Merge branch 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / atm / fore200e.c
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24
25
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <asm/uaccess.h>
47 #include <linux/atomic.h>
48
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69
70 #include "fore200e.h"
71 #include "suni.h"
72
73 #define FORE200E_VERSION "0.3e"
74
75 #define FORE200E         "fore200e: "
76
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86
87
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99                              printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100                                     __func__, __LINE__, #expr); \
101                              panic(FORE200E "%s", __func__); \
102                          }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106
107
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110
111 static LIST_HEAD(fore200e_boards);
112
113
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128
129
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133
134
135 #if 0 /* currently unused */
136 static int 
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144
145     return -EINVAL;
146 }
147 #endif
148
149
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160
161     return -EINVAL;
162 }
163
164
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172
173
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181
182     if (alignment <= sizeof(int))
183         alignment = 0;
184
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191         return -ENOMEM;
192
193     if (alignment > 0)
194         offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
195     
196     chunk->align_addr = chunk->alloc_addr + offset;
197
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199     
200     return 0;
201 }
202
203
204 /* free a chunk of memory */
205
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211     kfree(chunk->alloc_addr);
212 }
213
214
215 static void
216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221
222
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228
229     mb();
230     do {
231         if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232             break;
233
234     } while (time_before(jiffies, timeout));
235
236 #if 1
237     if (!ok) {
238         printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239                *addr, val);
240     }
241 #endif
242
243     return ok;
244 }
245
246
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252
253     do {
254         if ((ok = (fore200e->bus->read(addr) == val)))
255             break;
256
257     } while (time_before(jiffies, timeout));
258
259 #if 1
260     if (!ok) {
261         printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262                fore200e->bus->read(addr), val);
263     }
264 #endif
265
266     return ok;
267 }
268
269
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279             if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281                 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283                     struct chunk* data = &buffer[ nbr ].data;
284
285                     if (data->alloc_addr != NULL)
286                         fore200e_chunk_free(fore200e, data);
287                 }
288             }
289         }
290     }
291 }
292
293
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298     
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302             struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303             struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304             
305             if (status->alloc_addr)
306                 fore200e->bus->dma_chunk_free(fore200e, status);
307             
308             if (rbd_block->alloc_addr)
309                 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310         }
311     }
312 }
313
314
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321     
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324     fore200e->bus->reset(fore200e);
325
326     if (diag) {
327         ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328         if (ok == 0) {
329             
330             printk(FORE200E "device %s self-test failed\n", fore200e->name);
331             return -ENODEV;
332         }
333
334         printk(FORE200E "device %s self-test passed\n", fore200e->name);
335         
336         fore200e->state = FORE200E_STATE_RESET;
337     }
338
339     return 0;
340 }
341
342
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347            fore200e->name, fore200e->phys_base, 
348            fore200e_irq_itoa(fore200e->irq));
349     
350     if (fore200e->state > FORE200E_STATE_RESET) {
351         /* first, reset the board to prevent further interrupts or data transfers */
352         fore200e_reset(fore200e, 0);
353     }
354     
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357
358     case FORE200E_STATE_COMPLETE:
359         kfree(fore200e->stats);
360
361     case FORE200E_STATE_IRQ:
362         free_irq(fore200e->irq, fore200e->atm_dev);
363
364     case FORE200E_STATE_ALLOC_BUF:
365         fore200e_free_rx_buf(fore200e);
366
367     case FORE200E_STATE_INIT_BSQ:
368         fore200e_uninit_bs_queue(fore200e);
369
370     case FORE200E_STATE_INIT_RXQ:
371         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374     case FORE200E_STATE_INIT_TXQ:
375         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378     case FORE200E_STATE_INIT_CMDQ:
379         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381     case FORE200E_STATE_INITIALIZE:
382         /* nothing to do for that state */
383
384     case FORE200E_STATE_START_FW:
385         /* nothing to do for that state */
386
387     case FORE200E_STATE_RESET:
388         /* nothing to do for that state */
389
390     case FORE200E_STATE_MAP:
391         fore200e->bus->unmap(fore200e);
392
393     case FORE200E_STATE_CONFIGURE:
394         /* nothing to do for that state */
395
396     case FORE200E_STATE_REGISTER:
397         /* XXX shouldn't we *start* by deregistering the device? */
398         atm_dev_deregister(fore200e->atm_dev);
399
400     case FORE200E_STATE_BLANK:
401         /* nothing to do for that state */
402         break;
403     }
404 }
405
406
407 #ifdef CONFIG_PCI
408
409 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410 {
411     /* on big-endian hosts, the board is configured to convert
412        the endianess of slave RAM accesses  */
413     return le32_to_cpu(readl(addr));
414 }
415
416
417 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     writel(cpu_to_le32(val), addr);
422 }
423
424
425 static u32
426 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427 {
428     u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
429
430     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
431             virt_addr, size, direction, dma_addr);
432     
433     return dma_addr;
434 }
435
436
437 static void
438 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439 {
440     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441             dma_addr, size, direction);
442
443     pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
444 }
445
446
447 static void
448 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449 {
450     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452     pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
453 }
454
455 static void
456 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460     pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
461 }
462
463
464 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467 static int
468 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469                              int size, int nbr, int alignment)
470 {
471     /* returned chunks are page-aligned */
472     chunk->alloc_size = size * nbr;
473     chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
474                                              chunk->alloc_size,
475                                              &chunk->dma_addr);
476     
477     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
478         return -ENOMEM;
479
480     chunk->align_addr = chunk->alloc_addr;
481     
482     return 0;
483 }
484
485
486 /* free a DMA consistent chunk of memory */
487
488 static void
489 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
490 {
491     pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
492                         chunk->alloc_size,
493                         chunk->alloc_addr,
494                         chunk->dma_addr);
495 }
496
497
498 static int
499 fore200e_pca_irq_check(struct fore200e* fore200e)
500 {
501     /* this is a 1 bit register */
502     int irq_posted = readl(fore200e->regs.pca.psr);
503
504 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
505     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
506         DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
507     }
508 #endif
509
510     return irq_posted;
511 }
512
513
514 static void
515 fore200e_pca_irq_ack(struct fore200e* fore200e)
516 {
517     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
518 }
519
520
521 static void
522 fore200e_pca_reset(struct fore200e* fore200e)
523 {
524     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
525     fore200e_spin(10);
526     writel(0, fore200e->regs.pca.hcr);
527 }
528
529
530 static int __devinit
531 fore200e_pca_map(struct fore200e* fore200e)
532 {
533     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534
535     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536     
537     if (fore200e->virt_base == NULL) {
538         printk(FORE200E "can't map device %s\n", fore200e->name);
539         return -EFAULT;
540     }
541
542     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543
544     /* gain access to the PCA specific registers  */
545     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548
549     fore200e->state = FORE200E_STATE_MAP;
550     return 0;
551 }
552
553
554 static void
555 fore200e_pca_unmap(struct fore200e* fore200e)
556 {
557     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558
559     if (fore200e->virt_base != NULL)
560         iounmap(fore200e->virt_base);
561 }
562
563
564 static int __devinit
565 fore200e_pca_configure(struct fore200e* fore200e)
566 {
567     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
568     u8              master_ctrl, latency;
569
570     DPRINTK(2, "device %s being configured\n", fore200e->name);
571
572     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
573         printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
574         return -EIO;
575     }
576
577     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
578
579     master_ctrl = master_ctrl
580 #if defined(__BIG_ENDIAN)
581         /* request the PCA board to convert the endianess of slave RAM accesses */
582         | PCA200E_CTRL_CONVERT_ENDIAN
583 #endif
584 #if 0
585         | PCA200E_CTRL_DIS_CACHE_RD
586         | PCA200E_CTRL_DIS_WRT_INVAL
587         | PCA200E_CTRL_ENA_CONT_REQ_MODE
588         | PCA200E_CTRL_2_CACHE_WRT_INVAL
589 #endif
590         | PCA200E_CTRL_LARGE_PCI_BURSTS;
591     
592     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
593
594     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
595        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
596        this may impact the performances of other PCI devices on the same bus, though */
597     latency = 192;
598     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
599
600     fore200e->state = FORE200E_STATE_CONFIGURE;
601     return 0;
602 }
603
604
605 static int __init
606 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
607 {
608     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
609     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
610     struct prom_opcode      opcode;
611     int                     ok;
612     u32                     prom_dma;
613
614     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
615
616     opcode.opcode = OPCODE_GET_PROM;
617     opcode.pad    = 0;
618
619     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
620
621     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
622     
623     *entry->status = STATUS_PENDING;
624
625     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
626
627     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
628
629     *entry->status = STATUS_FREE;
630
631     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
632
633     if (ok == 0) {
634         printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
635         return -EIO;
636     }
