Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)         \
29                                 (per_cpu_cacheinfo(cpu) + (idx))
30
31 /* Set if no cache information is found in DT/ACPI. */
32 static bool use_arch_info;
33
34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
35 {
36         return ci_cacheinfo(cpu);
37 }
38
39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
40                                            struct cacheinfo *sib_leaf)
41 {
42         /*
43          * For non DT/ACPI systems, assume unique level 1 caches,
44          * system-wide shared caches for all other levels.
45          */
46         if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
47             use_arch_info)
48                 return (this_leaf->level != 1) && (sib_leaf->level != 1);
49
50         if ((sib_leaf->attributes & CACHE_ID) &&
51             (this_leaf->attributes & CACHE_ID))
52                 return sib_leaf->id == this_leaf->id;
53
54         return sib_leaf->fw_token == this_leaf->fw_token;
55 }
56
57 bool last_level_cache_is_valid(unsigned int cpu)
58 {
59         struct cacheinfo *llc;
60
61         if (!cache_leaves(cpu))
62                 return false;
63
64         llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
65
66         return (llc->attributes & CACHE_ID) || !!llc->fw_token;
67
68 }
69
70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
71 {
72         struct cacheinfo *llc_x, *llc_y;
73
74         if (!last_level_cache_is_valid(cpu_x) ||
75             !last_level_cache_is_valid(cpu_y))
76                 return false;
77
78         llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
79         llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
80
81         return cache_leaves_are_shared(llc_x, llc_y);
82 }
83
84 #ifdef CONFIG_OF
85
86 static bool of_check_cache_nodes(struct device_node *np);
87
88 /* OF properties to query for a given cache type */
89 struct cache_type_info {
90         const char *size_prop;
91         const char *line_size_props[2];
92         const char *nr_sets_prop;
93 };
94
95 static const struct cache_type_info cache_type_info[] = {
96         {
97                 .size_prop       = "cache-size",
98                 .line_size_props = { "cache-line-size",
99                                      "cache-block-size", },
100                 .nr_sets_prop    = "cache-sets",
101         }, {
102                 .size_prop       = "i-cache-size",
103                 .line_size_props = { "i-cache-line-size",
104                                      "i-cache-block-size", },
105                 .nr_sets_prop    = "i-cache-sets",
106         }, {
107                 .size_prop       = "d-cache-size",
108                 .line_size_props = { "d-cache-line-size",
109                                      "d-cache-block-size", },
110                 .nr_sets_prop    = "d-cache-sets",
111         },
112 };
113
114 static inline int get_cacheinfo_idx(enum cache_type type)
115 {
116         if (type == CACHE_TYPE_UNIFIED)
117                 return 0;
118         return type;
119 }
120
121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
122 {
123         const char *propname;
124         int ct_idx;
125
126         ct_idx = get_cacheinfo_idx(this_leaf->type);
127         propname = cache_type_info[ct_idx].size_prop;
128
129         of_property_read_u32(np, propname, &this_leaf->size);
130 }
131
132 /* not cache_line_size() because that's a macro in include/linux/cache.h */
133 static void cache_get_line_size(struct cacheinfo *this_leaf,
134                                 struct device_node *np)
135 {
136         int i, lim, ct_idx;
137
138         ct_idx = get_cacheinfo_idx(this_leaf->type);
139         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
140
141         for (i = 0; i < lim; i++) {
142                 int ret;
143                 u32 line_size;
144                 const char *propname;
145
146                 propname = cache_type_info[ct_idx].line_size_props[i];
147                 ret = of_property_read_u32(np, propname, &line_size);
148                 if (!ret) {
149                         this_leaf->coherency_line_size = line_size;
150                         break;
151                 }
152         }
153 }
154
155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
156 {
157         const char *propname;
158         int ct_idx;
159
160         ct_idx = get_cacheinfo_idx(this_leaf->type);
161         propname = cache_type_info[ct_idx].nr_sets_prop;
162
163         of_property_read_u32(np, propname, &this_leaf->number_of_sets);
164 }
165
166 static void cache_associativity(struct cacheinfo *this_leaf)
167 {
168         unsigned int line_size = this_leaf->coherency_line_size;
169         unsigned int nr_sets = this_leaf->number_of_sets;
170         unsigned int size = this_leaf->size;
171
172         /*
173          * If the cache is fully associative, there is no need to
174          * check the other properties.
