arch_topology: Trace the update thermal pressure
[platform/kernel/linux-starfive.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/sched/topology.h>
16 #include <linux/cpuset.h>
17 #include <linux/cpumask.h>
18 #include <linux/init.h>
19 #include <linux/rcupdate.h>
20 #include <linux/sched.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/thermal_pressure.h>
24
25 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
26 static struct cpumask scale_freq_counters_mask;
27 static bool scale_freq_invariant;
28 static DEFINE_PER_CPU(u32, freq_factor) = 1;
29
30 static bool supports_scale_freq_counters(const struct cpumask *cpus)
31 {
32         return cpumask_subset(cpus, &scale_freq_counters_mask);
33 }
34
35 bool topology_scale_freq_invariant(void)
36 {
37         return cpufreq_supports_freq_invariance() ||
38                supports_scale_freq_counters(cpu_online_mask);
39 }
40
41 static void update_scale_freq_invariant(bool status)
42 {
43         if (scale_freq_invariant == status)
44                 return;
45
46         /*
47          * Task scheduler behavior depends on frequency invariance support,
48          * either cpufreq or counter driven. If the support status changes as
49          * a result of counter initialisation and use, retrigger the build of
50          * scheduling domains to ensure the information is propagated properly.
51          */
52         if (topology_scale_freq_invariant() == status) {
53                 scale_freq_invariant = status;
54                 rebuild_sched_domains_energy();
55         }
56 }
57
58 void topology_set_scale_freq_source(struct scale_freq_data *data,
59                                     const struct cpumask *cpus)
60 {
61         struct scale_freq_data *sfd;
62         int cpu;
63
64         /*
65          * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
66          * supported by cpufreq.
67          */
68         if (cpumask_empty(&scale_freq_counters_mask))
69                 scale_freq_invariant = topology_scale_freq_invariant();
70
71         rcu_read_lock();
72
73         for_each_cpu(cpu, cpus) {
74                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
75
76                 /* Use ARCH provided counters whenever possible */
77                 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
78                         rcu_assign_pointer(per_cpu(sft_data, cpu), data);
79                         cpumask_set_cpu(cpu, &scale_freq_counters_mask);
80                 }
81         }
82
83         rcu_read_unlock();
84
85         update_scale_freq_invariant(true);
86 }
87 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
88
89 void topology_clear_scale_freq_source(enum scale_freq_source source,
90                                       const struct cpumask *cpus)
91 {
92         struct scale_freq_data *sfd;
93         int cpu;
94
95         rcu_read_lock();
96
97         for_each_cpu(cpu, cpus) {
98                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
99
100                 if (sfd && sfd->source == source) {
101                         rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
102                         cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
103                 }
104         }
105
106         rcu_read_unlock();
107
108         /*
109          * Make sure all references to previous sft_data are dropped to avoid
110          * use-after-free races.
111          */
112         synchronize_rcu();
113
114         update_scale_freq_invariant(false);
115 }
116 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
117
118 void topology_scale_freq_tick(void)
119 {
120         struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
121
122         if (sfd)
123                 sfd->set_freq_scale();
124 }
125
126 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
127 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
128
129 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
130                              unsigned long max_freq)
131 {
132         unsigned long scale;
133         int i;
134
135         if (WARN_ON_ONCE(!cur_freq || !max_freq))
136                 return;
137
138         /*
139          * If the use of counters for FIE is enabled, just return as we don't
140          * want to update the scale factor with information from CPUFREQ.
141          * Instead the scale factor will be updated from arch_scale_freq_tick.
142          */
143         if (supports_scale_freq_counters(cpus))
144                 return;
145
146         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
147
148         for_each_cpu(i, cpus)
149                 per_cpu(arch_freq_scale, i) = scale;
150 }
151
152 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
153 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
154
155 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
156 {
157         per_cpu(cpu_scale, cpu) = capacity;
158 }
159
160 DEFINE_PER_CPU(unsigned long, thermal_pressure);
161
162 /**
163  * topology_update_thermal_pressure() - Update thermal pressure for CPUs
164  * @cpus        : The related CPUs for which capacity has been reduced
165  * @capped_freq : The maximum allowed frequency that CPUs can run at
166  *
167  * Update the value of thermal pressure for all @cpus in the mask. The
168  * cpumask should include all (online+offline) affected CPUs, to avoid
169  * operating on stale data when hot-plug is used for some CPUs. The
170  * @capped_freq reflects the currently allowed max CPUs frequency due to
171  * thermal capping. It might be also a boost frequency value, which is bigger
172  * than the internal 'freq_factor' max frequency. In such case the pressure
173  * value should simply be removed, since this is an indication that there is
174  * no thermal throttling. The @capped_freq must be provided in kHz.
