Merge tag 'dmaengine-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[platform/kernel/linux-starfive.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)         \
29                                 (per_cpu_cacheinfo(cpu) + (idx))
30
31 /* Set if no cache information is found in DT/ACPI. */
32 static bool use_arch_info;
33
34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
35 {
36         return ci_cacheinfo(cpu);
37 }
38
39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
40                                            struct cacheinfo *sib_leaf)
41 {
42         /*
43          * For non DT/ACPI systems, assume unique level 1 caches,
44          * system-wide shared caches for all other levels.
45          */
46         if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
47             use_arch_info)
48                 return (this_leaf->level != 1) && (sib_leaf->level != 1);
49
50         if ((sib_leaf->attributes & CACHE_ID) &&
51             (this_leaf->attributes & CACHE_ID))
52                 return sib_leaf->id == this_leaf->id;
53
54         return sib_leaf->fw_token == this_leaf->fw_token;
55 }
56
57 bool last_level_cache_is_valid(unsigned int cpu)
58 {
59         struct cacheinfo *llc;
60
61         if (!cache_leaves(cpu))
62                 return false;
63
64         llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
65
66         return (llc->attributes & CACHE_ID) || !!llc->fw_token;
67
68 }
69
70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
71 {
72         struct cacheinfo *llc_x, *llc_y;
73
74         if (!last_level_cache_is_valid(cpu_x) ||
75             !last_level_cache_is_valid(cpu_y))
76                 return false;
77
78         llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
79         llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
80
81         return cache_leaves_are_shared(llc_x, llc_y);
82 }
83
84 #ifdef CONFIG_OF
85
86 static bool of_check_cache_nodes(struct device_node *np);
87
88 /* OF properties to query for a given cache type */
89 struct cache_type_info {
90         const char *size_prop;
91         const char *line_size_props[2];
92         const char *nr_sets_prop;
93 };
94
95 static const struct cache_type_info cache_type_info[] = {
96         {
97                 .size_prop       = "cache-size",
98                 .line_size_props = { "cache-line-size",
99                                      "cache-block-size", },
100                 .nr_sets_prop    = "cache-sets",
101         }, {
102                 .size_prop       = "i-cache-size",
103                 .line_size_props = { "i-cache-line-size",
104                                      "i-cache-block-size", },
105                 .nr_sets_prop    = "i-cache-sets",
106         }, {
107                 .size_prop       = "d-cache-size",
108                 .line_size_props = { "d-cache-line-size",
109                                      "d-cache-block-size", },
110                 .nr_sets_prop    = "d-cache-sets",
111         },
112 };
113
114 static inline int get_cacheinfo_idx(enum cache_type type)
115 {
116         if (type == CACHE_TYPE_UNIFIED)
117                 return 0;
118         return type;
119 }
120
121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
122 {
123         const char *propname;
124         int ct_idx;
125
126         ct_idx = get_cacheinfo_idx(this_leaf->type);
127         propname = cache_type_info[ct_idx].size_prop;
128
129         of_property_read_u32(np, propname, &this_leaf->size);
130 }
131
132 /* not cache_line_size() because that's a macro in include/linux/cache.h */
133 static void cache_get_line_size(struct cacheinfo *this_leaf,
134                                 struct device_node *np)
135 {
136         int i, lim, ct_idx;
137
138         ct_idx = get_cacheinfo_idx(this_leaf->type);
139         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
140
141         for (i = 0; i < lim; i++) {
142                 int ret;
143                 u32 line_size;
144                 const char *propname;
145
146                 propname = cache_type_info[ct_idx].line_size_props[i];
147                 ret = of_property_read_u32(np, propname, &line_size);
148                 if (!ret) {
149                         this_leaf->coherency_line_size = line_size;
150                         break;
151                 }
152         }
153 }
154
155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
156 {
157         const char *propname;
158         int ct_idx;
159
160         ct_idx = get_cacheinfo_idx(this_leaf->type);
161         propname = cache_type_info[ct_idx].nr_sets_prop;
162
163         of_property_read_u32(np, propname, &this_leaf->number_of_sets);
164 }
165
166 static void cache_associativity(struct cacheinfo *this_leaf)
167 {
168         unsigned int line_size = this_leaf->coherency_line_size;
169         unsigned int nr_sets = this_leaf->number_of_sets;
170         unsigned int size = this_leaf->size;
171
172         /*
173          * If the cache is fully associative, there is no need to
174          * check the other properties.
