Merge branch 'bcache-for-3.14' of git://evilpiepirate.org/~kent/linux-bcache into...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / ata / sata_mv.c
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/phy/phy.h>
64 #include <linux/platform_device.h>
65 #include <linux/ata_platform.h>
66 #include <linux/mbus.h>
67 #include <linux/bitops.h>
68 #include <linux/gfp.h>
69 #include <linux/of.h>
70 #include <linux/of_irq.h>
71 #include <scsi/scsi_host.h>
72 #include <scsi/scsi_cmnd.h>
73 #include <scsi/scsi_device.h>
74 #include <linux/libata.h>
75
76 #define DRV_NAME        "sata_mv"
77 #define DRV_VERSION     "1.28"
78
79 /*
80  * module options
81  */
82
83 #ifdef CONFIG_PCI
84 static int msi;
85 module_param(msi, int, S_IRUGO);
86 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
87 #endif
88
89 static int irq_coalescing_io_count;
90 module_param(irq_coalescing_io_count, int, S_IRUGO);
91 MODULE_PARM_DESC(irq_coalescing_io_count,
92                  "IRQ coalescing I/O count threshold (0..255)");
93
94 static int irq_coalescing_usecs;
95 module_param(irq_coalescing_usecs, int, S_IRUGO);
96 MODULE_PARM_DESC(irq_coalescing_usecs,
97                  "IRQ coalescing time threshold in usecs");
98
99 enum {
100         /* BAR's are enumerated in terms of pci_resource_start() terms */
101         MV_PRIMARY_BAR          = 0,    /* offset 0x10: memory space */
102         MV_IO_BAR               = 2,    /* offset 0x18: IO space */
103         MV_MISC_BAR             = 3,    /* offset 0x1c: FLASH, NVRAM, SRAM */
104
105         MV_MAJOR_REG_AREA_SZ    = 0x10000,      /* 64KB */
106         MV_MINOR_REG_AREA_SZ    = 0x2000,       /* 8KB */
107
108         /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
109         COAL_CLOCKS_PER_USEC    = 150,          /* for calculating COAL_TIMEs */
110         MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
111         MAX_COAL_IO_COUNT       = 255,          /* completed I/O count */
112
113         MV_PCI_REG_BASE         = 0,
114
115         /*
116          * Per-chip ("all ports") interrupt coalescing feature.
117          * This is only for GEN_II / GEN_IIE hardware.
118          *
119          * Coalescing defers the interrupt until either the IO_THRESHOLD
120          * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
121          */
122         COAL_REG_BASE           = 0x18000,
123         IRQ_COAL_CAUSE          = (COAL_REG_BASE + 0x08),
124         ALL_PORTS_COAL_IRQ      = (1 << 4),     /* all ports irq event */
125
126         IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
127         IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
128
129         /*
130          * Registers for the (unused here) transaction coalescing feature:
131          */
132         TRAN_COAL_CAUSE_LO      = (COAL_REG_BASE + 0x88),
133         TRAN_COAL_CAUSE_HI      = (COAL_REG_BASE + 0x8c),
134
135         SATAHC0_REG_BASE        = 0x20000,
136         FLASH_CTL               = 0x1046c,
137         GPIO_PORT_CTL           = 0x104f0,
138         RESET_CFG               = 0x180d8,
139
140         MV_PCI_REG_SZ           = MV_MAJOR_REG_AREA_SZ,
141         MV_SATAHC_REG_SZ        = MV_MAJOR_REG_AREA_SZ,
142         MV_SATAHC_ARBTR_REG_SZ  = MV_MINOR_REG_AREA_SZ,         /* arbiter */
143         MV_PORT_REG_SZ          = MV_MINOR_REG_AREA_SZ,
144
145         MV_MAX_Q_DEPTH          = 32,
146         MV_MAX_Q_DEPTH_MASK     = MV_MAX_Q_DEPTH - 1,
147
148         /* CRQB needs alignment on a 1KB boundary. Size == 1KB
149          * CRPB needs alignment on a 256B boundary. Size == 256B
150          * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
151          */
152         MV_CRQB_Q_SZ            = (32 * MV_MAX_Q_DEPTH),
153         MV_CRPB_Q_SZ            = (8 * MV_MAX_Q_DEPTH),
154         MV_MAX_SG_CT            = 256,
155         MV_SG_TBL_SZ            = (16 * MV_MAX_SG_CT),
156
157         /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
158         MV_PORT_HC_SHIFT        = 2,
159         MV_PORTS_PER_HC         = (1 << MV_PORT_HC_SHIFT), /* 4 */
160         /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
161         MV_PORT_MASK            = (MV_PORTS_PER_HC - 1),   /* 3 */
162
163         /* Host Flags */
164         MV_FLAG_DUAL_HC         = (1 << 30),  /* two SATA Host Controllers */
165
166         MV_COMMON_FLAGS         = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
167
168         MV_GEN_I_FLAGS          = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
169
170         MV_GEN_II_FLAGS         = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
171                                   ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
172
173         MV_GEN_IIE_FLAGS        = MV_GEN_II_FLAGS | ATA_FLAG_AN,
174
175         CRQB_FLAG_READ          = (1 << 0),
176         CRQB_TAG_SHIFT          = 1,
177         CRQB_IOID_SHIFT         = 6,    /* CRQB Gen-II/IIE IO Id shift */
178         CRQB_PMP_SHIFT          = 12,   /* CRQB Gen-II/IIE PMP shift */
179         CRQB_HOSTQ_SHIFT        = 17,   /* CRQB Gen-II/IIE HostQueTag shift */
180         CRQB_CMD_ADDR_SHIFT     = 8,
181         CRQB_CMD_CS             = (0x2 << 11),
182         CRQB_CMD_LAST           = (1 << 15),
183
184         CRPB_FLAG_STATUS_SHIFT  = 8,
185         CRPB_IOID_SHIFT_6       = 5,    /* CRPB Gen-II IO Id shift */
186         CRPB_IOID_SHIFT_7       = 7,    /* CRPB Gen-IIE IO Id shift */
187
188         EPRD_FLAG_END_OF_TBL    = (1 << 31),
189
190         /* PCI interface registers */
191
192         MV_PCI_COMMAND          = 0xc00,
193         MV_PCI_COMMAND_MWRCOM   = (1 << 4),     /* PCI Master Write Combining */
194         MV_PCI_COMMAND_MRDTRIG  = (1 << 7),     /* PCI Master Read Trigger */
195
196         PCI_MAIN_CMD_STS        = 0xd30,
197         STOP_PCI_MASTER         = (1 << 2),
198         PCI_MASTER_EMPTY        = (1 << 3),
199         GLOB_SFT_RST            = (1 << 4),
200
201         MV_PCI_MODE             = 0xd00,
202         MV_PCI_MODE_MASK        = 0x30,
203
204         MV_PCI_EXP_ROM_BAR_CTL  = 0xd2c,
205         MV_PCI_DISC_TIMER       = 0xd04,
206         MV_PCI_MSI_TRIGGER      = 0xc38,
207         MV_PCI_SERR_MASK        = 0xc28,
208         MV_PCI_XBAR_TMOUT       = 0x1d04,
209         MV_PCI_ERR_LOW_ADDRESS  = 0x1d40,
210         MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
211         MV_PCI_ERR_ATTRIBUTE    = 0x1d48,
212         MV_PCI_ERR_COMMAND      = 0x1d50,
213
214         PCI_IRQ_CAUSE           = 0x1d58,
215         PCI_IRQ_MASK            = 0x1d5c,
