2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
35 #include <linux/bitrev.h>
36 #include <linux/mutex.h>
37 #include <linux/firmware.h>
38 #include <linux/ihex.h>
39 #include <linux/slab.h>
41 #include <asm/atomic.h>
43 #include <asm/byteorder.h>
45 #include "ambassador.h"
47 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
48 #define description_string "Madge ATM Ambassador driver"
49 #define version_string "1.2.4"
51 static inline void __init show_version (void) {
52 printk ("%s version %s\n", description_string, version_string);
59 I Hardware, detection, initialisation and shutdown.
63 This driver is for the PCI ATMizer-based Ambassador card (except
64 very early versions). It is not suitable for the similar EISA "TR7"
65 card. Commercially, both cards are known as Collage Server ATM
68 The loader supports image transfer to the card, image start and few
69 other miscellaneous commands.
71 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
73 The cards are big-endian.
77 Standard PCI stuff, the early cards are detected and rejected.
81 The cards are reset and the self-test results are checked. The
82 microcode image is then transferred and started. This waits for a
83 pointer to a descriptor containing details of the host-based queues
84 and buffers and various parameters etc. Once they are processed
85 normal operations may begin. The BIA is read using a microcode
90 This may be accomplished either by a card reset or via the microcode
91 shutdown command. Further investigation required.
95 The card reset does not affect PCI configuration (good) or the
96 contents of several other "shared run-time registers" (bad) which
97 include doorbell and interrupt control as well as EEPROM and PCI
98 control. The driver must be careful when modifying these registers
99 not to touch bits it does not use and to undo any changes at exit.
105 The adapter is quite intelligent (fast) and has a simple interface
106 (few features). VPI is always zero, 1024 VCIs are supported. There
107 is limited cell rate support. UBR channels can be capped and ABR
108 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
111 1. Driver <-> Adapter Communication
113 Apart from the basic loader commands, the driver communicates
114 through three entities: the command queue (CQ), the transmit queue
115 pair (TXQ) and the receive queue pairs (RXQ). These three entities
116 are set up by the host and passed to the microcode just after it has
119 All queues are host-based circular queues. They are contiguous and
120 (due to hardware limitations) have some restrictions as to their
121 locations in (bus) memory. They are of the "full means the same as
122 empty so don't do that" variety since the adapter uses pointers
125 The queue pairs work as follows: one queue is for supply to the
126 adapter, items in it are pending and are owned by the adapter; the
127 other is the queue for return from the adapter, items in it have
128 been dealt with by the adapter. The host adds items to the supply
129 (TX descriptors and free RX buffer descriptors) and removes items
130 from the return (TX and RX completions). The adapter deals with out
131 of order completions.
133 Interrupts (card to host) and the doorbell (host to card) are used
138 This is to communicate "open VC", "close VC", "get stats" etc. to
139 the adapter. At most one command is retired every millisecond by the
140 card. There is no out of order completion or notification. The
141 driver needs to check the return code of the command, waiting as
146 TX supply items are of variable length (scatter gather support) and
147 so the queue items are (more or less) pointers to the real thing.
148 Each TX supply item contains a unique, host-supplied handle (the skb
149 bus address seems most sensible as this works for Alphas as well,
150 there is no need to do any endian conversions on the handles).
152 TX return items consist of just the handles above.
154 3. RXQ (up to 4 of these with different lengths and buffer sizes)
156 RX supply items consist of a unique, host-supplied handle (the skb
157 bus address again) and a pointer to the buffer data area.
159 RX return items consist of the handle above, the VC, length and a
160 status word. This just screams "oh so easy" doesn't it?
162 Note on RX pool sizes:
164 Each pool should have enough buffers to handle a back-to-back stream
165 of minimum sized frames on a single VC. For example:
167 frame spacing = 3us (about right)
169 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
171 min number of buffers for one VC = 1 + delay/spacing (buffers)
173 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
175 The 20us delay assumes that there is no need to sleep; if we need to
176 sleep to get buffers we are going to drop frames anyway.
178 In fact, each pool should have enough buffers to support the
179 simultaneous reassembly of a separate frame on each VC and cope with
180 the case in which frames complete in round robin cell fashion on
183 Only one frame can complete at each cell arrival, so if "n" VCs are
184 open, the worst case is to have them all complete frames together
185 followed by all starting new frames together.
187 desired number of buffers = n + delay/spacing
189 These are the extreme requirements, however, they are "n+k" for some
190 "k" so we have only the constant to choose. This is the argument
191 rx_lats which current defaults to 7.
193 Actually, "n ? n+k : 0" is better and this is what is implemented,
194 subject to the limit given by the pool size.
198 Simple spinlocks are used around the TX and RX queue mechanisms.
199 Anyone with a faster, working method is welcome to implement it.
201 The adapter command queue is protected with a spinlock. We always
202 wait for commands to complete.
204 A more complex form of locking is used around parts of the VC open
205 and close functions. There are three reasons for a lock: 1. we need
206 to do atomic rate reservation and release (not used yet), 2. Opening
207 sometimes involves two adapter commands which must not be separated
208 by another command on the same VC, 3. the changes to RX pool size
209 must be atomic. The lock needs to work over context switches, so we
212 III Hardware Features and Microcode Bugs
216 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
220 All structures that are not accessed using DMA must be 4-byte
221 aligned (not a problem) and must not cross 4MB boundaries.
223 There is a DMA memory hole at E0000000-E00000FF (groan).
225 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
226 but for a hardware bug).
228 RX buffers (DMA write) must not cross 16MB boundaries and must
229 include spare trailing bytes up to the next 4-byte boundary; they
230 will be written with rubbish.
232 The PLX likes to prefetch; if reading up to 4 u32 past the end of
233 each TX fragment is not a problem, then TX can be made to go a
234 little faster by passing a flag at init that disables a prefetch
235 workaround. We do not pass this flag. (new microcode only)
238 . Note that alloc_skb rounds up size to a 16byte boundary.
239 . Ensure all areas do not traverse 4MB boundaries.
240 . Ensure all areas do not start at a E00000xx bus address.
241 (I cannot be certain, but this may always hold with Linux)
242 . Make all failures cause a loud message.
243 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
244 . Discard non-conforming TX fragment descriptors (the TX fails).
245 In the future we could:
246 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
247 . Segment TX areas into some/more fragments, when necessary.
248 . Relax checks for non-DMA items (ignore hole).
