
305  * @propname: Name of the property
306  * @val: The values are stored here or %NULL to return the number of values
307  * @nval: Size of the @val array
308  *
309  * Read an array of u32 properties with @propname from @fwnode store them to
310  * @val if found.
311  *
312  * Return: number of values if @val was %NULL,
313  *         %0 if the property was found (success),
314  *         %-EINVAL if given arguments are not valid,
315  *         %-ENODATA if the property does not have a value,
316  *         %-EPROTO if the property is not an array of numbers,
317  *         %-EOVERFLOW if the size of the property is not as expected,
318  *         %-ENXIO if no suitable firmware interface is present.
319  */
320 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
321                                    const char *propname, u32 *val, size_t nval)
322 {
323         return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
324                                               val, nval);
325 }
326 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
327
328 /**
329  * fwnode_property_read_u64_array - return a u64 array property firmware node
330  * @fwnode: Firmware node to get the property of
331  * @propname: Name of the property
332  * @val: The values are stored here or %NULL to return the number of values
333  * @nval: Size of the @val array
334  *
335  * Read an array of u64 properties with @propname from @fwnode and store them to
336  * @val if found.
337  *
338  * Return: number of values if @val was %NULL,
339  *         %0 if the property was found (success),
340  *         %-EINVAL if given arguments are not valid,
341  *         %-ENODATA if the property does not have a value,
342  *         %-EPROTO if the property is not an array of numbers,
343  *         %-EOVERFLOW if the size of the property is not as expected,
344  *         %-ENXIO if no suitable firmware interface is present.
345  */
346 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
347                                    const char *propname, u64 *val, size_t nval)
348 {
349         return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
350                                               val, nval);
351 }
352 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
353
354 /**
355  * fwnode_property_read_string_array - return string array property of a node
356  * @fwnode: Firmware node to get the property of
357  * @propname: Name of the property
358  * @val: The values are stored here or %NULL to return the number of values
359  * @nval: Size of the @val array
360  *
361  * Read an string list property @propname from the given firmware node and store
362  * them to @val if found.
363  *
364  * Return: number of values read on success if @val is non-NULL,
365  *         number of values available on success if @val is NULL,
366  *         %-EINVAL if given arguments are not valid,
367  *         %-ENODATA if the property does not have a value,
368  *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
369  *         %-EOVERFLOW if the size of the property is not as expected,
370  *         %-ENXIO if no suitable firmware interface is present.
371  */
372 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
373                                       const char *propname, const char **val,
374                                       size_t nval)
375 {
376         int ret;
377
378         if (IS_ERR_OR_NULL(fwnode))
379                 return -EINVAL;
380
381         ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
382                                  val, nval);
383         if (ret != -EINVAL)
384                 return ret;
385
386         return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
387                                   val, nval);
388 }
389 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
390
391 /**
392  * fwnode_property_read_string - return a string property of a firmware node
393  * @fwnode: Firmware node to get the property of
394  * @propname: Name of the property
395  * @val: The value is stored here
396  *
397  * Read property @propname from the given firmware node and store the value into
398  * @val if found.  The value is checked to be a string.
399  *
400  * Return: %0 if the property was found (success),
401  *         %-EINVAL if given arguments are not valid,
402  *         %-ENODATA if the property does not have a value,
403  *         %-EPROTO or %-EILSEQ if the property is not a string,
404  *         %-ENXIO if no suitable firmware interface is present.
405  */
406 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
407                                 const char *propname, const char **val)
408 {
409         int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
410
411         return ret < 0 ? ret : 0;
412 }
413 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
414
415 /**
416  * fwnode_property_match_string - find a string in an array and return index
417  * @fwnode: Firmware node to get the property of
418  * @propname: Name of the property holding the array
419  * @string: String to look for
420  *
421  * Find a given string in a string array and if it is found return the
422  * index back.
423  *
424  * Return: %0 if the property was found (success),
425  *         %-EINVAL if given arguments are not valid,
426  *         %-ENODATA if the property does not have a value,
427  *         %-EPROTO if the property is not an array of strings,
428  *         %-ENXIO if no suitable firmware interface is present.
