1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4 * FireStream 50 (MB86695) device driver
7 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/poison.h>
22 #include <linux/errno.h>
23 #include <linux/atm.h>
24 #include <linux/atmdev.h>
25 #include <linux/sonet.h>
26 #include <linux/skbuff.h>
27 #include <linux/netdevice.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h> /* for request_region */
30 #include <linux/uio.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/capability.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <asm/byteorder.h>
37 #include <asm/string.h>
39 #include <linux/atomic.h>
40 #include <linux/uaccess.h>
41 #include <linux/wait.h>
43 #include "firestream.h"
45 static int loopback = 0;
48 /* According to measurements (but they look suspicious to me!) done in
49 * '97, 37% of the packets are one cell in size. So it pays to have
50 * buffers allocated at that size. A large jump in percentage of
51 * packets occurs at packets around 536 bytes in length. So it also
52 * pays to have those pre-allocated. Unfortunately, we can't fully
53 * take advantage of this as the majority of the packets is likely to
54 * be TCP/IP (As where obviously the measurement comes from) There the
55 * link would be opened with say a 1500 byte MTU, and we can't handle
56 * smaller buffers more efficiently than the larger ones. -- REW
59 /* Due to the way Linux memory management works, specifying "576" as
60 * an allocation size here isn't going to help. They are allocated
61 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62 * large), it doesn't pay to allocate the smallest size (64) -- REW */
64 /* This is all guesswork. Hard numbers to back this up or disprove this,
65 * are appreciated. -- REW */
67 /* The last entry should be about 64k. However, the "buffer size" is
68 * passed to the chip in a 16 bit field. I don't know how "65536"
69 * would be interpreted. -- REW */
71 #define NP FS_NR_FREE_POOLS
72 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
73 /* log2: 7 8 9 10 11 12 14 16 */
76 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
79 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
81 /* log2: 10 10 9 8 7 6 5 5 */
82 /* sumlog2: 17 18 18 18 18 18 19 21 */
83 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
84 /* tot mem: almost 4M */
86 /* NP is shorter, so that it fits on a single line. */
90 /* Small hardware gotcha:
92 The FS50 CAM (VP/VC match registers) always take the lowest channel
93 number that matches. This is not a problem.
95 However, they also ignore whether the channel is enabled or
96 not. This means that if you allocate channel 0 to 1.2 and then
97 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98 match channel for channel 0 will "steal" the traffic from channel
99 1, even if you correctly disable channel 0.
103 - When disabling channels, write an invalid VP/VC value to the
104 match register. (We use 0xffffffff, which in the worst case
105 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106 anything as some "when not in use, program to 0" bits are now
109 - Don't initialize the match registers to 0, as 0.0 is a valid
114 /* Optimization hints and tips.
116 The FireStream chips are very capable of reducing the amount of
117 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118 action. You could try to minimize this a bit.
120 Besides that, the userspace->kernel copy and the PCI bus are the
121 performance limiting issues for this driver.
123 You could queue up a bunch of outgoing packets without telling the
124 FireStream. I'm not sure that's going to win you much though. The
125 Linux layer won't tell us in advance when it's not going to give us
126 any more packets in a while. So this is tricky to implement right without
127 introducing extra delays.
135 /* The strings that define what the RX queue entry is all about. */
136 /* Fujitsu: Please tell me which ones can have a pointer to a
137 freepool descriptor! */
138 static char *res_strings[] = {
139 "RX OK: streaming not EOP",
140 "RX OK: streaming EOP",
141 "RX OK: Single buffer packet",
142 "RX OK: packet mode",
143 "RX OK: F4 OAM (end to end)",
144 "RX OK: F4 OAM (Segment)",
145 "RX OK: F5 OAM (end to end)",
146 "RX OK: F5 OAM (Segment)",
148 "RX OK: TRANSP cell",
149 "RX OK: TRANSPC cell",
156 "reassembly abort: AAL5 abort",
158 "packet ageing timeout",
159 "channel ageing timeout",
160 "calculated length error",
161 "programmed length limit error",
163 "oam transp or transpc crc10 error",
169 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 "reassembly abort: no buffers",
171 "receive buffer overflow",
173 "receive buffer full",
174 "low priority discard - no receive descriptor",
175 "low priority discard - missing end of packet",
205 static char *irq_bitname[] = {
237 #define PHY_CLEARALL -2
239 struct reginit_item {
244 static struct reginit_item PHY_NTC_INIT[] = {
245 { PHY_CLEARALL, 0x40 },
251 { 0x39, 0x0006 }, /* changed here to make loopback */
255 { PHY_EOF, 0}, /* -1 signals end of list */
259 /* Safetyfeature: If the card interrupts more than this number of times
260 in a jiffy (1/100th of a second) then we just disable the interrupt and
261 print a message. This prevents the system from hanging.