249 . Give scatter-gather (iovec) requirements using ???. (?)
251 3. VC close is broken (only for new microcode)
253 The VC close adapter microcode command fails to do anything if any
254 frames have been received on the VC but none have been transmitted.
255 Frames continue to be reassembled and passed (with IRQ) to the
262 . Timer code may be broken.
264 . Deal with buggy VC close (somehow) in microcode 12.
266 . Handle interrupted and/or non-blocking writes - is this a job for
269 . Add code to break up TX fragments when they span 4MB boundaries.
271 . Add SUNI phy layer (need to know where SUNI lives on card).
273 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
274 leave extra headroom space for Ambassador TX descriptors.
276 . Understand these elements of struct atm_vcc: recvq (proto?),
277 sleep, callback, listenq, backlog_quota, reply and user_back.
279 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
281 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
283 . Decide whether RX buffer recycling is or can be made completely safe;
284 turn it back on. It looks like Werner is going to axe this.
286 . Implement QoS changes on open VCs (involves extracting parts of VC open
287 and close into separate functions and using them to make changes).
289 . Hack on command queue so that someone can issue multiple commands and wait
290 on the last one (OR only "no-op" or "wait" commands are waited for).
292 . Eliminate need for while-schedule around do_command.
296 static void do_housekeeping (unsigned long arg);
297 /********** globals **********/
299 static unsigned short debug = 0;
300 static unsigned int cmds = 8;
301 static unsigned int txs = 32;
302 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
303 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
304 static unsigned int rx_lats = 7;
305 static unsigned char pci_lat = 0;
307 static const unsigned long onegigmask = -1 << 30;
309 /********** access to adapter **********/
311 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
312 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
314 dev->membase[addr / sizeof(u32)] = data;
316 outl (data, dev->iobase + addr);
320 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
322 u32 data = dev->membase[addr / sizeof(u32)];
324 u32 data = inl (dev->iobase + addr);
326 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
330 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
331 __be32 be = cpu_to_be32 (data);
332 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
334 dev->membase[addr / sizeof(u32)] = be;
336 outl (be, dev->iobase + addr);
340 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
342 __be32 be = dev->membase[addr / sizeof(u32)];
344 __be32 be = inl (dev->iobase + addr);
346 u32 data = be32_to_cpu (be);
347 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
351 /********** dump routines **********/
353 static inline void dump_registers (const amb_dev * dev) {
354 #ifdef DEBUG_AMBASSADOR
355 if (debug & DBG_REGS) {
357 PRINTD (DBG_REGS, "reading PLX control: ");
358 for (i = 0x00; i < 0x30; i += sizeof(u32))
360 PRINTD (DBG_REGS, "reading mailboxes: ");
361 for (i = 0x40; i < 0x60; i += sizeof(u32))
363 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
364 for (i = 0x60; i < 0x70; i += sizeof(u32))
373 static inline void dump_loader_block (volatile loader_block * lb) {
374 #ifdef DEBUG_AMBASSADOR
376 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
377 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
378 for (i = 0; i < MAX_COMMAND_DATA; ++i)
379 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
380 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
387 static inline void dump_command (command * cmd) {
388 #ifdef DEBUG_AMBASSADOR
390 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
391 cmd, /*be32_to_cpu*/ (cmd->request));
392 for (i = 0; i < 3; ++i)
393 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
394 PRINTDE (DBG_CMD, "");
401 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
402 #ifdef DEBUG_AMBASSADOR
404 unsigned char * data = skb->data;
405 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
406 for (i=0; i<skb->len && i < 256;i++)
407 PRINTDM (DBG_DATA, "%02x ", data[i]);
408 PRINTDE (DBG_DATA,"");
417 /********** check memory areas for use by Ambassador **********/
419 /* see limitations under Hardware Features */
421 static int check_area (void * start, size_t length) {
422 // assumes length > 0
423 const u32 fourmegmask = -1 << 22;
424 const u32 twofivesixmask = -1 << 8;
425 const u32 starthole = 0xE0000000;
426 u32 startaddress = virt_to_bus (start);
427 u32 lastaddress = startaddress+length-1;
428 if ((startaddress ^ lastaddress) & fourmegmask ||
429 (startaddress & twofivesixmask) == starthole) {
430 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
431 startaddress, lastaddress);
438 /********** free an skb (as per ATM device driver documentation) **********/
440 static void amb_kfree_skb (struct sk_buff * skb) {
441 if (ATM_SKB(skb)->vcc->pop) {
442 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
444 dev_kfree_skb_any (skb);
448 /********** TX completion **********/
450 static void tx_complete (amb_dev * dev, tx_out * tx) {
451 tx_simple * tx_descr = bus_to_virt (tx->handle);
452 struct sk_buff * skb = tx_descr->skb;
454 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
457 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
459 // free the descriptor
469 /********** RX completion **********/
471 static void rx_complete (amb_dev * dev, rx_out * rx) {
472 struct sk_buff * skb = bus_to_virt (rx->handle);
473 u16 vc = be16_to_cpu (rx->vc);
474 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
475 u16 status = be16_to_cpu (rx->status);
476 u16 rx_len = be16_to_cpu (rx->length);
478 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
480 // XXX move this in and add to VC stats ???
482 struct atm_vcc * atm_vcc = dev->rxer[vc];
487 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
489 if (atm_charge (atm_vcc, skb->truesize)) {
491 // prepare socket buffer
492 ATM_SKB(skb)->vcc = atm_vcc;
493 skb_put (skb, rx_len);
495 dump_skb ("<<<", vc, skb);
498 atomic_inc(&atm_vcc->stats->rx);
499 __net_timestamp(skb);
500 // end of our responsability
501 atm_vcc->push (atm_vcc, skb);
505 // someone fix this (message), please!
506 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
507 // drop stats incremented in atm_charge
511 PRINTK (KERN_INFO, "dropped over-size frame");
512 // should we count this?
513 atomic_inc(&atm_vcc->stats->rx_drop);
517 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
518 // this is an adapter bug, only in new version of microcode
522 dev->stats.rx.error++;
523 if (status & CRC_ERR)
524 dev->stats.rx.badcrc++;
525 if (status & LEN_ERR)
526 dev->stats.rx.toolong++;
527 if (status & ABORT_ERR)
528 dev->stats.rx.aborted++;
529 if (status & UNUSED_ERR)
530 dev->stats.rx.unused++;
533 dev_kfree_skb_any (skb);
539 Note on queue handling.
541 Here "give" and "take" refer to queue entries and a queue (pair)
542 rather than frames to or from the host or adapter. Empty frame
543 buffers are given to the RX queue pair and returned unused or
544 containing RX frames. TX frames (well, pointers to TX fragment
545 lists) are given to the TX queue pair, completions are returned.