637
638 #if defined(__BIG_ENDIAN)
639     
640 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
641
642     /* MAC address is stored as little-endian */
643     swap_here(&prom->mac_addr[0]);
644     swap_here(&prom->mac_addr[4]);
645 #endif
646     
647     return 0;
648 }
649
650
651 static int
652 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
653 {
654     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
655
656     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
657                    pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
658 }
659
660 #endif /* CONFIG_PCI */
661
662
663 #ifdef CONFIG_SBUS
664
665 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
666 {
667     return sbus_readl(addr);
668 }
669
670 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
671 {
672     sbus_writel(val, addr);
673 }
674
675 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
676 {
677         struct platform_device *op = fore200e->bus_dev;
678         u32 dma_addr;
679
680         dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
681
682         DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
683                 virt_addr, size, direction, dma_addr);
684     
685         return dma_addr;
686 }
687
688 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
689 {
690         struct platform_device *op = fore200e->bus_dev;
691
692         DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
693                 dma_addr, size, direction);
694
695         dma_unmap_single(&op->dev, dma_addr, size, direction);
696 }
697
698 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
699 {
700         struct platform_device *op = fore200e->bus_dev;
701
702         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
703     
704         dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
705 }
706
707 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
708 {
709         struct platform_device *op = fore200e->bus_dev;
710
711         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
712
713         dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
714 }
715
716 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
717  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
718  */
719 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
720                                         int size, int nbr, int alignment)
721 {
722         struct platform_device *op = fore200e->bus_dev;
723
724         chunk->alloc_size = chunk->align_size = size * nbr;
725
726         /* returned chunks are page-aligned */
727         chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
728                                                &chunk->dma_addr, GFP_ATOMIC);
729
730         if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
731                 return -ENOMEM;
732
733         chunk->align_addr = chunk->alloc_addr;
734     
735         return 0;
736 }
737
738 /* free a DVMA consistent chunk of memory */
739 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
740 {
741         struct platform_device *op = fore200e->bus_dev;
742
743         dma_free_coherent(&op->dev, chunk->alloc_size,
744                           chunk->alloc_addr, chunk->dma_addr);
745 }
746
747 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
748 {
749         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
750         fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
751 }
752
753 static int fore200e_sba_irq_check(struct fore200e *fore200e)
754 {
755         return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
756 }
757
758 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
759 {
760         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
761         fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
762 }
763
764 static void fore200e_sba_reset(struct fore200e *fore200e)
765 {
766         fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
767         fore200e_spin(10);
768         fore200e->bus->write(0, fore200e->regs.sba.hcr);
769 }
770
771 static int __init fore200e_sba_map(struct fore200e *fore200e)
772 {
773         struct platform_device *op = fore200e->bus_dev;
774         unsigned int bursts;
775
776         /* gain access to the SBA specific registers  */
777         fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
778         fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
779         fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
780         fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
781
782         if (!fore200e->virt_base) {
783                 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
784                 return -EFAULT;
785         }
786
787         DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
788     
789         fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
790
791         /* get the supported DVMA burst sizes */
792         bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
793
794         if (sbus_can_dma_64bit())
795                 sbus_set_sbus64(&op->dev, bursts);
796
797         fore200e->state = FORE200E_STATE_MAP;
798         return 0;
799 }
800
801 static void fore200e_sba_unmap(struct fore200e *fore200e)
802 {
803         struct platform_device *op = fore200e->bus_dev;
804
805         of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
806         of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
807         of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
808         of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
809 }
810
811 static int __init fore200e_sba_configure(struct fore200e *fore200e)
812 {
813         fore200e->state = FORE200E_STATE_CONFIGURE;
814         return 0;
815 }
816
817 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
818 {
819         struct platform_device *op = fore200e->bus_dev;
820         const u8 *prop;
821         int len;
822
823         prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
824         if (!prop)
825                 return -ENODEV;
826         memcpy(&prom->mac_addr[4], prop, 4);
827
828         prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
829         if (!prop)
830                 return -ENODEV;
831         memcpy(&prom->mac_addr[2], prop, 4);
832
833         prom->serial_number = of_getintprop_default(op->dev.of_node,
834                                                     "serialnumber", 0);
835         prom->hw_revision = of_getintprop_default(op->dev.of_node,
836                                                   "promversion", 0);
837     
838         return 0;
839 }
840
841 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
842 {
843         struct platform_device *op = fore200e->bus_dev;
844         const struct linux_prom_registers *regs;
845
846         regs = of_get_property(op->dev.of_node, "reg", NULL);
847
848         return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
849                        (regs ? regs->which_io : 0), op->dev.of_node->name);
850 }
851 #endif /* CONFIG_SBUS */
852
853
854 static void
855 fore200e_tx_irq(struct fore200e* fore200e)
856 {
857     struct host_txq*        txq = &fore200e->host_txq;
858     struct host_txq_entry*  entry;
859     struct atm_vcc*         vcc;
860     struct fore200e_vc_map* vc_map;
861
862     if (fore200e->host_txq.txing == 0)
863         return;
864
865     for (;;) {
866         
867         entry = &txq->host_entry[ txq->tail ];
868
869         if ((*entry->status & STATUS_COMPLETE) == 0) {
870             break;
871         }
872
873         DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
874                 entry, txq->tail, entry->vc_map, entry->skb);
875
876         /* free copy of misaligned data */
877         kfree(entry->data);
878         
879         /* remove DMA mapping */
880         fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
881                                  DMA_TO_DEVICE);
882
883         vc_map = entry->vc_map;
884
885         /* vcc closed since the time the entry was submitted for tx? */
886         if ((vc_map->vcc == NULL) ||
887             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
888
889             DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
890                     fore200e->atm_dev->number);
891
892             dev_kfree_skb_any(entry->skb);
893         }
894         else {
895             ASSERT(vc_map->vcc);
896
897             /* vcc closed then immediately re-opened? */
898             if (vc_map->incarn != entry->incarn) {
899
900                 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
901                    if the same vcc is immediately re-opened, those pending PDUs must
902                    not be popped after the completion of their emission, as they refer
903                    to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
904                    would be decremented by the size of the (unrelated) skb, possibly
905                    leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
906                    we thus bind the tx entry to the current incarnation of the vcc
907                    when the entry is submitted for tx. When the tx later completes,
908                    if the incarnation number of the tx entry does not match the one
909                    of the vcc, then this implies that the vcc has been closed then re-opened.
910                    we thus just drop the skb here. */
911
912                 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
913                         fore200e->atm_dev->number);
914
915                 dev_kfree_skb_any(entry->skb);
916             }
917             else {
918                 vcc = vc_map->vcc;
919                 ASSERT(vcc);
920
921                 /* notify tx completion */
922                 if (vcc->pop) {
923                     vcc->pop(vcc, entry->skb);
924                 }
925                 else {
926                     dev_kfree_skb_any(entry->skb);
927                 }
928 #if 1
929                 /* race fixed by the above incarnation mechanism, but... */
930                 if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
931                     atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
932                 }
933 #endif
934                 /* check error condition */
935                 if (*entry->status & STATUS_ERROR)
936                     atomic_inc(&vcc->stats->tx_err);
937                 else
938                     atomic_inc(&vcc->stats->tx);
939             }
940         }
941
942         *entry->status = STATUS_FREE;
943
944         fore200e->host_txq.txing--;
945
946         FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
947     }
948 }
949
950
951 #ifdef FORE200E_BSQ_DEBUG
952 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
953 {
954     struct buffer* buffer;
955     int count = 0;
956
957     buffer = bsq->freebuf;
958     while (buffer) {
959
960         if (buffer->supplied) {
961             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
962                    where, scheme, magn, buffer->index);
963         }
964
965         if (buffer->magn != magn) {
966             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
967                    where, scheme, magn, buffer->index, buffer->magn);
968         }
969
970         if (buffer->scheme != scheme) {
971             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
972                    where, scheme, magn, buffer->index, buffer->scheme);
973         }
974
975         if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
976             printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
977                    where, scheme, magn, buffer->index);
978         }
979
980         count++;
981         buffer = buffer->next;
982     }
983
984     if (count != bsq->freebuf_count) {
985         printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
986                where, scheme, magn, count, bsq->freebuf_count);
987     }
988     return 0;
989 }
990 #endif
991
992
993 static void
994 fore200e_supply(struct fore200e* fore200e)
995 {
996     int  scheme, magn, i;
997
998     struct host_bsq*       bsq;
999     struct host_bsq_entry* entry;
1000     struct buffer*         buffer;
1001
1002     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1003         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1004
1005             bsq = &fore200e->host_bsq[ scheme ][ magn ];
1006
1007 #ifdef FORE200E_BSQ_DEBUG
1008             bsq_audit(1, bsq, scheme, magn);
1009 #endif
1010             while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1011
1012                 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1013                         RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1014
