Merge tag 'spi-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[platform/kernel/linux-starfive.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)         \
29                                 (per_cpu_cacheinfo(cpu) + (idx))
30
31 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
32 {
33         return ci_cacheinfo(cpu);
34 }
35
36 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
37                                            struct cacheinfo *sib_leaf)
38 {
39         /*
40          * For non DT/ACPI systems, assume unique level 1 caches,
41          * system-wide shared caches for all other levels. This will be used
42          * only if arch specific code has not populated shared_cpu_map
43          */
44         if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)))
45                 return !(this_leaf->level == 1);
46
47         if ((sib_leaf->attributes & CACHE_ID) &&
48             (this_leaf->attributes & CACHE_ID))
49                 return sib_leaf->id == this_leaf->id;
50
51         return sib_leaf->fw_token == this_leaf->fw_token;
52 }
53
54 bool last_level_cache_is_valid(unsigned int cpu)
55 {
56         struct cacheinfo *llc;
57
58         if (!cache_leaves(cpu))
59                 return false;
60
61         llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
62
63         return (llc->attributes & CACHE_ID) || !!llc->fw_token;
64
65 }
66
67 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
68 {
69         struct cacheinfo *llc_x, *llc_y;
70
71         if (!last_level_cache_is_valid(cpu_x) ||
72             !last_level_cache_is_valid(cpu_y))
73                 return false;
74
75         llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
76         llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
77
78         return cache_leaves_are_shared(llc_x, llc_y);
79 }
80
81 #ifdef CONFIG_OF
82 /* OF properties to query for a given cache type */
83 struct cache_type_info {
84         const char *size_prop;
85         const char *line_size_props[2];
86         const char *nr_sets_prop;
87 };
88
89 static const struct cache_type_info cache_type_info[] = {
90         {
91                 .size_prop       = "cache-size",
92                 .line_size_props = { "cache-line-size",
93                                      "cache-block-size", },
94                 .nr_sets_prop    = "cache-sets",
95         }, {
96                 .size_prop       = "i-cache-size",
97                 .line_size_props = { "i-cache-line-size",
98                                      "i-cache-block-size", },
99                 .nr_sets_prop    = "i-cache-sets",
100         }, {
101                 .size_prop       = "d-cache-size",
102                 .line_size_props = { "d-cache-line-size",
103                                      "d-cache-block-size", },
104                 .nr_sets_prop    = "d-cache-sets",
105         },
106 };
107
108 static inline int get_cacheinfo_idx(enum cache_type type)
109 {
110         if (type == CACHE_TYPE_UNIFIED)
111                 return 0;
112         return type;
113 }
114
115 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
116 {
117         const char *propname;
118         int ct_idx;
119
120         ct_idx = get_cacheinfo_idx(this_leaf->type);
121         propname = cache_type_info[ct_idx].size_prop;
122
123         of_property_read_u32(np, propname, &this_leaf->size);
124 }
125
126 /* not cache_line_size() because that's a macro in include/linux/cache.h */
127 static void cache_get_line_size(struct cacheinfo *this_leaf,
128                                 struct device_node *np)
129 {
130         int i, lim, ct_idx;
131
132         ct_idx = get_cacheinfo_idx(this_leaf->type);
133         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
134
135         for (i = 0; i < lim; i++) {
136                 int ret;
137                 u32 line_size;
138                 const char *propname;
139
140                 propname = cache_type_info[ct_idx].line_size_props[i];
141                 ret = of_property_read_u32(np, propname, &line_size);
142                 if (!ret) {
143                         this_leaf->coherency_line_size = line_size;
144                         break;
145                 }
146         }
147 }
148
149 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
150 {
151         const char *propname;
152         int ct_idx;
153
154         ct_idx = get_cacheinfo_idx(this_leaf->type);
155         propname = cache_type_info[ct_idx].nr_sets_prop;
156
157         of_property_read_u32(np, propname, &this_leaf->number_of_sets);
158 }
159
160 static void cache_associativity(struct cacheinfo *this_leaf)
161 {
162         unsigned int line_size = this_leaf->coherency_line_size;
163         unsigned int nr_sets = this_leaf->number_of_sets;
164         unsigned int size = this_leaf->size;
165
166         /*
167          * If the cache is fully associative, there is no need to
168          * check the other properties.