429  */
430 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
431         const char *propname, const char *string)
432 {
433         const char **values;
434         int nval, ret;
435
436         nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
437         if (nval < 0)
438                 return nval;
439
440         if (nval == 0)
441                 return -ENODATA;
442
443         values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
444         if (!values)
445                 return -ENOMEM;
446
447         ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
448         if (ret < 0)
449                 goto out;
450
451         ret = match_string(values, nval, string);
452         if (ret < 0)
453                 ret = -ENODATA;
454 out:
455         kfree(values);
456         return ret;
457 }
458 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
459
460 /**
461  * fwnode_property_get_reference_args() - Find a reference with arguments
462  * @fwnode:     Firmware node where to look for the reference
463  * @prop:       The name of the property
464  * @nargs_prop: The name of the property telling the number of
465  *              arguments in the referred node. NULL if @nargs is known,
466  *              otherwise @nargs is ignored. Only relevant on OF.
467  * @nargs:      Number of arguments. Ignored if @nargs_prop is non-NULL.
468  * @index:      Index of the reference, from zero onwards.
469  * @args:       Result structure with reference and integer arguments.
470  *
471  * Obtain a reference based on a named property in an fwnode, with
472  * integer arguments.
473  *
474  * Caller is responsible to call fwnode_handle_put() on the returned
475  * args->fwnode pointer.
476  *
477  * Returns: %0 on success
478  *          %-ENOENT when the index is out of bounds, the index has an empty
479  *                   reference or the property was not found
480  *          %-EINVAL on parse error
481  */
482 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
483                                        const char *prop, const char *nargs_prop,
484                                        unsigned int nargs, unsigned int index,
485                                        struct fwnode_reference_args *args)
486 {
487         int ret;
488
489         if (IS_ERR_OR_NULL(fwnode))
490                 return -ENOENT;
491
492         ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
493                                  nargs, index, args);
494         if (ret == 0)
495                 return ret;
496
497         if (IS_ERR_OR_NULL(fwnode->secondary))
498                 return ret;
499
500         return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
501                                   nargs, index, args);
502 }
503 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
504
505 /**
506  * fwnode_find_reference - Find named reference to a fwnode_handle
507  * @fwnode: Firmware node where to look for the reference
508  * @name: The name of the reference
509  * @index: Index of the reference
510  *
511  * @index can be used when the named reference holds a table of references.
512  *
513  * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
514  * call fwnode_handle_put() on the returned fwnode pointer.
515  */
516 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
517                                             const char *name,
518                                             unsigned int index)
519 {
520         struct fwnode_reference_args args;
521         int ret;
522
523         ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
524                                                  &args);
525         return ret ? ERR_PTR(ret) : args.fwnode;
526 }
527 EXPORT_SYMBOL_GPL(fwnode_find_reference);
528
529 /**
530  * device_remove_properties - Remove properties from a device object.
531  * @dev: Device whose properties to remove.
532  *
533  * The function removes properties previously associated to the device
534  * firmware node with device_add_properties(). Memory allocated to the
535  * properties will also be released.
536  */
537 void device_remove_properties(struct device *dev)
538 {
539         struct fwnode_handle *fwnode = dev_fwnode(dev);
540
541         if (!fwnode)
542                 return;
543
544         if (is_software_node(fwnode->secondary)) {
545                 fwnode_remove_software_node(fwnode->secondary);
546                 set_secondary_fwnode(dev, NULL);
547         }
548 }
549 EXPORT_SYMBOL_GPL(device_remove_properties);
550
551 /**
552  * device_add_properties - Add a collection of properties to a device object.
553  * @dev: Device to add properties to.
554  * @properties: Collection of properties to add.
555  *
556  * Associate a collection of device properties represented by @properties with
557  * @dev. The function takes a copy of @properties.