549 /********** command queue **********/
551 // I really don't like this, but it's the best I can do at the moment
553 // also, the callers are responsible for byte order as the microcode
554 // sometimes does 16-bit accesses (yuk yuk yuk)
556 static int command_do (amb_dev * dev, command * cmd) {
557 amb_cq * cq = &dev->cq;
558 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
561 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
563 if (test_bit (dead, &dev->flags))
566 spin_lock (&cq->lock);
569 if (cq->pending < cq->maximum) {
570 // remember my slot for later
572 PRINTD (DBG_CMD, "command in slot %p", my_slot);
579 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
582 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
584 if (cq->pending > cq->high)
585 cq->high = cq->pending;
586 spin_unlock (&cq->lock);
588 // these comments were in a while-loop before, msleep removes the loop
590 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
593 // wait for my slot to be reached (all waiters are here or above, until...)
594 while (ptrs->out != my_slot) {
595 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
596 set_current_state(TASK_UNINTERRUPTIBLE);
600 // wait on my slot (... one gets to its slot, and... )
601 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
602 PRINTD (DBG_CMD, "wait: command slot completion");
603 set_current_state(TASK_UNINTERRUPTIBLE);
607 PRINTD (DBG_CMD, "command complete");
608 // update queue (... moves the queue along to the next slot)
609 spin_lock (&cq->lock);
613 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
614 spin_unlock (&cq->lock);
619 spin_unlock (&cq->lock);
625 /********** TX queue pair **********/
627 static int tx_give (amb_dev * dev, tx_in * tx) {
628 amb_txq * txq = &dev->txq;
631 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
633 if (test_bit (dead, &dev->flags))
636 spin_lock_irqsave (&txq->lock, flags);
638 if (txq->pending < txq->maximum) {
639 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
643 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
644 // hand over the TX and ring the bell
645 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
646 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
648 if (txq->pending > txq->high)
649 txq->high = txq->pending;
650 spin_unlock_irqrestore (&txq->lock, flags);
654 spin_unlock_irqrestore (&txq->lock, flags);
659 static int tx_take (amb_dev * dev) {
660 amb_txq * txq = &dev->txq;
663 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
665 spin_lock_irqsave (&txq->lock, flags);
667 if (txq->pending && txq->out.ptr->handle) {
668 // deal with TX completion
669 tx_complete (dev, txq->out.ptr);
671 txq->out.ptr->handle = 0;
674 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
676 spin_unlock_irqrestore (&txq->lock, flags);
680 spin_unlock_irqrestore (&txq->lock, flags);
685 /********** RX queue pairs **********/
687 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
688 amb_rxq * rxq = &dev->rxq[pool];
691 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
693 spin_lock_irqsave (&rxq->lock, flags);
695 if (rxq->pending < rxq->maximum) {
696 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
700 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
701 // hand over the RX buffer
702 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
704 spin_unlock_irqrestore (&rxq->lock, flags);
707 spin_unlock_irqrestore (&rxq->lock, flags);
712 static int rx_take (amb_dev * dev, unsigned char pool) {
713 amb_rxq * rxq = &dev->rxq[pool];
716 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
718 spin_lock_irqsave (&rxq->lock, flags);
720 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
721 // deal with RX completion
722 rx_complete (dev, rxq->out.ptr);
724 rxq->out.ptr->status = 0;
725 rxq->out.ptr->length = 0;
728 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
730 if (rxq->pending < rxq->low)
731 rxq->low = rxq->pending;
732 spin_unlock_irqrestore (&rxq->lock, flags);
735 if (!rxq->pending && rxq->buffers_wanted)
737 spin_unlock_irqrestore (&rxq->lock, flags);
742 /********** RX Pool handling **********/
744 /* pre: buffers_wanted = 0, post: pending = 0 */
745 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
746 amb_rxq * rxq = &dev->rxq[pool];
748 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
750 if (test_bit (dead, &dev->flags))
753 /* we are not quite like the fill pool routines as we cannot just
754 remove one buffer, we have to remove all of them, but we might as
756 if (rxq->pending > rxq->buffers_wanted) {
758 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
759 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
760 while (command_do (dev, &cmd))
762 /* the pool may also be emptied via the interrupt handler */
763 while (rxq->pending > rxq->buffers_wanted)
764 if (rx_take (dev, pool))
771 static void drain_rx_pools (amb_dev * dev) {
774 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
776 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
777 drain_rx_pool (dev, pool);
780 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
786 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
788 if (test_bit (dead, &dev->flags))
791 rxq = &dev->rxq[pool];
792 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
794 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
796 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
799 if (check_area (skb->data, skb->truesize)) {
800 dev_kfree_skb_any (skb);
803 // cast needed as there is no %? for pointer differences
804 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
805 skb, skb->head, (long) (skb_end_pointer(skb) - skb->head));
806 rx.handle = virt_to_bus (skb);
807 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
808 if (rx_give (dev, &rx, pool))
809 dev_kfree_skb_any (skb);
816 // top up all RX pools (can also be called as a bottom half)
817 static void fill_rx_pools (amb_dev * dev) {
820 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
822 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
823 fill_rx_pool (dev, pool, GFP_ATOMIC);
828 /********** enable host interrupts **********/
830 static void interrupts_on (amb_dev * dev) {
831 wr_plain (dev, offsetof(amb_mem, interrupt_control),
832 rd_plain (dev, offsetof(amb_mem, interrupt_control))
833 | AMB_INTERRUPT_BITS);
836 /********** disable host interrupts **********/
838 static void interrupts_off (amb_dev * dev) {
839 wr_plain (dev, offsetof(amb_mem, interrupt_control),
840 rd_plain (dev, offsetof(amb_mem, interrupt_control))
841 &~ AMB_INTERRUPT_BITS);
844 /********** interrupt handling **********/
846 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
847 amb_dev * dev = dev_id;
849 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
852 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
854 // for us or someone else sharing the same interrupt
856 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
861 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
862 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
866 unsigned int irq_work = 0;
868 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
869 while (!rx_take (dev, pool))
871 while (!tx_take (dev))
875 #ifdef FILL_RX_POOLS_IN_BH
876 schedule_work (&dev->bh);
881 PRINTD (DBG_IRQ, "work done: %u", irq_work);
883 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
887 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
891 /********** make rate (not quite as much fun as Horizon) **********/
893 static int make_rate (unsigned int rate, rounding r,
894 u16 * bits, unsigned int * actual) {
895 unsigned char exp = -1; // hush gcc
896 unsigned int man = -1; // hush gcc
898 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
900 // rates in cells per second, ITU format (nasty 16-bit floating-point)
901 // given 5-bit e and 9-bit m:
902 // rate = EITHER (1+m/2^9)*2^e OR 0
903 // bits = EITHER 1<<14 | e<<9 | m OR 0
904 // (bit 15 is "reserved", bit 14 "non-zero")
905 // smallest rate is 0 (special representation)
906 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
907 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
909 // find position of top bit, this gives e
910 // remove top bit and shift (rounding if feeling clever) by 9-e
912 // ucode bug: please don't set bit 14! so 0 rate not representable
914 if (rate > 0xffc00000U) {
915 // larger than largest representable rate
925 // representable rate
930 // invariant: rate = man*2^(exp-31)
931 while (!(man & (1<<31))) {
936 // man has top bit set
937 // rate = (2^31+(man-2^31))*2^(exp-31)
938 // rate = (1+(man-2^31)/2^31)*2^exp
940 man &= 0xffffffffU; // a nop on 32-bit systems
941 // rate = (1+man/2^32)*2^exp
943 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
944 // time to lose significance... we want m in the range 0 to 2^9-1
945 // rounding presents a minor problem... we first decide which way
946 // we are rounding (based on given rounding direction and possibly
947 // the bits of the mantissa that are to be discarded).