175  */
176 void topology_update_thermal_pressure(const struct cpumask *cpus,
177                                       unsigned long capped_freq)
178 {
179         unsigned long max_capacity, capacity, th_pressure;
180         u32 max_freq;
181         int cpu;
182
183         cpu = cpumask_first(cpus);
184         max_capacity = arch_scale_cpu_capacity(cpu);
185         max_freq = per_cpu(freq_factor, cpu);
186
187         /* Convert to MHz scale which is used in 'freq_factor' */
188         capped_freq /= 1000;
189
190         /*
191          * Handle properly the boost frequencies, which should simply clean
192          * the thermal pressure value.
193          */
194         if (max_freq <= capped_freq)
195                 capacity = max_capacity;
196         else
197                 capacity = mult_frac(max_capacity, capped_freq, max_freq);
198
199         th_pressure = max_capacity - capacity;
200
201         trace_thermal_pressure_update(cpu, th_pressure);
202
203         for_each_cpu(cpu, cpus)
204                 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
205 }
206 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
207
208 static ssize_t cpu_capacity_show(struct device *dev,
209                                  struct device_attribute *attr,
210                                  char *buf)
211 {
212         struct cpu *cpu = container_of(dev, struct cpu, dev);
213
214         return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
215 }
216
217 static void update_topology_flags_workfn(struct work_struct *work);
218 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
219
220 static DEVICE_ATTR_RO(cpu_capacity);
221
222 static int register_cpu_capacity_sysctl(void)
223 {
224         int i;
225         struct device *cpu;
226
227         for_each_possible_cpu(i) {
228                 cpu = get_cpu_device(i);
229                 if (!cpu) {
230                         pr_err("%s: too early to get CPU%d device!\n",
231                                __func__, i);
232                         continue;
233                 }
234                 device_create_file(cpu, &dev_attr_cpu_capacity);
235         }
236
237         return 0;
238 }
239 subsys_initcall(register_cpu_capacity_sysctl);
240
241 static int update_topology;
242
243 int topology_update_cpu_topology(void)
244 {
245         return update_topology;
246 }
247
248 /*
249  * Updating the sched_domains can't be done directly from cpufreq callbacks
250  * due to locking, so queue the work for later.
251  */
252 static void update_topology_flags_workfn(struct work_struct *work)
253 {
254         update_topology = 1;
255         rebuild_sched_domains();
256         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
257         update_topology = 0;
258 }
259
260 static u32 *raw_capacity;
261
262 static int free_raw_capacity(void)
263 {
264         kfree(raw_capacity);
265         raw_capacity = NULL;
266
267         return 0;
268 }
269
270 void topology_normalize_cpu_scale(void)
271 {
272         u64 capacity;
273         u64 capacity_scale;
274         int cpu;
275
276         if (!raw_capacity)
277                 return;
278
279         capacity_scale = 1;
280         for_each_possible_cpu(cpu) {
281                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
282                 capacity_scale = max(capacity, capacity_scale);
283         }
284
285         pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
286         for_each_possible_cpu(cpu) {
287                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
288                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
289                         capacity_scale);
290                 topology_set_cpu_scale(cpu, capacity);
291                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
292                         cpu, topology_get_cpu_scale(cpu));
293         }
294 }
295
296 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
297 {
298         struct clk *cpu_clk;
299         static bool cap_parsing_failed;
300         int ret;
301         u32 cpu_capacity;
302
303         if (cap_parsing_failed)
304                 return false;
305
306         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
307                                    &cpu_capacity);
308         if (!ret) {
309                 if (!raw_capacity) {
310                         raw_capacity = kcalloc(num_possible_cpus(),
311                                                sizeof(*raw_capacity),
312                                                GFP_KERNEL);
313                         if (!raw_capacity) {
314                                 cap_parsing_failed = true;
315                                 return false;
316                         }
317                 }
318                 raw_capacity[cpu] = cpu_capacity;
319                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
320                         cpu_node, raw_capacity[cpu]);
321
322                 /*
323                  * Update freq_factor for calculating early boot cpu capacities.