1015                 entry = &bsq->host_entry[ bsq->head ];
1016
1017                 for (i = 0; i < RBD_BLK_SIZE; i++) {
1018
1019                     /* take the first buffer in the free buffer list */
1020                     buffer = bsq->freebuf;
1021                     if (!buffer) {
1022                         printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1023                                scheme, magn, bsq->freebuf_count);
1024                         return;
1025                     }
1026                     bsq->freebuf = buffer->next;
1027                     
1028 #ifdef FORE200E_BSQ_DEBUG
1029                     if (buffer->supplied)
1030                         printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1031                                scheme, magn, buffer->index);
1032                     buffer->supplied = 1;
1033 #endif
1034                     entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1035                     entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1036                 }
1037
1038                 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1039
1040                 /* decrease accordingly the number of free rx buffers */
1041                 bsq->freebuf_count -= RBD_BLK_SIZE;
1042
1043                 *entry->status = STATUS_PENDING;
1044                 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1045             }
1046         }
1047     }
1048 }
1049
1050
1051 static int
1052 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1053 {
1054     struct sk_buff*      skb;
1055     struct buffer*       buffer;
1056     struct fore200e_vcc* fore200e_vcc;
1057     int                  i, pdu_len = 0;
1058 #ifdef FORE200E_52BYTE_AAL0_SDU
1059     u32                  cell_header = 0;
1060 #endif
1061
1062     ASSERT(vcc);
1063     
1064     fore200e_vcc = FORE200E_VCC(vcc);
1065     ASSERT(fore200e_vcc);
1066
1067 #ifdef FORE200E_52BYTE_AAL0_SDU
1068     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1069
1070         cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1071                       (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1072                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1073                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1074                        rpd->atm_header.clp;
1075         pdu_len = 4;
1076     }
1077 #endif
1078     
1079     /* compute total PDU length */
1080     for (i = 0; i < rpd->nseg; i++)
1081         pdu_len += rpd->rsd[ i ].length;
1082     
1083     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1084     if (skb == NULL) {
1085         DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1086
1087         atomic_inc(&vcc->stats->rx_drop);
1088         return -ENOMEM;
1089     } 
1090
1091     __net_timestamp(skb);
1092     
1093 #ifdef FORE200E_52BYTE_AAL0_SDU
1094     if (cell_header) {
1095         *((u32*)skb_put(skb, 4)) = cell_header;
1096     }
1097 #endif
1098
1099     /* reassemble segments */
1100     for (i = 0; i < rpd->nseg; i++) {
1101         
1102         /* rebuild rx buffer address from rsd handle */
1103         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1104         
1105         /* Make device DMA transfer visible to CPU.  */
1106         fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1107         
1108         memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1109
1110         /* Now let the device get at it again.  */
1111         fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1112     }
1113
1114     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1115     
1116     if (pdu_len < fore200e_vcc->rx_min_pdu)
1117         fore200e_vcc->rx_min_pdu = pdu_len;
1118     if (pdu_len > fore200e_vcc->rx_max_pdu)
1119         fore200e_vcc->rx_max_pdu = pdu_len;
1120     fore200e_vcc->rx_pdu++;
1121
1122     /* push PDU */
1123     if (atm_charge(vcc, skb->truesize) == 0) {
1124
1125         DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1126                 vcc->itf, vcc->vpi, vcc->vci);
1127
1128         dev_kfree_skb_any(skb);
1129
1130         atomic_inc(&vcc->stats->rx_drop);
1131         return -ENOMEM;
1132     }
1133
1134     ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1135
1136     vcc->push(vcc, skb);
1137     atomic_inc(&vcc->stats->rx);
1138
1139     ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1140
1141     return 0;
1142 }
1143
1144
1145 static void
1146 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1147 {
1148     struct host_bsq* bsq;
1149     struct buffer*   buffer;
1150     int              i;
1151     
1152     for (i = 0; i < rpd->nseg; i++) {
1153
1154         /* rebuild rx buffer address from rsd handle */
1155         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1156
1157         bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1158
1159 #ifdef FORE200E_BSQ_DEBUG
1160         bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1161
1162         if (buffer->supplied == 0)
1163             printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1164                    buffer->scheme, buffer->magn, buffer->index);
1165         buffer->supplied = 0;
1166 #endif
1167
1168         /* re-insert the buffer into the free buffer list */
1169         buffer->next = bsq->freebuf;
1170         bsq->freebuf = buffer;
1171
1172         /* then increment the number of free rx buffers */
1173         bsq->freebuf_count++;
1174     }
1175 }
1176
1177
1178 static void
1179 fore200e_rx_irq(struct fore200e* fore200e)
1180 {
1181     struct host_rxq*        rxq = &fore200e->host_rxq;
1182     struct host_rxq_entry*  entry;
1183     struct atm_vcc*         vcc;
1184     struct fore200e_vc_map* vc_map;
1185
1186     for (;;) {
1187         
1188         entry = &rxq->host_entry[ rxq->head ];
1189
1190         /* no more received PDUs */
1191         if ((*entry->status & STATUS_COMPLETE) == 0)
1192             break;
1193
1194         vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1195
1196         if ((vc_map->vcc == NULL) ||
1197             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1198
1199             DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1200                     fore200e->atm_dev->number,
1201                     entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1202         }
1203         else {
1204             vcc = vc_map->vcc;
1205             ASSERT(vcc);
1206
1207             if ((*entry->status & STATUS_ERROR) == 0) {
1208
1209                 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1210             }
1211             else {
1212                 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1213                         fore200e->atm_dev->number,
1214                         entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1215                 atomic_inc(&vcc->stats->rx_err);
1216             }
1217         }
1218
1219         FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1220
1221         fore200e_collect_rpd(fore200e, entry->rpd);
1222
1223         /* rewrite the rpd address to ack the received PDU */
1224         fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1225         *entry->status = STATUS_FREE;
1226
1227         fore200e_supply(fore200e);
1228     }
1229 }
1230
1231
1232 #ifndef FORE200E_USE_TASKLET
1233 static void
1234 fore200e_irq(struct fore200e* fore200e)
1235 {
1236     unsigned long flags;
1237
1238     spin_lock_irqsave(&fore200e->q_lock, flags);
1239     fore200e_rx_irq(fore200e);
1240     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1241
1242     spin_lock_irqsave(&fore200e->q_lock, flags);
1243     fore200e_tx_irq(fore200e);
1244     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1245 }
1246 #endif
1247
1248
1249 static irqreturn_t
1250 fore200e_interrupt(int irq, void* dev)
1251 {
1252     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1253
1254     if (fore200e->bus->irq_check(fore200e) == 0) {
1255         
1256         DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1257         return IRQ_NONE;
1258     }
1259     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1260
1261 #ifdef FORE200E_USE_TASKLET
1262     tasklet_schedule(&fore200e->tx_tasklet);
1263     tasklet_schedule(&fore200e->rx_tasklet);
1264 #else
1265     fore200e_irq(fore200e);
1266 #endif
1267     
1268     fore200e->bus->irq_ack(fore200e);
1269     return IRQ_HANDLED;
1270 }
1271
1272
1273 #ifdef FORE200E_USE_TASKLET
1274 static void
1275 fore200e_tx_tasklet(unsigned long data)
1276 {
1277     struct fore200e* fore200e = (struct fore200e*) data;
1278     unsigned long flags;
1279
1280     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1281
1282     spin_lock_irqsave(&fore200e->q_lock, flags);
1283     fore200e_tx_irq(fore200e);
1284     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1285 }
1286
1287
1288 static void
1289 fore200e_rx_tasklet(unsigned long data)
1290 {
1291     struct fore200e* fore200e = (struct fore200e*) data;
1292     unsigned long    flags;
1293
1294     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1295
1296     spin_lock_irqsave(&fore200e->q_lock, flags);
1297     fore200e_rx_irq((struct fore200e*) data);
1298     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1299 }
1300 #endif
1301
1302
1303 static int
1304 fore200e_select_scheme(struct atm_vcc* vcc)
1305 {
1306     /* fairly balance the VCs over (identical) buffer schemes */
1307     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1308
1309     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1310             vcc->itf, vcc->vpi, vcc->vci, scheme);
1311
1312     return scheme;
1313 }
1314
1315
1316 static int 
1317 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1318 {
1319     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1320     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1321     struct activate_opcode   activ_opcode;
1322     struct deactivate_opcode deactiv_opcode;
1323     struct vpvc              vpvc;
1324     int                      ok;
1325     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1326
1327     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1328     
1329     if (activate) {
1330         FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1331         
1332         activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1333         activ_opcode.aal    = aal;
1334         activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1335         activ_opcode.pad    = 0;
1336     }
1337     else {
1338         deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1339         deactiv_opcode.pad    = 0;
1340     }
1341
1342     vpvc.vci = vcc->vci;
1343     vpvc.vpi = vcc->vpi;
1344
1345     *entry->status = STATUS_PENDING;
1346
1347     if (activate) {
1348
1349 #ifdef FORE200E_52BYTE_AAL0_SDU
1350         mtu = 48;
1351 #endif
1352         /* the MTU is not used by the cp, except in the case of AAL0 */
1353         fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1354         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1355         fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1356     }
1357     else {
1358         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1359         fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1360     }
1361
1362     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1363
1364     *entry->status = STATUS_FREE;
1365
1366     if (ok == 0) {
1367         printk(FORE200E "unable to %s VC %d.%d.%d\n",
1368                activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1369         return -EIO;
1370     }
1371
1372     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1373             activate ? "open" : "clos");
1374
1375     return 0;
1376 }
1377
1378
1379 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1380
1381 static void
1382 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1383 {
1384     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1385     
1386         /* compute the data cells to idle cells ratio from the tx PCR */
1387         rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1388         rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1389     }
1390     else {
1391         /* disable rate control */
1392         rate->data_cells = rate->idle_cells = 0;
1393     }
1394 }
1395
1396
1397 static int
1398 fore200e_open(struct atm_vcc *vcc)
1399 {
1400     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1401     struct fore200e_vcc*    fore200e_vcc;
1402     struct fore200e_vc_map* vc_map;