175          */
176         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
178 }
179
180 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181                                   struct device_node *np)
182 {
183         return of_property_read_bool(np, "cache-unified");
184 }
185
186 static void cache_of_set_props(struct cacheinfo *this_leaf,
187                                struct device_node *np)
188 {
189         /*
190          * init_cache_level must setup the cache level correctly
191          * overriding the architecturally specified levels, so
192          * if type is NONE at this stage, it should be unified
193          */
194         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195             cache_node_is_unified(this_leaf, np))
196                 this_leaf->type = CACHE_TYPE_UNIFIED;
197         cache_size(this_leaf, np);
198         cache_get_line_size(this_leaf, np);
199         cache_nr_sets(this_leaf, np);
200         cache_associativity(this_leaf);
201 }
202
203 static int cache_setup_of_node(unsigned int cpu)
204 {
205         struct device_node *np, *prev;
206         struct cacheinfo *this_leaf;
207         unsigned int index = 0;
208
209         np = of_cpu_device_node_get(cpu);
210         if (!np) {
211                 pr_err("Failed to find cpu%d device node\n", cpu);
212                 return -ENOENT;
213         }
214
215         if (!of_check_cache_nodes(np)) {
216                 of_node_put(np);
217                 return -ENOENT;
218         }
219
220         prev = np;
221
222         while (index < cache_leaves(cpu)) {
223                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
224                 if (this_leaf->level != 1) {
225                         np = of_find_next_cache_node(np);
226                         of_node_put(prev);
227                         prev = np;
228                         if (!np)
229                                 break;
230                 }
231                 cache_of_set_props(this_leaf, np);
232                 this_leaf->fw_token = np;
233                 index++;
234         }
235
236         of_node_put(np);
237
238         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
239                 return -ENOENT;
240
241         return 0;
242 }
243
244 static bool of_check_cache_nodes(struct device_node *np)
245 {
246         struct device_node *next;
247
248         if (of_property_present(np, "cache-size")   ||
249             of_property_present(np, "i-cache-size") ||
250             of_property_present(np, "d-cache-size") ||
251             of_property_present(np, "cache-unified"))
252                 return true;
253
254         next = of_find_next_cache_node(np);
255         if (next) {
256                 of_node_put(next);
257                 return true;
258         }
259
260         return false;
261 }
262
263 static int of_count_cache_leaves(struct device_node *np)
264 {
265         unsigned int leaves = 0;
266
267         if (of_property_read_bool(np, "cache-size"))
268                 ++leaves;
269         if (of_property_read_bool(np, "i-cache-size"))
270                 ++leaves;
271         if (of_property_read_bool(np, "d-cache-size"))
272                 ++leaves;
273
274         if (!leaves) {
275                 /* The '[i-|d-|]cache-size' property is required, but
276                  * if absent, fallback on the 'cache-unified' property.
277                  */
278                 if (of_property_read_bool(np, "cache-unified"))
279                         return 1;
280                 else
281                         return 2;
282         }
283
284         return leaves;
285 }
286
287 int init_of_cache_level(unsigned int cpu)
288 {
289         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
290         struct device_node *np = of_cpu_device_node_get(cpu);
291         struct device_node *prev = NULL;
292         unsigned int levels = 0, leaves, level;
293
294         if (!of_check_cache_nodes(np)) {
295                 of_node_put(np);
296                 return -ENOENT;
297         }
298
299         leaves = of_count_cache_leaves(np);
300         if (leaves > 0)
301                 levels = 1;
302
303         prev = np;
304         while ((np = of_find_next_cache_node(np))) {
305                 of_node_put(prev);
306                 prev = np;
307                 if (!of_device_is_compatible(np, "cache"))
308                         goto err_out;
309                 if (of_property_read_u32(np, "cache-level", &level))
310                         goto err_out;
311                 if (level <= levels)
312                         goto err_out;
313
314                 leaves += of_count_cache_leaves(np);
315                 levels = level;
316         }
317
318         of_node_put(np);
319         this_cpu_ci->num_levels = levels;
320         this_cpu_ci->num_leaves = leaves;
321
322         return 0;
323
324 err_out:
325         of_node_put(np);
326         return -EINVAL;
327 }
328
329 #else
330 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
331 int init_of_cache_level(unsigned int cpu) { return 0; }
332 #endif
333
334 int __weak cache_setup_acpi(unsigned int cpu)
335 {
336         return -ENOTSUPP;
337 }
338
339 unsigned int coherency_max_size;
340
341 static int cache_setup_properties(unsigned int cpu)
342 {
343         int ret = 0;
344
345         if (of_have_populated_dt())
346                 ret = cache_setup_of_node(cpu);
347         else if (!acpi_disabled)
348                 ret = cache_setup_acpi(cpu);
349
350         // Assume there is no cache information available in DT/ACPI from now.