558  *
559  * WARNING: The callers should not use this function if it is known that there
560  * is no real firmware node associated with @dev! In that case the callers
561  * should create a software node and assign it to @dev directly.
562  */
563 int device_add_properties(struct device *dev,
564                           const struct property_entry *properties)
565 {
566         struct fwnode_handle *fwnode;
567
568         fwnode = fwnode_create_software_node(properties, NULL);
569         if (IS_ERR(fwnode))
570                 return PTR_ERR(fwnode);
571
572         set_secondary_fwnode(dev, fwnode);
573         return 0;
574 }
575 EXPORT_SYMBOL_GPL(device_add_properties);
576
577 /**
578  * fwnode_get_name - Return the name of a node
579  * @fwnode: The firmware node
580  *
581  * Returns a pointer to the node name.
582  */
583 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
584 {
585         return fwnode_call_ptr_op(fwnode, get_name);
586 }
587 EXPORT_SYMBOL_GPL(fwnode_get_name);
588
589 /**
590  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
591  * @fwnode: The firmware node
592  *
593  * Returns the prefix of a node, intended to be printed right before the node.
594  * The prefix works also as a separator between the nodes.
595  */
596 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
597 {
598         return fwnode_call_ptr_op(fwnode, get_name_prefix);
599 }
600
601 /**
602  * fwnode_get_parent - Return parent firwmare node
603  * @fwnode: Firmware whose parent is retrieved
604  *
605  * Return parent firmware node of the given node if possible or %NULL if no
606  * parent was available.
607  */
608 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
609 {
610         return fwnode_call_ptr_op(fwnode, get_parent);
611 }
612 EXPORT_SYMBOL_GPL(fwnode_get_parent);
613
614 /**
615  * fwnode_get_next_parent - Iterate to the node's parent
616  * @fwnode: Firmware whose parent is retrieved
617  *
618  * This is like fwnode_get_parent() except that it drops the refcount
619  * on the passed node, making it suitable for iterating through a
620  * node's parents.
621  *
622  * Returns a node pointer with refcount incremented, use
623  * fwnode_handle_node() on it when done.
624  */
625 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
626 {
627         struct fwnode_handle *parent = fwnode_get_parent(fwnode);
628
629         fwnode_handle_put(fwnode);
630
631         return parent;
632 }
633 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
634
635 /**
636  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
637  * @fwnode: firmware node
638  *
639  * Given a firmware node (@fwnode), this function finds its closest ancestor
640  * firmware node that has a corresponding struct device and returns that struct
641  * device.
642  *
643  * The caller of this function is expected to call put_device() on the returned
644  * device when they are done.
645  */
646 struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
647 {
648         struct device *dev;
649
650         fwnode_handle_get(fwnode);
651         do {
652                 fwnode = fwnode_get_next_parent(fwnode);
653                 if (!fwnode)
654                         return NULL;
655                 dev = get_dev_from_fwnode(fwnode);
656         } while (!dev);
657         fwnode_handle_put(fwnode);
658         return dev;
659 }
660
661 /**
662  * fwnode_count_parents - Return the number of parents a node has
663  * @fwnode: The node the parents of which are to be counted
664  *
665  * Returns the number of parents a node has.
666  */
667 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
668 {
669         struct fwnode_handle *__fwnode;
670         unsigned int count;
671
672         __fwnode = fwnode_get_parent(fwnode);
673
674         for (count = 0; __fwnode; count++)
675                 __fwnode = fwnode_get_next_parent(__fwnode);
676
677         return count;
678 }
679 EXPORT_SYMBOL_GPL(fwnode_count_parents);
680
681 /**
682  * fwnode_get_nth_parent - Return an nth parent of a node
683  * @fwnode: The node the parent of which is requested
684  * @depth: Distance of the parent from the node
685  *
686  * Returns the nth parent of a node. If there is no parent at the requested
687  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
688  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
689  *
690  * The caller is responsible for calling fwnode_handle_put() for the returned
691  * node.