169          */
170         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
171                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
172 }
173
174 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
175                                   struct device_node *np)
176 {
177         return of_property_read_bool(np, "cache-unified");
178 }
179
180 static void cache_of_set_props(struct cacheinfo *this_leaf,
181                                struct device_node *np)
182 {
183         /*
184          * init_cache_level must setup the cache level correctly
185          * overriding the architecturally specified levels, so
186          * if type is NONE at this stage, it should be unified
187          */
188         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
189             cache_node_is_unified(this_leaf, np))
190                 this_leaf->type = CACHE_TYPE_UNIFIED;
191         cache_size(this_leaf, np);
192         cache_get_line_size(this_leaf, np);
193         cache_nr_sets(this_leaf, np);
194         cache_associativity(this_leaf);
195 }
196
197 static int cache_setup_of_node(unsigned int cpu)
198 {
199         struct device_node *np, *prev;
200         struct cacheinfo *this_leaf;
201         unsigned int index = 0;
202
203         np = of_cpu_device_node_get(cpu);
204         if (!np) {
205                 pr_err("Failed to find cpu%d device node\n", cpu);
206                 return -ENOENT;
207         }
208
209         prev = np;
210
211         while (index < cache_leaves(cpu)) {
212                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
213                 if (this_leaf->level != 1) {
214                         np = of_find_next_cache_node(np);
215                         of_node_put(prev);
216                         prev = np;
217                         if (!np)
218                                 break;
219                 }
220                 cache_of_set_props(this_leaf, np);
221                 this_leaf->fw_token = np;
222                 index++;
223         }
224
225         of_node_put(np);
226
227         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
228                 return -ENOENT;
229
230         return 0;
231 }
232
233 static int of_count_cache_leaves(struct device_node *np)
234 {
235         unsigned int leaves = 0;
236
237         if (of_property_read_bool(np, "cache-size"))
238                 ++leaves;
239         if (of_property_read_bool(np, "i-cache-size"))
240                 ++leaves;
241         if (of_property_read_bool(np, "d-cache-size"))
242                 ++leaves;
243
244         if (!leaves) {
245                 /* The '[i-|d-|]cache-size' property is required, but
246                  * if absent, fallback on the 'cache-unified' property.
247                  */
248                 if (of_property_read_bool(np, "cache-unified"))
249                         return 1;
250                 else
251                         return 2;
252         }
253
254         return leaves;
255 }
256
257 int init_of_cache_level(unsigned int cpu)
258 {
259         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
260         struct device_node *np = of_cpu_device_node_get(cpu);
261         struct device_node *prev = NULL;
262         unsigned int levels = 0, leaves, level;
263
264         leaves = of_count_cache_leaves(np);
265         if (leaves > 0)
266                 levels = 1;
267
268         prev = np;
269         while ((np = of_find_next_cache_node(np))) {
270                 of_node_put(prev);
271                 prev = np;
272                 if (!of_device_is_compatible(np, "cache"))
273                         goto err_out;
274                 if (of_property_read_u32(np, "cache-level", &level))
275                         goto err_out;
276                 if (level <= levels)
277                         goto err_out;
278
279                 leaves += of_count_cache_leaves(np);
280                 levels = level;
281         }
282
283         of_node_put(np);
284         this_cpu_ci->num_levels = levels;
285         this_cpu_ci->num_leaves = leaves;
286
287         return 0;
288
289 err_out:
290         of_node_put(np);
291         return -EINVAL;
292 }
293
294 #else
295 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
296 int init_of_cache_level(unsigned int cpu) { return 0; }
297 #endif
298
299 int __weak cache_setup_acpi(unsigned int cpu)
300 {
301         return -ENOTSUPP;
302 }
303
304 unsigned int coherency_max_size;
305
306 static int cache_setup_properties(unsigned int cpu)
307 {
308         int ret = 0;
309
310         if (of_have_populated_dt())
311                 ret = cache_setup_of_node(cpu);
312         else if (!acpi_disabled)
313                 ret = cache_setup_acpi(cpu);
314
315         return ret;
316 }
317
318 static int cache_shared_cpu_map_setup(unsigned int cpu)
319 {
320         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
321         struct cacheinfo *this_leaf, *sib_leaf;
322         unsigned int index, sib_index;
323         int ret = 0;
324
325         if (this_cpu_ci->cpu_map_populated)
326                 return 0;
327
328         /*
329          * skip setting up cache properties if LLC is valid, just need