175          */
176         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
178 }
179
180 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181                                   struct device_node *np)
182 {
183         return of_property_read_bool(np, "cache-unified");
184 }
185
186 static void cache_of_set_props(struct cacheinfo *this_leaf,
187                                struct device_node *np)
188 {
189         /*
190          * init_cache_level must setup the cache level correctly
191          * overriding the architecturally specified levels, so
192          * if type is NONE at this stage, it should be unified
193          */
194         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195             cache_node_is_unified(this_leaf, np))
196                 this_leaf->type = CACHE_TYPE_UNIFIED;
197         cache_size(this_leaf, np);
198         cache_get_line_size(this_leaf, np);
199         cache_nr_sets(this_leaf, np);
200         cache_associativity(this_leaf);
201 }
202
203 static int cache_setup_of_node(unsigned int cpu)
204 {
205         struct device_node *np, *prev;
206         struct cacheinfo *this_leaf;
207         unsigned int index = 0;
208
209         np = of_cpu_device_node_get(cpu);
210         if (!np) {
211                 pr_err("Failed to find cpu%d device node\n", cpu);
212                 return -ENOENT;
213         }
214
215         if (!of_check_cache_nodes(np)) {
216                 of_node_put(np);
217                 return -ENOENT;
218         }
219
220         prev = np;
221
222         while (index < cache_leaves(cpu)) {
223                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
224                 if (this_leaf->level != 1) {
225                         np = of_find_next_cache_node(np);
226                         of_node_put(prev);
227                         prev = np;
228                         if (!np)
229                                 break;
230                 }
231                 cache_of_set_props(this_leaf, np);
232                 this_leaf->fw_token = np;
233                 index++;
234         }
235
236         of_node_put(np);
237
238         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
239                 return -ENOENT;
240
241         return 0;
242 }
243
244 static bool of_check_cache_nodes(struct device_node *np)
245 {
246         struct device_node *next;
247
248         if (of_property_present(np, "cache-size")   ||
249             of_property_present(np, "i-cache-size") ||
250             of_property_present(np, "d-cache-size") ||
251             of_property_present(np, "cache-unified"))
252                 return true;
253
254         next = of_find_next_cache_node(np);
255         if (next) {
256                 of_node_put(next);
257                 return true;
258         }
259
260         return false;
261 }
262
263 static int of_count_cache_leaves(struct device_node *np)
264 {
265         unsigned int leaves = 0;
266
267         if (of_property_read_bool(np, "cache-size"))
268                 ++leaves;
269         if (of_property_read_bool(np, "i-cache-size"))
270                 ++leaves;
271         if (of_property_read_bool(np, "d-cache-size"))
272                 ++leaves;
273
274         if (!leaves) {
275                 /* The '[i-|d-|]cache-size' property is required, but
276                  * if absent, fallback on the 'cache-unified' property.
277                  */
278                 if (of_property_read_bool(np, "cache-unified"))
279                         return 1;
280                 else
281                         return 2;
282         }
283
284         return leaves;
285 }
286
287 int init_of_cache_level(unsigned int cpu)
288 {
289         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
290         struct device_node *np = of_cpu_device_node_get(cpu);
291         struct device_node *prev = NULL;
292         unsigned int levels = 0, leaves, level;
293
294         if (!of_check_cache_nodes(np)) {
295                 of_node_put(np);
296                 return -ENOENT;
297         }
298
299         leaves = of_count_cache_leaves(np);
300         if (leaves > 0)
301                 levels = 1;
302
303         prev = np;
304         while ((np = of_find_next_cache_node(np))) {
305                 of_node_put(prev);
306                 prev = np;
307                 if (!of_device_is_compatible(np, "cache"))
308                         goto err_out;
309                 if (of_property_read_u32(np, "cache-level", &level))
310                         goto err_out;
311                 if (level <= levels)
312                         goto err_out;
313
314                 leaves += of_count_cache_leaves(np);
315                 levels = level;
316         }
317
318         of_node_put(np);
319         this_cpu_ci->num_levels = levels;
320         this_cpu_ci->num_leaves = leaves;
321
322         return 0;
323
324 err_out:
325         of_node_put(np);
326         return -EINVAL;
327 }
328
329 #else
330 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
331 int init_of_cache_level(unsigned int cpu) { return 0; }
332 #endif
333
334 int __weak cache_setup_acpi(unsigned int cpu)
335 {
336         return -ENOTSUPP;
337 }
338
339 unsigned int coherency_max_size;
340
341 static int cache_setup_properties(unsigned int cpu)
342 {
343         int ret = 0;
344
345         if (of_have_populated_dt())
346                 ret = cache_setup_of_node(cpu);
347         else if (!acpi_disabled)
348                 ret = cache_setup_acpi(cpu);
349
350         // Assume there is no cache information available in DT/ACPI from now.
