ef4fc89f085d858d3fae56b8622ddf3868006849
[platform/kernel/linux-rpi.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/rcupdate.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24
25 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
26 static struct cpumask scale_freq_counters_mask;
27 static bool scale_freq_invariant;
28
29 static bool supports_scale_freq_counters(const struct cpumask *cpus)
30 {
31         return cpumask_subset(cpus, &scale_freq_counters_mask);
32 }
33
34 bool topology_scale_freq_invariant(void)
35 {
36         return cpufreq_supports_freq_invariance() ||
37                supports_scale_freq_counters(cpu_online_mask);
38 }
39
40 static void update_scale_freq_invariant(bool status)
41 {
42         if (scale_freq_invariant == status)
43                 return;
44
45         /*
46          * Task scheduler behavior depends on frequency invariance support,
47          * either cpufreq or counter driven. If the support status changes as
48          * a result of counter initialisation and use, retrigger the build of
49          * scheduling domains to ensure the information is propagated properly.
50          */
51         if (topology_scale_freq_invariant() == status) {
52                 scale_freq_invariant = status;
53                 rebuild_sched_domains_energy();
54         }
55 }
56
57 void topology_set_scale_freq_source(struct scale_freq_data *data,
58                                     const struct cpumask *cpus)
59 {
60         struct scale_freq_data *sfd;
61         int cpu;
62
63         /*
64          * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
65          * supported by cpufreq.
66          */
67         if (cpumask_empty(&scale_freq_counters_mask))
68                 scale_freq_invariant = topology_scale_freq_invariant();
69
70         rcu_read_lock();
71
72         for_each_cpu(cpu, cpus) {
73                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
74
75                 /* Use ARCH provided counters whenever possible */
76                 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
77                         rcu_assign_pointer(per_cpu(sft_data, cpu), data);
78                         cpumask_set_cpu(cpu, &scale_freq_counters_mask);
79                 }
80         }
81
82         rcu_read_unlock();
83
84         update_scale_freq_invariant(true);
85 }
86 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
87
88 void topology_clear_scale_freq_source(enum scale_freq_source source,
89                                       const struct cpumask *cpus)
90 {
91         struct scale_freq_data *sfd;
92         int cpu;
93
94         rcu_read_lock();
95
96         for_each_cpu(cpu, cpus) {
97                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
98
99                 if (sfd && sfd->source == source) {
100                         rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
101                         cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
102                 }
103         }
104
105         rcu_read_unlock();
106
107         /*
108          * Make sure all references to previous sft_data are dropped to avoid
109          * use-after-free races.
110          */
111         synchronize_rcu();
112
113         update_scale_freq_invariant(false);
114 }
115 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
116
117 void topology_scale_freq_tick(void)
118 {
119         struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
120
121         if (sfd)
122                 sfd->set_freq_scale();
123 }
124
125 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
126 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
127
128 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
129                              unsigned long max_freq)
130 {
131         unsigned long scale;
132         int i;
133
134         if (WARN_ON_ONCE(!cur_freq || !max_freq))
135                 return;
136
137         /*
138          * If the use of counters for FIE is enabled, just return as we don't
139          * want to update the scale factor with information from CPUFREQ.
140          * Instead the scale factor will be updated from arch_scale_freq_tick.
141          */
142         if (supports_scale_freq_counters(cpus))
143                 return;
144
145         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
146
147         for_each_cpu(i, cpus)
148                 per_cpu(arch_freq_scale, i) = scale;
149 }
150
151 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
152 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
153
154 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
155 {
156         per_cpu(cpu_scale, cpu) = capacity;
157 }
158
159 DEFINE_PER_CPU(unsigned long, thermal_pressure);
160
161 void topology_set_thermal_pressure(const struct cpumask *cpus,
162                                unsigned long th_pressure)
163 {
164         int cpu;
165
166         for_each_cpu(cpu, cpus)
167                 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
168 }
169 EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
170
171 static ssize_t cpu_capacity_show(struct device *dev,
172                                  struct device_attribute *attr,
173                                  char *buf)
174 {
175         struct cpu *cpu = container_of(dev, struct cpu, dev);
176
177         return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
178 }
179
180 static void update_topology_flags_workfn(struct work_struct *work);
181 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
182
183 static DEVICE_ATTR_RO(cpu_capacity);
184
185 static int register_cpu_capacity_sysctl(void)
186 {
187         int i;
188         struct device *cpu;
189
190         for_each_possible_cpu(i) {
191                 cpu = get_cpu_device(i);
192                 if (!cpu) {
193                         pr_err("%s: too early to get CPU%d device!\n",
194                                __func__, i);
195                         continue;
196                 }
197                 device_create_file(cpu, &dev_attr_cpu_capacity);
198         }
199
200         return 0;
201 }
202 subsys_initcall(register_cpu_capacity_sysctl);
203
204 static int update_topology;
205
206 int topology_update_cpu_topology(void)
207 {
208         return update_topology;
209 }
210
211 /*
212  * Updating the sched_domains can't be done directly from cpufreq callbacks
213  * due to locking, so queue the work for later.