330          * to update the shared cpu_map if the cache attributes were
331          * populated early before all the cpus are brought online
332          */
333         if (!last_level_cache_is_valid(cpu)) {
334                 ret = cache_setup_properties(cpu);
335                 if (ret)
336                         return ret;
337         }
338
339         for (index = 0; index < cache_leaves(cpu); index++) {
340                 unsigned int i;
341
342                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
343
344                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
345                 for_each_online_cpu(i) {
346                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
347
348                         if (i == cpu || !sib_cpu_ci->info_list)
349                                 continue;/* skip if itself or no cacheinfo */
350                         for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
351                                 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
352                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
353                                         cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
354                                         cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
355                                         break;
356                                 }
357                         }
358                 }
359                 /* record the maximum cache line size */
360                 if (this_leaf->coherency_line_size > coherency_max_size)
361                         coherency_max_size = this_leaf->coherency_line_size;
362         }
363
364         return 0;
365 }
366
367 static void cache_shared_cpu_map_remove(unsigned int cpu)
368 {
369         struct cacheinfo *this_leaf, *sib_leaf;
370         unsigned int sibling, index, sib_index;
371
372         for (index = 0; index < cache_leaves(cpu); index++) {
373                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
374                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
375                         struct cpu_cacheinfo *sib_cpu_ci =
376                                                 get_cpu_cacheinfo(sibling);
377
378                         if (sibling == cpu || !sib_cpu_ci->info_list)
379                                 continue;/* skip if itself or no cacheinfo */
380
381                         for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
382                                 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
383                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
384                                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
385                                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
386                                         break;
387                                 }
388                         }
389                 }
390         }
391 }
392
393 static void free_cache_attributes(unsigned int cpu)
394 {
395         if (!per_cpu_cacheinfo(cpu))
396                 return;
397
398         cache_shared_cpu_map_remove(cpu);
399 }
400
401 int __weak init_cache_level(unsigned int cpu)
402 {
403         return -ENOENT;
404 }
405
406 int __weak populate_cache_leaves(unsigned int cpu)
407 {
408         return -ENOENT;
409 }
410
411 static inline
412 int allocate_cache_info(int cpu)
413 {
414         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
415                                          sizeof(struct cacheinfo), GFP_ATOMIC);
416         if (!per_cpu_cacheinfo(cpu)) {
417                 cache_leaves(cpu) = 0;
418                 return -ENOMEM;
419         }
420
421         return 0;
422 }
423
424 int fetch_cache_info(unsigned int cpu)
425 {
426         struct cpu_cacheinfo *this_cpu_ci;
427         unsigned int levels = 0, split_levels = 0;
428         int ret;
429
430         if (acpi_disabled) {
431                 ret = init_of_cache_level(cpu);
432                 if (ret < 0)
433                         return ret;
434         } else {
435                 ret = acpi_get_cache_info(cpu, &levels, &split_levels);
436                 if (ret < 0)
437                         return ret;
438
439                 this_cpu_ci = get_cpu_cacheinfo(cpu);
440                 this_cpu_ci->num_levels = levels;
441                 /*
442                  * This assumes that:
443                  * - there cannot be any split caches (data/instruction)
444                  *   above a unified cache
445                  * - data/instruction caches come by pair
446                  */
447                 this_cpu_ci->num_leaves = levels + split_levels;
448         }
449         if (!cache_leaves(cpu))
450                 return -ENOENT;
451
452         return allocate_cache_info(cpu);
453 }
454
455 int detect_cache_attributes(unsigned int cpu)
456 {
457         int ret;
458
459         /* Since early initialization/allocation of the cacheinfo is allowed
460          * via fetch_cache_info() and this also gets called as CPU hotplug
461          * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
462          * as it will happen only once (the cacheinfo memory is never freed).