263 150000 packets per second is close to the limit a PC is going to have
264 anyway. We therefore have to disable this for production. -- REW */
265 #undef IRQ_RATE_LIMIT // 100
267 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
268 that great without interrupts. -- REW */
269 #undef FS_POLL_FREQ // 100
272 This driver can spew a whole lot of debugging output at you. If you
273 need maximum performance, you should disable the DEBUG define. To
274 aid in debugging in the field, I'm leaving the compile-time debug
275 features enabled, and disable them "runtime". That allows me to
276 instruct people with problems to enable debugging without requiring
277 them to recompile... -- REW
282 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
284 #define fs_dprintk(f, str...) /* nothing */
288 static int fs_keystream = 0;
291 /* I didn't forget to set this to zero before shipping. Hit me with a stick
292 if you get this with the debug default not set to zero again. -- REW */
293 static int fs_debug = 0;
300 module_param(fs_debug, int, 0644);
302 module_param(loopback, int, 0);
303 module_param(num, int, 0);
304 module_param(fs_keystream, int, 0);
305 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
309 #define FS_DEBUG_FLOW 0x00000001
310 #define FS_DEBUG_OPEN 0x00000002
311 #define FS_DEBUG_QUEUE 0x00000004
312 #define FS_DEBUG_IRQ 0x00000008
313 #define FS_DEBUG_INIT 0x00000010
314 #define FS_DEBUG_SEND 0x00000020
315 #define FS_DEBUG_PHY 0x00000040
316 #define FS_DEBUG_CLEANUP 0x00000080
317 #define FS_DEBUG_QOS 0x00000100
318 #define FS_DEBUG_TXQ 0x00000200
319 #define FS_DEBUG_ALLOC 0x00000400
320 #define FS_DEBUG_TXMEM 0x00000800
321 #define FS_DEBUG_QSIZE 0x00001000
324 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325 #define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
328 static struct fs_dev *fs_boards = NULL;
332 static void my_hd (void *addr, int len)
335 unsigned char *ptr = addr;
339 for (j=0;j < ((len < 16)?len:16);j++) {
340 printk ("%02x %s", ptr[j], (j==7)?" ":"");
343 printk (" %s", (j==7)?" ":"");
345 for (j=0;j < ((len < 16)?len:16);j++) {
347 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
355 static void my_hd (void *addr, int len){}
358 /********** free an skb (as per ATM device driver documentation) **********/
360 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361 * I copied it over from the ambassador driver. -- REW */
363 static inline void fs_kfree_skb (struct sk_buff * skb)
365 if (ATM_SKB(skb)->vcc->pop)
366 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
368 dev_kfree_skb_any (skb);
374 /* It seems the ATM forum recommends this horribly complicated 16bit
375 * floating point format. Turns out the Ambassador uses the exact same
376 * encoding. I just copied it over. If Mitch agrees, I'll move it over
377 * to the atm_misc file or something like that. (and remove it from
378 * here and the ambassador driver) -- REW
381 /* The good thing about this format is that it is monotonic. So,
382 a conversion routine need not be very complicated. To be able to
383 round "nearest" we need to take along a few extra bits. Lets
384 put these after 16 bits, so that we can just return the top 16
385 bits of the 32bit number as the result:
387 int mr (unsigned int rate, int r)
390 static int round[4]={0, 0, 0xffff, 0x8000};
392 while (rate & 0xfc000000) {
396 while (! (rate & 0xfe000000)) {
401 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
403 // Next add in the exponent
405 // And perform the rounding:
406 return (rate + round[r]) >> 16;
409 14 lines-of-code. Compare that with the 120 that the Ambassador
410 guys needed. (would be 8 lines shorter if I'd try to really reduce
413 int mr (unsigned int rate, int r)
416 static int round[4]={0, 0, 0xffff, 0x8000};
418 for (; rate & 0xfc000000 ;rate >>= 1, e++);
419 for (;!(rate & 0xfe000000);rate <<= 1, e--);
420 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
423 Exercise for the reader: Remove one more line-of-code, without
424 cheating. (Just joining two lines is cheating). (I know it's
425 possible, don't think you've beat me if you found it... If you
426 manage to lose two lines or more, keep me updated! ;-)
433 #define ROUND_NEAREST 3
434 /********** make rate (not quite as much fun as Horizon) **********/
436 static int make_rate(unsigned int rate, int r,
437 u16 *bits, unsigned int *actual)
439 unsigned char exp = -1; /* hush gcc */
440 unsigned int man = -1; /* hush gcc */
442 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
444 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 given 5-bit e and 9-bit m:
446 rate = EITHER (1+m/2^9)*2^e OR 0
447 bits = EITHER 1<<14 | e<<9 | m OR 0
448 (bit 15 is "reserved", bit 14 "non-zero")
449 smallest rate is 0 (special representation)
450 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
453 find position of top bit, this gives e
454 remove top bit and shift (rounding if feeling clever) by 9-e
456 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 representable. // This should move into the ambassador driver
458 when properly merged. -- REW */
460 if (rate > 0xffc00000U) {
461 /* larger than largest representable rate */
471 /* representable rate */
476 /* invariant: rate = man*2^(exp-31) */
477 while (!(man & (1<<31))) {
482 /* man has top bit set
483 rate = (2^31+(man-2^31))*2^(exp-31)
484 rate = (1+(man-2^31)/2^31)*2^exp
487 man &= 0xffffffffU; /* a nop on 32-bit systems */
488 /* rate = (1+man/2^32)*2^exp
490 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 time to lose significance... we want m in the range 0 to 2^9-1
492 rounding presents a minor problem... we first decide which way
493 we are rounding (based on given rounding direction and possibly
494 the bits of the mantissa that are to be discarded).