1403     unsigned long           flags;
1404     int                     vci = vcc->vci;
1405     short                   vpi = vcc->vpi;
1406
1407     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1408     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1409
1410     spin_lock_irqsave(&fore200e->q_lock, flags);
1411
1412     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1413     if (vc_map->vcc) {
1414
1415         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417         printk(FORE200E "VC %d.%d.%d already in use\n",
1418                fore200e->atm_dev->number, vpi, vci);
1419
1420         return -EINVAL;
1421     }
1422
1423     vc_map->vcc = vcc;
1424
1425     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1426
1427     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1428     if (fore200e_vcc == NULL) {
1429         vc_map->vcc = NULL;
1430         return -ENOMEM;
1431     }
1432
1433     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1434             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1435             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1436             fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1437             vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1438             fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1439             vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1440     
1441     /* pseudo-CBR bandwidth requested? */
1442     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1443         
1444         mutex_lock(&fore200e->rate_mtx);
1445         if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1446             mutex_unlock(&fore200e->rate_mtx);
1447
1448             kfree(fore200e_vcc);
1449             vc_map->vcc = NULL;
1450             return -EAGAIN;
1451         }
1452
1453         /* reserve bandwidth */
1454         fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1455         mutex_unlock(&fore200e->rate_mtx);
1456     }
1457     
1458     vcc->itf = vcc->dev->number;
1459
1460     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1461     set_bit(ATM_VF_ADDR, &vcc->flags);
1462
1463     vcc->dev_data = fore200e_vcc;
1464     
1465     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1466
1467         vc_map->vcc = NULL;
1468
1469         clear_bit(ATM_VF_ADDR, &vcc->flags);
1470         clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1471
1472         vcc->dev_data = NULL;
1473
1474         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1475
1476         kfree(fore200e_vcc);
1477         return -EINVAL;
1478     }
1479     
1480     /* compute rate control parameters */
1481     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1482         
1483         fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1484         set_bit(ATM_VF_HASQOS, &vcc->flags);
1485
1486         DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1487                 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1488                 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1489                 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1490     }
1491     
1492     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1493     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1494     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1495
1496     /* new incarnation of the vcc */
1497     vc_map->incarn = ++fore200e->incarn_count;
1498
1499     /* VC unusable before this flag is set */
1500     set_bit(ATM_VF_READY, &vcc->flags);
1501
1502     return 0;
1503 }
1504
1505
1506 static void
1507 fore200e_close(struct atm_vcc* vcc)
1508 {
1509     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1510     struct fore200e_vcc*    fore200e_vcc;
1511     struct fore200e_vc_map* vc_map;
1512     unsigned long           flags;
1513
1514     ASSERT(vcc);
1515     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517
1518     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519
1520     clear_bit(ATM_VF_READY, &vcc->flags);
1521
1522     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523
1524     spin_lock_irqsave(&fore200e->q_lock, flags);
1525
1526     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527
1528     /* the vc is no longer considered as "in use" by fore200e_open() */
1529     vc_map->vcc = NULL;
1530
1531     vcc->itf = vcc->vci = vcc->vpi = 0;
1532
1533     fore200e_vcc = FORE200E_VCC(vcc);
1534     vcc->dev_data = NULL;
1535
1536     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537
1538     /* release reserved bandwidth, if any */
1539     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540
1541         mutex_lock(&fore200e->rate_mtx);
1542         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543         mutex_unlock(&fore200e->rate_mtx);
1544
1545         clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546     }
1547
1548     clear_bit(ATM_VF_ADDR, &vcc->flags);
1549     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550
1551     ASSERT(fore200e_vcc);
1552     kfree(fore200e_vcc);
1553 }
1554
1555
1556 static int
1557 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558 {
1559     struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1560     struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1561     struct fore200e_vc_map* vc_map;
1562     struct host_txq*        txq          = &fore200e->host_txq;
1563     struct host_txq_entry*  entry;
1564     struct tpd*             tpd;
1565     struct tpd_haddr        tpd_haddr;
1566     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1567     int                     tx_copy      = 0;
1568     int                     tx_len       = skb->len;
1569     u32*                    cell_header  = NULL;
1570     unsigned char*          skb_data;
1571     int                     skb_len;
1572     unsigned char*          data;
1573     unsigned long           flags;
1574
1575     ASSERT(vcc);
1576     ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1577     ASSERT(fore200e);
1578     ASSERT(fore200e_vcc);
1579
1580     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1581         DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1582         dev_kfree_skb_any(skb);
1583         return -EINVAL;
1584     }
1585
1586 #ifdef FORE200E_52BYTE_AAL0_SDU
1587     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1588         cell_header = (u32*) skb->data;
1589         skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1590         skb_len     = tx_len = skb->len  - 4;
1591
1592         DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1593     }
1594     else 
1595 #endif
1596     {
1597         skb_data = skb->data;
1598         skb_len  = skb->len;
1599     }
1600     
1601     if (((unsigned long)skb_data) & 0x3) {
1602
1603         DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1604         tx_copy = 1;
1605         tx_len  = skb_len;
1606     }
1607
1608     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1609
1610         /* this simply NUKES the PCA board */
1611         DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1612         tx_copy = 1;
1613         tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1614     }
1615     
1616     if (tx_copy) {
1617         data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1618         if (data == NULL) {
1619             if (vcc->pop) {
1620                 vcc->pop(vcc, skb);
1621             }
1622             else {
1623                 dev_kfree_skb_any(skb);
1624             }
1625             return -ENOMEM;
1626         }
1627
1628         memcpy(data, skb_data, skb_len);
1629         if (skb_len < tx_len)
1630             memset(data + skb_len, 0x00, tx_len - skb_len);
1631     }
1632     else {
1633         data = skb_data;
1634     }
1635
1636     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1637     ASSERT(vc_map->vcc == vcc);
1638
1639   retry_here:
1640
1641     spin_lock_irqsave(&fore200e->q_lock, flags);
1642
1643     entry = &txq->host_entry[ txq->head ];
1644
1645     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1646
1647         /* try to free completed tx queue entries */
1648         fore200e_tx_irq(fore200e);
1649
1650         if (*entry->status != STATUS_FREE) {
1651
1652             spin_unlock_irqrestore(&fore200e->q_lock, flags);
1653
1654             /* retry once again? */
1655             if (--retry > 0) {
1656                 udelay(50);
1657                 goto retry_here;
1658             }
1659
1660             atomic_inc(&vcc->stats->tx_err);
1661
1662             fore200e->tx_sat++;
1663             DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1664                     fore200e->name, fore200e->cp_queues->heartbeat);
1665             if (vcc->pop) {
1666                 vcc->pop(vcc, skb);
1667             }
1668             else {
1669                 dev_kfree_skb_any(skb);
1670             }
1671
1672             if (tx_copy)
1673                 kfree(data);
1674
1675             return -ENOBUFS;
1676         }
1677     }
1678
1679     entry->incarn = vc_map->incarn;
1680     entry->vc_map = vc_map;
1681     entry->skb    = skb;
1682     entry->data   = tx_copy ? data : NULL;
1683
1684     tpd = entry->tpd;
1685     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1686     tpd->tsd[ 0 ].length = tx_len;
1687
1688     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1689     txq->txing++;
1690
1691     /* The dma_map call above implies a dma_sync so the device can use it,
1692      * thus no explicit dma_sync call is necessary here.
1693      */
1694     
1695     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1696             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1697             tpd->tsd[0].length, skb_len);
1698
1699     if (skb_len < fore200e_vcc->tx_min_pdu)
1700         fore200e_vcc->tx_min_pdu = skb_len;
1701     if (skb_len > fore200e_vcc->tx_max_pdu)
1702         fore200e_vcc->tx_max_pdu = skb_len;
1703     fore200e_vcc->tx_pdu++;
1704
1705     /* set tx rate control information */
1706     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1707     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1708
1709     if (cell_header) {
1710         tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1711         tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1712         tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1713         tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1714         tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1715     }
1716     else {
1717         /* set the ATM header, common to all cells conveying the PDU */
1718         tpd->atm_header.clp = 0;
1719         tpd->atm_header.plt = 0;
1720         tpd->atm_header.vci = vcc->vci;
1721         tpd->atm_header.vpi = vcc->vpi;
1722         tpd->atm_header.gfc = 0;
1723     }
1724
1725     tpd->spec.length = tx_len;
1726     tpd->spec.nseg   = 1;
1727     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1728     tpd->spec.intr   = 1;
1729
1730     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1731     tpd_haddr.pad   = 0;
1732     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1733
1734     *entry->status = STATUS_PENDING;
1735     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1736
1737     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1738
1739     return 0;
1740 }
1741
1742
1743 static int
1744 fore200e_getstats(struct fore200e* fore200e)
1745 {
1746     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1747     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1748     struct stats_opcode     opcode;
1749     int                     ok;
1750     u32                     stats_dma_addr;
1751
1752     if (fore200e->stats == NULL) {
1753         fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1754         if (fore200e->stats == NULL)
1755             return -ENOMEM;
1756     }
1757     
1758     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1759                                             sizeof(struct stats), DMA_FROM_DEVICE);
1760     
1761     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762
1763     opcode.opcode = OPCODE_GET_STATS;
1764     opcode.pad    = 0;
1765
1766     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1767     
1768     *entry->status = STATUS_PENDING;
1769
1770     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1771
1772     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774     *entry->status = STATUS_FREE;
1775
1776     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1777     
1778     if (ok == 0) {
1779         printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1780         return -EIO;