216         PCI_UNMASK_ALL_IRQS     = 0x7fffff,     /* bits 22-0 */
217
218         PCIE_IRQ_CAUSE          = 0x1900,
219         PCIE_IRQ_MASK           = 0x1910,
220         PCIE_UNMASK_ALL_IRQS    = 0x40a,        /* assorted bits */
221
222         /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
223         PCI_HC_MAIN_IRQ_CAUSE   = 0x1d60,
224         PCI_HC_MAIN_IRQ_MASK    = 0x1d64,
225         SOC_HC_MAIN_IRQ_CAUSE   = 0x20020,
226         SOC_HC_MAIN_IRQ_MASK    = 0x20024,
227         ERR_IRQ                 = (1 << 0),     /* shift by (2 * port #) */
228         DONE_IRQ                = (1 << 1),     /* shift by (2 * port #) */
229         HC0_IRQ_PEND            = 0x1ff,        /* bits 0-8 = HC0's ports */
230         HC_SHIFT                = 9,            /* bits 9-17 = HC1's ports */
231         DONE_IRQ_0_3            = 0x000000aa,   /* DONE_IRQ ports 0,1,2,3 */
232         DONE_IRQ_4_7            = (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
233         PCI_ERR                 = (1 << 18),
234         TRAN_COAL_LO_DONE       = (1 << 19),    /* transaction coalescing */
235         TRAN_COAL_HI_DONE       = (1 << 20),    /* transaction coalescing */
236         PORTS_0_3_COAL_DONE     = (1 << 8),     /* HC0 IRQ coalescing */
237         PORTS_4_7_COAL_DONE     = (1 << 17),    /* HC1 IRQ coalescing */
238         ALL_PORTS_COAL_DONE     = (1 << 21),    /* GEN_II(E) IRQ coalescing */
239         GPIO_INT                = (1 << 22),
240         SELF_INT                = (1 << 23),
241         TWSI_INT                = (1 << 24),
242         HC_MAIN_RSVD            = (0x7f << 25), /* bits 31-25 */
243         HC_MAIN_RSVD_5          = (0x1fff << 19), /* bits 31-19 */
244         HC_MAIN_RSVD_SOC        = (0x3fffffb << 6),     /* bits 31-9, 7-6 */
245
246         /* SATAHC registers */
247         HC_CFG                  = 0x00,
248
249         HC_IRQ_CAUSE            = 0x14,
250         DMA_IRQ                 = (1 << 0),     /* shift by port # */
251         HC_COAL_IRQ             = (1 << 4),     /* IRQ coalescing */
252         DEV_IRQ                 = (1 << 8),     /* shift by port # */
253
254         /*
255          * Per-HC (Host-Controller) interrupt coalescing feature.
256          * This is present on all chip generations.
257          *
258          * Coalescing defers the interrupt until either the IO_THRESHOLD
259          * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
260          */
261         HC_IRQ_COAL_IO_THRESHOLD        = 0x000c,
262         HC_IRQ_COAL_TIME_THRESHOLD      = 0x0010,
263
264         SOC_LED_CTRL            = 0x2c,
265         SOC_LED_CTRL_BLINK      = (1 << 0),     /* Active LED blink */
266         SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),   /* Multiplex dev presence */
267                                                 /*  with dev activity LED */
268
269         /* Shadow block registers */
270         SHD_BLK                 = 0x100,
271         SHD_CTL_AST             = 0x20,         /* ofs from SHD_BLK */
272
273         /* SATA registers */
274         SATA_STATUS             = 0x300,  /* ctrl, err regs follow status */
275         SATA_ACTIVE             = 0x350,
276         FIS_IRQ_CAUSE           = 0x364,
277         FIS_IRQ_CAUSE_AN        = (1 << 9),     /* async notification */
278
279         LTMODE                  = 0x30c,        /* requires read-after-write */
280         LTMODE_BIT8             = (1 << 8),     /* unknown, but necessary */
281
282         PHY_MODE2               = 0x330,
283         PHY_MODE3               = 0x310,
284
285         PHY_MODE4               = 0x314,        /* requires read-after-write */
286         PHY_MODE4_CFG_MASK      = 0x00000003,   /* phy internal config field */
287         PHY_MODE4_CFG_VALUE     = 0x00000001,   /* phy internal config field */
288         PHY_MODE4_RSVD_ZEROS    = 0x5de3fffa,   /* Gen2e always write zeros */
289         PHY_MODE4_RSVD_ONES     = 0x00000005,   /* Gen2e always write ones */
290
291         SATA_IFCTL              = 0x344,
292         SATA_TESTCTL            = 0x348,
293         SATA_IFSTAT             = 0x34c,
294         VENDOR_UNIQUE_FIS       = 0x35c,
295
296         FISCFG                  = 0x360,
297         FISCFG_WAIT_DEV_ERR     = (1 << 8),     /* wait for host on DevErr */
298         FISCFG_SINGLE_SYNC      = (1 << 16),    /* SYNC on DMA activation */
299
300         PHY_MODE9_GEN2          = 0x398,
301         PHY_MODE9_GEN1          = 0x39c,
302         PHYCFG_OFS              = 0x3a0,        /* only in 65n devices */
303
304         MV5_PHY_MODE            = 0x74,
305         MV5_LTMODE              = 0x30,
306         MV5_PHY_CTL             = 0x0C,
307         SATA_IFCFG              = 0x050,
308         LP_PHY_CTL              = 0x058,
309
310         MV_M2_PREAMP_MASK       = 0x7e0,
311
312         /* Port registers */
313         EDMA_CFG                = 0,
314         EDMA_CFG_Q_DEPTH        = 0x1f,         /* max device queue depth */
315         EDMA_CFG_NCQ            = (1 << 5),     /* for R/W FPDMA queued */
316         EDMA_CFG_NCQ_GO_ON_ERR  = (1 << 14),    /* continue on error */
317         EDMA_CFG_RD_BRST_EXT    = (1 << 11),    /* read burst 512B */
318         EDMA_CFG_WR_BUFF_LEN    = (1 << 13),    /* write buffer 512B */
319         EDMA_CFG_EDMA_FBS       = (1 << 16),    /* EDMA FIS-Based Switching */
320         EDMA_CFG_FBS            = (1 << 26),    /* FIS-Based Switching */
321
322         EDMA_ERR_IRQ_CAUSE      = 0x8,
323         EDMA_ERR_IRQ_MASK       = 0xc,
324         EDMA_ERR_D_PAR          = (1 << 0),     /* UDMA data parity err */
325         EDMA_ERR_PRD_PAR        = (1 << 1),     /* UDMA PRD parity err */
326         EDMA_ERR_DEV            = (1 << 2),     /* device error */
327         EDMA_ERR_DEV_DCON       = (1 << 3),     /* device disconnect */
328         EDMA_ERR_DEV_CON        = (1 << 4),     /* device connected */
329         EDMA_ERR_SERR           = (1 << 5),     /* SError bits [WBDST] raised */
330         EDMA_ERR_SELF_DIS       = (1 << 7),     /* Gen II/IIE self-disable */
331         EDMA_ERR_SELF_DIS_5     = (1 << 8),     /* Gen I self-disable */
332         EDMA_ERR_BIST_ASYNC     = (1 << 8),     /* BIST FIS or Async Notify */
333         EDMA_ERR_TRANS_IRQ_7    = (1 << 8),     /* Gen IIE transprt layer irq */
334         EDMA_ERR_CRQB_PAR       = (1 << 9),     /* CRQB parity error */
335         EDMA_ERR_CRPB_PAR       = (1 << 10),    /* CRPB parity error */
336         EDMA_ERR_INTRL_PAR      = (1 << 11),    /* internal parity error */