956 // check all bits that we are discarding
957 if (man & (~0U>>9)) {
958 man = (man>>(32-9)) + 1;
960 // no need to check for round up outside of range
969 case round_nearest: {
970 // check msb that we are discarding
971 if (man & (1<<(32-9-1))) {
972 man = (man>>(32-9)) + 1;
974 // no need to check for round up outside of range
986 // zero rate - not representable
988 if (r == round_down) {
997 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
1000 *bits = /* (1<<14) | */ (exp<<9) | man;
1003 *actual = (exp >= 9)
1004 ? (1 << exp) + (man << (exp-9))
1005 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1010 /********** Linux ATM Operations **********/
1012 // some are not yet implemented while others do not make sense for
1015 /********** Open a VC **********/
1017 static int amb_open (struct atm_vcc * atm_vcc)
1021 struct atm_qos * qos;
1022 struct atm_trafprm * txtp;
1023 struct atm_trafprm * rxtp;
1024 u16 tx_rate_bits = -1; // hush gcc
1025 u16 tx_vc_bits = -1; // hush gcc
1026 u16 tx_frame_bits = -1; // hush gcc
1028 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1030 unsigned char pool = -1; // hush gcc
1031 short vpi = atm_vcc->vpi;
1032 int vci = atm_vcc->vci;
1034 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1036 #ifdef ATM_VPI_UNSPEC
1037 // UNSPEC is deprecated, remove this code eventually
1038 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1039 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1044 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1045 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1046 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1050 qos = &atm_vcc->qos;
1052 if (qos->aal != ATM_AAL5) {
1053 PRINTD (DBG_QOS, "AAL not supported");
1057 // traffic parameters
1059 PRINTD (DBG_QOS, "TX:");
1061 if (txtp->traffic_class != ATM_NONE) {
1062 switch (txtp->traffic_class) {
1064 // we take "the PCR" as a rate-cap
1065 int pcr = atm_pcr_goal (txtp);
1069 tx_vc_bits = TX_UBR;
1070 tx_frame_bits = TX_FRAME_NOTCAP;
1079 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1082 tx_vc_bits = TX_UBR_CAPPED;
1083 tx_frame_bits = TX_FRAME_CAPPED;
1089 pcr = atm_pcr_goal (txtp);
1090 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1095 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1096 PRINTD (DBG_QOS, "request for non-UBR denied");
1100 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1101 tx_rate_bits, tx_vc_bits);
1104 PRINTD (DBG_QOS, "RX:");
1106 if (rxtp->traffic_class == ATM_NONE) {
1109 // choose an RX pool (arranged in increasing size)
1110 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1111 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1112 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1113 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1116 if (pool == NUM_RX_POOLS) {
1117 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1118 "no pool suitable for VC (RX max_sdu %d is too large)",
1123 switch (rxtp->traffic_class) {
1129 pcr = atm_pcr_goal (rxtp);
1130 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1135 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1136 PRINTD (DBG_QOS, "request for non-UBR denied");
1142 // get space for our vcc stuff
1143 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1145 PRINTK (KERN_ERR, "out of memory!");
1148 atm_vcc->dev_data = (void *) vcc;
1150 // no failures beyond this point
1152 // we are not really "immediately before allocating the connection
1153 // identifier in hardware", but it will just have to do!
1154 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1156 if (txtp->traffic_class != ATM_NONE) {
1159 vcc->tx_frame_bits = tx_frame_bits;
1161 mutex_lock(&dev->vcc_sf);
1162 if (dev->rxer[vci]) {
1163 // RXer on the channel already, just modify rate...