351         if (ret && use_arch_cache_info())
352                 use_arch_info = true;
353
354         return ret;
355 }
356
357 static int cache_shared_cpu_map_setup(unsigned int cpu)
358 {
359         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
360         struct cacheinfo *this_leaf, *sib_leaf;
361         unsigned int index, sib_index;
362         int ret = 0;
363
364         if (this_cpu_ci->cpu_map_populated)
365                 return 0;
366
367         /*
368          * skip setting up cache properties if LLC is valid, just need
369          * to update the shared cpu_map if the cache attributes were
370          * populated early before all the cpus are brought online
371          */
372         if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
373                 ret = cache_setup_properties(cpu);
374                 if (ret)
375                         return ret;
376         }
377
378         for (index = 0; index < cache_leaves(cpu); index++) {
379                 unsigned int i;
380
381                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
382
383                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
384                 for_each_online_cpu(i) {
385                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
386
387                         if (i == cpu || !sib_cpu_ci->info_list)
388                                 continue;/* skip if itself or no cacheinfo */
389                         for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
390                                 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
391                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
392                                         cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
393                                         cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
394                                         break;
395                                 }
396                         }
397                 }
398                 /* record the maximum cache line size */
399                 if (this_leaf->coherency_line_size > coherency_max_size)
400                         coherency_max_size = this_leaf->coherency_line_size;
401         }
402
403         return 0;
404 }
405
406 static void cache_shared_cpu_map_remove(unsigned int cpu)
407 {
408         struct cacheinfo *this_leaf, *sib_leaf;
409         unsigned int sibling, index, sib_index;
410
411         for (index = 0; index < cache_leaves(cpu); index++) {
412                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
413                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
414                         struct cpu_cacheinfo *sib_cpu_ci =
415                                                 get_cpu_cacheinfo(sibling);
416
417                         if (sibling == cpu || !sib_cpu_ci->info_list)
418                                 continue;/* skip if itself or no cacheinfo */
419
420                         for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
421                                 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
422                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
423                                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
424                                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
425                                         break;
426                                 }
427                         }
428                 }
429         }
430 }
431
432 static void free_cache_attributes(unsigned int cpu)
433 {
434         if (!per_cpu_cacheinfo(cpu))
435                 return;
436
437         cache_shared_cpu_map_remove(cpu);
438 }
439
440 int __weak early_cache_level(unsigned int cpu)
441 {
442         return -ENOENT;
443 }
444
445 int __weak init_cache_level(unsigned int cpu)
446 {
447         return -ENOENT;
448 }
449
450 int __weak populate_cache_leaves(unsigned int cpu)
451 {
452         return -ENOENT;
453 }
454
455 static inline
456 int allocate_cache_info(int cpu)
457 {
458         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
459                                          sizeof(struct cacheinfo), GFP_ATOMIC);
460         if (!per_cpu_cacheinfo(cpu)) {
461                 cache_leaves(cpu) = 0;
462                 return -ENOMEM;
463         }
464
465         return 0;
466 }
467
468 int fetch_cache_info(unsigned int cpu)
469 {
470         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
471         unsigned int levels = 0, split_levels = 0;
472         int ret;
473
474         if (acpi_disabled) {
475                 ret = init_of_cache_level(cpu);
476         } else {
477                 ret = acpi_get_cache_info(cpu, &levels, &split_levels);
478                 if (!ret) {
479                         this_cpu_ci->num_levels = levels;
480                         /*
481                          * This assumes that:
482                          * - there cannot be any split caches (data/instruction)
483                          *   above a unified cache
484                          * - data/instruction caches come by pair
485                          */
486                         this_cpu_ci->num_leaves = levels + split_levels;
487                 }
488         }
489
490         if (ret || !cache_leaves(cpu)) {
491                 ret = early_cache_level(cpu);
492                 if (ret)
493                         return ret;
494
495                 if (!cache_leaves(cpu))
496                         return -ENOENT;
497
498                 this_cpu_ci->early_ci_levels = true;
499         }
500
501         return allocate_cache_info(cpu);
502 }
503
504 static inline int init_level_allocate_ci(unsigned int cpu)
505 {
506         unsigned int early_leaves = cache_leaves(cpu);
507
508         /* Since early initialization/allocation of the cacheinfo is allowed
509          * via fetch_cache_info() and this also gets called as CPU hotplug
510          * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
511          * as it will happen only once (the cacheinfo memory is never freed).