337         EDMA_ERR_IORDY          = (1 << 12),    /* IORdy timeout */
338
339         EDMA_ERR_LNK_CTRL_RX    = (0xf << 13),  /* link ctrl rx error */
340         EDMA_ERR_LNK_CTRL_RX_0  = (1 << 13),    /* transient: CRC err */
341         EDMA_ERR_LNK_CTRL_RX_1  = (1 << 14),    /* transient: FIFO err */
342         EDMA_ERR_LNK_CTRL_RX_2  = (1 << 15),    /* fatal: caught SYNC */
343         EDMA_ERR_LNK_CTRL_RX_3  = (1 << 16),    /* transient: FIS rx err */
344
345         EDMA_ERR_LNK_DATA_RX    = (0xf << 17),  /* link data rx error */
346
347         EDMA_ERR_LNK_CTRL_TX    = (0x1f << 21), /* link ctrl tx error */
348         EDMA_ERR_LNK_CTRL_TX_0  = (1 << 21),    /* transient: CRC err */
349         EDMA_ERR_LNK_CTRL_TX_1  = (1 << 22),    /* transient: FIFO err */
350         EDMA_ERR_LNK_CTRL_TX_2  = (1 << 23),    /* transient: caught SYNC */
351         EDMA_ERR_LNK_CTRL_TX_3  = (1 << 24),    /* transient: caught DMAT */
352         EDMA_ERR_LNK_CTRL_TX_4  = (1 << 25),    /* transient: FIS collision */
353
354         EDMA_ERR_LNK_DATA_TX    = (0x1f << 26), /* link data tx error */
355
356         EDMA_ERR_TRANS_PROTO    = (1 << 31),    /* transport protocol error */
357         EDMA_ERR_OVERRUN_5      = (1 << 5),
358         EDMA_ERR_UNDERRUN_5     = (1 << 6),
359
360         EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
361                                   EDMA_ERR_LNK_CTRL_RX_1 |
362                                   EDMA_ERR_LNK_CTRL_RX_3 |
363                                   EDMA_ERR_LNK_CTRL_TX,
364
365         EDMA_EH_FREEZE          = EDMA_ERR_D_PAR |
366                                   EDMA_ERR_PRD_PAR |
367                                   EDMA_ERR_DEV_DCON |
368                                   EDMA_ERR_DEV_CON |
369                                   EDMA_ERR_SERR |
370                                   EDMA_ERR_SELF_DIS |
371                                   EDMA_ERR_CRQB_PAR |
372                                   EDMA_ERR_CRPB_PAR |
373                                   EDMA_ERR_INTRL_PAR |
374                                   EDMA_ERR_IORDY |
375                                   EDMA_ERR_LNK_CTRL_RX_2 |
376                                   EDMA_ERR_LNK_DATA_RX |
377                                   EDMA_ERR_LNK_DATA_TX |
378                                   EDMA_ERR_TRANS_PROTO,
379
380         EDMA_EH_FREEZE_5        = EDMA_ERR_D_PAR |
381                                   EDMA_ERR_PRD_PAR |
382                                   EDMA_ERR_DEV_DCON |
383                                   EDMA_ERR_DEV_CON |
384                                   EDMA_ERR_OVERRUN_5 |
385                                   EDMA_ERR_UNDERRUN_5 |
386                                   EDMA_ERR_SELF_DIS_5 |
387                                   EDMA_ERR_CRQB_PAR |
388                                   EDMA_ERR_CRPB_PAR |
389                                   EDMA_ERR_INTRL_PAR |
390                                   EDMA_ERR_IORDY,
391
392         EDMA_REQ_Q_BASE_HI      = 0x10,
393         EDMA_REQ_Q_IN_PTR       = 0x14,         /* also contains BASE_LO */
394
395         EDMA_REQ_Q_OUT_PTR      = 0x18,
396         EDMA_REQ_Q_PTR_SHIFT    = 5,
397
398         EDMA_RSP_Q_BASE_HI      = 0x1c,
399         EDMA_RSP_Q_IN_PTR       = 0x20,
400         EDMA_RSP_Q_OUT_PTR      = 0x24,         /* also contains BASE_LO */
401         EDMA_RSP_Q_PTR_SHIFT    = 3,
402
403         EDMA_CMD                = 0x28,         /* EDMA command register */
404         EDMA_EN                 = (1 << 0),     /* enable EDMA */
405         EDMA_DS                 = (1 << 1),     /* disable EDMA; self-negated */
406         EDMA_RESET              = (1 << 2),     /* reset eng/trans/link/phy */
407
408         EDMA_STATUS             = 0x30,         /* EDMA engine status */
409         EDMA_STATUS_CACHE_EMPTY = (1 << 6),     /* GenIIe command cache empty */
410         EDMA_STATUS_IDLE        = (1 << 7),     /* GenIIe EDMA enabled/idle */
411
412         EDMA_IORDY_TMOUT        = 0x34,
413         EDMA_ARB_CFG            = 0x38,
414
415         EDMA_HALTCOND           = 0x60,         /* GenIIe halt conditions */
416         EDMA_UNKNOWN_RSVD       = 0x6C,         /* GenIIe unknown/reserved */
417
418         BMDMA_CMD               = 0x224,        /* bmdma command register */
419         BMDMA_STATUS            = 0x228,        /* bmdma status register */
420         BMDMA_PRD_LOW           = 0x22c,        /* bmdma PRD addr 31:0 */
421         BMDMA_PRD_HIGH          = 0x230,        /* bmdma PRD addr 63:32 */
422
423         /* Host private flags (hp_flags) */
424         MV_HP_FLAG_MSI          = (1 << 0),
425         MV_HP_ERRATA_50XXB0     = (1 << 1),
426         MV_HP_ERRATA_50XXB2     = (1 << 2),
427         MV_HP_ERRATA_60X1B2     = (1 << 3),
428         MV_HP_ERRATA_60X1C0     = (1 << 4),
429         MV_HP_GEN_I             = (1 << 6),     /* Generation I: 50xx */
430         MV_HP_GEN_II            = (1 << 7),     /* Generation II: 60xx */
431         MV_HP_GEN_IIE           = (1 << 8),     /* Generation IIE: 6042/7042 */
432         MV_HP_PCIE              = (1 << 9),     /* PCIe bus/regs: 7042 */
433         MV_HP_CUT_THROUGH       = (1 << 10),    /* can use EDMA cut-through */
434         MV_HP_FLAG_SOC          = (1 << 11),    /* SystemOnChip, no PCI */
435         MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),   /* is led blinking enabled? */
436         MV_HP_FIX_LP_PHY_CTL    = (1 << 13),    /* fix speed in LP_PHY_CTL ? */
437
438         /* Port private flags (pp_flags) */
439         MV_PP_FLAG_EDMA_EN      = (1 << 0),     /* is EDMA engine enabled? */
440         MV_PP_FLAG_NCQ_EN       = (1 << 1),     /* is EDMA set up for NCQ? */
441         MV_PP_FLAG_FBS_EN       = (1 << 2),     /* is EDMA set up for FBS? */
442         MV_PP_FLAG_DELAYED_EH   = (1 << 3),     /* delayed dev err handling */
443         MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),    /* ignore initial ATA_DRDY */
444 };
445
446 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
447 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
448 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
449 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
450 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
451
452 #define WINDOW_CTRL(i)          (0x20030 + ((i) << 4))
453 #define WINDOW_BASE(i)          (0x20034 + ((i) << 4))
454
455 enum {
456         /* DMA boundary 0xffff is required by the s/g splitting
457          * we need on /length/ in mv_fill-sg().