504 /* check all bits that we are discarding */
505 if (man & (~0U>>9)) {
506 man = (man>>(32-9)) + 1;
508 /* no need to check for round up outside of range */
517 case ROUND_NEAREST: {
518 /* check msb that we are discarding */
519 if (man & (1<<(32-9-1))) {
520 man = (man>>(32-9)) + 1;
522 /* no need to check for round up outside of range */
534 /* zero rate - not representable */
536 if (r == ROUND_DOWN) {
544 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
547 *bits = /* (1<<14) | */ (exp<<9) | man;
551 ? (1 << exp) + (man << (exp-9))
552 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
560 /* FireStream access routines */
561 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562 certain registers or to just log all accesses. */
564 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
566 writel (val, dev->base + offset);
570 static inline u32 read_fs (struct fs_dev *dev, int offset)
572 return readl (dev->base + offset);
577 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
579 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
583 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
586 struct FS_QENTRY *cqe;
588 /* XXX Sanity check: the write pointer can be checked to be
589 still the same as the value passed as qe... -- REW */
591 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
598 cqe = bus_to_virt (wp);
600 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
603 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
610 rp = read_fs (dev, Q_RP(q->offset));
611 wp = read_fs (dev, Q_WP(q->offset));
612 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 q->offset, rp, wp, wp-rp);
619 static struct FS_QENTRY pq[60];
622 static struct FS_BPENTRY dq[60];
627 static void submit_queue (struct fs_dev *dev, struct queue *q,
628 u32 cmd, u32 p1, u32 p2, u32 p3)
630 struct FS_QENTRY *qe;
632 qe = get_qentry (dev, q);
637 submit_qentry (dev, q, qe);
645 if (qp >= 60) qp = 0;
649 /* Test the "other" way one day... -- REW */
651 #define submit_command submit_queue
654 static void submit_command (struct fs_dev *dev, struct queue *q,
655 u32 cmd, u32 p1, u32 p2, u32 p3)
657 write_fs (dev, CMDR0, cmd);
658 write_fs (dev, CMDR1, p1);
659 write_fs (dev, CMDR2, p2);
660 write_fs (dev, CMDR3, p3);
666 static void process_return_queue (struct fs_dev *dev, struct queue *q)
669 struct FS_QENTRY *qe;
672 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 qe = bus_to_virt (rq);
676 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
679 switch (STATUS_CODE (qe)) {
681 tc = bus_to_virt (qe->p0);
682 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
687 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
692 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
696 struct FS_QENTRY *qe;
698 struct FS_BPENTRY *td;
700 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 qe = bus_to_virt (rq);
704 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
707 if (STATUS_CODE (qe) != 2)
708 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
712 switch (STATUS_CODE (qe)) {
713 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
716 /* Process a real txdone entry. */
719 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
721 td = bus_to_virt (tmp);
723 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
727 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
737 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
741 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
743 fs_dprintk (FS_DEBUG_TXMEM, "i");
744 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
747 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
752 /* Here we get the tx purge inhibit command ... */
753 /* Action, I believe, is "don't do anything". -- REW */
757 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
762 static void process_incoming (struct fs_dev *dev, struct queue *q)
765 struct FS_QENTRY *qe;
766 struct FS_BPENTRY *pe;
769 struct atm_vcc *atm_vcc;
771 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 qe = bus_to_virt (rq);
775 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
776 qe->cmd, qe->p0, qe->p1, qe->p2);
778 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
780 res_strings[STATUS_CODE(qe)]);
782 pe = bus_to_virt (qe->p0);
783 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
787 channo = qe->cmd & 0xffff;
789 if (channo < dev->nchannels)
790 atm_vcc = dev->atm_vccs[channo];
794 /* Single buffer packet */
795 switch (STATUS_CODE (qe)) {
797 /* Fall through for streaming mode */
799 case 0x2:/* Packet received OK.... */
804 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
805 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
807 skb_put (skb, qe->p1 & 0xffff);
808 ATM_SKB(skb)->vcc = atm_vcc;
809 atomic_inc(&atm_vcc->stats->rx);
810 __net_timestamp(skb);
811 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
812 atm_vcc->push (atm_vcc, skb);
813 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
816 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
819 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
820 has been consumed and needs to be processed. -- REW */
821 if (qe->p1 & 0xffff) {
822 pe = bus_to_virt (qe->p0);
824 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
825 dev_kfree_skb_any (pe->skb);
826 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
830 atomic_inc(&atm_vcc->stats->rx_drop);
832 case 0x1f: /* Reassembly abort: no buffers. */
833 /* Silently increment error counter. */
835 atomic_inc(&atm_vcc->stats->rx_drop);
837 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
838 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
839 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
841 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
847 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
849 static int fs_open(struct atm_vcc *atm_vcc)
853 struct fs_transmit_config *tc;
854 struct atm_trafprm * txtp;
855 struct atm_trafprm * rxtp;
856 /* struct fs_receive_config *rc;*/
857 /* struct FS_QENTRY *qe; */
862 short vpi = atm_vcc->vpi;
863 int vci = atm_vcc->vci;
867 dev = FS_DEV(atm_vcc->dev);