1164 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1165 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1166 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1167 while (command_do (dev, &cmd))
1169 // ... and TX flags, preserving the RX pool
1170 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1171 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1172 cmd.args.modify_flags.flags = cpu_to_be32
1173 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1174 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1175 while (command_do (dev, &cmd))
1178 // no RXer on the channel, just open (with pool zero)
1179 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1180 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1181 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1182 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1183 while (command_do (dev, &cmd))
1186 dev->txer[vci].tx_present = 1;
1187 mutex_unlock(&dev->vcc_sf);
1190 if (rxtp->traffic_class != ATM_NONE) {
1193 vcc->rx_info.pool = pool;
1195 mutex_lock(&dev->vcc_sf);
1196 /* grow RX buffer pool */
1197 if (!dev->rxq[pool].buffers_wanted)
1198 dev->rxq[pool].buffers_wanted = rx_lats;
1199 dev->rxq[pool].buffers_wanted += 1;
1200 fill_rx_pool (dev, pool, GFP_KERNEL);
1202 if (dev->txer[vci].tx_present) {
1203 // TXer on the channel already
1204 // switch (from pool zero) to this pool, preserving the TX bits
1205 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1206 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1207 cmd.args.modify_flags.flags = cpu_to_be32
1208 ( (pool << SRB_POOL_SHIFT)
1209 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1211 // no TXer on the channel, open the VC (with no rate info)
1212 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1213 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1214 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1215 cmd.args.open.rate = cpu_to_be32 (0);
1217 while (command_do (dev, &cmd))
1219 // this link allows RX frames through
1220 dev->rxer[vci] = atm_vcc;
1221 mutex_unlock(&dev->vcc_sf);
1224 // indicate readiness
1225 set_bit(ATM_VF_READY,&atm_vcc->flags);
1230 /********** Close a VC **********/
1232 static void amb_close (struct atm_vcc * atm_vcc) {
1233 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1234 amb_vcc * vcc = AMB_VCC (atm_vcc);
1235 u16 vci = atm_vcc->vci;
1237 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1239 // indicate unreadiness
1240 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1243 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1246 mutex_lock(&dev->vcc_sf);
1247 if (dev->rxer[vci]) {
1248 // RXer still on the channel, just modify rate... XXX not really needed
1249 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1250 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1251 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1252 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1254 // no RXer on the channel, close channel
1255 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1256 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1258 dev->txer[vci].tx_present = 0;
1259 while (command_do (dev, &cmd))
1261 mutex_unlock(&dev->vcc_sf);
1265 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1268 // this is (the?) one reason why we need the amb_vcc struct
1269 unsigned char pool = vcc->rx_info.pool;
1271 mutex_lock(&dev->vcc_sf);
1272 if (dev->txer[vci].tx_present) {
1273 // TXer still on the channel, just go to pool zero XXX not really needed
1274 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1275 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1276 cmd.args.modify_flags.flags = cpu_to_be32
1277 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1279 // no TXer on the channel, close the VC
1280 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1281 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1283 // forget the rxer - no more skbs will be pushed
1284 if (atm_vcc != dev->rxer[vci])
1285 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1286 "arghhh! we're going to die!",
1287 vcc, dev->rxer[vci]);
1288 dev->rxer[vci] = NULL;
1289 while (command_do (dev, &cmd))
1292 /* shrink RX buffer pool */
1293 dev->rxq[pool].buffers_wanted -= 1;
1294 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1295 dev->rxq[pool].buffers_wanted = 0;
1296 drain_rx_pool (dev, pool);
1298 mutex_unlock(&dev->vcc_sf);
1301 // free our structure
1304 // say the VPI/VCI is free again
1305 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1310 /********** Send **********/
1312 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1313 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1314 amb_vcc * vcc = AMB_VCC(atm_vcc);
1315 u16 vc = atm_vcc->vci;
1316 unsigned int tx_len = skb->len;
1317 unsigned char * tx_data = skb->data;
1318 tx_simple * tx_descr;
1321 if (test_bit (dead, &dev->flags))
1324 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1325 vc, tx_data, tx_len);
1327 dump_skb (">>>", vc, skb);
1329 if (!dev->txer[vc].tx_present) {
1330 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1334 // this is a driver private field so we have to set it ourselves,
1335 // despite the fact that we are _required_ to use it to check for a
1337 ATM_SKB(skb)->vcc = atm_vcc;
1339 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1340 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1344 if (check_area (skb->data, skb->len)) {
1345 atomic_inc(&atm_vcc->stats->tx_err);
1346 return -ENOMEM; // ?
1349 // allocate memory for fragments
1350 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1352 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1355 if (check_area (tx_descr, sizeof(tx_simple))) {
1359 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1361 tx_descr->skb = skb;
1363 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1364 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1366 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1367 tx_descr->tx_frag_end.vc = 0;
1368 tx_descr->tx_frag_end.next_descriptor_length = 0;
1369 tx_descr->tx_frag_end.next_descriptor = 0;
1370 #ifdef AMB_NEW_MICROCODE
1371 tx_descr->tx_frag_end.cpcs_uu = 0;
1372 tx_descr->tx_frag_end.cpi = 0;
1373 tx_descr->tx_frag_end.pad = 0;
1376 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1377 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1378 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1380 while (tx_give (dev, &tx))
1385 /********** Change QoS on a VC **********/
1387 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1389 /********** Free RX Socket Buffer **********/
1392 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1393 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1394 amb_vcc * vcc = AMB_VCC (atm_vcc);
1395 unsigned char pool = vcc->rx_info.pool;
1398 // This may be unsafe for various reasons that I cannot really guess
1399 // at. However, I note that the ATM layer calls kfree_skb rather
1400 // than dev_kfree_skb at this point so we are least covered as far
1401 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1403 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1406 rx.handle = virt_to_bus (skb);
1407 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1409 skb->data = skb->head;
1410 skb->tail = skb->head;