458          */
459         MV_DMA_BOUNDARY         = 0xffffU,
460
461         /* mask of register bits containing lower 32 bits
462          * of EDMA request queue DMA address
463          */
464         EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
465
466         /* ditto, for response queue */
467         EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
468 };
469
470 enum chip_type {
471         chip_504x,
472         chip_508x,
473         chip_5080,
474         chip_604x,
475         chip_608x,
476         chip_6042,
477         chip_7042,
478         chip_soc,
479 };
480
481 /* Command ReQuest Block: 32B */
482 struct mv_crqb {
483         __le32                  sg_addr;
484         __le32                  sg_addr_hi;
485         __le16                  ctrl_flags;
486         __le16                  ata_cmd[11];
487 };
488
489 struct mv_crqb_iie {
490         __le32                  addr;
491         __le32                  addr_hi;
492         __le32                  flags;
493         __le32                  len;
494         __le32                  ata_cmd[4];
495 };
496
497 /* Command ResPonse Block: 8B */
498 struct mv_crpb {
499         __le16                  id;
500         __le16                  flags;
501         __le32                  tmstmp;
502 };
503
504 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
505 struct mv_sg {
506         __le32                  addr;
507         __le32                  flags_size;
508         __le32                  addr_hi;
509         __le32                  reserved;
510 };
511
512 /*
513  * We keep a local cache of a few frequently accessed port
514  * registers here, to avoid having to read them (very slow)
515  * when switching between EDMA and non-EDMA modes.
516  */
517 struct mv_cached_regs {
518         u32                     fiscfg;
519         u32                     ltmode;
520         u32                     haltcond;
521         u32                     unknown_rsvd;
522 };
523
524 struct mv_port_priv {
525         struct mv_crqb          *crqb;
526         dma_addr_t              crqb_dma;
527         struct mv_crpb          *crpb;
528         dma_addr_t              crpb_dma;
529         struct mv_sg            *sg_tbl[MV_MAX_Q_DEPTH];
530         dma_addr_t              sg_tbl_dma[MV_MAX_Q_DEPTH];
531
532         unsigned int            req_idx;
533         unsigned int            resp_idx;
534
535         u32                     pp_flags;
536         struct mv_cached_regs   cached;
537         unsigned int            delayed_eh_pmp_map;
538 };
539
540 struct mv_port_signal {
541         u32                     amps;
542         u32                     pre;
543 };
544
545 struct mv_host_priv {
546         u32                     hp_flags;
547         unsigned int            board_idx;
548         u32                     main_irq_mask;
549         struct mv_port_signal   signal[8];
550         const struct mv_hw_ops  *ops;
551         int                     n_ports;
552         void __iomem            *base;
553         void __iomem            *main_irq_cause_addr;
554         void __iomem            *main_irq_mask_addr;
555         u32                     irq_cause_offset;
556         u32                     irq_mask_offset;
557         u32                     unmask_all_irqs;
558
559         /*
560          * Needed on some devices that require their clocks to be enabled.
561          * These are optional: if the platform device does not have any
562          * clocks, they won't be used.  Also, if the underlying hardware
563          * does not support the common clock framework (CONFIG_HAVE_CLK=n),
564          * all the clock operations become no-ops (see clk.h).
565          */
566         struct clk              *clk;
567         struct clk              **port_clks;
568         /*
569          * Some devices have a SATA PHY which can be enabled/disabled
570          * in order to save power. These are optional: if the platform
571          * devices does not have any phy, they won't be used.
572          */
573         struct phy              **port_phys;
574         /*
575          * These consistent DMA memory pools give us guaranteed
576          * alignment for hardware-accessed data structures,
577          * and less memory waste in accomplishing the alignment.
578          */
579         struct dma_pool         *crqb_pool;
580         struct dma_pool         *crpb_pool;
581         struct dma_pool         *sg_tbl_pool;
582 };
583
584 struct mv_hw_ops {
585         void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
586                            unsigned int port);
587         void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
588         void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
589                            void __iomem *mmio);
590         int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
591                         unsigned int n_hc);
592         void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
593         void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
594 };
595
596 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
597 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
598 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
599 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
600 static int mv_port_start(struct ata_port *ap);
601 static void mv_port_stop(struct ata_port *ap);
602 static int mv_qc_defer(struct ata_queued_cmd *qc);
603 static void mv_qc_prep(struct ata_queued_cmd *qc);
604 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
605 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
606 static int mv_hardreset(struct ata_link *link, unsigned int *class,
607                         unsigned long deadline);
608 static void mv_eh_freeze(struct ata_port *ap);
609 static void mv_eh_thaw(struct ata_port *ap);
610 static void mv6_dev_config(struct ata_device *dev);
611
612 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
613                            unsigned int port);
614 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
615 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
616                            void __iomem *mmio);
617 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
618                         unsigned int n_hc);
619 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
620 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
621
622 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
623                            unsigned int port);
624 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
625 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
626                            void __iomem *mmio);
627 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
628                         unsigned int n_hc);
629 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
630 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
631                                       void __iomem *mmio);
632 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
633                                       void __iomem *mmio);
634 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
635                                   void __iomem *mmio, unsigned int n_hc);
636 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
637                                       void __iomem *mmio);
638 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
639 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
640                                   void __iomem *mmio, unsigned int port);
641 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
642 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
643                              unsigned int port_no);
644 static int mv_stop_edma(struct ata_port *ap);
645 static int mv_stop_edma_engine(void __iomem *port_mmio);
646 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
647
648 static void mv_pmp_select(struct ata_port *ap, int pmp);
649 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
650                                 unsigned long deadline);
651 static int  mv_softreset(struct ata_link *link, unsigned int *class,
652                                 unsigned long deadline);
653 static void mv_pmp_error_handler(struct ata_port *ap);
654 static void mv_process_crpb_entries(struct ata_port *ap,
655                                         struct mv_port_priv *pp);
656
657 static void mv_sff_irq_clear(struct ata_port *ap);
658 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
659 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
660 static void mv_bmdma_start(struct ata_queued_cmd *qc);
661 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
662 static u8   mv_bmdma_status(struct ata_port *ap);
663 static u8 mv_sff_check_status(struct ata_port *ap);
664
665 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
666  * because we have to allow room for worst case splitting of
667  * PRDs for 64K boundaries in mv_fill_sg().