1781     }
1782
1783     return 0;
1784 }
1785
1786
1787 static int
1788 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1789 {
1790     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1791
1792     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1793             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1794
1795     return -EINVAL;
1796 }
1797
1798
1799 static int
1800 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1801 {
1802     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1803     
1804     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1805             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1806     
1807     return -EINVAL;
1808 }
1809
1810
1811 #if 0 /* currently unused */
1812 static int
1813 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1814 {
1815     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1816     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1817     struct oc3_opcode       opcode;
1818     int                     ok;
1819     u32                     oc3_regs_dma_addr;
1820
1821     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1822
1823     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1824
1825     opcode.opcode = OPCODE_GET_OC3;
1826     opcode.reg    = 0;
1827     opcode.value  = 0;
1828     opcode.mask   = 0;
1829
1830     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1831     
1832     *entry->status = STATUS_PENDING;
1833
1834     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1835
1836     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1837
1838     *entry->status = STATUS_FREE;
1839
1840     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1841     
1842     if (ok == 0) {
1843         printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1844         return -EIO;
1845     }
1846
1847     return 0;
1848 }
1849 #endif
1850
1851
1852 static int
1853 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1854 {
1855     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1856     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1857     struct oc3_opcode       opcode;
1858     int                     ok;
1859
1860     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1861
1862     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1863
1864     opcode.opcode = OPCODE_SET_OC3;
1865     opcode.reg    = reg;
1866     opcode.value  = value;
1867     opcode.mask   = mask;
1868
1869     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1870     
1871     *entry->status = STATUS_PENDING;
1872
1873     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1874
1875     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1876
1877     *entry->status = STATUS_FREE;
1878
1879     if (ok == 0) {
1880         printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1881         return -EIO;
1882     }
1883
1884     return 0;
1885 }
1886
1887
1888 static int
1889 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1890 {
1891     u32 mct_value, mct_mask;
1892     int error;
1893
1894     if (!capable(CAP_NET_ADMIN))
1895         return -EPERM;
1896     
1897     switch (loop_mode) {
1898
1899     case ATM_LM_NONE:
1900         mct_value = 0; 
1901         mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1902         break;
1903         
1904     case ATM_LM_LOC_PHY:
1905         mct_value = mct_mask = SUNI_MCT_DLE;
1906         break;
1907
1908     case ATM_LM_RMT_PHY:
1909         mct_value = mct_mask = SUNI_MCT_LLE;
1910         break;
1911
1912     default:
1913         return -EINVAL;
1914     }
1915
1916     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1917     if (error == 0)
1918         fore200e->loop_mode = loop_mode;
1919
1920     return error;
1921 }
1922
1923
1924 static int
1925 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1926 {
1927     struct sonet_stats tmp;
1928
1929     if (fore200e_getstats(fore200e) < 0)
1930         return -EIO;
1931
1932     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1933     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1934     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1935     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1936     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1937     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1938     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1939     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1940                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1941                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1942     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1943                       be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1944                       be32_to_cpu(fore200e->stats->aal5.cells_received);
1945
1946     if (arg)
1947         return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1948     
1949     return 0;
1950 }
1951
1952
1953 static int
1954 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1955 {
1956     struct fore200e* fore200e = FORE200E_DEV(dev);
1957     
1958     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1959
1960     switch (cmd) {
1961
1962     case SONET_GETSTAT:
1963         return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1964
1965     case SONET_GETDIAG:
1966         return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1967
1968     case ATM_SETLOOP:
1969         return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1970
1971     case ATM_GETLOOP:
1972         return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1973
1974     case ATM_QUERYLOOP:
1975         return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1976     }
1977
1978     return -ENOSYS; /* not implemented */
1979 }
1980
1981
1982 static int
1983 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1984 {
1985     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1986     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1987
1988     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1989         DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1990         return -EINVAL;
1991     }
1992
1993     DPRINTK(2, "change_qos %d.%d.%d, "
1994             "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1995             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1996             "available_cell_rate = %u",
1997             vcc->itf, vcc->vpi, vcc->vci,
1998             fore200e_traffic_class[ qos->txtp.traffic_class ],
1999             qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2000             fore200e_traffic_class[ qos->rxtp.traffic_class ],
2001             qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2002             flags, fore200e->available_cell_rate);
2003
2004     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2005
2006         mutex_lock(&fore200e->rate_mtx);
2007         if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2008             mutex_unlock(&fore200e->rate_mtx);
2009             return -EAGAIN;
2010         }
2011
2012         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2013         fore200e->available_cell_rate -= qos->txtp.max_pcr;
2014
2015         mutex_unlock(&fore200e->rate_mtx);
2016         
2017         memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2018         
2019         /* update rate control parameters */
2020         fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2021
2022         set_bit(ATM_VF_HASQOS, &vcc->flags);
2023
2024         return 0;
2025     }
2026     
2027     return -EINVAL;
2028 }
2029     
2030
2031 static int __devinit
2032 fore200e_irq_request(struct fore200e* fore200e)
2033 {
2034     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2035
2036         printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2037                fore200e_irq_itoa(fore200e->irq), fore200e->name);
2038         return -EBUSY;
2039     }
2040
2041     printk(FORE200E "IRQ %s reserved for device %s\n",
2042            fore200e_irq_itoa(fore200e->irq), fore200e->name);
2043
2044 #ifdef FORE200E_USE_TASKLET
2045     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2046     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2047 #endif
2048
2049     fore200e->state = FORE200E_STATE_IRQ;
2050     return 0;
2051 }
2052
2053
2054 static int __devinit
2055 fore200e_get_esi(struct fore200e* fore200e)
2056 {
2057     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2058     int ok, i;
2059
2060     if (!prom)
2061         return -ENOMEM;
2062
2063     ok = fore200e->bus->prom_read(fore200e, prom);
2064     if (ok < 0) {
2065         kfree(prom);
2066         return -EBUSY;
2067     }
2068         
2069     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2070            fore200e->name, 
2071            (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2072            prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2073         
2074     for (i = 0; i < ESI_LEN; i++) {
2075         fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2076     }
2077     
2078     kfree(prom);
2079
2080     return 0;
2081 }
2082
2083
2084 static int __devinit
2085 fore200e_alloc_rx_buf(struct fore200e* fore200e)
2086 {
2087     int scheme, magn, nbr, size, i;
2088
2089     struct host_bsq* bsq;
2090     struct buffer*   buffer;
2091
2092     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2093         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2094
2095             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2096
2097             nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2098             size = fore200e_rx_buf_size[ scheme ][ magn ];
2099
2100             DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2101
2102             /* allocate the array of receive buffers */
2103             buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2104
2105             if (buffer == NULL)
2106                 return -ENOMEM;
2107
2108             bsq->freebuf = NULL;
2109
2110             for (i = 0; i < nbr; i++) {
2111
2112                 buffer[ i ].scheme = scheme;
2113                 buffer[ i ].magn   = magn;
2114 #ifdef FORE200E_BSQ_DEBUG
2115                 buffer[ i ].index  = i;
2116                 buffer[ i ].supplied = 0;
2117 #endif
2118
2119                 /* allocate the receive buffer body */
2120                 if (fore200e_chunk_alloc(fore200e,
2121                                          &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2122                                          DMA_FROM_DEVICE) < 0) {
2123                     
2124                     while (i > 0)
2125                         fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2126                     kfree(buffer);
2127                     
2128                     return -ENOMEM;
2129                 }
2130
2131                 /* insert the buffer into the free buffer list */
2132                 buffer[ i ].next = bsq->freebuf;
2133                 bsq->freebuf = &buffer[ i ];
2134             }
2135             /* all the buffers are free, initially */
2136             bsq->freebuf_count = nbr;
2137
2138 #ifdef FORE200E_BSQ_DEBUG
2139             bsq_audit(3, bsq, scheme, magn);
2140 #endif
2141         }
2142     }
2143
2144     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2145     return 0;
2146 }
2147
2148
2149 static int __devinit
2150 fore200e_init_bs_queue(struct fore200e* fore200e)
2151 {
2152     int scheme, magn, i;
2153
2154     struct host_bsq*     bsq;
2155     struct cp_bsq_entry __iomem * cp_entry;
2156
2157     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2158         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2159
2160             DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2161
2162             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2163
2164             /* allocate and align the array of status words */
2165             if (fore200e->bus->dma_chunk_alloc(fore200e,
2166                                                &bsq->status,
2167                                                sizeof(enum status), 
2168                                                QUEUE_SIZE_BS,
2169                                                fore200e->bus->status_alignment) < 0) {
2170                 return -ENOMEM;
2171             }
2172
2173             /* allocate and align the array of receive buffer descriptors */
2174             if (fore200e->bus->dma_chunk_alloc(fore200e,
2175                                                &bsq->rbd_block,
2176                                                sizeof(struct rbd_block),