512          * Just populate the cacheinfo. However, if the cacheinfo has been
513          * allocated early through the arch-specific early_cache_level() call,
514          * there is a chance the info is wrong (this can happen on arm64). In
515          * that case, call init_cache_level() anyway to give the arch-specific
516          * code a chance to make things right.
517          */
518         if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
519                 return 0;
520
521         if (init_cache_level(cpu) || !cache_leaves(cpu))
522                 return -ENOENT;
523
524         /*
525          * Now that we have properly initialized the cache level info, make
526          * sure we don't try to do that again the next time we are called
527          * (e.g. as CPU hotplug callbacks).
528          */
529         ci_cacheinfo(cpu)->early_ci_levels = false;
530
531         if (cache_leaves(cpu) <= early_leaves)
532                 return 0;
533
534         kfree(per_cpu_cacheinfo(cpu));
535         return allocate_cache_info(cpu);
536 }
537
538 int detect_cache_attributes(unsigned int cpu)
539 {
540         int ret;
541
542         ret = init_level_allocate_ci(cpu);
543         if (ret)
544                 return ret;
545
546         /*
547          * If LLC is valid the cache leaves were already populated so just go to
548          * update the cpu map.
549          */
550         if (!last_level_cache_is_valid(cpu)) {
551                 /*
552                  * populate_cache_leaves() may completely setup the cache leaves and
553                  * shared_cpu_map or it may leave it partially setup.
554                  */
555                 ret = populate_cache_leaves(cpu);
556                 if (ret)
557                         goto free_ci;
558         }
559
560         /*
561          * For systems using DT for cache hierarchy, fw_token
562          * and shared_cpu_map will be set up here only if they are
563          * not populated already
564          */
565         ret = cache_shared_cpu_map_setup(cpu);
566         if (ret) {
567                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
568                 goto free_ci;
569         }
570
571         return 0;
572
573 free_ci:
574         free_cache_attributes(cpu);
575         return ret;
576 }
577
578 /* pointer to cpuX/cache device */
579 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
580 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
581
582 static cpumask_t cache_dev_map;
583
584 /* pointer to array of devices for cpuX/cache/indexY */
585 static DEFINE_PER_CPU(struct device **, ci_index_dev);
586 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
587 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
588
589 #define show_one(file_name, object)                             \
590 static ssize_t file_name##_show(struct device *dev,             \
591                 struct device_attribute *attr, char *buf)       \
592 {                                                               \
593         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
594         return sysfs_emit(buf, "%u\n", this_leaf->object);      \
595 }
596
597 show_one(id, id);
598 show_one(level, level);
599 show_one(coherency_line_size, coherency_line_size);
600 show_one(number_of_sets, number_of_sets);
601 show_one(physical_line_partition, physical_line_partition);
602 show_one(ways_of_associativity, ways_of_associativity);
603
604 static ssize_t size_show(struct device *dev,
605                          struct device_attribute *attr, char *buf)
606 {
607         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
608
609         return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
610 }
611
612 static ssize_t shared_cpu_map_show(struct device *dev,
613                                    struct device_attribute *attr, char *buf)
614 {
615         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
616         const struct cpumask *mask = &this_leaf->shared_cpu_map;
617
618         return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
619 }
620
621 static ssize_t shared_cpu_list_show(struct device *dev,
622                                     struct device_attribute *attr, char *buf)
623 {
624         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
625         const struct cpumask *mask = &this_leaf->shared_cpu_map;
626
627         return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
628 }
629
630 static ssize_t type_show(struct device *dev,
631                          struct device_attribute *attr, char *buf)
632 {
633         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
634         const char *output;
635
636         switch (this_leaf->type) {