351         if (ret && use_arch_cache_info())
352                 use_arch_info = true;
353
354         return ret;
355 }
356
357 static int cache_shared_cpu_map_setup(unsigned int cpu)
358 {
359         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
360         struct cacheinfo *this_leaf, *sib_leaf;
361         unsigned int index, sib_index;
362         int ret = 0;
363
364         if (this_cpu_ci->cpu_map_populated)
365                 return 0;
366
367         /*
368          * skip setting up cache properties if LLC is valid, just need
369          * to update the shared cpu_map if the cache attributes were
370          * populated early before all the cpus are brought online
371          */
372         if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
373                 ret = cache_setup_properties(cpu);
374                 if (ret)
375                         return ret;
376         }
377
378         for (index = 0; index < cache_leaves(cpu); index++) {
379                 unsigned int i;
380
381                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
382
383                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
384                 for_each_online_cpu(i) {
385                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
386
387                         if (i == cpu || !sib_cpu_ci->info_list)
388                                 continue;/* skip if itself or no cacheinfo */
389                         for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
390                                 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
391
392                                 /*
393                                  * Comparing cache IDs only makes sense if the leaves
394                                  * belong to the same cache level of same type. Skip
395                                  * the check if level and type do not match.
396                                  */
397                                 if (sib_leaf->level != this_leaf->level ||
398                                     sib_leaf->type != this_leaf->type)
399                                         continue;
400
401                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
402                                         cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
403                                         cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
404                                         break;
405                                 }
406                         }
407                 }
408                 /* record the maximum cache line size */
409                 if (this_leaf->coherency_line_size > coherency_max_size)
410                         coherency_max_size = this_leaf->coherency_line_size;
411         }
412
413         /* shared_cpu_map is now populated for the cpu */
414         this_cpu_ci->cpu_map_populated = true;
415         return 0;
416 }
417
418 static void cache_shared_cpu_map_remove(unsigned int cpu)
419 {
420         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
421         struct cacheinfo *this_leaf, *sib_leaf;
422         unsigned int sibling, index, sib_index;
423
424         for (index = 0; index < cache_leaves(cpu); index++) {
425                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
426                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
427                         struct cpu_cacheinfo *sib_cpu_ci =
428                                                 get_cpu_cacheinfo(sibling);
429
430                         if (sibling == cpu || !sib_cpu_ci->info_list)
431                                 continue;/* skip if itself or no cacheinfo */
432
433                         for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
434                                 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
435
436                                 /*
437                                  * Comparing cache IDs only makes sense if the leaves
438                                  * belong to the same cache level of same type. Skip
439                                  * the check if level and type do not match.
440                                  */
441                                 if (sib_leaf->level != this_leaf->level ||
442                                     sib_leaf->type != this_leaf->type)
443                                         continue;
444
445                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
446                                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
447                                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
448                                         break;
449                                 }
450                         }
451                 }
452         }
453
454         /* cpu is no longer populated in the shared map */
455         this_cpu_ci->cpu_map_populated = false;
456 }
457
458 static void free_cache_attributes(unsigned int cpu)
459 {
460         if (!per_cpu_cacheinfo(cpu))
461                 return;
462
463         cache_shared_cpu_map_remove(cpu);
464 }
465
466 int __weak early_cache_level(unsigned int cpu)
467 {
468         return -ENOENT;
469 }
470
471 int __weak init_cache_level(unsigned int cpu)
472 {
473         return -ENOENT;
474 }
475
476 int __weak populate_cache_leaves(unsigned int cpu)
477 {
478         return -ENOENT;
479 }
480
481 static inline
482 int allocate_cache_info(int cpu)
483 {
484         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
485                                          sizeof(struct cacheinfo), GFP_ATOMIC);
486         if (!per_cpu_cacheinfo(cpu)) {
487                 cache_leaves(cpu) = 0;
488                 return -ENOMEM;
489         }
490
491         return 0;
492 }
493
494 int fetch_cache_info(unsigned int cpu)
495 {
496         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
497         unsigned int levels = 0, split_levels = 0;
498         int ret;
499
500         if (acpi_disabled) {
501                 ret = init_of_cache_level(cpu);
502         } else {
503                 ret = acpi_get_cache_info(cpu, &levels, &split_levels);
504                 if (!ret) {
505                         this_cpu_ci->num_levels = levels;
506                         /*
507                          * This assumes that:
508                          * - there cannot be any split caches (data/instruction)
509                          *   above a unified cache
510                          * - data/instruction caches come by pair
511                          */
512                         this_cpu_ci->num_leaves = levels + split_levels;
513                 }
514         }
515
516         if (ret || !cache_leaves(cpu)) {
517                 ret = early_cache_level(cpu);
518                 if (ret)
519                         return ret;
520
521                 if (!cache_leaves(cpu))
522                         return -ENOENT;
523
524                 this_cpu_ci->early_ci_levels = true;
525         }
526
527         return allocate_cache_info(cpu);
528 }
529
530 static inline int init_level_allocate_ci(unsigned int cpu)
531 {
532         unsigned int early_leaves = cache_leaves(cpu);
533
534         /* Since early initialization/allocation of the cacheinfo is allowed
535          * via fetch_cache_info() and this also gets called as CPU hotplug
536          * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
537          * as it will happen only once (the cacheinfo memory is never freed).