2177                                                QUEUE_SIZE_BS,
2178                                                fore200e->bus->descr_alignment) < 0) {
2179                 
2180                 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2181                 return -ENOMEM;
2182             }
2183             
2184             /* get the base address of the cp resident buffer supply queue entries */
2185             cp_entry = fore200e->virt_base + 
2186                        fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2187             
2188             /* fill the host resident and cp resident buffer supply queue entries */
2189             for (i = 0; i < QUEUE_SIZE_BS; i++) {
2190                 
2191                 bsq->host_entry[ i ].status = 
2192                                      FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2193                 bsq->host_entry[ i ].rbd_block =
2194                                      FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2195                 bsq->host_entry[ i ].rbd_block_dma =
2196                                      FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2197                 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2198                 
2199                 *bsq->host_entry[ i ].status = STATUS_FREE;
2200                 
2201                 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2202                                      &cp_entry[ i ].status_haddr);
2203             }
2204         }
2205     }
2206
2207     fore200e->state = FORE200E_STATE_INIT_BSQ;
2208     return 0;
2209 }
2210
2211
2212 static int __devinit
2213 fore200e_init_rx_queue(struct fore200e* fore200e)
2214 {
2215     struct host_rxq*     rxq =  &fore200e->host_rxq;
2216     struct cp_rxq_entry __iomem * cp_entry;
2217     int i;
2218
2219     DPRINTK(2, "receive queue is being initialized\n");
2220
2221     /* allocate and align the array of status words */
2222     if (fore200e->bus->dma_chunk_alloc(fore200e,
2223                                        &rxq->status,
2224                                        sizeof(enum status), 
2225                                        QUEUE_SIZE_RX,
2226                                        fore200e->bus->status_alignment) < 0) {
2227         return -ENOMEM;
2228     }
2229
2230     /* allocate and align the array of receive PDU descriptors */
2231     if (fore200e->bus->dma_chunk_alloc(fore200e,
2232                                        &rxq->rpd,
2233                                        sizeof(struct rpd), 
2234                                        QUEUE_SIZE_RX,
2235                                        fore200e->bus->descr_alignment) < 0) {
2236         
2237         fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2238         return -ENOMEM;
2239     }
2240
2241     /* get the base address of the cp resident rx queue entries */
2242     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2243
2244     /* fill the host resident and cp resident rx entries */
2245     for (i=0; i < QUEUE_SIZE_RX; i++) {
2246         
2247         rxq->host_entry[ i ].status = 
2248                              FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2249         rxq->host_entry[ i ].rpd = 
2250                              FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2251         rxq->host_entry[ i ].rpd_dma = 
2252                              FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2253         rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2254
2255         *rxq->host_entry[ i ].status = STATUS_FREE;
2256
2257         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2258                              &cp_entry[ i ].status_haddr);
2259
2260         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2261                              &cp_entry[ i ].rpd_haddr);
2262     }
2263
2264     /* set the head entry of the queue */
2265     rxq->head = 0;
2266
2267     fore200e->state = FORE200E_STATE_INIT_RXQ;
2268     return 0;
2269 }
2270
2271
2272 static int __devinit
2273 fore200e_init_tx_queue(struct fore200e* fore200e)
2274 {
2275     struct host_txq*     txq =  &fore200e->host_txq;
2276     struct cp_txq_entry __iomem * cp_entry;
2277     int i;
2278
2279     DPRINTK(2, "transmit queue is being initialized\n");
2280
2281     /* allocate and align the array of status words */
2282     if (fore200e->bus->dma_chunk_alloc(fore200e,
2283                                        &txq->status,
2284                                        sizeof(enum status), 
2285                                        QUEUE_SIZE_TX,
2286                                        fore200e->bus->status_alignment) < 0) {
2287         return -ENOMEM;
2288     }
2289
2290     /* allocate and align the array of transmit PDU descriptors */
2291     if (fore200e->bus->dma_chunk_alloc(fore200e,
2292                                        &txq->tpd,
2293                                        sizeof(struct tpd), 
2294                                        QUEUE_SIZE_TX,
2295                                        fore200e->bus->descr_alignment) < 0) {
2296         
2297         fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2298         return -ENOMEM;
2299     }
2300
2301     /* get the base address of the cp resident tx queue entries */
2302     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2303
2304     /* fill the host resident and cp resident tx entries */
2305     for (i=0; i < QUEUE_SIZE_TX; i++) {
2306         
2307         txq->host_entry[ i ].status = 
2308                              FORE200E_INDEX(txq->status.align_addr, enum status, i);
2309         txq->host_entry[ i ].tpd = 
2310                              FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2311         txq->host_entry[ i ].tpd_dma  = 
2312                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2313         txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2314
2315         *txq->host_entry[ i ].status = STATUS_FREE;
2316         
2317         fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2318                              &cp_entry[ i ].status_haddr);
2319         
2320         /* although there is a one-to-one mapping of tx queue entries and tpds,
2321            we do not write here the DMA (physical) base address of each tpd into
2322            the related cp resident entry, because the cp relies on this write
2323            operation to detect that a new pdu has been submitted for tx */
2324     }
2325
2326     /* set the head and tail entries of the queue */
2327     txq->head = 0;
2328     txq->tail = 0;
2329
2330     fore200e->state = FORE200E_STATE_INIT_TXQ;
2331     return 0;
2332 }
2333
2334
2335 static int __devinit
2336 fore200e_init_cmd_queue(struct fore200e* fore200e)
2337 {
2338     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2339     struct cp_cmdq_entry __iomem * cp_entry;
2340     int i;
2341
2342     DPRINTK(2, "command queue is being initialized\n");
2343
2344     /* allocate and align the array of status words */
2345     if (fore200e->bus->dma_chunk_alloc(fore200e,
2346                                        &cmdq->status,
2347                                        sizeof(enum status), 
2348                                        QUEUE_SIZE_CMD,
2349                                        fore200e->bus->status_alignment) < 0) {
2350         return -ENOMEM;
2351     }
2352     
2353     /* get the base address of the cp resident cmd queue entries */
2354     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2355
2356     /* fill the host resident and cp resident cmd entries */
2357     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2358         
2359         cmdq->host_entry[ i ].status   = 
2360                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2361         cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2362
2363         *cmdq->host_entry[ i ].status = STATUS_FREE;
2364
2365         fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2366                              &cp_entry[ i ].status_haddr);
2367     }
2368
2369     /* set the head entry of the queue */
2370     cmdq->head = 0;
2371
2372     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2373     return 0;
2374 }
2375
2376
2377 static void __devinit
2378 fore200e_param_bs_queue(struct fore200e* fore200e,
2379                         enum buffer_scheme scheme, enum buffer_magn magn,
2380                         int queue_length, int pool_size, int supply_blksize)
2381 {
2382     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2383
2384     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2385     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2386     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2387     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2388 }
2389
2390
2391 static int __devinit
2392 fore200e_initialize(struct fore200e* fore200e)
2393 {
2394     struct cp_queues __iomem * cpq;
2395     int               ok, scheme, magn;
2396
2397     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2398
2399     mutex_init(&fore200e->rate_mtx);
2400     spin_lock_init(&fore200e->q_lock);
2401
2402     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2403
2404     /* enable cp to host interrupts */
2405     fore200e->bus->write(1, &cpq->imask);
2406
2407     if (fore200e->bus->irq_enable)
2408         fore200e->bus->irq_enable(fore200e);
2409     
2410     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2411
2412     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2413     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2414     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2415
2416     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2417     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2418
2419     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2420         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2421             fore200e_param_bs_queue(fore200e, scheme, magn,
2422                                     QUEUE_SIZE_BS, 
2423                                     fore200e_rx_buf_nbr[ scheme ][ magn ],
2424                                     RBD_BLK_SIZE);
2425
2426     /* issue the initialize command */
2427     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2428     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2429
2430     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2431     if (ok == 0) {
2432         printk(FORE200E "device %s initialization failed\n", fore200e->name);
2433         return -ENODEV;
2434     }
2435
2436     printk(FORE200E "device %s initialized\n", fore200e->name);
2437
2438     fore200e->state = FORE200E_STATE_INITIALIZE;
2439     return 0;
2440 }
2441
2442
2443 static void __devinit
2444 fore200e_monitor_putc(struct fore200e* fore200e, char c)
2445 {
2446     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447
2448 #if 0
2449     printk("%c", c);
2450 #endif
2451     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452 }
2453
2454
2455 static int __devinit
2456 fore200e_monitor_getc(struct fore200e* fore200e)
2457 {
2458     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2459     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2460     int                c;
2461
2462     while (time_before(jiffies, timeout)) {
2463
2464         c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2465
2466         if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2467
2468             fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2469 #if 0
2470             printk("%c", c & 0xFF);
2471 #endif
2472             return c & 0xFF;
2473         }
2474     }
2475
2476     return -1;
2477 }
2478
2479
2480 static void __devinit
2481 fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2482 {
2483     while (*str) {
2484
2485         /* the i960 monitor doesn't accept any new character if it has something to say */
2486         while (fore200e_monitor_getc(fore200e) >= 0);
2487         
2488         fore200e_monitor_putc(fore200e, *str++);
2489     }
2490
2491     while (fore200e_monitor_getc(fore200e) >= 0);
2492 }
2493
2494 #ifdef __LITTLE_ENDIAN
2495 #define FW_EXT ".bin"
2496 #else
2497 #define FW_EXT "_ecd.bin2"
2498 #endif
2499
2500 static int __devinit
2501 fore200e_load_and_start_fw(struct fore200e* fore200e)
2502 {
2503     const struct firmware *firmware;
2504     struct device *device;
2505     struct fw_header *fw_header;
2506     const __le32 *fw_data;
2507     u32 fw_size;
2508     u32 __iomem *load_addr;
2509     char buf[48];
2510     int err = -ENODEV;
2511