214  */
215 static void update_topology_flags_workfn(struct work_struct *work)
216 {
217         update_topology = 1;
218         rebuild_sched_domains();
219         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
220         update_topology = 0;
221 }
222
223 static DEFINE_PER_CPU(u32, freq_factor) = 1;
224 static u32 *raw_capacity;
225
226 static int free_raw_capacity(void)
227 {
228         kfree(raw_capacity);
229         raw_capacity = NULL;
230
231         return 0;
232 }
233
234 void topology_normalize_cpu_scale(void)
235 {
236         u64 capacity;
237         u64 capacity_scale;
238         int cpu;
239
240         if (!raw_capacity)
241                 return;
242
243         capacity_scale = 1;
244         for_each_possible_cpu(cpu) {
245                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
246                 capacity_scale = max(capacity, capacity_scale);
247         }
248
249         pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
250         for_each_possible_cpu(cpu) {
251                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
252                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
253                         capacity_scale);
254                 topology_set_cpu_scale(cpu, capacity);
255                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
256                         cpu, topology_get_cpu_scale(cpu));
257         }
258 }
259
260 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
261 {
262         struct clk *cpu_clk;
263         static bool cap_parsing_failed;
264         int ret;
265         u32 cpu_capacity;
266
267         if (cap_parsing_failed)
268                 return false;
269
270         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
271                                    &cpu_capacity);
272         if (!ret) {
273                 if (!raw_capacity) {
274                         raw_capacity = kcalloc(num_possible_cpus(),
275                                                sizeof(*raw_capacity),
276                                                GFP_KERNEL);
277                         if (!raw_capacity) {
278                                 cap_parsing_failed = true;
279                                 return false;
280                         }
281                 }
282                 raw_capacity[cpu] = cpu_capacity;
283                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
284                         cpu_node, raw_capacity[cpu]);
285
286                 /*
287                  * Update freq_factor for calculating early boot cpu capacities.
288                  * For non-clk CPU DVFS mechanism, there's no way to get the
289                  * frequency value now, assuming they are running at the same
290                  * frequency (by keeping the initial freq_factor value).
291                  */
292                 cpu_clk = of_clk_get(cpu_node, 0);
293                 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
294                         per_cpu(freq_factor, cpu) =
295                                 clk_get_rate(cpu_clk) / 1000;
296                         clk_put(cpu_clk);
297                 }
298         } else {
299                 if (raw_capacity) {
300                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
301                                 cpu_node);
302                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
303                 }
304                 cap_parsing_failed = true;
305                 free_raw_capacity();
306         }
307
308         return !ret;
309 }
310
311 #ifdef CONFIG_CPU_FREQ
312 static cpumask_var_t cpus_to_visit;
313 static void parsing_done_workfn(struct work_struct *work);
314 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
315
316 static int
317 init_cpu_capacity_callback(struct notifier_block *nb,
318                            unsigned long val,
319                            void *data)
320 {
321         struct cpufreq_policy *policy = data;
322         int cpu;
323
324         if (!raw_capacity)
325                 return 0;
326
327         if (val != CPUFREQ_CREATE_POLICY)
328                 return 0;
329
330         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
331                  cpumask_pr_args(policy->related_cpus),
332                  cpumask_pr_args(cpus_to_visit));
333
334         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
335
336         for_each_cpu(cpu, policy->related_cpus)
337                 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
338
339         if (cpumask_empty(cpus_to_visit)) {
340                 topology_normalize_cpu_scale();
341                 schedule_work(&update_topology_flags_work);
342                 free_raw_capacity();
343                 pr_debug("cpu_capacity: parsing done\n");
344                 schedule_work(&parsing_done_work);
345         }
346
347         return 0;
348 }
349
350 static struct notifier_block init_cpu_capacity_notifier = {
351         .notifier_call = init_cpu_capacity_callback,
352 };
353
354 static int __init register_cpufreq_notifier(void)
355 {
356         int ret;
357
358         /*
359          * on ACPI-based systems we need to use the default cpu capacity
360          * until we have the necessary code to parse the cpu capacity, so
361          * skip registering cpufreq notifier.