868 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
871 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
872 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
874 if ((atm_vcc->qos.aal != ATM_AAL5) &&
875 (atm_vcc->qos.aal != ATM_AAL2))
876 return -EINVAL; /* XXX AAL0 */
878 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
879 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
881 /* XXX handle qos parameters (rate limiting) ? */
883 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
884 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
886 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
890 atm_vcc->dev_data = vcc;
891 vcc->last_skb = NULL;
893 init_waitqueue_head (&vcc->close_wait);
895 txtp = &atm_vcc->qos.txtp;
896 rxtp = &atm_vcc->qos.rxtp;
898 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
900 /* Increment the channel numer: take a free one next time. */
901 for (to=33;to;to--, dev->channo++) {
902 /* We only have 32 channels */
903 if (dev->channo >= 32)
905 /* If we need to do RX, AND the RX is inuse, try the next */
906 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
908 /* If we need to do TX, AND the TX is inuse, try the next */
909 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
911 /* Ok, both are free! (or not needed) */
915 printk ("No more free channels for FS50..\n");
919 vcc->channo = dev->channo;
920 dev->channo &= dev->channel_mask;
923 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
924 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
925 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
926 printk ("Channel is in use for FS155.\n");
931 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
932 vcc->channo, vcc->channo);
935 if (DO_DIRECTION (txtp)) {
936 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
937 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
938 tc, sizeof (struct fs_transmit_config));
940 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
945 /* Allocate the "open" entry from the high priority txq. This makes
946 it most likely that the chip will notice it. It also prevents us
947 from having to wait for completion. On the other hand, we may
948 need to wait for completion anyway, to see if it completed
951 switch (atm_vcc->qos.aal) {
955 | TC_FLAGS_TRANSPARENT_PAYLOAD
958 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
964 | TC_FLAGS_PACKET /* ??? */
969 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
972 /* Docs are vague about this atm_hdr field. By the way, the FS
973 * chip makes odd errors if lower bits are set.... -- REW */
974 tc->atm_hdr = (vpi << 20) | (vci << 4);
977 int pcr = atm_pcr_goal (txtp);
979 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
981 /* XXX Hmm. officially we're only allowed to do this if rounding
982 is round_down -- REW */
984 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
986 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
990 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
999 error = make_rate (pcr, r, &tmc0, NULL);
1006 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1009 tc->TMC[0] = tmc0 | 0x4000;
1010 tc->TMC[1] = 0; /* Unused */
1011 tc->TMC[2] = 0; /* Unused */
1012 tc->TMC[3] = 0; /* Unused */
1014 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1015 tc->rtag[0] = 0; /* What should I do with routing tags???
1016 -- Not used -- AS -- Thanks -- REW*/
1020 if (fs_debug & FS_DEBUG_OPEN) {
1021 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1022 my_hd (tc, sizeof (*tc));
1025 /* We now use the "submit_command" function to submit commands to
1026 the firestream. There is a define up near the definition of
1027 that routine that switches this routine between immediate write
1028 to the immediate command registers and queuing the commands in
1029 the HPTXQ for execution. This last technique might be more
1030 efficient if we know we're going to submit a whole lot of
1031 commands in one go, but this driver is not setup to be able to
1032 use such a construct. So it probably doen't matter much right
1035 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1036 submit_command (dev, &dev->hp_txq,
1037 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1038 virt_to_bus (tc), 0, 0);
1040 submit_command (dev, &dev->hp_txq,
1041 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1043 set_bit (vcc->channo, dev->tx_inuse);
1046 if (DO_DIRECTION (rxtp)) {
1047 dev->atm_vccs[vcc->channo] = atm_vcc;
1049 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1050 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1051 if (bfp >= FS_NR_FREE_POOLS) {
1052 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1053 atm_vcc->qos.rxtp.max_sdu);
1054 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1056 /* XXX clear tx inuse. Close TX part? */
1057 dev->atm_vccs[vcc->channo] = NULL;
1062 switch (atm_vcc->qos.aal) {
1065 submit_command (dev, &dev->hp_txq,
1066 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1068 RC_FLAGS_BFPS_BFP * bfp |
1069 RC_FLAGS_RXBM_PSB, 0, 0);
1072 submit_command (dev, &dev->hp_txq,
1073 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1075 RC_FLAGS_BFPS_BFP * bfp |
1076 RC_FLAGS_RXBM_PSB, 0, 0);
1079 if (IS_FS50 (dev)) {
1080 submit_command (dev, &dev->hp_txq,
1081 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1083 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1085 submit_command (dev, &dev->hp_txq,
1086 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1090 /* Indicate we're done! */
1091 set_bit(ATM_VF_READY, &atm_vcc->flags);
1098 static void fs_close(struct atm_vcc *atm_vcc)
1100 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1101 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1102 struct atm_trafprm * txtp;
1103 struct atm_trafprm * rxtp;
1107 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1109 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1110 if (vcc->last_skb) {
1111 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1113 /* We're going to wait for the last packet to get sent on this VC. It would
1114 be impolite not to send them don't you think?