637         case CACHE_TYPE_DATA:
638                 output = "Data";
639                 break;
640         case CACHE_TYPE_INST:
641                 output = "Instruction";
642                 break;
643         case CACHE_TYPE_UNIFIED:
644                 output = "Unified";
645                 break;
646         default:
647                 return -EINVAL;
648         }
649
650         return sysfs_emit(buf, "%s\n", output);
651 }
652
653 static ssize_t allocation_policy_show(struct device *dev,
654                                       struct device_attribute *attr, char *buf)
655 {
656         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
657         unsigned int ci_attr = this_leaf->attributes;
658         const char *output;
659
660         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
661                 output = "ReadWriteAllocate";
662         else if (ci_attr & CACHE_READ_ALLOCATE)
663                 output = "ReadAllocate";
664         else if (ci_attr & CACHE_WRITE_ALLOCATE)
665                 output = "WriteAllocate";
666         else
667                 return 0;
668
669         return sysfs_emit(buf, "%s\n", output);
670 }
671
672 static ssize_t write_policy_show(struct device *dev,
673                                  struct device_attribute *attr, char *buf)
674 {
675         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
676         unsigned int ci_attr = this_leaf->attributes;
677         int n = 0;
678
679         if (ci_attr & CACHE_WRITE_THROUGH)
680                 n = sysfs_emit(buf, "WriteThrough\n");
681         else if (ci_attr & CACHE_WRITE_BACK)
682                 n = sysfs_emit(buf, "WriteBack\n");
683         return n;
684 }
685
686 static DEVICE_ATTR_RO(id);
687 static DEVICE_ATTR_RO(level);
688 static DEVICE_ATTR_RO(type);
689 static DEVICE_ATTR_RO(coherency_line_size);
690 static DEVICE_ATTR_RO(ways_of_associativity);
691 static DEVICE_ATTR_RO(number_of_sets);
692 static DEVICE_ATTR_RO(size);
693 static DEVICE_ATTR_RO(allocation_policy);
694 static DEVICE_ATTR_RO(write_policy);
695 static DEVICE_ATTR_RO(shared_cpu_map);
696 static DEVICE_ATTR_RO(shared_cpu_list);
697 static DEVICE_ATTR_RO(physical_line_partition);
698
699 static struct attribute *cache_default_attrs[] = {
700         &dev_attr_id.attr,
701         &dev_attr_type.attr,
702         &dev_attr_level.attr,
703         &dev_attr_shared_cpu_map.attr,
704         &dev_attr_shared_cpu_list.attr,
705         &dev_attr_coherency_line_size.attr,
706         &dev_attr_ways_of_associativity.attr,
707         &dev_attr_number_of_sets.attr,
708         &dev_attr_size.attr,
709         &dev_attr_allocation_policy.attr,
710         &dev_attr_write_policy.attr,
711         &dev_attr_physical_line_partition.attr,
712         NULL
713 };
714
715 static umode_t
716 cache_default_attrs_is_visible(struct kobject *kobj,
717                                struct attribute *attr, int unused)
718 {
719         struct device *dev = kobj_to_dev(kobj);
720         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
721         const struct cpumask *mask = &this_leaf->shared_cpu_map;
722         umode_t mode = attr->mode;
723
724         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
725                 return mode;
726         if ((attr == &dev_attr_type.attr) && this_leaf->type)
727                 return mode;
728         if ((attr == &dev_attr_level.attr) && this_leaf->level)
729                 return mode;
730         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
731                 return mode;
732         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
733                 return mode;
734         if ((attr == &dev_attr_coherency_line_size.attr) &&
735             this_leaf->coherency_line_size)
736                 return mode;
737         if ((attr == &dev_attr_ways_of_associativity.attr) &&
738             this_leaf->size) /* allow 0 = full associativity */
739                 return mode;
740         if ((attr == &dev_attr_number_of_sets.attr) &&
741             this_leaf->number_of_sets)
742                 return mode;
743         if ((attr == &dev_attr_size.attr) && this_leaf->size)
744                 return mode;
745         if ((attr == &dev_attr_write_policy.attr) &&
746             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
747                 return mode;
748         if ((attr == &dev_attr_allocation_policy.attr) &&
749             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
750                 return mode;
751         if ((attr == &dev_attr_physical_line_partition.attr) &&
752             this_leaf->physical_line_partition)
753                 return mode;
754
755         return 0;
756 }
757
758 static const struct attribute_group cache_default_group = {