324                  * For non-clk CPU DVFS mechanism, there's no way to get the
325                  * frequency value now, assuming they are running at the same
326                  * frequency (by keeping the initial freq_factor value).
327                  */
328                 cpu_clk = of_clk_get(cpu_node, 0);
329                 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
330                         per_cpu(freq_factor, cpu) =
331                                 clk_get_rate(cpu_clk) / 1000;
332                         clk_put(cpu_clk);
333                 }
334         } else {
335                 if (raw_capacity) {
336                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
337                                 cpu_node);
338                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
339                 }
340                 cap_parsing_failed = true;
341                 free_raw_capacity();
342         }
343
344         return !ret;
345 }
346
347 #ifdef CONFIG_ACPI_CPPC_LIB
348 #include <acpi/cppc_acpi.h>
349
350 void topology_init_cpu_capacity_cppc(void)
351 {
352         struct cppc_perf_caps perf_caps;
353         int cpu;
354
355         if (likely(acpi_disabled || !acpi_cpc_valid()))
356                 return;
357
358         raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
359                                GFP_KERNEL);
360         if (!raw_capacity)
361                 return;
362
363         for_each_possible_cpu(cpu) {
364                 if (!cppc_get_perf_caps(cpu, &perf_caps) &&
365                     (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
366                     (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
367                         raw_capacity[cpu] = perf_caps.highest_perf;
368                         pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
369                                  cpu, raw_capacity[cpu]);
370                         continue;
371                 }
372
373                 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
374                 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
375                 goto exit;
376         }
377
378         topology_normalize_cpu_scale();
379         schedule_work(&update_topology_flags_work);
380         pr_debug("cpu_capacity: cpu_capacity initialization done\n");
381
382 exit:
383         free_raw_capacity();
384 }
385 #endif
386
387 #ifdef CONFIG_CPU_FREQ
388 static cpumask_var_t cpus_to_visit;
389 static void parsing_done_workfn(struct work_struct *work);
390 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
391
392 static int
393 init_cpu_capacity_callback(struct notifier_block *nb,
394                            unsigned long val,
395                            void *data)
396 {
397         struct cpufreq_policy *policy = data;
398         int cpu;
399
400         if (!raw_capacity)
401                 return 0;
402
403         if (val != CPUFREQ_CREATE_POLICY)
404                 return 0;
405
406         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
407                  cpumask_pr_args(policy->related_cpus),
408                  cpumask_pr_args(cpus_to_visit));
409
410         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
411
412         for_each_cpu(cpu, policy->related_cpus)
413                 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
414
415         if (cpumask_empty(cpus_to_visit)) {
416                 topology_normalize_cpu_scale();
417                 schedule_work(&update_topology_flags_work);
418                 free_raw_capacity();
419                 pr_debug("cpu_capacity: parsing done\n");
420                 schedule_work(&parsing_done_work);
421         }
422
423         return 0;
424 }
425
426 static struct notifier_block init_cpu_capacity_notifier = {
427         .notifier_call = init_cpu_capacity_callback,
428 };
429
430 static int __init register_cpufreq_notifier(void)
431 {
432         int ret;
433
434         /*
435          * On ACPI-based systems skip registering cpufreq notifier as cpufreq
436          * information is not needed for cpu capacity initialization.
437          */
438         if (!acpi_disabled || !raw_capacity)
439                 return -EINVAL;
440
441         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
442                 return -ENOMEM;
443
444         cpumask_copy(cpus_to_visit, cpu_possible_mask);
445
446         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
447                                         CPUFREQ_POLICY_NOTIFIER);
448
449         if (ret)
450                 free_cpumask_var(cpus_to_visit);
451
452         return ret;
453 }
454 core_initcall(register_cpufreq_notifier);
455
456 static void parsing_done_workfn(struct work_struct *work)
457 {
458         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
459                                          CPUFREQ_POLICY_NOTIFIER);
460         free_cpumask_var(cpus_to_visit);
461 }
462
463 #else
464 core_initcall(free_raw_capacity);
465 #endif
466
467 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
468 /*
469  * This function returns the logic cpu number of the node.
470  * There are basically three kinds of return values:
471  * (1) logic cpu number which is > 0.
472  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
473  * there is no possible logical CPU in the kernel to match. This happens
474  * when CONFIG_NR_CPUS is configure to be smaller than the number of
475  * CPU nodes in DT. We need to just ignore this case.