1413 if (!rx_give (dev, &rx, pool)) {
1415 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1419 // just do what the ATM layer would have done
1420 dev_kfree_skb_any (skb);
1426 /********** Proc File Output **********/
1428 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1429 amb_dev * dev = AMB_DEV (atm_dev);
1433 PRINTD (DBG_FLOW, "amb_proc_read");
1435 /* more diagnostics here? */
1438 amb_stats * s = &dev->stats;
1439 return sprintf (page,
1440 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1441 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1442 s->tx_ok, s->rx.ok, s->rx.error,
1443 s->rx.badcrc, s->rx.toolong,
1444 s->rx.aborted, s->rx.unused);
1448 amb_cq * c = &dev->cq;
1449 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1450 c->pending, c->high, c->maximum);
1454 amb_txq * t = &dev->txq;
1455 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1456 t->pending, t->maximum, t->high, t->filled);
1460 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1461 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1462 amb_rxq * r = &dev->rxq[pool];
1463 count += sprintf (page+count, " %u/%u/%u %u %u",
1464 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1466 count += sprintf (page+count, ".\n");
1471 unsigned int count = sprintf (page, "RX buffer sizes:");
1472 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1473 amb_rxq * r = &dev->rxq[pool];
1474 count += sprintf (page+count, " %u", r->buffer_size);
1476 count += sprintf (page+count, ".\n");
1489 /********** Operation Structure **********/
1491 static const struct atmdev_ops amb_ops = {
1495 .proc_read = amb_proc_read,
1496 .owner = THIS_MODULE,
1499 /********** housekeeping **********/
1500 static void do_housekeeping (unsigned long arg) {
1501 amb_dev * dev = (amb_dev *) arg;
1503 // could collect device-specific (not driver/atm-linux) stats here
1505 // last resort refill once every ten seconds
1506 fill_rx_pools (dev);
1507 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1512 /********** creation of communication queues **********/
1514 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1515 unsigned int txs, unsigned int * rxs,
1516 unsigned int * rx_buffer_sizes) {
1522 PRINTD (DBG_FLOW, "create_queues %p", dev);
1524 total += cmds * sizeof(command);
1526 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1528 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1529 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1531 memory = kmalloc (total, GFP_KERNEL);
1533 PRINTK (KERN_ERR, "could not allocate queues");
1536 if (check_area (memory, total)) {
1537 PRINTK (KERN_ERR, "queues allocated in nasty area");
1542 limit = memory + total;
1543 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1545 PRINTD (DBG_CMD, "command queue at %p", memory);
1548 command * cmd = memory;
1549 amb_cq * cq = &dev->cq;
1553 cq->maximum = cmds - 1;
1555 cq->ptrs.start = cmd;
1558 cq->ptrs.limit = cmd + cmds;
1560 memory = cq->ptrs.limit;
1563 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1566 tx_in * in = memory;
1568 amb_txq * txq = &dev->txq;
1573 txq->maximum = txs - 1;
1577 txq->in.limit = in + txs;
1579 memory = txq->in.limit;
1582 txq->out.start = out;
1584 txq->out.limit = out + txs;
1586 memory = txq->out.limit;
1589 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1591 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1592 rx_in * in = memory;
1594 amb_rxq * rxq = &dev->rxq[pool];
1596 rxq->buffer_size = rx_buffer_sizes[pool];
1597 rxq->buffers_wanted = 0;
1600 rxq->low = rxs[pool] - 1;
1602 rxq->maximum = rxs[pool] - 1;
1606 rxq->in.limit = in + rxs[pool];
1608 memory = rxq->in.limit;
1611 rxq->out.start = out;
1613 rxq->out.limit = out + rxs[pool];
1615 memory = rxq->out.limit;
1618 if (memory == limit) {
1621 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1622 kfree (limit - total);
1628 /********** destruction of communication queues **********/
1630 static void destroy_queues (amb_dev * dev) {
1631 // all queues assumed empty
1632 void * memory = dev->cq.ptrs.start;
1633 // includes txq.in, txq.out, rxq[].in and rxq[].out
1635 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1637 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1643 /********** basic loader commands and error handling **********/
1644 // centisecond timeouts - guessing away here
1645 static unsigned int command_timeouts [] = {
1646 [host_memory_test] = 15,
1647 [read_adapter_memory] = 2,
1648 [write_adapter_memory] = 2,
1649 [adapter_start] = 50,
1650 [get_version_number] = 10,
1651 [interrupt_host] = 1,
1652 [flash_erase_sector] = 1,
1653 [adap_download_block] = 1,
1654 [adap_erase_flash] = 1,
1655 [adap_run_in_iram] = 1,
1656 [adap_end_download] = 1
1660 static unsigned int command_successes [] = {
1661 [host_memory_test] = COMMAND_PASSED_TEST,
1662 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1663 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1664 [adapter_start] = COMMAND_COMPLETE,
1665 [get_version_number] = COMMAND_COMPLETE,
1666 [interrupt_host] = COMMAND_COMPLETE,
1667 [flash_erase_sector] = COMMAND_COMPLETE,
1668 [adap_download_block] = COMMAND_COMPLETE,
1669 [adap_erase_flash] = COMMAND_COMPLETE,
1670 [adap_run_in_iram] = COMMAND_COMPLETE,
1671 [adap_end_download] = COMMAND_COMPLETE
1674 static int decode_loader_result (loader_command cmd, u32 result)
1679 if (result == command_successes[cmd])
1685 msg = "bad command";
1687 case COMMAND_IN_PROGRESS:
1689 msg = "command in progress";
1691 case COMMAND_PASSED_TEST:
1693 msg = "command passed test";
1695 case COMMAND_FAILED_TEST:
1697 msg = "command failed test";
1699 case COMMAND_READ_DATA_OK:
1701 msg = "command read data ok";
1703 case COMMAND_READ_BAD_ADDRESS:
1705 msg = "command read bad address";
1707 case COMMAND_WRITE_DATA_OK:
1709 msg = "command write data ok";
1711 case COMMAND_WRITE_BAD_ADDRESS:
1713 msg = "command write bad address";
1715 case COMMAND_WRITE_FLASH_FAILURE:
1717 msg = "command write flash failure";
1719 case COMMAND_COMPLETE:
1721 msg = "command complete";
1723 case COMMAND_FLASH_ERASE_FAILURE:
1725 msg = "command flash erase failure";
1727 case COMMAND_WRITE_BAD_DATA:
1729 msg = "command write bad data";
1733 msg = "unknown error";
1734 PRINTD (DBG_LOAD|DBG_ERR,
1735 "decode_loader_result got %d=%x !",
1740 PRINTK (KERN_ERR, "%s", msg);
1744 static int __devinit do_loader_command (volatile loader_block * lb,
1745 const amb_dev * dev, loader_command cmd) {
1747 unsigned long timeout;
1749 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1753 Set the return value to zero, set the command type and set the
1754 valid entry to the right magic value. The payload is already
1755 correctly byte-ordered so we leave it alone. Hit the doorbell
1756 with the bus address of this structure.
1761 lb->command = cpu_to_be32 (cmd);
1762 lb->valid = cpu_to_be32 (DMA_VALID);
1763 // dump_registers (dev);
1764 // dump_loader_block (lb);
1765 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1767 timeout = command_timeouts[cmd] * 10;
1769 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1771 timeout = msleep_interruptible(timeout);
1773 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1774 dump_registers (dev);
1775 dump_loader_block (lb);
1779 if (cmd == adapter_start) {
1780 // wait for start command to acknowledge...