1116 We don't know which packets didn't get sent. So if we get interrupted in
1117 this sleep_on, we'll lose any reference to these packets. Memory leak!
1118 On the other hand, it's awfully convenient that we can abort a "close" that
1119 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1120 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1123 txtp = &atm_vcc->qos.txtp;
1124 rxtp = &atm_vcc->qos.rxtp;
1127 /* See App note XXX (Unpublished as of now) for the reason for the
1128 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1130 if (DO_DIRECTION (txtp)) {
1131 submit_command (dev, &dev->hp_txq,
1132 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1133 clear_bit (vcc->channo, dev->tx_inuse);
1136 if (DO_DIRECTION (rxtp)) {
1137 submit_command (dev, &dev->hp_txq,
1138 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1139 dev->atm_vccs [vcc->channo] = NULL;
1141 /* This means that this is configured as a receive channel */
1142 if (IS_FS50 (dev)) {
1143 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1144 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1145 (0xfff...) -- REW */
1146 submit_command (dev, &dev->hp_txq,
1147 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1148 0x80 + vcc->channo, -1, 0 );
1152 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1159 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1161 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1162 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1163 struct FS_BPENTRY *td;
1167 fs_dprintk (FS_DEBUG_TXMEM, "I");
1168 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1169 atm_vcc, skb, vcc, dev);
1171 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1173 ATM_SKB(skb)->vcc = atm_vcc;
1175 vcc->last_skb = skb;
1177 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1178 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1180 /* Oops out of mem */
1184 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1185 *(int *) skb->data);
1187 td->flags = TD_EPI | TD_DATA | skb->len;
1189 td->bsa = virt_to_bus (skb->data);
1196 dq[qd].flags = td->flags;
1197 dq[qd].next = td->next;
1198 dq[qd].bsa = td->bsa;
1199 dq[qd].skb = td->skb;
1200 dq[qd].dev = td->dev;
1202 if (qd >= 60) qd = 0;
1205 submit_queue (dev, &dev->hp_txq,
1206 QE_TRANSMIT_DE | vcc->channo,
1207 virt_to_bus (td), 0,
1210 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1211 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1212 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1213 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1214 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1221 /* Some function placeholders for functions we don't yet support. */
1224 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1228 return -ENOIOCTLCMD;
1232 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1233 void __user *optval,int optlen)
1241 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1242 void __user *optval,unsigned int optlen)
1250 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1258 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1266 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1276 static const struct atmdev_ops ops = {
1280 .owner = THIS_MODULE,
1281 /* ioctl: fs_ioctl, */
1282 /* change_qos: fs_change_qos, */
1284 /* For now implement these internally here... */
1285 /* phy_put: fs_phy_put, */
1286 /* phy_get: fs_phy_get, */
1290 static void undocumented_pci_fix(struct pci_dev *pdev)
1294 /* The Windows driver says: */
1295 /* Switch off FireStream Retry Limit Threshold
1298 /* The register at 0x28 is documented as "reserved", no further
1301 pci_read_config_dword (pdev, 0x28, &tint);
1304 pci_write_config_dword (pdev, 0x28, tint);
1310 /**************************************************************************
1312 **************************************************************************/
1314 static void write_phy(struct fs_dev *dev, int regnum, int val)
1316 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1320 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1325 while (reginit->reg != PHY_EOF) {
1326 if (reginit->reg == PHY_CLEARALL) {
1327 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1328 for (i=0;i<reginit->val;i++) {
1329 write_phy (dev, i, 0);
1332 write_phy (dev, reginit->reg, reginit->val);
1340 static void reset_chip (struct fs_dev *dev)
1344 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1346 /* Undocumented delay */
1349 /* The "internal registers are documented to all reset to zero, but
1350 comments & code in the Windows driver indicates that the pools are
1352 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1353 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1354 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1355 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1356 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1357 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1360 /* The same goes for the match channel registers, although those are
1361 NOT documented that way in the Windows driver. -- REW */
1362 /* The Windows driver DOES write 0 to these registers somewhere in
1363 the init sequence. However, a small hardware-feature, will
1364 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1365 allocated happens to have no disabled channels that have a lower
1368 /* Clear the match channel registers. */