759         .attrs = cache_default_attrs,
760         .is_visible = cache_default_attrs_is_visible,
761 };
762
763 static const struct attribute_group *cache_default_groups[] = {
764         &cache_default_group,
765         NULL,
766 };
767
768 static const struct attribute_group *cache_private_groups[] = {
769         &cache_default_group,
770         NULL, /* Place holder for private group */
771         NULL,
772 };
773
774 const struct attribute_group *
775 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
776 {
777         return NULL;
778 }
779
780 static const struct attribute_group **
781 cache_get_attribute_groups(struct cacheinfo *this_leaf)
782 {
783         const struct attribute_group *priv_group =
784                         cache_get_priv_group(this_leaf);
785
786         if (!priv_group)
787                 return cache_default_groups;
788
789         if (!cache_private_groups[1])
790                 cache_private_groups[1] = priv_group;
791
792         return cache_private_groups;
793 }
794
795 /* Add/Remove cache interface for CPU device */
796 static void cpu_cache_sysfs_exit(unsigned int cpu)
797 {
798         int i;
799         struct device *ci_dev;
800
801         if (per_cpu_index_dev(cpu)) {
802                 for (i = 0; i < cache_leaves(cpu); i++) {
803                         ci_dev = per_cache_index_dev(cpu, i);
804                         if (!ci_dev)
805                                 continue;
806                         device_unregister(ci_dev);
807                 }
808                 kfree(per_cpu_index_dev(cpu));
809                 per_cpu_index_dev(cpu) = NULL;
810         }
811         device_unregister(per_cpu_cache_dev(cpu));
812         per_cpu_cache_dev(cpu) = NULL;
813 }
814
815 static int cpu_cache_sysfs_init(unsigned int cpu)
816 {
817         struct device *dev = get_cpu_device(cpu);
818
819         if (per_cpu_cacheinfo(cpu) == NULL)
820                 return -ENOENT;
821
822         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
823         if (IS_ERR(per_cpu_cache_dev(cpu)))
824                 return PTR_ERR(per_cpu_cache_dev(cpu));
825
826         /* Allocate all required memory */
827         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
828                                          sizeof(struct device *), GFP_KERNEL);
829         if (unlikely(per_cpu_index_dev(cpu) == NULL))
830                 goto err_out;
831
832         return 0;
833
834 err_out:
835         cpu_cache_sysfs_exit(cpu);
836         return -ENOMEM;
837 }
838
839 static int cache_add_dev(unsigned int cpu)
840 {
841         unsigned int i;
842         int rc;
843         struct device *ci_dev, *parent;
844         struct cacheinfo *this_leaf;
845         const struct attribute_group **cache_groups;
846
847         rc = cpu_cache_sysfs_init(cpu);
848         if (unlikely(rc < 0))
849                 return rc;
850
851         parent = per_cpu_cache_dev(cpu);
852         for (i = 0; i < cache_leaves(cpu); i++) {
853                 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
854                 if (this_leaf->disable_sysfs)
855                         continue;
856                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
857                         break;
858                 cache_groups = cache_get_attribute_groups(this_leaf);
859                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
860                                            "index%1u", i);
861                 if (IS_ERR(ci_dev)) {
862                         rc = PTR_ERR(ci_dev);
863                         goto err;
864                 }
865                 per_cache_index_dev(cpu, i) = ci_dev;
866         }
867         cpumask_set_cpu(cpu, &cache_dev_map);
868
869         return 0;
870 err:
871         cpu_cache_sysfs_exit(cpu);
872         return rc;
873 }
874
875 static int cacheinfo_cpu_online(unsigned int cpu)
876 {
877         int rc = detect_cache_attributes(cpu);
878
879         if (rc)
880                 return rc;
881         rc = cache_add_dev(cpu);
882         if (rc)
883                 free_cache_attributes(cpu);
884         return rc;
885 }
886
887 static int cacheinfo_cpu_pre_down(unsigned int cpu)
888 {
889         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
890                 cpu_cache_sysfs_exit(cpu);
891
892         free_cache_attributes(cpu);
893         return 0;
894 }
895
896 static int __init cacheinfo_sysfs_init(void)
897 {
898         return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
899                                  "base/cacheinfo:online",
900                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
901 }
902 device_initcall(cacheinfo_sysfs_init);