538          * Just populate the cacheinfo. However, if the cacheinfo has been
539          * allocated early through the arch-specific early_cache_level() call,
540          * there is a chance the info is wrong (this can happen on arm64). In
541          * that case, call init_cache_level() anyway to give the arch-specific
542          * code a chance to make things right.
543          */
544         if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
545                 return 0;
546
547         if (init_cache_level(cpu) || !cache_leaves(cpu))
548                 return -ENOENT;
549
550         /*
551          * Now that we have properly initialized the cache level info, make
552          * sure we don't try to do that again the next time we are called
553          * (e.g. as CPU hotplug callbacks).
554          */
555         ci_cacheinfo(cpu)->early_ci_levels = false;
556
557         if (cache_leaves(cpu) <= early_leaves)
558                 return 0;
559
560         kfree(per_cpu_cacheinfo(cpu));
561         return allocate_cache_info(cpu);
562 }
563
564 int detect_cache_attributes(unsigned int cpu)
565 {
566         int ret;
567
568         ret = init_level_allocate_ci(cpu);
569         if (ret)
570                 return ret;
571
572         /*
573          * If LLC is valid the cache leaves were already populated so just go to
574          * update the cpu map.
575          */
576         if (!last_level_cache_is_valid(cpu)) {
577                 /*
578                  * populate_cache_leaves() may completely setup the cache leaves and
579                  * shared_cpu_map or it may leave it partially setup.
580                  */
581                 ret = populate_cache_leaves(cpu);
582                 if (ret)
583                         goto free_ci;
584         }
585
586         /*
587          * For systems using DT for cache hierarchy, fw_token
588          * and shared_cpu_map will be set up here only if they are
589          * not populated already
590          */
591         ret = cache_shared_cpu_map_setup(cpu);
592         if (ret) {
593                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
594                 goto free_ci;
595         }
596
597         return 0;
598
599 free_ci:
600         free_cache_attributes(cpu);
601         return ret;
602 }
603
604 /* pointer to cpuX/cache device */
605 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
606 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
607
608 static cpumask_t cache_dev_map;
609
610 /* pointer to array of devices for cpuX/cache/indexY */
611 static DEFINE_PER_CPU(struct device **, ci_index_dev);
612 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
613 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
614
615 #define show_one(file_name, object)                             \
616 static ssize_t file_name##_show(struct device *dev,             \
617                 struct device_attribute *attr, char *buf)       \
618 {                                                               \
619         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
620         return sysfs_emit(buf, "%u\n", this_leaf->object);      \
621 }
622
623 show_one(id, id);
624 show_one(level, level);
625 show_one(coherency_line_size, coherency_line_size);
626 show_one(number_of_sets, number_of_sets);
627 show_one(physical_line_partition, physical_line_partition);
628 show_one(ways_of_associativity, ways_of_associativity);
629
630 static ssize_t size_show(struct device *dev,
631                          struct device_attribute *attr, char *buf)
632 {
633         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
634
635         return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
636 }
637
638 static ssize_t shared_cpu_map_show(struct device *dev,
639                                    struct device_attribute *attr, char *buf)
640 {
641         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
642         const struct cpumask *mask = &this_leaf->shared_cpu_map;
643
644         return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
645 }
646
647 static ssize_t shared_cpu_list_show(struct device *dev,
648                                     struct device_attribute *attr, char *buf)
649 {
650         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
651         const struct cpumask *mask = &this_leaf->shared_cpu_map;
652
653         return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
654 }
655
656 static ssize_t type_show(struct device *dev,
657                          struct device_attribute *attr, char *buf)
658 {
659         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
660         const char *output;
661
662         switch (this_leaf->type) {