1369 if (IS_FS50 (dev)) {
1370 for (i=0;i<FS50_NR_CHANNELS;i++) {
1371 write_fs (dev, 0x200 + i * 4, -1);
1376 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1380 if (alignment <= 0x10) {
1381 t = kmalloc (size, flags);
1382 if ((unsigned long)t & (alignment-1)) {
1383 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1385 return aligned_kmalloc (size, flags, alignment * 4);
1389 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1393 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1394 int nentries, int is_rq)
1396 int sz = nentries * sizeof (struct FS_QENTRY);
1397 struct FS_QENTRY *p;
1401 fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1404 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1405 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1409 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1410 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1411 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1412 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1414 /* Configuration for the receive queue: 0: interrupt immediately,
1415 no pre-warning to empty queues: We do our best to keep the
1416 queue filled anyway. */
1417 write_fs (dev, Q_CNF(queue), 0 );
1422 txq->offset = queue;
1429 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1430 int bufsize, int nr_buffers)
1434 fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1436 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1437 write_fs (dev, FP_SA(queue), 0);
1438 write_fs (dev, FP_EA(queue), 0);
1439 write_fs (dev, FP_CTU(queue), 0);
1440 write_fs (dev, FP_CNT(queue), 0);
1443 fp->bufsize = bufsize;
1444 fp->nr_buffers = nr_buffers;
1451 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1454 /* This seems to be unreliable.... */
1455 return read_fs (dev, FP_CNT (fp->offset));
1462 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1463 does. I've seen "receive abort: no buffers" and things started
1464 working again after that... -- REW */
1466 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1469 struct FS_BPENTRY *qe, *ne;
1470 struct sk_buff *skb;
1474 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1475 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1477 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1479 skb = alloc_skb (fp->bufsize, gfp_flags);
1480 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1482 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1483 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1485 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1486 dev_kfree_skb_any (skb);
1490 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1491 skb, ne, skb->data, skb->head);
1493 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1494 ne->next = virt_to_bus (NULL);
1495 ne->bsa = virt_to_bus (skb->data);
1496 ne->aal_bufsize = fp->bufsize;
1501 * FIXME: following code encodes and decodes
1502 * machine pointers (could be 64-bit) into a
1506 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1507 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1509 qe = bus_to_virt ((long) qe_tmp);
1510 qe->next = virt_to_bus(ne);
1511 qe->flags &= ~FP_FLAGS_EPI;
1513 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1515 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1516 fp->n++; /* XXX Atomic_inc? */
1517 write_fs (dev, FP_CTU(fp->offset), 1);
1520 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1523 static void free_queue(struct fs_dev *dev, struct queue *txq)
1527 write_fs (dev, Q_SA(txq->offset), 0);
1528 write_fs (dev, Q_EA(txq->offset), 0);
1529 write_fs (dev, Q_RP(txq->offset), 0);
1530 write_fs (dev, Q_WP(txq->offset), 0);
1531 /* Configuration ? */
1533 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1539 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1543 write_fs (dev, FP_CNF(fp->offset), 0);
1544 write_fs (dev, FP_SA (fp->offset), 0);
1545 write_fs (dev, FP_EA (fp->offset), 0);
1546 write_fs (dev, FP_CNT(fp->offset), 0);
1547 write_fs (dev, FP_CTU(fp->offset), 0);
1554 static irqreturn_t fs_irq (int irq, void *dev_id)
1558 struct fs_dev *dev = dev_id;
1560 status = read_fs (dev, ISR);
1566 #ifdef IRQ_RATE_LIMIT
1567 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1568 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1573 if (lastjif == jiffies) {
1574 if (++nintr > IRQ_RATE_LIMIT) {
1575 free_irq (dev->irq, dev_id);
1576 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1585 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1586 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1587 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1588 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1589 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1591 /* print the bits in the ISR register. */
1592 if (fs_debug & FS_DEBUG_IRQ) {
1593 /* The FS_DEBUG things are unnecessary here. But this way it is
1594 clear for grep that these are debug prints. */
1595 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1597 if (status & (1 << i))
1598 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1599 fs_dprintk (FS_DEBUG_IRQ, "\n");
1602 if (status & ISR_RBRQ0_W) {
1603 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1604 process_incoming (dev, &dev->rx_rq[0]);
1605 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1606 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1607 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1610 if (status & ISR_RBRQ1_W) {