668  */
669 #ifdef CONFIG_PCI
670 static struct scsi_host_template mv5_sht = {
671         ATA_BASE_SHT(DRV_NAME),
672         .sg_tablesize           = MV_MAX_SG_CT / 2,
673         .dma_boundary           = MV_DMA_BOUNDARY,
674 };
675 #endif
676 static struct scsi_host_template mv6_sht = {
677         ATA_NCQ_SHT(DRV_NAME),
678         .can_queue              = MV_MAX_Q_DEPTH - 1,
679         .sg_tablesize           = MV_MAX_SG_CT / 2,
680         .dma_boundary           = MV_DMA_BOUNDARY,
681 };
682
683 static struct ata_port_operations mv5_ops = {
684         .inherits               = &ata_sff_port_ops,
685
686         .lost_interrupt         = ATA_OP_NULL,
687
688         .qc_defer               = mv_qc_defer,
689         .qc_prep                = mv_qc_prep,
690         .qc_issue               = mv_qc_issue,
691
692         .freeze                 = mv_eh_freeze,
693         .thaw                   = mv_eh_thaw,
694         .hardreset              = mv_hardreset,
695
696         .scr_read               = mv5_scr_read,
697         .scr_write              = mv5_scr_write,
698
699         .port_start             = mv_port_start,
700         .port_stop              = mv_port_stop,
701 };
702
703 static struct ata_port_operations mv6_ops = {
704         .inherits               = &ata_bmdma_port_ops,
705
706         .lost_interrupt         = ATA_OP_NULL,
707
708         .qc_defer               = mv_qc_defer,
709         .qc_prep                = mv_qc_prep,
710         .qc_issue               = mv_qc_issue,
711
712         .dev_config             = mv6_dev_config,
713
714         .freeze                 = mv_eh_freeze,
715         .thaw                   = mv_eh_thaw,
716         .hardreset              = mv_hardreset,
717         .softreset              = mv_softreset,
718         .pmp_hardreset          = mv_pmp_hardreset,
719         .pmp_softreset          = mv_softreset,
720         .error_handler          = mv_pmp_error_handler,
721
722         .scr_read               = mv_scr_read,
723         .scr_write              = mv_scr_write,
724
725         .sff_check_status       = mv_sff_check_status,
726         .sff_irq_clear          = mv_sff_irq_clear,
727         .check_atapi_dma        = mv_check_atapi_dma,
728         .bmdma_setup            = mv_bmdma_setup,
729         .bmdma_start            = mv_bmdma_start,
730         .bmdma_stop             = mv_bmdma_stop,
731         .bmdma_status           = mv_bmdma_status,
732
733         .port_start             = mv_port_start,
734         .port_stop              = mv_port_stop,
735 };
736
737 static struct ata_port_operations mv_iie_ops = {
738         .inherits               = &mv6_ops,
739         .dev_config             = ATA_OP_NULL,
740         .qc_prep                = mv_qc_prep_iie,
741 };
742
743 static const struct ata_port_info mv_port_info[] = {
744         {  /* chip_504x */
745                 .flags          = MV_GEN_I_FLAGS,
746                 .pio_mask       = ATA_PIO4,
747                 .udma_mask      = ATA_UDMA6,
748                 .port_ops       = &mv5_ops,
749         },
750         {  /* chip_508x */
751                 .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
752                 .pio_mask       = ATA_PIO4,
753                 .udma_mask      = ATA_UDMA6,
754                 .port_ops       = &mv5_ops,
755         },
756         {  /* chip_5080 */
757                 .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
758                 .pio_mask       = ATA_PIO4,
759                 .udma_mask      = ATA_UDMA6,
760                 .port_ops       = &mv5_ops,
761         },
762         {  /* chip_604x */
763                 .flags          = MV_GEN_II_FLAGS,
764                 .pio_mask       = ATA_PIO4,
765                 .udma_mask      = ATA_UDMA6,
766                 .port_ops       = &mv6_ops,
767         },
768         {  /* chip_608x */
769                 .flags          = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
770                 .pio_mask       = ATA_PIO4,
771                 .udma_mask      = ATA_UDMA6,
772                 .port_ops       = &mv6_ops,
773         },
774         {  /* chip_6042 */
775                 .flags          = MV_GEN_IIE_FLAGS,
776                 .pio_mask       = ATA_PIO4,
777                 .udma_mask      = ATA_UDMA6,
778                 .port_ops       = &mv_iie_ops,
779         },
780         {  /* chip_7042 */
781                 .flags          = MV_GEN_IIE_FLAGS,
782                 .pio_mask       = ATA_PIO4,
783                 .udma_mask      = ATA_UDMA6,
784                 .port_ops       = &mv_iie_ops,
785         },
786         {  /* chip_soc */
787                 .flags          = MV_GEN_IIE_FLAGS,
788                 .pio_mask       = ATA_PIO4,
789                 .udma_mask      = ATA_UDMA6,
790                 .port_ops       = &mv_iie_ops,
791         },
792 };
793
794 static const struct pci_device_id mv_pci_tbl[] = {
795         { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
796         { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
797         { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
798         { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
799         /* RocketRAID 1720/174x have different identifiers */
800         { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
801         { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
802         { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
803
804         { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
805         { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
806         { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
807         { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
808         { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
809
810         { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
811
812         /* Adaptec 1430SA */
813         { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
814
815         /* Marvell 7042 support */
816         { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
817
818         /* Highpoint RocketRAID PCIe series */
819         { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
820         { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
821
822         { }                     /* terminate list */
823 };
824
825 static const struct mv_hw_ops mv5xxx_ops = {
826         .phy_errata             = mv5_phy_errata,
827         .enable_leds            = mv5_enable_leds,
828         .read_preamp            = mv5_read_preamp,
829         .reset_hc               = mv5_reset_hc,
830         .reset_flash            = mv5_reset_flash,
831         .reset_bus              = mv5_reset_bus,
832 };
833
834 static const struct mv_hw_ops mv6xxx_ops = {
835         .phy_errata             = mv6_phy_errata,
836         .enable_leds            = mv6_enable_leds,
837         .read_preamp            = mv6_read_preamp,
838         .reset_hc               = mv6_reset_hc,
839         .reset_flash            = mv6_reset_flash,
840         .reset_bus              = mv_reset_pci_bus,
841 };
842
843 static const struct mv_hw_ops mv_soc_ops = {
844         .phy_errata             = mv6_phy_errata,
845         .enable_leds            = mv_soc_enable_leds,
846         .read_preamp            = mv_soc_read_preamp,
847         .reset_hc               = mv_soc_reset_hc,
848         .reset_flash            = mv_soc_reset_flash,
849         .reset_bus              = mv_soc_reset_bus,
850 };
851
852 static const struct mv_hw_ops mv_soc_65n_ops = {
853         .phy_errata             = mv_soc_65n_phy_errata,
854         .enable_leds            = mv_soc_enable_leds,
855         .reset_hc               = mv_soc_reset_hc,
856         .reset_flash            = mv_soc_reset_flash,
857         .reset_bus              = mv_soc_reset_bus,
858 };
859
860 /*
861  * Functions
862  */
863
864 static inline void writelfl(unsigned long data, void __iomem *addr)
865 {
866         writel(data, addr);
867         (void) readl(addr);     /* flush to avoid PCI posted write */
868 }
869
870 static inline unsigned int mv_hc_from_port(unsigned int port)
871 {
872         return port >> MV_PORT_HC_SHIFT;
873 }
874
875 static inline unsigned int mv_hardport_from_port(unsigned int port)
876 {
877         return port & MV_PORT_MASK;
878 }
879
880 /*
881  * Consolidate some rather tricky bit shift calculations.