663         case CACHE_TYPE_DATA:
664                 output = "Data";
665                 break;
666         case CACHE_TYPE_INST:
667                 output = "Instruction";
668                 break;
669         case CACHE_TYPE_UNIFIED:
670                 output = "Unified";
671                 break;
672         default:
673                 return -EINVAL;
674         }
675
676         return sysfs_emit(buf, "%s\n", output);
677 }
678
679 static ssize_t allocation_policy_show(struct device *dev,
680                                       struct device_attribute *attr, char *buf)
681 {
682         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
683         unsigned int ci_attr = this_leaf->attributes;
684         const char *output;
685
686         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
687                 output = "ReadWriteAllocate";
688         else if (ci_attr & CACHE_READ_ALLOCATE)
689                 output = "ReadAllocate";
690         else if (ci_attr & CACHE_WRITE_ALLOCATE)
691                 output = "WriteAllocate";
692         else
693                 return 0;
694
695         return sysfs_emit(buf, "%s\n", output);
696 }
697
698 static ssize_t write_policy_show(struct device *dev,
699                                  struct device_attribute *attr, char *buf)
700 {
701         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
702         unsigned int ci_attr = this_leaf->attributes;
703         int n = 0;
704
705         if (ci_attr & CACHE_WRITE_THROUGH)
706                 n = sysfs_emit(buf, "WriteThrough\n");
707         else if (ci_attr & CACHE_WRITE_BACK)
708                 n = sysfs_emit(buf, "WriteBack\n");
709         return n;
710 }
711
712 static DEVICE_ATTR_RO(id);
713 static DEVICE_ATTR_RO(level);
714 static DEVICE_ATTR_RO(type);
715 static DEVICE_ATTR_RO(coherency_line_size);
716 static DEVICE_ATTR_RO(ways_of_associativity);
717 static DEVICE_ATTR_RO(number_of_sets);
718 static DEVICE_ATTR_RO(size);
719 static DEVICE_ATTR_RO(allocation_policy);
720 static DEVICE_ATTR_RO(write_policy);
721 static DEVICE_ATTR_RO(shared_cpu_map);
722 static DEVICE_ATTR_RO(shared_cpu_list);
723 static DEVICE_ATTR_RO(physical_line_partition);
724
725 static struct attribute *cache_default_attrs[] = {
726         &dev_attr_id.attr,
727         &dev_attr_type.attr,
728         &dev_attr_level.attr,
729         &dev_attr_shared_cpu_map.attr,
730         &dev_attr_shared_cpu_list.attr,
731         &dev_attr_coherency_line_size.attr,
732         &dev_attr_ways_of_associativity.attr,
733         &dev_attr_number_of_sets.attr,
734         &dev_attr_size.attr,
735         &dev_attr_allocation_policy.attr,
736         &dev_attr_write_policy.attr,
737         &dev_attr_physical_line_partition.attr,
738         NULL
739 };
740
741 static umode_t
742 cache_default_attrs_is_visible(struct kobject *kobj,
743                                struct attribute *attr, int unused)
744 {
745         struct device *dev = kobj_to_dev(kobj);
746         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
747         const struct cpumask *mask = &this_leaf->shared_cpu_map;
748         umode_t mode = attr->mode;
749
750         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
751                 return mode;
752         if ((attr == &dev_attr_type.attr) && this_leaf->type)
753                 return mode;
754         if ((attr == &dev_attr_level.attr) && this_leaf->level)
755                 return mode;
756         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
757                 return mode;
758         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
759                 return mode;
760         if ((attr == &dev_attr_coherency_line_size.attr) &&
761             this_leaf->coherency_line_size)
762                 return mode;
763         if ((attr == &dev_attr_ways_of_associativity.attr) &&
764             this_leaf->size) /* allow 0 = full associativity */
765                 return mode;
766         if ((attr == &dev_attr_number_of_sets.attr) &&
767             this_leaf->number_of_sets)
768                 return mode;
769         if ((attr == &dev_attr_size.attr) && this_leaf->size)
770                 return mode;
771         if ((attr == &dev_attr_write_policy.attr) &&
772             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
773                 return mode;
774         if ((attr == &dev_attr_allocation_policy.attr) &&
775             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
776                 return mode;
777         if ((attr == &dev_attr_physical_line_partition.attr) &&
778             this_leaf->physical_line_partition)
779                 return mode;
780
781         return 0;
782 }
783
784 static const struct attribute_group cache_default_group = {