2512     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2513         device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2514 #ifdef CONFIG_SBUS
2515     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2516         device = &((struct platform_device *) fore200e->bus_dev)->dev;
2517 #endif
2518     else
2519         return err;
2520
2521     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2522     if ((err = request_firmware(&firmware, buf, device)) < 0) {
2523         printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2524         return err;
2525     }
2526
2527     fw_data = (__le32 *) firmware->data;
2528     fw_size = firmware->size / sizeof(u32);
2529     fw_header = (struct fw_header *) firmware->data;
2530     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2531
2532     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2533             fore200e->name, load_addr, fw_size);
2534
2535     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2536         printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2537         goto release;
2538     }
2539
2540     for (; fw_size--; fw_data++, load_addr++)
2541         fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2542
2543     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2544
2545 #if defined(__sparc_v9__)
2546     /* reported to be required by SBA cards on some sparc64 hosts */
2547     fore200e_spin(100);
2548 #endif
2549
2550     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2551     fore200e_monitor_puts(fore200e, buf);
2552
2553     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2554         printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2555         goto release;
2556     }
2557
2558     printk(FORE200E "device %s firmware started\n", fore200e->name);
2559
2560     fore200e->state = FORE200E_STATE_START_FW;
2561     err = 0;
2562
2563 release:
2564     release_firmware(firmware);
2565     return err;
2566 }
2567
2568
2569 static int __devinit
2570 fore200e_register(struct fore200e* fore200e, struct device *parent)
2571 {
2572     struct atm_dev* atm_dev;
2573
2574     DPRINTK(2, "device %s being registered\n", fore200e->name);
2575
2576     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2577                                -1, NULL);
2578     if (atm_dev == NULL) {
2579         printk(FORE200E "unable to register device %s\n", fore200e->name);
2580         return -ENODEV;
2581     }
2582
2583     atm_dev->dev_data = fore200e;
2584     fore200e->atm_dev = atm_dev;
2585
2586     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2587     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2588
2589     fore200e->available_cell_rate = ATM_OC3_PCR;
2590
2591     fore200e->state = FORE200E_STATE_REGISTER;
2592     return 0;
2593 }
2594
2595
2596 static int __devinit
2597 fore200e_init(struct fore200e* fore200e, struct device *parent)
2598 {
2599     if (fore200e_register(fore200e, parent) < 0)
2600         return -ENODEV;
2601     
2602     if (fore200e->bus->configure(fore200e) < 0)
2603         return -ENODEV;
2604
2605     if (fore200e->bus->map(fore200e) < 0)
2606         return -ENODEV;
2607
2608     if (fore200e_reset(fore200e, 1) < 0)
2609         return -ENODEV;
2610
2611     if (fore200e_load_and_start_fw(fore200e) < 0)
2612         return -ENODEV;
2613
2614     if (fore200e_initialize(fore200e) < 0)
2615         return -ENODEV;
2616
2617     if (fore200e_init_cmd_queue(fore200e) < 0)
2618         return -ENOMEM;
2619
2620     if (fore200e_init_tx_queue(fore200e) < 0)
2621         return -ENOMEM;
2622
2623     if (fore200e_init_rx_queue(fore200e) < 0)
2624         return -ENOMEM;
2625
2626     if (fore200e_init_bs_queue(fore200e) < 0)
2627         return -ENOMEM;
2628
2629     if (fore200e_alloc_rx_buf(fore200e) < 0)
2630         return -ENOMEM;
2631
2632     if (fore200e_get_esi(fore200e) < 0)
2633         return -EIO;
2634
2635     if (fore200e_irq_request(fore200e) < 0)
2636         return -EBUSY;
2637
2638     fore200e_supply(fore200e);
2639
2640     /* all done, board initialization is now complete */
2641     fore200e->state = FORE200E_STATE_COMPLETE;
2642     return 0;
2643 }
2644
2645 #ifdef CONFIG_SBUS
2646 static const struct of_device_id fore200e_sba_match[];
2647 static int __devinit fore200e_sba_probe(struct platform_device *op)
2648 {
2649         const struct of_device_id *match;
2650         const struct fore200e_bus *bus;
2651         struct fore200e *fore200e;
2652         static int index = 0;
2653         int err;
2654
2655         match = of_match_device(fore200e_sba_match, &op->dev);
2656         if (!match)
2657                 return -EINVAL;
2658         bus = match->data;
2659
2660         fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2661         if (!fore200e)
2662                 return -ENOMEM;
2663
2664         fore200e->bus = bus;
2665         fore200e->bus_dev = op;
2666         fore200e->irq = op->archdata.irqs[0];
2667         fore200e->phys_base = op->resource[0].start;
2668
2669         sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2670
2671         err = fore200e_init(fore200e, &op->dev);
2672         if (err < 0) {
2673                 fore200e_shutdown(fore200e);
2674                 kfree(fore200e);
2675                 return err;
2676         }
2677
2678         index++;
2679         dev_set_drvdata(&op->dev, fore200e);
2680
2681         return 0;
2682 }
2683
2684 static int __devexit fore200e_sba_remove(struct platform_device *op)
2685 {
2686         struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2687
2688         fore200e_shutdown(fore200e);
2689         kfree(fore200e);
2690
2691         return 0;
2692 }
2693
2694 static const struct of_device_id fore200e_sba_match[] = {
2695         {
2696                 .name = SBA200E_PROM_NAME,
2697                 .data = (void *) &fore200e_bus[1],
2698         },
2699         {},
2700 };
2701 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2702
2703 static struct platform_driver fore200e_sba_driver = {
2704         .driver = {
2705                 .name = "fore_200e",
2706                 .owner = THIS_MODULE,
2707                 .of_match_table = fore200e_sba_match,
2708         },
2709         .probe          = fore200e_sba_probe,
2710         .remove         = __devexit_p(fore200e_sba_remove),
2711 };
2712 #endif
2713
2714 #ifdef CONFIG_PCI
2715 static int __devinit
2716 fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2717 {
2718     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2719     struct fore200e* fore200e;
2720     int err = 0;
2721     static int index = 0;
2722
2723     if (pci_enable_device(pci_dev)) {
2724         err = -EINVAL;
2725         goto out;
2726     }
2727     
2728     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2729     if (fore200e == NULL) {
2730         err = -ENOMEM;
2731         goto out_disable;
2732     }
2733
2734     fore200e->bus       = bus;
2735     fore200e->bus_dev   = pci_dev;    
2736     fore200e->irq       = pci_dev->irq;
2737     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2738
2739     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2740
2741     pci_set_master(pci_dev);
2742
2743     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2744            fore200e->bus->model_name, 
2745            fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2746
2747     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2748
2749     err = fore200e_init(fore200e, &pci_dev->dev);
2750     if (err < 0) {
2751         fore200e_shutdown(fore200e);
2752         goto out_free;
2753     }
2754
2755     ++index;
2756     pci_set_drvdata(pci_dev, fore200e);
2757
2758 out:
2759     return err;
2760
2761 out_free:
2762     kfree(fore200e);
2763 out_disable:
2764     pci_disable_device(pci_dev);
2765     goto out;
2766 }
2767
2768
2769 static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2770 {
2771     struct fore200e *fore200e;
2772
2773     fore200e = pci_get_drvdata(pci_dev);
2774
2775     fore200e_shutdown(fore200e);
2776     kfree(fore200e);
2777     pci_disable_device(pci_dev);
2778 }
2779
2780
2781 static struct pci_device_id fore200e_pca_tbl[] = {
2782     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2783       0, 0, (unsigned long) &fore200e_bus[0] },
2784     { 0, }
2785 };
2786
2787 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2788
2789 static struct pci_driver fore200e_pca_driver = {
2790     .name =     "fore_200e",
2791     .probe =    fore200e_pca_detect,
2792     .remove =   __devexit_p(fore200e_pca_remove_one),
2793     .id_table = fore200e_pca_tbl,
2794 };
2795 #endif
2796
2797 static int __init fore200e_module_init(void)
2798 {
2799         int err;
2800
2801         printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2802
2803 #ifdef CONFIG_SBUS
2804         err = platform_driver_register(&fore200e_sba_driver);
2805         if (err)
2806                 return err;
2807 #endif
2808
2809 #ifdef CONFIG_PCI
2810         err = pci_register_driver(&fore200e_pca_driver);
2811 #endif
2812
2813 #ifdef CONFIG_SBUS
2814         if (err)
2815                 platform_driver_unregister(&fore200e_sba_driver);
2816 #endif
2817
2818         return err;
2819 }
2820
2821 static void __exit fore200e_module_cleanup(void)
2822 {
2823 #ifdef CONFIG_PCI
2824         pci_unregister_driver(&fore200e_pca_driver);
2825 #endif
2826 #ifdef CONFIG_SBUS
2827         platform_driver_unregister(&fore200e_sba_driver);
2828 #endif
2829 }
2830
2831 static int
2832 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2833 {
2834     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2835     struct fore200e_vcc* fore200e_vcc;
2836     struct atm_vcc*      vcc;
2837     int                  i, len, left = *pos;
2838     unsigned long        flags;
2839
2840     if (!left--) {
2841
2842         if (fore200e_getstats(fore200e) < 0)
2843             return -EIO;
2844
2845         len = sprintf(page,"\n"
2846                        " device:\n"
2847                        "   internal name:\t\t%s\n", fore200e->name);
2848
2849         /* print bus-specific information */
2850         if (fore200e->bus->proc_read)
2851             len += fore200e->bus->proc_read(fore200e, page + len);
2852         
2853         len += sprintf(page + len,
2854                 "   interrupt line:\t\t%s\n"
2855                 "   physical base address:\t0x%p\n"
2856                 "   virtual base address:\t0x%p\n"
2857                 "   factory address (ESI):\t%pM\n"
2858                 "   board serial number:\t\t%d\n\n",
2859                 fore200e_irq_itoa(fore200e->irq),
2860                 (void*)fore200e->phys_base,
2861                 fore200e->virt_base,
2862                 fore200e->esi,
2863                 fore200e->esi[4] * 256 + fore200e->esi[5]);
2864
2865         return len;
2866     }
2867
2868     if (!left--)
2869         return sprintf(page,
2870                        "   free small bufs, scheme 1:\t%d\n"
2871                        "   free large bufs, scheme 1:\t%d\n"
2872                        "   free small bufs, scheme 2:\t%d\n"
2873                        "   free large bufs, scheme 2:\t%d\n",
2874                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2875                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2876                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2877                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2878
2879     if (!left--) {
2880         u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2881
2882         len = sprintf(page,"\n\n"
2883                       " cell processor:\n"
2884                       "   heartbeat state:\t\t");
2885         
2886         if (hb >> 16 != 0xDEAD)
2887             len += sprintf(page + len, "0x%08x\n", hb);
2888         else
2889             len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2890
2891         return len;
2892     }
2893
2894     if (!left--) {
2895         static const char* media_name[] = {
2896             "unshielded twisted pair",
2897             "multimode optical fiber ST",
2898             "multimode optical fiber SC",
2899             "single-mode optical fiber ST",
2900             "single-mode optical fiber SC",
2901             "unknown"
2902         };
2903
2904         static const char* oc3_mode[] = {
2905             "normal operation",
2906             "diagnostic loopback",
2907             "line loopback",
2908             "unknown"
2909         };
2910
2911         u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2912         u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2913         u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2914         u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2915         u32 oc3_index;