882  * This is hot-path stuff, so not a function.
883  * Simple code, with two return values, so macro rather than inline.
884  *
885  * port is the sole input, in range 0..7.
886  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
887  * hardport is the other output, in range 0..3.
888  *
889  * Note that port and hardport may be the same variable in some cases.
890  */
891 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)    \
892 {                                                               \
893         shift    = mv_hc_from_port(port) * HC_SHIFT;            \
894         hardport = mv_hardport_from_port(port);                 \
895         shift   += hardport * 2;                                \
896 }
897
898 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
899 {
900         return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
901 }
902
903 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
904                                                  unsigned int port)
905 {
906         return mv_hc_base(base, mv_hc_from_port(port));
907 }
908
909 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
910 {
911         return  mv_hc_base_from_port(base, port) +
912                 MV_SATAHC_ARBTR_REG_SZ +
913                 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
914 }
915
916 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
917 {
918         void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
919         unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
920
921         return hc_mmio + ofs;
922 }
923
924 static inline void __iomem *mv_host_base(struct ata_host *host)
925 {
926         struct mv_host_priv *hpriv = host->private_data;
927         return hpriv->base;
928 }
929
930 static inline void __iomem *mv_ap_base(struct ata_port *ap)
931 {
932         return mv_port_base(mv_host_base(ap->host), ap->port_no);
933 }
934
935 static inline int mv_get_hc_count(unsigned long port_flags)
936 {
937         return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
938 }
939
940 /**
941  *      mv_save_cached_regs - (re-)initialize cached port registers
942  *      @ap: the port whose registers we are caching
943  *
944  *      Initialize the local cache of port registers,
945  *      so that reading them over and over again can
946  *      be avoided on the hotter paths of this driver.
947  *      This saves a few microseconds each time we switch
948  *      to/from EDMA mode to perform (eg.) a drive cache flush.
949  */
950 static void mv_save_cached_regs(struct ata_port *ap)
951 {
952         void __iomem *port_mmio = mv_ap_base(ap);
953         struct mv_port_priv *pp = ap->private_data;
954
955         pp->cached.fiscfg = readl(port_mmio + FISCFG);
956         pp->cached.ltmode = readl(port_mmio + LTMODE);
957         pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
958         pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
959 }
960
961 /**
962  *      mv_write_cached_reg - write to a cached port register
963  *      @addr: hardware address of the register
964  *      @old: pointer to cached value of the register
965  *      @new: new value for the register
966  *
967  *      Write a new value to a cached register,
968  *      but only if the value is different from before.
969  */
970 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
971 {
972         if (new != *old) {
973                 unsigned long laddr;
974                 *old = new;
975                 /*
976                  * Workaround for 88SX60x1-B2 FEr SATA#13:
977                  * Read-after-write is needed to prevent generating 64-bit
978                  * write cycles on the PCI bus for SATA interface registers
979                  * at offsets ending in 0x4 or 0xc.
980                  *
981                  * Looks like a lot of fuss, but it avoids an unnecessary
982                  * +1 usec read-after-write delay for unaffected registers.
983                  */
984                 laddr = (long)addr & 0xffff;
985                 if (laddr >= 0x300 && laddr <= 0x33c) {
986                         laddr &= 0x000f;
987                         if (laddr == 0x4 || laddr == 0xc) {
988                                 writelfl(new, addr); /* read after write */
989                                 return;
990                         }
991                 }
992                 writel(new, addr); /* unaffected by the errata */
993         }
994 }
995
996 static void mv_set_edma_ptrs(void __iomem *port_mmio,
997                              struct mv_host_priv *hpriv,
998                              struct mv_port_priv *pp)
999 {
1000         u32 index;
1001
1002         /*
1003          * initialize request queue
1004          */
1005         pp->req_idx &= MV_MAX_Q_DEPTH_MASK;     /* paranoia */
1006         index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1007
1008         WARN_ON(pp->crqb_dma & 0x3ff);
1009         writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1010         writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1011                  port_mmio + EDMA_REQ_Q_IN_PTR);
1012         writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1013
1014         /*
1015          * initialize response queue
1016          */
1017         pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;    /* paranoia */
1018         index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1019
1020         WARN_ON(pp->crpb_dma & 0xff);
1021         writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1022         writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1023         writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1024                  port_mmio + EDMA_RSP_Q_OUT_PTR);
1025 }
1026
1027 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1028 {
1029         /*
1030          * When writing to the main_irq_mask in hardware,
1031          * we must ensure exclusivity between the interrupt coalescing bits
1032          * and the corresponding individual port DONE_IRQ bits.
1033          *
1034          * Note that this register is really an "IRQ enable" register,
1035          * not an "IRQ mask" register as Marvell's naming might suggest.