692  */
693 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
694                                             unsigned int depth)
695 {
696         fwnode_handle_get(fwnode);
697
698         do {
699                 if (depth-- == 0)
700                         break;
701                 fwnode = fwnode_get_next_parent(fwnode);
702         } while (fwnode);
703
704         return fwnode;
705 }
706 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
707
708 /**
709  * fwnode_is_ancestor_of - Test if @test_ancestor is ancestor of @test_child
710  * @test_ancestor: Firmware which is tested for being an ancestor
711  * @test_child: Firmware which is tested for being the child
712  *
713  * A node is considered an ancestor of itself too.
714  *
715  * Returns true if @test_ancestor is an ancestor of @test_child.
716  * Otherwise, returns false.
717  */
718 bool fwnode_is_ancestor_of(struct fwnode_handle *test_ancestor,
719                                   struct fwnode_handle *test_child)
720 {
721         if (IS_ERR_OR_NULL(test_ancestor))
722                 return false;
723
724         fwnode_handle_get(test_child);
725         do {
726                 if (test_child == test_ancestor) {
727                         fwnode_handle_put(test_child);
728                         return true;
729                 }
730                 test_child = fwnode_get_next_parent(test_child);
731         } while (test_child);
732         return false;
733 }
734
735 /**
736  * fwnode_get_next_child_node - Return the next child node handle for a node
737  * @fwnode: Firmware node to find the next child node for.
738  * @child: Handle to one of the node's child nodes or a %NULL handle.
739  */
740 struct fwnode_handle *
741 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
742                            struct fwnode_handle *child)
743 {
744         return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
745 }
746 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
747
748 /**
749  * fwnode_get_next_available_child_node - Return the next
750  * available child node handle for a node
751  * @fwnode: Firmware node to find the next child node for.
752  * @child: Handle to one of the node's child nodes or a %NULL handle.
753  */
754 struct fwnode_handle *
755 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
756                                      struct fwnode_handle *child)
757 {
758         struct fwnode_handle *next_child = child;
759
760         if (IS_ERR_OR_NULL(fwnode))
761                 return NULL;
762
763         do {
764                 next_child = fwnode_get_next_child_node(fwnode, next_child);
765                 if (!next_child)
766                         return NULL;
767         } while (!fwnode_device_is_available(next_child));
768
769         return next_child;
770 }
771 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
772
773 /**
774  * device_get_next_child_node - Return the next child node handle for a device
775  * @dev: Device to find the next child node for.
776  * @child: Handle to one of the device's child nodes or a null handle.
777  */
778 struct fwnode_handle *device_get_next_child_node(struct device *dev,
779                                                  struct fwnode_handle *child)
780 {
781         const struct fwnode_handle *fwnode = dev_fwnode(dev);
782         struct fwnode_handle *next;
783
784         if (IS_ERR_OR_NULL(fwnode))
785                 return NULL;
786
787         /* Try to find a child in primary fwnode */
788         next = fwnode_get_next_child_node(fwnode, child);
789         if (next)
790                 return next;
791
792         /* When no more children in primary, continue with secondary */
793         return fwnode_get_next_child_node(fwnode->secondary, child);
794 }
795 EXPORT_SYMBOL_GPL(device_get_next_child_node);
796
797 /**
798  * fwnode_get_named_child_node - Return first matching named child node handle
799  * @fwnode: Firmware node to find the named child node for.
800  * @childname: String to match child node name against.
801  */
802 struct fwnode_handle *
803 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
804                             const char *childname)
805 {
806         return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
807 }
808 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
809
810 /**
811  * device_get_named_child_node - Return first matching named child node handle
812  * @dev: Device to find the named child node for.
813  * @childname: String to match child node name against.
814  */
815 struct fwnode_handle *device_get_named_child_node(struct device *dev,
816                                                   const char *childname)
817 {
818         return fwnode_get_named_child_node(dev_fwnode(dev), childname);
819 }
820 EXPORT_SYMBOL_GPL(device_get_named_child_node);
821
822 /**
823  * fwnode_handle_get - Obtain a reference to a device node
824  * @fwnode: Pointer to the device node to obtain the reference to.