463          * Just populate the cacheinfo.
464          */
465         if (per_cpu_cacheinfo(cpu))
466                 goto populate_leaves;
467
468         if (init_cache_level(cpu) || !cache_leaves(cpu))
469                 return -ENOENT;
470
471         ret = allocate_cache_info(cpu);
472         if (ret)
473                 return ret;
474
475 populate_leaves:
476         /*
477          * If LLC is valid the cache leaves were already populated so just go to
478          * update the cpu map.
479          */
480         if (!last_level_cache_is_valid(cpu)) {
481                 /*
482                  * populate_cache_leaves() may completely setup the cache leaves and
483                  * shared_cpu_map or it may leave it partially setup.
484                  */
485                 ret = populate_cache_leaves(cpu);
486                 if (ret)
487                         goto free_ci;
488         }
489
490         /*
491          * For systems using DT for cache hierarchy, fw_token
492          * and shared_cpu_map will be set up here only if they are
493          * not populated already
494          */
495         ret = cache_shared_cpu_map_setup(cpu);
496         if (ret) {
497                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
498                 goto free_ci;
499         }
500
501         return 0;
502
503 free_ci:
504         free_cache_attributes(cpu);
505         return ret;
506 }
507
508 /* pointer to cpuX/cache device */
509 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
510 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
511
512 static cpumask_t cache_dev_map;
513
514 /* pointer to array of devices for cpuX/cache/indexY */
515 static DEFINE_PER_CPU(struct device **, ci_index_dev);
516 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
517 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
518
519 #define show_one(file_name, object)                             \
520 static ssize_t file_name##_show(struct device *dev,             \
521                 struct device_attribute *attr, char *buf)       \
522 {                                                               \
523         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
524         return sysfs_emit(buf, "%u\n", this_leaf->object);      \
525 }
526
527 show_one(id, id);
528 show_one(level, level);
529 show_one(coherency_line_size, coherency_line_size);
530 show_one(number_of_sets, number_of_sets);
531 show_one(physical_line_partition, physical_line_partition);
532 show_one(ways_of_associativity, ways_of_associativity);
533
534 static ssize_t size_show(struct device *dev,
535                          struct device_attribute *attr, char *buf)
536 {
537         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
538
539         return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
540 }
541
542 static ssize_t shared_cpu_map_show(struct device *dev,
543                                    struct device_attribute *attr, char *buf)
544 {
545         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
546         const struct cpumask *mask = &this_leaf->shared_cpu_map;
547
548         return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
549 }
550
551 static ssize_t shared_cpu_list_show(struct device *dev,
552                                     struct device_attribute *attr, char *buf)
553 {
554         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
555         const struct cpumask *mask = &this_leaf->shared_cpu_map;
556
557         return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
558 }
559
560 static ssize_t type_show(struct device *dev,
561                          struct device_attribute *attr, char *buf)
562 {
563         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
564         const char *output;
565
566         switch (this_leaf->type) {
567         case CACHE_TYPE_DATA:
568                 output = "Data";
569                 break;
570         case CACHE_TYPE_INST:
571                 output = "Instruction";
572                 break;
573         case CACHE_TYPE_UNIFIED:
574                 output = "Unified";
575                 break;
576         default:
577                 return -EINVAL;
578         }
579
580         return sysfs_emit(buf, "%s\n", output);
581 }
582
583 static ssize_t allocation_policy_show(struct device *dev,
584                                       struct device_attribute *attr, char *buf)
585 {