362          */
363         if (!acpi_disabled || !raw_capacity)
364                 return -EINVAL;
365
366         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
367                 return -ENOMEM;
368
369         cpumask_copy(cpus_to_visit, cpu_possible_mask);
370
371         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
372                                         CPUFREQ_POLICY_NOTIFIER);
373
374         if (ret)
375                 free_cpumask_var(cpus_to_visit);
376
377         return ret;
378 }
379 core_initcall(register_cpufreq_notifier);
380
381 static void parsing_done_workfn(struct work_struct *work)
382 {
383         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
384                                          CPUFREQ_POLICY_NOTIFIER);
385         free_cpumask_var(cpus_to_visit);
386 }
387
388 #else
389 core_initcall(free_raw_capacity);
390 #endif
391
392 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
393 /*
394  * This function returns the logic cpu number of the node.
395  * There are basically three kinds of return values:
396  * (1) logic cpu number which is > 0.
397  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
398  * there is no possible logical CPU in the kernel to match. This happens
399  * when CONFIG_NR_CPUS is configure to be smaller than the number of
400  * CPU nodes in DT. We need to just ignore this case.
401  * (3) -1 if the node does not exist in the device tree
402  */
403 static int __init get_cpu_for_node(struct device_node *node)
404 {
405         struct device_node *cpu_node;
406         int cpu;
407
408         cpu_node = of_parse_phandle(node, "cpu", 0);
409         if (!cpu_node)
410                 return -1;
411
412         cpu = of_cpu_node_to_id(cpu_node);
413         if (cpu >= 0)
414                 topology_parse_cpu_capacity(cpu_node, cpu);
415         else
416                 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
417                         cpu_node, cpumask_pr_args(cpu_possible_mask));
418
419         of_node_put(cpu_node);
420         return cpu;
421 }
422
423 static int __init parse_core(struct device_node *core, int package_id,
424                              int core_id)
425 {
426         char name[20];
427         bool leaf = true;
428         int i = 0;
429         int cpu;
430         struct device_node *t;
431
432         do {
433                 snprintf(name, sizeof(name), "thread%d", i);
434                 t = of_get_child_by_name(core, name);
435                 if (t) {
436                         leaf = false;
437                         cpu = get_cpu_for_node(t);
438                         if (cpu >= 0) {
439                                 cpu_topology[cpu].package_id = package_id;
440                                 cpu_topology[cpu].core_id = core_id;
441                                 cpu_topology[cpu].thread_id = i;
442                         } else if (cpu != -ENODEV) {
443                                 pr_err("%pOF: Can't get CPU for thread\n", t);
444                                 of_node_put(t);
445                                 return -EINVAL;
446                         }
447                         of_node_put(t);
448                 }
449                 i++;
450         } while (t);
451
452         cpu = get_cpu_for_node(core);
453         if (cpu >= 0) {
454                 if (!leaf) {
455                         pr_err("%pOF: Core has both threads and CPU\n",
456                                core);
457                         return -EINVAL;
458                 }
459
460                 cpu_topology[cpu].package_id = package_id;
461                 cpu_topology[cpu].core_id = core_id;
462         } else if (leaf && cpu != -ENODEV) {
463                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
464                 return -EINVAL;
465         }
466
467         return 0;
468 }
469
470 static int __init parse_cluster(struct device_node *cluster, int depth)
471 {
472         char name[20];
473         bool leaf = true;
474         bool has_cores = false;
475         struct device_node *c;
476         static int package_id __initdata;
477         int core_id = 0;
478         int i, ret;
479
480         /*
481          * First check for child clusters; we currently ignore any
482          * information about the nesting of clusters and present the
483          * scheduler with a flat list of them.