825  *
826  * Returns the fwnode handle.
827  */
828 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
829 {
830         if (!fwnode_has_op(fwnode, get))
831                 return fwnode;
832
833         return fwnode_call_ptr_op(fwnode, get);
834 }
835 EXPORT_SYMBOL_GPL(fwnode_handle_get);
836
837 /**
838  * fwnode_handle_put - Drop reference to a device node
839  * @fwnode: Pointer to the device node to drop the reference to.
840  *
841  * This has to be used when terminating device_for_each_child_node() iteration
842  * with break or return to prevent stale device node references from being left
843  * behind.
844  */
845 void fwnode_handle_put(struct fwnode_handle *fwnode)
846 {
847         fwnode_call_void_op(fwnode, put);
848 }
849 EXPORT_SYMBOL_GPL(fwnode_handle_put);
850
851 /**
852  * fwnode_device_is_available - check if a device is available for use
853  * @fwnode: Pointer to the fwnode of the device.
854  *
855  * For fwnode node types that don't implement the .device_is_available()
856  * operation, this function returns true.
857  */
858 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
859 {
860         if (IS_ERR_OR_NULL(fwnode))
861                 return false;
862
863         if (!fwnode_has_op(fwnode, device_is_available))
864                 return true;
865
866         return fwnode_call_bool_op(fwnode, device_is_available);
867 }
868 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
869
870 /**
871  * device_get_child_node_count - return the number of child nodes for device
872  * @dev: Device to cound the child nodes for
873  */
874 unsigned int device_get_child_node_count(struct device *dev)
875 {
876         struct fwnode_handle *child;
877         unsigned int count = 0;
878
879         device_for_each_child_node(dev, child)
880                 count++;
881
882         return count;
883 }
884 EXPORT_SYMBOL_GPL(device_get_child_node_count);
885
886 bool device_dma_supported(struct device *dev)
887 {
888         const struct fwnode_handle *fwnode = dev_fwnode(dev);
889
890         /* For DT, this is always supported.
891          * For ACPI, this depends on CCA, which
892          * is determined by the acpi_dma_supported().
893          */
894         if (is_of_node(fwnode))
895                 return true;
896
897         return acpi_dma_supported(to_acpi_device_node(fwnode));
898 }
899 EXPORT_SYMBOL_GPL(device_dma_supported);
900
901 enum dev_dma_attr device_get_dma_attr(struct device *dev)
902 {
903         const struct fwnode_handle *fwnode = dev_fwnode(dev);
904         enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
905
906         if (is_of_node(fwnode)) {
907                 if (of_dma_is_coherent(to_of_node(fwnode)))
908                         attr = DEV_DMA_COHERENT;
909                 else
910                         attr = DEV_DMA_NON_COHERENT;
911         } else
912                 attr = acpi_get_dma_attr(to_acpi_device_node(fwnode));
913
914         return attr;
915 }
916 EXPORT_SYMBOL_GPL(device_get_dma_attr);
917
918 /**
919  * fwnode_get_phy_mode - Get phy mode for given firmware node
920  * @fwnode:     Pointer to the given node
921  *
922  * The function gets phy interface string from property 'phy-mode' or
923  * 'phy-connection-type', and return its index in phy_modes table, or errno in
924  * error case.
925  */
926 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
927 {
928         const char *pm;
929         int err, i;
930
931         err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
932         if (err < 0)
933                 err = fwnode_property_read_string(fwnode,
934                                                   "phy-connection-type", &pm);
935         if (err < 0)
936                 return err;
937
938         for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
939                 if (!strcasecmp(pm, phy_modes(i)))
940                         return i;
941
942         return -ENODEV;
943 }
944 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
945
946 /**
947  * device_get_phy_mode - Get phy mode for given device
948  * @dev:        Pointer to the given device
949  *
950  * The function gets phy interface string from property 'phy-mode' or
951  * 'phy-connection-type', and return its index in phy_modes table, or errno in
952  * error case.