586         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
587         unsigned int ci_attr = this_leaf->attributes;
588         const char *output;
589
590         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
591                 output = "ReadWriteAllocate";
592         else if (ci_attr & CACHE_READ_ALLOCATE)
593                 output = "ReadAllocate";
594         else if (ci_attr & CACHE_WRITE_ALLOCATE)
595                 output = "WriteAllocate";
596         else
597                 return 0;
598
599         return sysfs_emit(buf, "%s\n", output);
600 }
601
602 static ssize_t write_policy_show(struct device *dev,
603                                  struct device_attribute *attr, char *buf)
604 {
605         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
606         unsigned int ci_attr = this_leaf->attributes;
607         int n = 0;
608
609         if (ci_attr & CACHE_WRITE_THROUGH)
610                 n = sysfs_emit(buf, "WriteThrough\n");
611         else if (ci_attr & CACHE_WRITE_BACK)
612                 n = sysfs_emit(buf, "WriteBack\n");
613         return n;
614 }
615
616 static DEVICE_ATTR_RO(id);
617 static DEVICE_ATTR_RO(level);
618 static DEVICE_ATTR_RO(type);
619 static DEVICE_ATTR_RO(coherency_line_size);
620 static DEVICE_ATTR_RO(ways_of_associativity);
621 static DEVICE_ATTR_RO(number_of_sets);
622 static DEVICE_ATTR_RO(size);
623 static DEVICE_ATTR_RO(allocation_policy);
624 static DEVICE_ATTR_RO(write_policy);
625 static DEVICE_ATTR_RO(shared_cpu_map);
626 static DEVICE_ATTR_RO(shared_cpu_list);
627 static DEVICE_ATTR_RO(physical_line_partition);
628
629 static struct attribute *cache_default_attrs[] = {
630         &dev_attr_id.attr,
631         &dev_attr_type.attr,
632         &dev_attr_level.attr,
633         &dev_attr_shared_cpu_map.attr,
634         &dev_attr_shared_cpu_list.attr,
635         &dev_attr_coherency_line_size.attr,
636         &dev_attr_ways_of_associativity.attr,
637         &dev_attr_number_of_sets.attr,
638         &dev_attr_size.attr,
639         &dev_attr_allocation_policy.attr,
640         &dev_attr_write_policy.attr,
641         &dev_attr_physical_line_partition.attr,
642         NULL
643 };
644
645 static umode_t
646 cache_default_attrs_is_visible(struct kobject *kobj,
647                                struct attribute *attr, int unused)
648 {
649         struct device *dev = kobj_to_dev(kobj);
650         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
651         const struct cpumask *mask = &this_leaf->shared_cpu_map;
652         umode_t mode = attr->mode;
653
654         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
655                 return mode;
656         if ((attr == &dev_attr_type.attr) && this_leaf->type)
657                 return mode;
658         if ((attr == &dev_attr_level.attr) && this_leaf->level)
659                 return mode;
660         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
661                 return mode;
662         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
663                 return mode;
664         if ((attr == &dev_attr_coherency_line_size.attr) &&
665             this_leaf->coherency_line_size)
666                 return mode;
667         if ((attr == &dev_attr_ways_of_associativity.attr) &&
668             this_leaf->size) /* allow 0 = full associativity */
669                 return mode;
670         if ((attr == &dev_attr_number_of_sets.attr) &&
671             this_leaf->number_of_sets)
672                 return mode;
673         if ((attr == &dev_attr_size.attr) && this_leaf->size)
674                 return mode;
675         if ((attr == &dev_attr_write_policy.attr) &&
676             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
677                 return mode;
678         if ((attr == &dev_attr_allocation_policy.attr) &&
679             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
680                 return mode;
681         if ((attr == &dev_attr_physical_line_partition.attr) &&
682             this_leaf->physical_line_partition)
683                 return mode;
684
685         return 0;
686 }
687
688 static const struct attribute_group cache_default_group = {
689         .attrs = cache_default_attrs,
690         .is_visible = cache_default_attrs_is_visible,
691 };
692
693 static const struct attribute_group *cache_default_groups[] = {
694         &cache_default_group,
695         NULL,
696 };
697