1611 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1612 process_incoming (dev, &dev->rx_rq[1]);
1613 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1614 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1617 if (status & ISR_RBRQ2_W) {
1618 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1619 process_incoming (dev, &dev->rx_rq[2]);
1620 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1621 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1624 if (status & ISR_RBRQ3_W) {
1625 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1626 process_incoming (dev, &dev->rx_rq[3]);
1627 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1628 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1631 if (status & ISR_CSQ_W) {
1632 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1633 process_return_queue (dev, &dev->st_q);
1636 if (status & ISR_TBRQ_W) {
1637 fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1638 process_txdone_queue (dev, &dev->tx_relq);
1647 static void fs_poll (struct timer_list *t)
1649 struct fs_dev *dev = from_timer(dev, t, timer);
1652 dev->timer.expires = jiffies + FS_POLL_FREQ;
1653 add_timer (&dev->timer);
1657 static int fs_init(struct fs_dev *dev)
1659 struct pci_dev *pci_dev;
1664 pci_dev = dev->pci_dev;
1666 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1667 IS_FS50(dev)?50:155,
1668 (unsigned long long)pci_resource_start(pci_dev, 0),
1671 if (fs_debug & FS_DEBUG_INIT)
1672 my_hd ((unsigned char *) dev, sizeof (*dev));
1674 undocumented_pci_fix (pci_dev);
1676 dev->hw_base = pci_resource_start(pci_dev, 0);
1678 dev->base = ioremap(dev->hw_base, 0x1000);
1682 write_fs (dev, SARMODE0, 0
1683 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1684 | (1 * SARMODE0_INTMODE_READCLEAR)
1685 | (1 * SARMODE0_CWRE)
1686 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1687 SARMODE0_PRPWT_FS155_3)
1688 | (1 * SARMODE0_CALSUP_1)
1689 | (IS_FS50(dev) ? (0
1691 | SARMODE0_ABRVCS_32
1692 | SARMODE0_TXVCS_32):
1695 | SARMODE0_ABRVCS_1k
1696 | SARMODE0_TXVCS_1k)));
1698 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1702 isr = read_fs (dev, ISR);
1704 /* This bit is documented as "RESERVED" */
1705 if (isr & ISR_INIT_ERR) {
1706 printk (KERN_ERR "Error initializing the FS... \n");
1709 if (isr & ISR_INIT) {
1710 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1714 /* Try again after 10ms. */
1719 printk (KERN_ERR "timeout initializing the FS... \n");
1723 /* XXX fix for fs155 */
1724 dev->channel_mask = 0x1f;
1728 write_fs (dev, SARMODE1, 0
1729 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1730 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1731 | (1 * SARMODE1_DCRM)
1732 | (1 * SARMODE1_DCOAM)
1733 | (0 * SARMODE1_OAMCRC)
1734 | (0 * SARMODE1_DUMPE)
1735 | (0 * SARMODE1_GPLEN)
1736 | (0 * SARMODE1_GNAM)
1737 | (0 * SARMODE1_GVAS)
1738 | (0 * SARMODE1_GPAS)
1739 | (1 * SARMODE1_GPRI)
1740 | (0 * SARMODE1_PMS)
1741 | (0 * SARMODE1_GFCR)
1742 | (1 * SARMODE1_HECM2)
1743 | (1 * SARMODE1_HECM1)
1744 | (1 * SARMODE1_HECM0)
1745 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1746 | (0 * 0xff) /* XXX FS155 */);
1749 /* Cal prescale etc */
1752 write_fs (dev, TMCONF, 0x0000000f);
1753 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1754 write_fs (dev, 0x80, 0x000F00E4);
1757 write_fs (dev, CELLOSCONF, 0
1758 | ( 0 * CELLOSCONF_CEN)
1760 | (0x80 * CELLOSCONF_COBS)
1761 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1762 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1763 * performance jumped 50->70... */
1765 /* Magic value by Hang */
1766 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1768 if (IS_FS50 (dev)) {
1769 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1770 dev->atm_dev->ci_range.vpi_bits = 12;
1771 dev->atm_dev->ci_range.vci_bits = 16;
1772 dev->nchannels = FS50_NR_CHANNELS;
1774 write_fs (dev, RAS0, RAS0_DCD_XHLT
1775 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1776 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1777 /* We can chose the split arbitrarily. We might be able to
1778 support more. Whatever. This should do for now. */
1779 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1780 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1782 /* Address bits we can't use should be compared to 0. */
1783 write_fs (dev, RAC, 0);
1785 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1786 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1787 * other bits, then compare with 0, which is exactly what we
1789 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1790 dev->nchannels = FS155_NR_CHANNELS;
1792 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1794 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1795 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1797 if (!dev->atm_vccs) {
1798 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1799 /* XXX Clean up..... */
1803 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1804 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1805 dev->atm_vccs, dev->nchannels / 8);
1807 if (!dev->tx_inuse) {
1808 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1809 /* XXX Clean up..... */
1812 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1813 /* -- RAS2 : FS50 only: Default is OK. */