953  */
954 int device_get_phy_mode(struct device *dev)
955 {
956         return fwnode_get_phy_mode(dev_fwnode(dev));
957 }
958 EXPORT_SYMBOL_GPL(device_get_phy_mode);
959
960 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
961                                  const char *name, char *addr,
962                                  int alen)
963 {
964         int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
965
966         if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
967                 return addr;
968         return NULL;
969 }
970
971 /**
972  * fwnode_get_mac_address - Get the MAC from the firmware node
973  * @fwnode:     Pointer to the firmware node
974  * @addr:       Address of buffer to store the MAC in
975  * @alen:       Length of the buffer pointed to by addr, should be ETH_ALEN
976  *
977  * Search the firmware node for the best MAC address to use.  'mac-address' is
978  * checked first, because that is supposed to contain to "most recent" MAC
979  * address. If that isn't set, then 'local-mac-address' is checked next,
980  * because that is the default address.  If that isn't set, then the obsolete
981  * 'address' is checked, just in case we're using an old device tree.
982  *
983  * Note that the 'address' property is supposed to contain a virtual address of
984  * the register set, but some DTS files have redefined that property to be the
985  * MAC address.
986  *
987  * All-zero MAC addresses are rejected, because those could be properties that
988  * exist in the firmware tables, but were not updated by the firmware.  For
989  * example, the DTS could define 'mac-address' and 'local-mac-address', with
990  * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
991  * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
992  * exists but is all zeros.
993 */
994 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
995 {
996         char *res;
997
998         res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
999         if (res)
1000                 return res;
1001
1002         res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1003         if (res)
1004                 return res;
1005
1006         return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1007 }
1008 EXPORT_SYMBOL(fwnode_get_mac_address);
1009
1010 /**
1011  * device_get_mac_address - Get the MAC for a given device
1012  * @dev:        Pointer to the device
1013  * @addr:       Address of buffer to store the MAC in
1014  * @alen:       Length of the buffer pointed to by addr, should be ETH_ALEN
1015  */
1016 void *device_get_mac_address(struct device *dev, char *addr, int alen)
1017 {
1018         return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1019 }
1020 EXPORT_SYMBOL(device_get_mac_address);
1021
1022 /**
1023  * fwnode_irq_get - Get IRQ directly from a fwnode
1024  * @fwnode:     Pointer to the firmware node
1025  * @index:      Zero-based index of the IRQ
1026  *
1027  * Returns Linux IRQ number on success. Other values are determined
1028  * accordingly to acpi_/of_ irq_get() operation.
1029  */
1030 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1031 {
1032         struct resource res;
1033         int ret;
1034
1035         if (is_of_node(fwnode))
1036                 return of_irq_get(to_of_node(fwnode), index);
1037
1038         ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1039         if (ret)
1040                 return ret;
1041
1042         return res.start;
1043 }
1044 EXPORT_SYMBOL(fwnode_irq_get);
1045
1046 /**
1047  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1048  * @fwnode: Pointer to the parent firmware node
1049  * @prev: Previous endpoint node or %NULL to get the first
1050  *
1051  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1052  * are available.
1053  */
1054 struct fwnode_handle *
1055 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1056                                struct fwnode_handle *prev)
1057 {
1058         struct fwnode_handle *ep, *port_parent = NULL;
1059         const struct fwnode_handle *parent;
1060
1061         /*
1062          * If this function is in a loop and the previous iteration returned
1063          * an endpoint from fwnode->secondary, then we need to use the secondary
1064          * as parent rather than @fwnode.
1065          */
1066         if (prev) {
1067                 port_parent = fwnode_graph_get_port_parent(prev);
1068                 parent = port_parent;
1069         } else {
1070                 parent = fwnode;
1071         }
1072         if (IS_ERR_OR_NULL(parent))
1073                 return NULL;
1074
1075         ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1076         if (ep)
1077                 goto out_put_port_parent;
1078
1079         ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1080
1081 out_put_port_parent:
1082         fwnode_handle_put(port_parent);
1083         return ep;
1084 }
1085 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1086
1087 /**
1088  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1089  * @endpoint: Endpoint firmware node of the port
1090  *
1091  * Return: the firmware node of the device the @endpoint belongs to.