785         .attrs = cache_default_attrs,
786         .is_visible = cache_default_attrs_is_visible,
787 };
788
789 static const struct attribute_group *cache_default_groups[] = {
790         &cache_default_group,
791         NULL,
792 };
793
794 static const struct attribute_group *cache_private_groups[] = {
795         &cache_default_group,
796         NULL, /* Place holder for private group */
797         NULL,
798 };
799
800 const struct attribute_group *
801 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
802 {
803         return NULL;
804 }
805
806 static const struct attribute_group **
807 cache_get_attribute_groups(struct cacheinfo *this_leaf)
808 {
809         const struct attribute_group *priv_group =
810                         cache_get_priv_group(this_leaf);
811
812         if (!priv_group)
813                 return cache_default_groups;
814
815         if (!cache_private_groups[1])
816                 cache_private_groups[1] = priv_group;
817
818         return cache_private_groups;
819 }
820
821 /* Add/Remove cache interface for CPU device */
822 static void cpu_cache_sysfs_exit(unsigned int cpu)
823 {
824         int i;
825         struct device *ci_dev;
826
827         if (per_cpu_index_dev(cpu)) {
828                 for (i = 0; i < cache_leaves(cpu); i++) {
829                         ci_dev = per_cache_index_dev(cpu, i);
830                         if (!ci_dev)
831                                 continue;
832                         device_unregister(ci_dev);
833                 }
834                 kfree(per_cpu_index_dev(cpu));
835                 per_cpu_index_dev(cpu) = NULL;
836         }
837         device_unregister(per_cpu_cache_dev(cpu));
838         per_cpu_cache_dev(cpu) = NULL;
839 }
840
841 static int cpu_cache_sysfs_init(unsigned int cpu)
842 {
843         struct device *dev = get_cpu_device(cpu);
844
845         if (per_cpu_cacheinfo(cpu) == NULL)
846                 return -ENOENT;
847
848         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
849         if (IS_ERR(per_cpu_cache_dev(cpu)))
850                 return PTR_ERR(per_cpu_cache_dev(cpu));
851
852         /* Allocate all required memory */
853         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
854                                          sizeof(struct device *), GFP_KERNEL);
855         if (unlikely(per_cpu_index_dev(cpu) == NULL))
856                 goto err_out;
857
858         return 0;
859
860 err_out:
861         cpu_cache_sysfs_exit(cpu);
862         return -ENOMEM;
863 }
864
865 static int cache_add_dev(unsigned int cpu)
866 {
867         unsigned int i;
868         int rc;
869         struct device *ci_dev, *parent;
870         struct cacheinfo *this_leaf;
871         const struct attribute_group **cache_groups;
872
873         rc = cpu_cache_sysfs_init(cpu);
874         if (unlikely(rc < 0))
875                 return rc;
876
877         parent = per_cpu_cache_dev(cpu);
878         for (i = 0; i < cache_leaves(cpu); i++) {
879                 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
880                 if (this_leaf->disable_sysfs)
881                         continue;
882                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
883                         break;
884                 cache_groups = cache_get_attribute_groups(this_leaf);
885                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
886                                            "index%1u", i);
887                 if (IS_ERR(ci_dev)) {
888                         rc = PTR_ERR(ci_dev);
889                         goto err;
890                 }
891                 per_cache_index_dev(cpu, i) = ci_dev;
892         }
893         cpumask_set_cpu(cpu, &cache_dev_map);
894
895         return 0;
896 err:
897         cpu_cache_sysfs_exit(cpu);
898         return rc;
899 }
900
901 static int cacheinfo_cpu_online(unsigned int cpu)
902 {
903         int rc = detect_cache_attributes(cpu);
904
905         if (rc)
906                 return rc;
907         rc = cache_add_dev(cpu);
908         if (rc)
909                 free_cache_attributes(cpu);
910         return rc;
911 }
912
913 static int cacheinfo_cpu_pre_down(unsigned int cpu)
914 {
915         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
916                 cpu_cache_sysfs_exit(cpu);
917
918         free_cache_attributes(cpu);
919         return 0;
920 }
921
922 static int __init cacheinfo_sysfs_init(void)
923 {
924         return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
925                                  "base/cacheinfo:online",
926                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
927 }
928 device_initcall(cacheinfo_sysfs_init);