698 static const struct attribute_group *cache_private_groups[] = {
699         &cache_default_group,
700         NULL, /* Place holder for private group */
701         NULL,
702 };
703
704 const struct attribute_group *
705 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
706 {
707         return NULL;
708 }
709
710 static const struct attribute_group **
711 cache_get_attribute_groups(struct cacheinfo *this_leaf)
712 {
713         const struct attribute_group *priv_group =
714                         cache_get_priv_group(this_leaf);
715
716         if (!priv_group)
717                 return cache_default_groups;
718
719         if (!cache_private_groups[1])
720                 cache_private_groups[1] = priv_group;
721
722         return cache_private_groups;
723 }
724
725 /* Add/Remove cache interface for CPU device */
726 static void cpu_cache_sysfs_exit(unsigned int cpu)
727 {
728         int i;
729         struct device *ci_dev;
730
731         if (per_cpu_index_dev(cpu)) {
732                 for (i = 0; i < cache_leaves(cpu); i++) {
733                         ci_dev = per_cache_index_dev(cpu, i);
734                         if (!ci_dev)
735                                 continue;
736                         device_unregister(ci_dev);
737                 }
738                 kfree(per_cpu_index_dev(cpu));
739                 per_cpu_index_dev(cpu) = NULL;
740         }
741         device_unregister(per_cpu_cache_dev(cpu));
742         per_cpu_cache_dev(cpu) = NULL;
743 }
744
745 static int cpu_cache_sysfs_init(unsigned int cpu)
746 {
747         struct device *dev = get_cpu_device(cpu);
748
749         if (per_cpu_cacheinfo(cpu) == NULL)
750                 return -ENOENT;
751
752         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
753         if (IS_ERR(per_cpu_cache_dev(cpu)))
754                 return PTR_ERR(per_cpu_cache_dev(cpu));
755
756         /* Allocate all required memory */
757         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
758                                          sizeof(struct device *), GFP_KERNEL);
759         if (unlikely(per_cpu_index_dev(cpu) == NULL))
760                 goto err_out;
761
762         return 0;
763
764 err_out:
765         cpu_cache_sysfs_exit(cpu);
766         return -ENOMEM;
767 }
768
769 static int cache_add_dev(unsigned int cpu)
770 {
771         unsigned int i;
772         int rc;
773         struct device *ci_dev, *parent;
774         struct cacheinfo *this_leaf;
775         const struct attribute_group **cache_groups;
776
777         rc = cpu_cache_sysfs_init(cpu);
778         if (unlikely(rc < 0))
779                 return rc;
780
781         parent = per_cpu_cache_dev(cpu);
782         for (i = 0; i < cache_leaves(cpu); i++) {
783                 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
784                 if (this_leaf->disable_sysfs)
785                         continue;
786                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
787                         break;
788                 cache_groups = cache_get_attribute_groups(this_leaf);
789                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
790                                            "index%1u", i);
791                 if (IS_ERR(ci_dev)) {
792                         rc = PTR_ERR(ci_dev);
793                         goto err;
794                 }
795                 per_cache_index_dev(cpu, i) = ci_dev;
796         }
797         cpumask_set_cpu(cpu, &cache_dev_map);
798
799         return 0;
800 err:
801         cpu_cache_sysfs_exit(cpu);
802         return rc;
803 }
804
805 static int cacheinfo_cpu_online(unsigned int cpu)
806 {
807         int rc = detect_cache_attributes(cpu);
808
809         if (rc)
810                 return rc;
811         rc = cache_add_dev(cpu);
812         if (rc)
813                 free_cache_attributes(cpu);
814         return rc;
815 }
816
817 static int cacheinfo_cpu_pre_down(unsigned int cpu)
818 {
819         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
820                 cpu_cache_sysfs_exit(cpu);
821
822         free_cache_attributes(cpu);
823         return 0;
824 }
825
826 static int __init cacheinfo_sysfs_init(void)
827 {
828         return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
829                                  "base/cacheinfo:online",
830                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
831 }
832 device_initcall(cacheinfo_sysfs_init);