476  * (3) -1 if the node does not exist in the device tree
477  */
478 static int __init get_cpu_for_node(struct device_node *node)
479 {
480         struct device_node *cpu_node;
481         int cpu;
482
483         cpu_node = of_parse_phandle(node, "cpu", 0);
484         if (!cpu_node)
485                 return -1;
486
487         cpu = of_cpu_node_to_id(cpu_node);
488         if (cpu >= 0)
489                 topology_parse_cpu_capacity(cpu_node, cpu);
490         else
491                 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
492                         cpu_node, cpumask_pr_args(cpu_possible_mask));
493
494         of_node_put(cpu_node);
495         return cpu;
496 }
497
498 static int __init parse_core(struct device_node *core, int package_id,
499                              int core_id)
500 {
501         char name[20];
502         bool leaf = true;
503         int i = 0;
504         int cpu;
505         struct device_node *t;
506
507         do {
508                 snprintf(name, sizeof(name), "thread%d", i);
509                 t = of_get_child_by_name(core, name);
510                 if (t) {
511                         leaf = false;
512                         cpu = get_cpu_for_node(t);
513                         if (cpu >= 0) {
514                                 cpu_topology[cpu].package_id = package_id;
515                                 cpu_topology[cpu].core_id = core_id;
516                                 cpu_topology[cpu].thread_id = i;
517                         } else if (cpu != -ENODEV) {
518                                 pr_err("%pOF: Can't get CPU for thread\n", t);
519                                 of_node_put(t);
520                                 return -EINVAL;
521                         }
522                         of_node_put(t);
523                 }
524                 i++;
525         } while (t);
526
527         cpu = get_cpu_for_node(core);
528         if (cpu >= 0) {
529                 if (!leaf) {
530                         pr_err("%pOF: Core has both threads and CPU\n",
531                                core);
532                         return -EINVAL;
533                 }
534
535                 cpu_topology[cpu].package_id = package_id;
536                 cpu_topology[cpu].core_id = core_id;
537         } else if (leaf && cpu != -ENODEV) {
538                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
539                 return -EINVAL;
540         }
541
542         return 0;
543 }
544
545 static int __init parse_cluster(struct device_node *cluster, int depth)
546 {
547         char name[20];
548         bool leaf = true;
549         bool has_cores = false;
550         struct device_node *c;
551         static int package_id __initdata;
552         int core_id = 0;
553         int i, ret;
554
555         /*
556          * First check for child clusters; we currently ignore any
557          * information about the nesting of clusters and present the
558          * scheduler with a flat list of them.
559          */
560         i = 0;
561         do {
562                 snprintf(name, sizeof(name), "cluster%d", i);
563                 c = of_get_child_by_name(cluster, name);
564                 if (c) {
565                         leaf = false;
566                         ret = parse_cluster(c, depth + 1);
567                         of_node_put(c);
568                         if (ret != 0)
569                                 return ret;
570                 }
571                 i++;
572         } while (c);
573
574         /* Now check for cores */
575         i = 0;
576         do {
577                 snprintf(name, sizeof(name), "core%d", i);
578                 c = of_get_child_by_name(cluster, name);
579                 if (c) {
580                         has_cores = true;
581
582                         if (depth == 0) {
583                                 pr_err("%pOF: cpu-map children should be clusters\n",
584                                        c);
585                                 of_node_put(c);
586                                 return -EINVAL;
587                         }
588
589                         if (leaf) {
590                                 ret = parse_core(c, package_id, core_id++);
591                         } else {
592                                 pr_err("%pOF: Non-leaf cluster with core %s\n",
593                                        cluster, name);
594                                 ret = -EINVAL;
595                         }
596
597                         of_node_put(c);
598                         if (ret != 0)
599                                 return ret;
600                 }
601                 i++;
602         } while (c);
603
604         if (leaf && !has_cores)
605                 pr_warn("%pOF: empty cluster\n", cluster);
606
607         if (leaf)
608                 package_id++;
609
610         return 0;
611 }
612
613 static int __init parse_dt_topology(void)
614 {
615         struct device_node *cn, *map;
616         int ret = 0;
617         int cpu;
618
619         cn = of_find_node_by_path("/cpus");
620         if (!cn) {
621                 pr_err("No CPU information found in DT\n");
622                 return 0;
623         }
624
625         /*
626          * When topology is provided cpu-map is essentially a root
627          * cluster with restricted subnodes.