1782 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1784 timeout = msleep_interruptible(timeout);
1786 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1787 be32_to_cpu (lb->result));
1788 dump_registers (dev);
1793 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1798 /* loader: determine loader version */
1800 static int __devinit get_loader_version (loader_block * lb,
1801 const amb_dev * dev, u32 * version) {
1804 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1806 res = do_loader_command (lb, dev, get_version_number);
1810 *version = be32_to_cpu (lb->payload.version);
1814 /* loader: write memory data blocks */
1816 static int __devinit loader_write (loader_block* lb,
1818 const struct ihex_binrec *rec) {
1819 transfer_block * tb = &lb->payload.transfer;
1821 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1823 tb->address = rec->addr;
1824 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1825 memcpy(tb->data, rec->data, be16_to_cpu(rec->len));
1826 return do_loader_command (lb, dev, write_adapter_memory);
1829 /* loader: verify memory data blocks */
1831 static int __devinit loader_verify (loader_block * lb,
1833 const struct ihex_binrec *rec) {
1834 transfer_block * tb = &lb->payload.transfer;
1837 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1839 tb->address = rec->addr;
1840 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1841 res = do_loader_command (lb, dev, read_adapter_memory);
1842 if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len)))
1847 /* loader: start microcode */
1849 static int __devinit loader_start (loader_block * lb,
1850 const amb_dev * dev, u32 address) {
1851 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1853 lb->payload.start = cpu_to_be32 (address);
1854 return do_loader_command (lb, dev, adapter_start);
1857 /********** reset card **********/
1859 static inline void sf (const char * msg)
1861 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1864 static int amb_reset (amb_dev * dev, int diags) {
1867 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1869 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1870 // put card into reset state
1871 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1872 // wait a short while
1875 // put card into known good state
1876 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1877 // clear all interrupts just in case
1878 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1880 // clear self-test done flag
1881 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1882 // take card out of reset state
1883 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1886 unsigned long timeout;
1889 // half second time-out
1891 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1893 timeout = msleep_interruptible(timeout);
1895 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1899 // get results of self-test
1900 // XXX double check byte-order
1901 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1902 if (word & SELF_TEST_FAILURE) {
1903 if (word & GPINT_TST_FAILURE)
1905 if (word & SUNI_DATA_PATTERN_FAILURE)
1906 sf ("SUNI data pattern");
1907 if (word & SUNI_DATA_BITS_FAILURE)
1908 sf ("SUNI data bits");
1909 if (word & SUNI_UTOPIA_FAILURE)
1910 sf ("SUNI UTOPIA interface");
1911 if (word & SUNI_FIFO_FAILURE)
1912 sf ("SUNI cell buffer FIFO");
1913 if (word & SRAM_FAILURE)
1915 // better return value?
1923 /********** transfer and start the microcode **********/
1925 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1926 const struct firmware *fw;
1927 unsigned long start_address;
1928 const struct ihex_binrec *rec;
1931 res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev);
1933 PRINTK (KERN_ERR, "Cannot load microcode data");
1937 /* First record contains just the start address */
1938 rec = (const struct ihex_binrec *)fw->data;
1939 if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) {
1940 PRINTK (KERN_ERR, "Bad microcode data (no start record)");
1943 start_address = be32_to_cpup((__be32 *)rec->data);
1945 rec = ihex_next_binrec(rec);
1947 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1950 PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr),
1951 be16_to_cpu(rec->len));
1952 if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) {
1953 PRINTK (KERN_ERR, "Bad microcode data (record too long)");
1956 if (be16_to_cpu(rec->len) & 3) {
1957 PRINTK (KERN_ERR, "Bad microcode data (odd number of bytes)");
1960 res = loader_write(lb, dev, rec);
1964 res = loader_verify(lb, dev, rec);
1968 release_firmware(fw);
1970 res = loader_start(lb, dev, start_address);
1975 /********** give adapter parameters **********/
1977 static inline __be32 bus_addr(void * addr) {
1978 return cpu_to_be32 (virt_to_bus (addr));
1981 static int __devinit amb_talk (amb_dev * dev) {
1984 unsigned long timeout;
1986 PRINTD (DBG_FLOW, "amb_talk %p", dev);
1988 a.command_start = bus_addr (dev->cq.ptrs.start);
1989 a.command_end = bus_addr (dev->cq.ptrs.limit);
1990 a.tx_start = bus_addr (dev->txq.in.start);
1991 a.tx_end = bus_addr (dev->txq.in.limit);
1992 a.txcom_start = bus_addr (dev->txq.out.start);
1993 a.txcom_end = bus_addr (dev->txq.out.limit);
1995 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1996 // the other "a" items are set up by the adapter
1997 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
1998 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
1999 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2000 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2001 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2004 #ifdef AMB_NEW_MICROCODE
2005 // disable fast PLX prefetching
2009 // pass the structure
2010 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2012 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2014 // give the adapter another half second?
2016 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2018 timeout = msleep_interruptible(timeout);
2020 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2027 // get microcode version
2028 static void __devinit amb_ucode_version (amb_dev * dev) {
2032 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2033 while (command_do (dev, &cmd)) {
2034 set_current_state(TASK_UNINTERRUPTIBLE);
2037 major = be32_to_cpu (cmd.args.version.major);
2038 minor = be32_to_cpu (cmd.args.version.minor);
2039 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2042 // get end station address
2043 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2048 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2049 while (command_do (dev, &cmd)) {
2050 set_current_state(TASK_UNINTERRUPTIBLE);
2053 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2054 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2055 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2060 PRINTDB (DBG_INIT, "ESI:");
2061 for (i = 0; i < ESI_LEN; ++i) {
2063 esi[i] = bitrev8(lower4>>(8*i));
2065 esi[i] = bitrev8(upper2>>(8*(i-4)));
2066 PRINTDM (DBG_INIT, " %02x", esi[i]);
2069 PRINTDE (DBG_INIT, "");
2075 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2077 // fix up the PLX-mapped window base address to match the block
2080 blb = virt_to_bus(lb);
2081 // the kernel stack had better not ever cross a 1Gb boundary!