1815 /* DMAMODE, default should be OK. -- REW */
1816 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1818 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1819 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1820 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1821 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1823 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1824 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1825 rx_buf_sizes[i], rx_pool_sizes[i]);
1826 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1830 for (i=0;i < FS_NR_RX_QUEUES;i++)
1831 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1833 dev->irq = pci_dev->irq;
1834 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1835 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1836 /* XXX undo all previous stuff... */
1839 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1841 /* We want to be notified of most things. Just the statistics count
1842 overflows are not interesting */
1843 write_fs (dev, IMR, 0
1851 write_fs (dev, SARMODE0, 0
1852 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1853 | (1 * SARMODE0_GINT)
1854 | (1 * SARMODE0_INTMODE_READCLEAR)
1855 | (0 * SARMODE0_CWRE)
1856 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1857 SARMODE0_PRPWT_FS155_3)
1858 | (1 * SARMODE0_CALSUP_1)
1861 | SARMODE0_ABRVCS_32
1862 | SARMODE0_TXVCS_32):
1865 | SARMODE0_ABRVCS_1k
1866 | SARMODE0_TXVCS_1k))
1867 | (1 * SARMODE0_RUN));
1869 init_phy (dev, PHY_NTC_INIT);
1871 if (loopback == 2) {
1872 write_phy (dev, 0x39, 0x000e);
1876 timer_setup(&dev->timer, fs_poll, 0);
1877 dev->timer.expires = jiffies + FS_POLL_FREQ;
1878 add_timer (&dev->timer);
1881 dev->atm_dev->dev_data = dev;
1890 static int firestream_init_one(struct pci_dev *pci_dev,
1891 const struct pci_device_id *ent)
1893 struct atm_dev *atm_dev;
1894 struct fs_dev *fs_dev;
1896 if (pci_enable_device(pci_dev))
1899 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1900 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1901 fs_dev, sizeof (struct fs_dev));
1904 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1906 goto err_out_free_fs_dev;
1908 fs_dev->pci_dev = pci_dev;
1909 fs_dev->atm_dev = atm_dev;
1910 fs_dev->flags = ent->driver_data;
1912 if (fs_init(fs_dev))
1913 goto err_out_free_atm_dev;
1915 fs_dev->next = fs_boards;
1919 err_out_free_atm_dev:
1920 atm_dev_deregister(atm_dev);
1921 err_out_free_fs_dev:
1927 static void firestream_remove_one(struct pci_dev *pdev)
1930 struct fs_dev *dev, *nxtdev;
1932 struct FS_BPENTRY *fp, *nxt;
1937 printk ("hptxq:\n");
1938 for (i=0;i<60;i++) {
1939 printk ("%d: %08x %08x %08x %08x \n",
1940 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1942 if (qp >= 60) qp = 0;
1945 printk ("descriptors:\n");
1946 for (i=0;i<60;i++) {
1947 printk ("%d: %p: %08x %08x %p %p\n",
1948 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1950 if (qd >= 60) qd = 0;
1954 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1955 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1957 /* XXX Hit all the tx channels too! */
1959 for (i=0;i < dev->nchannels;i++) {
1960 if (dev->atm_vccs[i]) {
1961 vcc = FS_VCC (dev->atm_vccs[i]);
1962 submit_command (dev, &dev->hp_txq,
1963 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1964 submit_command (dev, &dev->hp_txq,
1965 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1970 /* XXX Wait a while for the chip to release all buffers. */
1972 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1973 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1974 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1975 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1976 dev_kfree_skb_any (fp->skb);
1977 nxt = bus_to_virt (fp->next);
1978 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1981 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1982 dev_kfree_skb_any (fp->skb);
1983 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1987 /* Hang the chip in "reset", prevent it clobbering memory that is
1991 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1992 free_irq (dev->irq, dev);
1993 del_timer_sync (&dev->timer);
1995 atm_dev_deregister(dev->atm_dev);
1996 free_queue (dev, &dev->hp_txq);
1997 free_queue (dev, &dev->lp_txq);
1998 free_queue (dev, &dev->tx_relq);
1999 free_queue (dev, &dev->st_q);
2001 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2002 kfree (dev->atm_vccs);
2004 for (i=0;i< FS_NR_FREE_POOLS;i++)
2005 free_freepool (dev, &dev->rx_fp[i]);
2007 for (i=0;i < FS_NR_RX_QUEUES;i++)
2008 free_queue (dev, &dev->rx_rq[i]);
2011 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2019 static const struct pci_device_id firestream_pci_tbl[] = {
2020 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2021 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2025 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2027 static struct pci_driver firestream_driver = {
2028 .name = "firestream",
2029 .id_table = firestream_pci_tbl,
2030 .probe = firestream_init_one,
2031 .remove = firestream_remove_one,
2034 static int __init firestream_init_module (void)
2039 error = pci_register_driver(&firestream_driver);
2044 static void __exit firestream_cleanup_module(void)
2046 pci_unregister_driver(&firestream_driver);
2049 module_init(firestream_init_module);
2050 module_exit(firestream_cleanup_module);
2052 MODULE_LICENSE("GPL");