1036          */
1037         if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1038                 mask &= ~DONE_IRQ_0_3;
1039         if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1040                 mask &= ~DONE_IRQ_4_7;
1041         writelfl(mask, hpriv->main_irq_mask_addr);
1042 }
1043
1044 static void mv_set_main_irq_mask(struct ata_host *host,
1045                                  u32 disable_bits, u32 enable_bits)
1046 {
1047         struct mv_host_priv *hpriv = host->private_data;
1048         u32 old_mask, new_mask;
1049
1050         old_mask = hpriv->main_irq_mask;
1051         new_mask = (old_mask & ~disable_bits) | enable_bits;
1052         if (new_mask != old_mask) {
1053                 hpriv->main_irq_mask = new_mask;
1054                 mv_write_main_irq_mask(new_mask, hpriv);
1055         }
1056 }
1057
1058 static void mv_enable_port_irqs(struct ata_port *ap,
1059                                      unsigned int port_bits)
1060 {
1061         unsigned int shift, hardport, port = ap->port_no;
1062         u32 disable_bits, enable_bits;
1063
1064         MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1065
1066         disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1067         enable_bits  = port_bits << shift;
1068         mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1069 }
1070
1071 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1072                                           void __iomem *port_mmio,
1073                                           unsigned int port_irqs)
1074 {
1075         struct mv_host_priv *hpriv = ap->host->private_data;
1076         int hardport = mv_hardport_from_port(ap->port_no);
1077         void __iomem *hc_mmio = mv_hc_base_from_port(
1078                                 mv_host_base(ap->host), ap->port_no);
1079         u32 hc_irq_cause;
1080
1081         /* clear EDMA event indicators, if any */
1082         writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1083
1084         /* clear pending irq events */
1085         hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1086         writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1087
1088         /* clear FIS IRQ Cause */
1089         if (IS_GEN_IIE(hpriv))
1090                 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1091
1092         mv_enable_port_irqs(ap, port_irqs);
1093 }
1094
1095 static void mv_set_irq_coalescing(struct ata_host *host,
1096                                   unsigned int count, unsigned int usecs)
1097 {
1098         struct mv_host_priv *hpriv = host->private_data;
1099         void __iomem *mmio = hpriv->base, *hc_mmio;
1100         u32 coal_enable = 0;
1101         unsigned long flags;
1102         unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1103         const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1104                                                         ALL_PORTS_COAL_DONE;
1105
1106         /* Disable IRQ coalescing if either threshold is zero */
1107         if (!usecs || !count) {
1108                 clks = count = 0;
1109         } else {
1110                 /* Respect maximum limits of the hardware */
1111                 clks = usecs * COAL_CLOCKS_PER_USEC;
1112                 if (clks > MAX_COAL_TIME_THRESHOLD)
1113                         clks = MAX_COAL_TIME_THRESHOLD;
1114                 if (count > MAX_COAL_IO_COUNT)
1115                         count = MAX_COAL_IO_COUNT;
1116         }
1117
1118         spin_lock_irqsave(&host->lock, flags);
1119         mv_set_main_irq_mask(host, coal_disable, 0);
1120
1121         if (is_dual_hc && !IS_GEN_I(hpriv)) {
1122                 /*
1123                  * GEN_II/GEN_IIE with dual host controllers:
1124                  * one set of global thresholds for the entire chip.
1125                  */
1126                 writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1127                 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1128                 /* clear leftover coal IRQ bit */
1129                 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1130                 if (count)
1131                         coal_enable = ALL_PORTS_COAL_DONE;
1132                 clks = count = 0; /* force clearing of regular regs below */
1133         }
1134
1135         /*
1136          * All chips: independent thresholds for each HC on the chip.
1137          */
1138         hc_mmio = mv_hc_base_from_port(mmio, 0);
1139         writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1140         writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1141         writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1142         if (count)
1143                 coal_enable |= PORTS_0_3_COAL_DONE;
1144         if (is_dual_hc) {
1145                 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1146                 writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1147                 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1148                 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1149                 if (count)
1150                         coal_enable |= PORTS_4_7_COAL_DONE;
1151         }
1152
1153         mv_set_main_irq_mask(host, 0, coal_enable);
1154         spin_unlock_irqrestore(&host->lock, flags);
1155 }
1156
1157 /**
1158  *      mv_start_edma - Enable eDMA engine
1159  *      @base: port base address
1160  *      @pp: port private data
1161  *
1162  *      Verify the local cache of the eDMA state is accurate with a
1163  *      WARN_ON.
1164  *
1165  *      LOCKING:
1166  *      Inherited from caller.
1167  */
1168 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1169                          struct mv_port_priv *pp, u8 protocol)
1170 {
1171         int want_ncq = (protocol == ATA_PROT_NCQ);
1172
1173         if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1174                 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1175                 if (want_ncq != using_ncq)
1176                         mv_stop_edma(ap);
1177         }
1178         if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1179                 struct mv_host_priv *hpriv = ap->host->private_data;
1180
1181                 mv_edma_cfg(ap, want_ncq, 1);
1182
1183                 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1184                 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1185
1186                 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1187                 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1188         }
1189 }
1190
1191 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1192 {
1193         void __iomem *port_mmio = mv_ap_base(ap);
1194         const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1195         const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1196         int i;
1197
1198         /*
1199          * Wait for the EDMA engine to finish transactions in progress.
1200          * No idea what a good "timeout" value might be, but measurements
1201          * indicate that it often requires hundreds of microseconds
1202          * with two drives in-use.  So we use the 15msec value above
1203          * as a rough guess at what even more drives might require.
1204          */
1205         for (i = 0; i < timeout; ++i) {
1206                 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1207                 if ((edma_stat & empty_idle) == empty_idle)
1208                         break;
1209                 udelay(per_loop);
1210         }
1211         /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1212 }
1213
1214 /**
1215  *      mv_stop_edma_engine - Disable eDMA engine
1216  *      @port_mmio: io base address
1217  *
1218  *      LOCKING:
1219  *      Inherited from caller.