1092  */
1093 struct fwnode_handle *
1094 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1095 {
1096         struct fwnode_handle *port, *parent;
1097
1098         port = fwnode_get_parent(endpoint);
1099         parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1100
1101         fwnode_handle_put(port);
1102
1103         return parent;
1104 }
1105 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1106
1107 /**
1108  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1109  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1110  *
1111  * Extracts firmware node of a remote device the @fwnode points to.
1112  */
1113 struct fwnode_handle *
1114 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1115 {
1116         struct fwnode_handle *endpoint, *parent;
1117
1118         endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1119         parent = fwnode_graph_get_port_parent(endpoint);
1120
1121         fwnode_handle_put(endpoint);
1122
1123         return parent;
1124 }
1125 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1126
1127 /**
1128  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1129  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1130  *
1131  * Extracts firmware node of a remote port the @fwnode points to.
1132  */
1133 struct fwnode_handle *
1134 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1135 {
1136         return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1137 }
1138 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1139
1140 /**
1141  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1142  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1143  *
1144  * Extracts firmware node of a remote endpoint the @fwnode points to.
1145  */
1146 struct fwnode_handle *
1147 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1148 {
1149         return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1150 }
1151 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1152
1153 /**
1154  * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1155  * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1156  * @port_id: identifier of the parent port node
1157  * @endpoint_id: identifier of the endpoint node
1158  *
1159  * Return: Remote fwnode handle associated with remote endpoint node linked
1160  *         to @node. Use fwnode_node_put() on it when done.
1161  */
1162 struct fwnode_handle *
1163 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1164                              u32 endpoint_id)
1165 {
1166         struct fwnode_handle *endpoint = NULL;
1167
1168         while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1169                 struct fwnode_endpoint fwnode_ep;
1170                 struct fwnode_handle *remote;
1171                 int ret;
1172
1173                 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1174                 if (ret < 0)
1175                         continue;
1176
1177                 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1178                         continue;
1179
1180                 remote = fwnode_graph_get_remote_port_parent(endpoint);
1181                 if (!remote)
1182                         return NULL;
1183
1184                 return fwnode_device_is_available(remote) ? remote : NULL;
1185         }
1186
1187         return NULL;
1188 }
1189 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1190
1191 /**
1192  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1193  * @fwnode: parent fwnode_handle containing the graph
1194  * @port: identifier of the port node
1195  * @endpoint: identifier of the endpoint node under the port node
1196  * @flags: fwnode lookup flags
1197  *
1198  * Return the fwnode handle of the local endpoint corresponding the port and
1199  * endpoint IDs or NULL if not found.
1200  *
1201  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1202  * has not been found, look for the closest endpoint ID greater than the
1203  * specified one and return the endpoint that corresponds to it, if present.
1204  *
1205  * Do not return endpoints that belong to disabled devices, unless
1206  * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1207  *
1208  * The returned endpoint needs to be released by calling fwnode_handle_put() on
1209  * it when it is not needed any more.
1210  */
1211 struct fwnode_handle *
1212 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1213                                 u32 port, u32 endpoint, unsigned long flags)
1214 {
1215         struct fwnode_handle *ep = NULL, *best_ep = NULL;
1216         unsigned int best_ep_id = 0;
1217         bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1218         bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1219
1220         while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1221                 struct fwnode_endpoint fwnode_ep = { 0 };
1222                 int ret;
1223
1224                 if (enabled_only) {
1225                         struct fwnode_handle *dev_node;
1226                         bool available;
1227
1228                         dev_node = fwnode_graph_get_remote_port_parent(ep);
1229                         available = fwnode_device_is_available(dev_node);
1230                         fwnode_handle_put(dev_node);
1231                         if (!available)
1232                                 continue;
1233                 }
1234
1235                 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1236                 if (ret < 0)
1237                         continue;
1238
1239                 if (fwnode_ep.port != port)
1240                         continue;
1241
1242                 if (fwnode_ep.id == endpoint)
1243                         return ep;
1244
1245                 if (!endpoint_next)
1246                         continue;
1247
1248                 /*
1249                  * If the endpoint that has just been found is not the first
1250                  * matching one and the ID of the one found previously is closer
1251                  * to the requested endpoint ID, skip it.