628          */
629         map = of_get_child_by_name(cn, "cpu-map");
630         if (!map)
631                 goto out;
632
633         ret = parse_cluster(map, 0);
634         if (ret != 0)
635                 goto out_map;
636
637         topology_normalize_cpu_scale();
638
639         /*
640          * Check that all cores are in the topology; the SMP code will
641          * only mark cores described in the DT as possible.
642          */
643         for_each_possible_cpu(cpu)
644                 if (cpu_topology[cpu].package_id == -1)
645                         ret = -EINVAL;
646
647 out_map:
648         of_node_put(map);
649 out:
650         of_node_put(cn);
651         return ret;
652 }
653 #endif
654
655 /*
656  * cpu topology table
657  */
658 struct cpu_topology cpu_topology[NR_CPUS];
659 EXPORT_SYMBOL_GPL(cpu_topology);
660
661 const struct cpumask *cpu_coregroup_mask(int cpu)
662 {
663         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
664
665         /* Find the smaller of NUMA, core or LLC siblings */
666         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
667                 /* not numa in package, lets use the package siblings */
668                 core_mask = &cpu_topology[cpu].core_sibling;
669         }
670         if (cpu_topology[cpu].llc_id != -1) {
671                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
672                         core_mask = &cpu_topology[cpu].llc_sibling;
673         }
674
675         /*
676          * For systems with no shared cpu-side LLC but with clusters defined,
677          * extend core_mask to cluster_siblings. The sched domain builder will
678          * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
679          */
680         if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
681             cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
682                 core_mask = &cpu_topology[cpu].cluster_sibling;
683
684         return core_mask;
685 }
686
687 const struct cpumask *cpu_clustergroup_mask(int cpu)
688 {
689         return &cpu_topology[cpu].cluster_sibling;
690 }
691
692 void update_siblings_masks(unsigned int cpuid)
693 {
694         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
695         int cpu;
696
697         /* update core and thread sibling masks */
698         for_each_online_cpu(cpu) {
699                 cpu_topo = &cpu_topology[cpu];
700
701                 if (cpu_topo->llc_id != -1 && cpuid_topo->llc_id == cpu_topo->llc_id) {
702                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
703                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
704                 }
705
706                 if (cpuid_topo->package_id != cpu_topo->package_id)
707                         continue;
708
709                 if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
710                     cpuid_topo->cluster_id != -1) {
711                         cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
712                         cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
713                 }
714
715                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
716                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
717
718                 if (cpuid_topo->core_id != cpu_topo->core_id)
719                         continue;
720
721                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
722                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
723         }
724 }
725
726 static void clear_cpu_topology(int cpu)
727 {
728         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
729
730         cpumask_clear(&cpu_topo->llc_sibling);
731         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
732
733         cpumask_clear(&cpu_topo->cluster_sibling);
734         cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
735
736         cpumask_clear(&cpu_topo->core_sibling);
737         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
738         cpumask_clear(&cpu_topo->thread_sibling);
739         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
740 }
741
742 void __init reset_cpu_topology(void)
743 {
744         unsigned int cpu;
745
746         for_each_possible_cpu(cpu) {
747                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
748
749                 cpu_topo->thread_id = -1;
750                 cpu_topo->core_id = -1;
751                 cpu_topo->cluster_id = -1;
752                 cpu_topo->package_id = -1;
753                 cpu_topo->llc_id = -1;
754
755                 clear_cpu_topology(cpu);
756         }
757 }
758
759 void remove_cpu_topology(unsigned int cpu)
760 {
761         int sibling;
762
763         for_each_cpu(sibling, topology_core_cpumask(cpu))
764                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
765         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
766                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
767         for_each_cpu(sibling, topology_cluster_cpumask(cpu))
768                 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
769         for_each_cpu(sibling, topology_llc_cpumask(cpu))
770                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
771
772         clear_cpu_topology(cpu);
773 }
774
775 __weak int __init parse_acpi_topology(void)
776 {
777         return 0;
778 }
779
780 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
781 void __init init_cpu_topology(void)
782 {
783         reset_cpu_topology();
784
785         /*
786          * Discard anything that was parsed if we hit an error so we
787          * don't use partial information.
788          */
789         if (parse_acpi_topology())
790                 reset_cpu_topology();
791         else if (of_have_populated_dt() && parse_dt_topology())
792                 reset_cpu_topology();
793 }
794 #endif