484          */
485         i = 0;
486         do {
487                 snprintf(name, sizeof(name), "cluster%d", i);
488                 c = of_get_child_by_name(cluster, name);
489                 if (c) {
490                         leaf = false;
491                         ret = parse_cluster(c, depth + 1);
492                         of_node_put(c);
493                         if (ret != 0)
494                                 return ret;
495                 }
496                 i++;
497         } while (c);
498
499         /* Now check for cores */
500         i = 0;
501         do {
502                 snprintf(name, sizeof(name), "core%d", i);
503                 c = of_get_child_by_name(cluster, name);
504                 if (c) {
505                         has_cores = true;
506
507                         if (depth == 0) {
508                                 pr_err("%pOF: cpu-map children should be clusters\n",
509                                        c);
510                                 of_node_put(c);
511                                 return -EINVAL;
512                         }
513
514                         if (leaf) {
515                                 ret = parse_core(c, package_id, core_id++);
516                         } else {
517                                 pr_err("%pOF: Non-leaf cluster with core %s\n",
518                                        cluster, name);
519                                 ret = -EINVAL;
520                         }
521
522                         of_node_put(c);
523                         if (ret != 0)
524                                 return ret;
525                 }
526                 i++;
527         } while (c);
528
529         if (leaf && !has_cores)
530                 pr_warn("%pOF: empty cluster\n", cluster);
531
532         if (leaf)
533                 package_id++;
534
535         return 0;
536 }
537
538 static int __init parse_dt_topology(void)
539 {
540         struct device_node *cn, *map;
541         int ret = 0;
542         int cpu;
543
544         cn = of_find_node_by_path("/cpus");
545         if (!cn) {
546                 pr_err("No CPU information found in DT\n");
547                 return 0;
548         }
549
550         /*
551          * When topology is provided cpu-map is essentially a root
552          * cluster with restricted subnodes.
553          */
554         map = of_get_child_by_name(cn, "cpu-map");
555         if (!map)
556                 goto out;
557
558         ret = parse_cluster(map, 0);
559         if (ret != 0)
560                 goto out_map;
561
562         topology_normalize_cpu_scale();
563
564         /*
565          * Check that all cores are in the topology; the SMP code will
566          * only mark cores described in the DT as possible.
567          */
568         for_each_possible_cpu(cpu)
569                 if (cpu_topology[cpu].package_id == -1)
570                         ret = -EINVAL;
571
572 out_map:
573         of_node_put(map);
574 out:
575         of_node_put(cn);
576         return ret;
577 }
578 #endif
579
580 /*
581  * cpu topology table
582  */
583 struct cpu_topology cpu_topology[NR_CPUS];
584 EXPORT_SYMBOL_GPL(cpu_topology);
585
586 const struct cpumask *cpu_coregroup_mask(int cpu)
587 {
588         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
589
590         /* Find the smaller of NUMA, core or LLC siblings */
591         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
592                 /* not numa in package, lets use the package siblings */
593                 core_mask = &cpu_topology[cpu].core_sibling;
594         }
595         if (cpu_topology[cpu].llc_id != -1) {
596                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
597                         core_mask = &cpu_topology[cpu].llc_sibling;
598         }
599
600         return core_mask;
601 }
602
603 void update_siblings_masks(unsigned int cpuid)
604 {
605         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
606         int cpu;
607
608         /* update core and thread sibling masks */
609         for_each_online_cpu(cpu) {
610                 cpu_topo = &cpu_topology[cpu];
611
612                 if (cpu_topo->llc_id != -1 && cpuid_topo->llc_id == cpu_topo->llc_id) {
613                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
614                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
615                 }
616
617                 if (cpuid_topo->package_id != cpu_topo->package_id)
618                         continue;
619
620                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
621                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
622
623                 if (cpuid_topo->core_id != cpu_topo->core_id)
624                         continue;
625
626                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
627                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
628         }
629 }
630
631 static void clear_cpu_topology(int cpu)
632 {
633         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
634
635         cpumask_clear(&cpu_topo->llc_sibling);
636         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
637
638         cpumask_clear(&cpu_topo->core_sibling);
639         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
640         cpumask_clear(&cpu_topo->thread_sibling);
641         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
642 }
643
644 void __init reset_cpu_topology(void)
645 {
646         unsigned int cpu;
647
648         for_each_possible_cpu(cpu) {
649                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
650
651                 cpu_topo->thread_id = -1;
652                 cpu_topo->core_id = -1;
653                 cpu_topo->package_id = -1;
654                 cpu_topo->llc_id = -1;
655
656                 clear_cpu_topology(cpu);
657         }
658 }
659
660 void remove_cpu_topology(unsigned int cpu)
661 {
662         int sibling;
663
664         for_each_cpu(sibling, topology_core_cpumask(cpu))
665                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
666         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
667                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
668         for_each_cpu(sibling, topology_llc_cpumask(cpu))
669                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
670
671         clear_cpu_topology(cpu);
672 }
673
674 __weak int __init parse_acpi_topology(void)
675 {
676         return 0;
677 }
678
679 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
680 void __init init_cpu_topology(void)
681 {
682         reset_cpu_topology();
683
684         /*
685          * Discard anything that was parsed if we hit an error so we
686          * don't use partial information.
687          */
688         if (parse_acpi_topology())
689                 reset_cpu_topology();
690         else if (of_have_populated_dt() && parse_dt_topology())
691                 reset_cpu_topology();
692 }
693 #endif