2916
2917         if (media_index > 4)
2918                 media_index = 5;
2919         
2920         switch (fore200e->loop_mode) {
2921             case ATM_LM_NONE:    oc3_index = 0;
2922                                  break;
2923             case ATM_LM_LOC_PHY: oc3_index = 1;
2924                                  break;
2925             case ATM_LM_RMT_PHY: oc3_index = 2;
2926                                  break;
2927             default:             oc3_index = 3;
2928         }
2929
2930         return sprintf(page,
2931                        "   firmware release:\t\t%d.%d.%d\n"
2932                        "   monitor release:\t\t%d.%d\n"
2933                        "   media type:\t\t\t%s\n"
2934                        "   OC-3 revision:\t\t0x%x\n"
2935                        "   OC-3 mode:\t\t\t%s",
2936                        fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2937                        mon960_release >> 16, mon960_release << 16 >> 16,
2938                        media_name[ media_index ],
2939                        oc3_revision,
2940                        oc3_mode[ oc3_index ]);
2941     }
2942
2943     if (!left--) {
2944         struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2945
2946         return sprintf(page,
2947                        "\n\n"
2948                        " monitor:\n"
2949                        "   version number:\t\t%d\n"
2950                        "   boot status word:\t\t0x%08x\n",
2951                        fore200e->bus->read(&cp_monitor->mon_version),
2952                        fore200e->bus->read(&cp_monitor->bstat));
2953     }
2954
2955     if (!left--)
2956         return sprintf(page,
2957                        "\n"
2958                        " device statistics:\n"
2959                        "  4b5b:\n"
2960                        "     crc_header_errors:\t\t%10u\n"
2961                        "     framing_errors:\t\t%10u\n",
2962                        be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2963                        be32_to_cpu(fore200e->stats->phy.framing_errors));
2964     
2965     if (!left--)
2966         return sprintf(page, "\n"
2967                        "  OC-3:\n"
2968                        "     section_bip8_errors:\t%10u\n"
2969                        "     path_bip8_errors:\t\t%10u\n"
2970                        "     line_bip24_errors:\t\t%10u\n"
2971                        "     line_febe_errors:\t\t%10u\n"
2972                        "     path_febe_errors:\t\t%10u\n"
2973                        "     corr_hcs_errors:\t\t%10u\n"
2974                        "     ucorr_hcs_errors:\t\t%10u\n",
2975                        be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2976                        be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2977                        be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2978                        be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2979                        be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2980                        be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2981                        be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2982
2983     if (!left--)
2984         return sprintf(page,"\n"
2985                        "   ATM:\t\t\t\t     cells\n"
2986                        "     TX:\t\t\t%10u\n"
2987                        "     RX:\t\t\t%10u\n"
2988                        "     vpi out of range:\t\t%10u\n"
2989                        "     vpi no conn:\t\t%10u\n"
2990                        "     vci out of range:\t\t%10u\n"
2991                        "     vci no conn:\t\t%10u\n",
2992                        be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2993                        be32_to_cpu(fore200e->stats->atm.cells_received),
2994                        be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2995                        be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2996                        be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2997                        be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2998     
2999     if (!left--)
3000         return sprintf(page,"\n"
3001                        "   AAL0:\t\t\t     cells\n"
3002                        "     TX:\t\t\t%10u\n"
3003                        "     RX:\t\t\t%10u\n"
3004                        "     dropped:\t\t\t%10u\n",
3005                        be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3006                        be32_to_cpu(fore200e->stats->aal0.cells_received),
3007                        be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3008     
3009     if (!left--)
3010         return sprintf(page,"\n"
3011                        "   AAL3/4:\n"
3012                        "     SAR sublayer:\t\t     cells\n"
3013                        "       TX:\t\t\t%10u\n"
3014                        "       RX:\t\t\t%10u\n"
3015                        "       dropped:\t\t\t%10u\n"
3016                        "       CRC errors:\t\t%10u\n"
3017                        "       protocol errors:\t\t%10u\n\n"
3018                        "     CS  sublayer:\t\t      PDUs\n"
3019                        "       TX:\t\t\t%10u\n"
3020                        "       RX:\t\t\t%10u\n"
3021                        "       dropped:\t\t\t%10u\n"
3022                        "       protocol errors:\t\t%10u\n",
3023                        be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3024                        be32_to_cpu(fore200e->stats->aal34.cells_received),
3025                        be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3026                        be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3027                        be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3028                        be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3029                        be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3030                        be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3031                        be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3032     
3033     if (!left--)
3034         return sprintf(page,"\n"
3035                        "   AAL5:\n"
3036                        "     SAR sublayer:\t\t     cells\n"
3037                        "       TX:\t\t\t%10u\n"
3038                        "       RX:\t\t\t%10u\n"
3039                        "       dropped:\t\t\t%10u\n"
3040                        "       congestions:\t\t%10u\n\n"
3041                        "     CS  sublayer:\t\t      PDUs\n"
3042                        "       TX:\t\t\t%10u\n"
3043                        "       RX:\t\t\t%10u\n"
3044                        "       dropped:\t\t\t%10u\n"
3045                        "       CRC errors:\t\t%10u\n"
3046                        "       protocol errors:\t\t%10u\n",
3047                        be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3048                        be32_to_cpu(fore200e->stats->aal5.cells_received),
3049                        be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3050                        be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3051                        be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3052                        be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3053                        be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3054                        be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3055                        be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3056     
3057     if (!left--)
3058         return sprintf(page,"\n"
3059                        "   AUX:\t\t       allocation failures\n"
3060                        "     small b1:\t\t\t%10u\n"
3061                        "     large b1:\t\t\t%10u\n"
3062                        "     small b2:\t\t\t%10u\n"
3063                        "     large b2:\t\t\t%10u\n"
3064                        "     RX PDUs:\t\t\t%10u\n"
3065                        "     TX PDUs:\t\t\t%10lu\n",
3066                        be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3067                        be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3068                        be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3069                        be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3070                        be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3071                        fore200e->tx_sat);
3072     
3073     if (!left--)
3074         return sprintf(page,"\n"
3075                        " receive carrier:\t\t\t%s\n",
3076                        fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3077     
3078     if (!left--) {
3079         return sprintf(page,"\n"
3080                        " VCCs:\n  address   VPI VCI   AAL "
3081                        "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3082     }
3083
3084     for (i = 0; i < NBR_CONNECT; i++) {
3085
3086         vcc = fore200e->vc_map[i].vcc;
3087
3088         if (vcc == NULL)
3089             continue;
3090
3091         spin_lock_irqsave(&fore200e->q_lock, flags);
3092
3093         if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3094
3095             fore200e_vcc = FORE200E_VCC(vcc);
3096             ASSERT(fore200e_vcc);
3097
3098             len = sprintf(page,
3099                           "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3100                           (u32)(unsigned long)vcc,
3101                           vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3102                           fore200e_vcc->tx_pdu,
3103                           fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3104                           fore200e_vcc->tx_max_pdu,
3105                           fore200e_vcc->rx_pdu,
3106                           fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3107                           fore200e_vcc->rx_max_pdu);
3108
3109             spin_unlock_irqrestore(&fore200e->q_lock, flags);
3110             return len;
3111         }
3112
3113         spin_unlock_irqrestore(&fore200e->q_lock, flags);
3114     }
3115     
3116     return 0;
3117 }
3118
3119 module_init(fore200e_module_init);
3120 module_exit(fore200e_module_cleanup);
3121
3122
3123 static const struct atmdev_ops fore200e_ops =
3124 {
3125         .open       = fore200e_open,
3126         .close      = fore200e_close,
3127         .ioctl      = fore200e_ioctl,
3128         .getsockopt = fore200e_getsockopt,
3129         .setsockopt = fore200e_setsockopt,
3130         .send       = fore200e_send,
3131         .change_qos = fore200e_change_qos,
3132         .proc_read  = fore200e_proc_read,
3133         .owner      = THIS_MODULE
3134 };
3135
3136
3137 static const struct fore200e_bus fore200e_bus[] = {
3138 #ifdef CONFIG_PCI
3139     { "PCA-200E", "pca200e", 32, 4, 32, 
3140       fore200e_pca_read,
3141       fore200e_pca_write,
3142       fore200e_pca_dma_map,
3143       fore200e_pca_dma_unmap,
3144       fore200e_pca_dma_sync_for_cpu,
3145       fore200e_pca_dma_sync_for_device,
3146       fore200e_pca_dma_chunk_alloc,
3147       fore200e_pca_dma_chunk_free,
3148       fore200e_pca_configure,
3149       fore200e_pca_map,
3150       fore200e_pca_reset,
3151       fore200e_pca_prom_read,
3152       fore200e_pca_unmap,
3153       NULL,
3154       fore200e_pca_irq_check,
3155       fore200e_pca_irq_ack,
3156       fore200e_pca_proc_read,
3157     },
3158 #endif
3159 #ifdef CONFIG_SBUS
3160     { "SBA-200E", "sba200e", 32, 64, 32,
3161       fore200e_sba_read,
3162       fore200e_sba_write,
3163       fore200e_sba_dma_map,
3164       fore200e_sba_dma_unmap,
3165       fore200e_sba_dma_sync_for_cpu,
3166       fore200e_sba_dma_sync_for_device,
3167       fore200e_sba_dma_chunk_alloc,
3168       fore200e_sba_dma_chunk_free,
3169       fore200e_sba_configure,
3170       fore200e_sba_map,
3171       fore200e_sba_reset,
3172       fore200e_sba_prom_read,
3173       fore200e_sba_unmap,
3174       fore200e_sba_irq_enable,
3175       fore200e_sba_irq_check,
3176       fore200e_sba_irq_ack,
3177       fore200e_sba_proc_read,
3178     },
3179 #endif
3180     {}
3181 };
3182
3183 MODULE_LICENSE("GPL");
3184 #ifdef CONFIG_PCI
3185 #ifdef __LITTLE_ENDIAN__
3186 MODULE_FIRMWARE("pca200e.bin");
3187 #else
3188 MODULE_FIRMWARE("pca200e_ecd.bin2");
3189 #endif
3190 #endif /* CONFIG_PCI */
3191 #ifdef CONFIG_SBUS
3192 MODULE_FIRMWARE("sba200e_ecd.bin2");
3193 #endif