2082 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2083 mapreg &= ~onegigmask;
2084 mapreg |= blb & onegigmask;
2085 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2089 static int __devinit amb_init (amb_dev * dev)
2095 if (amb_reset (dev, 1)) {
2096 PRINTK (KERN_ERR, "card reset failed!");
2098 fixup_plx_window (dev, &lb);
2100 if (get_loader_version (&lb, dev, &version)) {
2101 PRINTK (KERN_INFO, "failed to get loader version");
2103 PRINTK (KERN_INFO, "loader version is %08x", version);
2105 if (ucode_init (&lb, dev)) {
2106 PRINTK (KERN_ERR, "microcode failure");
2107 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2108 PRINTK (KERN_ERR, "failed to get memory for queues");
2111 if (amb_talk (dev)) {
2112 PRINTK (KERN_ERR, "adapter did not accept queues");
2115 amb_ucode_version (dev);
2120 destroy_queues (dev);
2121 } /* create_queues, ucode_init */
2124 } /* get_loader_version */
2131 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2135 // set up known dev items straight away
2136 dev->pci_dev = pci_dev;
2137 pci_set_drvdata(pci_dev, dev);
2139 dev->iobase = pci_resource_start (pci_dev, 1);
2140 dev->irq = pci_dev->irq;
2141 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2143 // flags (currently only dead)
2146 // Allocate cell rates (fibre)
2147 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2148 // to be really pedantic, this should be ATM_OC3c_PCR
2149 dev->tx_avail = ATM_OC3_PCR;
2150 dev->rx_avail = ATM_OC3_PCR;
2152 #ifdef FILL_RX_POOLS_IN_BH
2153 // initialise bottom half
2154 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2157 // semaphore for txer/rxer modifications - we cannot use a
2158 // spinlock as the critical region needs to switch processes
2159 mutex_init(&dev->vcc_sf);
2160 // queue manipulation spinlocks; we want atomic reads and
2161 // writes to the queue descriptors (handles IRQ and SMP)
2162 // consider replacing "int pending" -> "atomic_t available"
2163 // => problem related to who gets to move queue pointers
2164 spin_lock_init (&dev->cq.lock);
2165 spin_lock_init (&dev->txq.lock);
2166 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2167 spin_lock_init (&dev->rxq[pool].lock);
2170 static void setup_pci_dev(struct pci_dev *pci_dev)
2174 // enable bus master accesses
2175 pci_set_master(pci_dev);
2177 // frobnicate latency (upwards, usually)
2178 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2181 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2183 if (lat != pci_lat) {
2184 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2186 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2190 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2196 err = pci_enable_device(pci_dev);
2198 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2202 // read resources from PCI configuration space
2205 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2206 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2211 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2212 " IO %llx, IRQ %u, MEM %p",
2213 (unsigned long long)pci_resource_start(pci_dev, 1),
2214 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2217 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2219 PRINTK (KERN_ERR, "IO range already in use!");
2223 dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2225 PRINTK (KERN_ERR, "out of memory!");
2230 setup_dev(dev, pci_dev);
2232 err = amb_init(dev);
2234 PRINTK (KERN_ERR, "adapter initialisation failure");
2238 setup_pci_dev(pci_dev);
2240 // grab (but share) IRQ and install handler
2241 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2243 PRINTK (KERN_ERR, "request IRQ failed!");
2247 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2248 if (!dev->atm_dev) {
2249 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2254 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2255 dev->atm_dev->number, dev, dev->atm_dev);
2256 dev->atm_dev->dev_data = (void *) dev;
2258 // register our address
2259 amb_esi (dev, dev->atm_dev->esi);
2261 // 0 bits for vpi, 10 bits for vci
2262 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2263 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2265 init_timer(&dev->housekeeping);
2266 dev->housekeeping.function = do_housekeeping;
2267 dev->housekeeping.data = (unsigned long) dev;
2268 mod_timer(&dev->housekeeping, jiffies);
2270 // enable host interrupts
2271 interrupts_on (dev);
2283 pci_release_region(pci_dev, 1);
2285 pci_disable_device(pci_dev);
2290 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2292 struct amb_dev *dev;
2294 dev = pci_get_drvdata(pci_dev);
2296 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2297 del_timer_sync(&dev->housekeeping);
2298 // the drain should not be necessary
2299 drain_rx_pools(dev);
2300 interrupts_off(dev);
2302 free_irq(dev->irq, dev);
2303 pci_disable_device(pci_dev);
2304 destroy_queues(dev);
2305 atm_dev_deregister(dev->atm_dev);
2307 pci_release_region(pci_dev, 1);
2310 static void __init amb_check_args (void) {
2312 unsigned int max_rx_size;
2314 #ifdef DEBUG_AMBASSADOR
2315 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2318 PRINTK (KERN_NOTICE, "no debugging support");
2321 if (cmds < MIN_QUEUE_SIZE)
2322 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2323 cmds = MIN_QUEUE_SIZE);
2325 if (txs < MIN_QUEUE_SIZE)
2326 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2327 txs = MIN_QUEUE_SIZE);
2329 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2330 if (rxs[pool] < MIN_QUEUE_SIZE)
2331 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2332 pool, rxs[pool] = MIN_QUEUE_SIZE);
2334 // buffers sizes should be greater than zero and strictly increasing
2336 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2337 if (rxs_bs[pool] <= max_rx_size)
2338 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2339 pool, rxs_bs[pool]);
2341 max_rx_size = rxs_bs[pool];
2343 if (rx_lats < MIN_RX_BUFFERS)
2344 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2345 rx_lats = MIN_RX_BUFFERS);
2350 /********** module stuff **********/
2352 MODULE_AUTHOR(maintainer_string);
2353 MODULE_DESCRIPTION(description_string);
2354 MODULE_LICENSE("GPL");
2355 MODULE_FIRMWARE("atmsar11.fw");
2356 module_param(debug, ushort, 0644);
2357 module_param(cmds, uint, 0);
2358 module_param(txs, uint, 0);
2359 module_param_array(rxs, uint, NULL, 0);
2360 module_param_array(rxs_bs, uint, NULL, 0);
2361 module_param(rx_lats, uint, 0);
2362 module_param(pci_lat, byte, 0);
2363 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2364 MODULE_PARM_DESC(cmds, "number of command queue entries");
2365 MODULE_PARM_DESC(txs, "number of TX queue entries");
2366 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2367 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2368 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2369 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2371 /********** module entry **********/
2373 static struct pci_device_id amb_pci_tbl[] = {
2374 { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR), 0 },
2375 { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD), 0 },
2379 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2381 static struct pci_driver amb_driver = {
2384 .remove = __devexit_p(amb_remove_one),
2385 .id_table = amb_pci_tbl,
2388 static int __init amb_module_init (void)
2390 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2392 // sanity check - cast needed as printk does not support %Zu
2393 if (sizeof(amb_mem) != 4*16 + 4*12) {
2394 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2395 (unsigned long) sizeof(amb_mem));
2404 return pci_register_driver(&amb_driver);
2407 /********** module exit **********/
2409 static void __exit amb_module_exit (void)
2411 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2413 pci_unregister_driver(&amb_driver);
2416 module_init(amb_module_init);
2417 module_exit(amb_module_exit);