1252                  */
1253                 if (fwnode_ep.id < endpoint ||
1254                     (best_ep && best_ep_id < fwnode_ep.id))
1255                         continue;
1256
1257                 fwnode_handle_put(best_ep);
1258                 best_ep = fwnode_handle_get(ep);
1259                 best_ep_id = fwnode_ep.id;
1260         }
1261
1262         return best_ep;
1263 }
1264 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1265
1266 /**
1267  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1268  * @fwnode: pointer to endpoint fwnode_handle
1269  * @endpoint: pointer to the fwnode endpoint data structure
1270  *
1271  * Parse @fwnode representing a graph endpoint node and store the
1272  * information in @endpoint. The caller must hold a reference to
1273  * @fwnode.
1274  */
1275 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1276                                 struct fwnode_endpoint *endpoint)
1277 {
1278         memset(endpoint, 0, sizeof(*endpoint));
1279
1280         return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1281 }
1282 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1283
1284 const void *device_get_match_data(struct device *dev)
1285 {
1286         return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1287 }
1288 EXPORT_SYMBOL_GPL(device_get_match_data);
1289
1290 static void *
1291 fwnode_graph_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1292                           void *data, devcon_match_fn_t match)
1293 {
1294         struct fwnode_handle *node;
1295         struct fwnode_handle *ep;
1296         void *ret;
1297
1298         fwnode_graph_for_each_endpoint(fwnode, ep) {
1299                 node = fwnode_graph_get_remote_port_parent(ep);
1300                 if (!fwnode_device_is_available(node)) {
1301                         fwnode_handle_put(node);
1302                         continue;
1303                 }
1304
1305                 ret = match(node, con_id, data);
1306                 fwnode_handle_put(node);
1307                 if (ret) {
1308                         fwnode_handle_put(ep);
1309                         return ret;
1310                 }
1311         }
1312         return NULL;
1313 }
1314
1315 static void *
1316 fwnode_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1317                     void *data, devcon_match_fn_t match)
1318 {
1319         struct fwnode_handle *node;
1320         void *ret;
1321         int i;
1322
1323         for (i = 0; ; i++) {
1324                 node = fwnode_find_reference(fwnode, con_id, i);
1325                 if (IS_ERR(node))
1326                         break;
1327
1328                 ret = match(node, NULL, data);
1329                 fwnode_handle_put(node);
1330                 if (ret)
1331                         return ret;
1332         }
1333
1334         return NULL;
1335 }
1336
1337 /**
1338  * fwnode_connection_find_match - Find connection from a device node
1339  * @fwnode: Device node with the connection
1340  * @con_id: Identifier for the connection
1341  * @data: Data for the match function
1342  * @match: Function to check and convert the connection description
1343  *
1344  * Find a connection with unique identifier @con_id between @fwnode and another
1345  * device node. @match will be used to convert the connection description to
1346  * data the caller is expecting to be returned.
1347  */
1348 void *fwnode_connection_find_match(struct fwnode_handle *fwnode,
1349                                    const char *con_id, void *data,
1350                                    devcon_match_fn_t match)
1351 {
1352         void *ret;
1353
1354         if (!fwnode || !match)
1355                 return NULL;
1356
1357         ret = fwnode_graph_devcon_match(fwnode, con_id, data, match);
1358         if (ret)
1359                 return ret;
1360
1361         return fwnode_devcon_match(fwnode, con_id, data, match);
1362 }
1363 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);