1220  */
1221 static int mv_stop_edma_engine(void __iomem *port_mmio)
1222 {
1223         int i;
1224
1225         /* Disable eDMA.  The disable bit auto clears. */
1226         writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1227
1228         /* Wait for the chip to confirm eDMA is off. */
1229         for (i = 10000; i > 0; i--) {
1230                 u32 reg = readl(port_mmio + EDMA_CMD);
1231                 if (!(reg & EDMA_EN))
1232                         return 0;
1233                 udelay(10);
1234         }
1235         return -EIO;
1236 }
1237
1238 static int mv_stop_edma(struct ata_port *ap)
1239 {
1240         void __iomem *port_mmio = mv_ap_base(ap);
1241         struct mv_port_priv *pp = ap->private_data;
1242         int err = 0;
1243
1244         if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1245                 return 0;
1246         pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1247         mv_wait_for_edma_empty_idle(ap);
1248         if (mv_stop_edma_engine(port_mmio)) {
1249                 ata_port_err(ap, "Unable to stop eDMA\n");
1250                 err = -EIO;
1251         }
1252         mv_edma_cfg(ap, 0, 0);
1253         return err;
1254 }
1255
1256 #ifdef ATA_DEBUG
1257 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1258 {
1259         int b, w;
1260         for (b = 0; b < bytes; ) {
1261                 DPRINTK("%p: ", start + b);
1262                 for (w = 0; b < bytes && w < 4; w++) {
1263                         printk("%08x ", readl(start + b));
1264                         b += sizeof(u32);
1265                 }
1266                 printk("\n");
1267         }
1268 }
1269 #endif
1270 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1271 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1272 {
1273 #ifdef ATA_DEBUG
1274         int b, w;
1275         u32 dw;
1276         for (b = 0; b < bytes; ) {
1277                 DPRINTK("%02x: ", b);
1278                 for (w = 0; b < bytes && w < 4; w++) {
1279                         (void) pci_read_config_dword(pdev, b, &dw);
1280                         printk("%08x ", dw);
1281                         b += sizeof(u32);
1282                 }
1283                 printk("\n");
1284         }
1285 #endif
1286 }
1287 #endif
1288 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1289                              struct pci_dev *pdev)
1290 {
1291 #ifdef ATA_DEBUG
1292         void __iomem *hc_base = mv_hc_base(mmio_base,
1293                                            port >> MV_PORT_HC_SHIFT);
1294         void __iomem *port_base;
1295         int start_port, num_ports, p, start_hc, num_hcs, hc;
1296
1297         if (0 > port) {
1298                 start_hc = start_port = 0;
1299                 num_ports = 8;          /* shld be benign for 4 port devs */
1300                 num_hcs = 2;
1301         } else {
1302                 start_hc = port >> MV_PORT_HC_SHIFT;
1303                 start_port = port;
1304                 num_ports = num_hcs = 1;
1305         }
1306         DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1307                 num_ports > 1 ? num_ports - 1 : start_port);
1308
1309         if (NULL != pdev) {
1310                 DPRINTK("PCI config space regs:\n");
1311                 mv_dump_pci_cfg(pdev, 0x68);
1312         }
1313         DPRINTK("PCI regs:\n");
1314         mv_dump_mem(mmio_base+0xc00, 0x3c);
1315         mv_dump_mem(mmio_base+0xd00, 0x34);
1316         mv_dump_mem(mmio_base+0xf00, 0x4);
1317         mv_dump_mem(mmio_base+0x1d00, 0x6c);
1318         for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1319                 hc_base = mv_hc_base(mmio_base, hc);
1320                 DPRINTK("HC regs (HC %i):\n", hc);
1321                 mv_dump_mem(hc_base, 0x1c);
1322         }
1323         for (p = start_port; p < start_port + num_ports; p++) {
1324                 port_base = mv_port_base(mmio_base, p);
1325                 DPRINTK("EDMA regs (port %i):\n", p);
1326                 mv_dump_mem(port_base, 0x54);
1327                 DPRINTK("SATA regs (port %i):\n", p);
1328                 mv_dump_mem(port_base+0x300, 0x60);
1329         }
1330 #endif
1331 }
1332
1333 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1334 {
1335         unsigned int ofs;
1336
1337         switch (sc_reg_in) {
1338         case SCR_STATUS:
1339         case SCR_CONTROL:
1340         case SCR_ERROR:
1341                 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1342                 break;
1343         case SCR_ACTIVE:
1344                 ofs = SATA_ACTIVE;   /* active is not with the others */
1345                 break;
1346         default:
1347                 ofs = 0xffffffffU;
1348                 break;
1349         }
1350         return ofs;
1351 }
1352
1353 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1354 {
1355         unsigned int ofs = mv_scr_offset(sc_reg_in);
1356
1357         if (ofs != 0xffffffffU) {
1358                 *val = readl(mv_ap_base(link->ap) + ofs);
1359                 return 0;
1360         } else
1361                 return -EINVAL;
1362 }
1363
1364 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1365 {
1366         unsigned int ofs = mv_scr_offset(sc_reg_in);
1367
1368         if (ofs != 0xffffffffU) {
1369                 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1370                 struct mv_host_priv *hpriv = link->ap->host->private_data;
1371                 if (sc_reg_in == SCR_CONTROL) {
1372                         /*
1373                          * Workaround for 88SX60x1 FEr SATA#26:
1374                          *
1375                          * COMRESETs have to take care not to accidentally
1376                          * put the drive to sleep when writing SCR_CONTROL.
1377                          * Setting bits 12..15 prevents this problem.
1378                          *
1379                          * So if we see an outbound COMMRESET, set those bits.
1380                          * Ditto for the followup write that clears the reset.
1381                          *
1382                          * The proprietary driver does this for
1383                          * all chip versions, and so do we.
1384                          */
1385                         if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1386                                 val |= 0xf000;
1387
1388                         if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1389                                 void __iomem *lp_phy_addr =
1390                                         mv_ap_base(link->ap) + LP_PHY_CTL;
1391                                 /*
1392                                  * Set PHY speed according to SControl speed.
1393                                  */
1394                                 if ((val & 0xf0) == 0x10)
1395                                         writelfl(0x7, lp_phy_addr);
1396                                 else
1397                                         writelfl(0x227, lp_phy_addr);
1398                         }
1399                 }
1400                 writelfl(val, addr);
1401                 return 0;
1402         } else
1403                 return -EINVAL;
1404 }
1405
1406 static void mv6_dev_config(struct ata_device *adev)
1407 {
1408         /*
1409          * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1410          *
1411          * Gen-II does not support NCQ over a port multiplier
1412          *  (no FIS-based switching).
1413          */
1414         if (adev->flags & ATA_DFLAG_NCQ) {
1415                 if (sata_pmp_attached(adev->link->ap)) {
1416                         adev->flags &= ~ATA_DFLAG_NCQ;
1417                         ata_dev_info(adev,
1418                                 "NCQ disabled for command-based switching\n");
1419                 }
1420         }
1421 }
1422
1423 static int mv_qc_defer(struct ata_queued_cmd *qc)
1424 {
1425         struct ata_link *link = qc->dev->link;
1426         struct ata_port *ap = link->ap;
1427         struct mv_port_priv *pp = ap->private_data;
1428
1429         /*
1430          * Don't allow new commands if we're in a delayed EH state
1431          * for NCQ and/or FIS-based switching.
1432          */
1433         if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1434                 return ATA_DEFER_PORT;
1435
1436         /* PIO commands need exclusive link: no other commands [DMA or PIO]
1437          * can run concurrently.
1438          * set excl_link when we want to send a PIO command in DMA mode
1439          * or a non-NCQ command in NCQ mode.
1440          * When we receive a command from that link, and there are no
1441          * outstanding commands, mark a flag to clear excl_link and let
1442          * the command go through.
1443          */
1444         if (unlikely(ap->excl_link)) {
1445                 if (link == ap->excl_link) {
1446                         if (ap->nr_active_links)
1447                                 return ATA_DEFER_PORT;
1448                         qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1449                         return 0;
1450                 } else
1451                         return ATA_DEFER_PORT;
1452         }
1453
1454         /*
1455          * If the port is completely idle, then allow the new qc.
1456          */
1457         if (ap->nr_active_links == 0)
1458                 return 0;
1459
1460         /*
1461          * The port is operating in host queuing mode (EDMA) with NCQ
1462          * enabled, allow multiple NCQ commands.  EDMA also allows
1463          * queueing multiple DMA commands but libata core currently
1464          * doesn't allow it.
1465          */
1466         if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1467             (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1468                 if (ata_is_ncq(qc->tf.protocol))
1469                         return 0;
1470                 else {
1471                         ap->excl_link = link;
1472                         return ATA_DEFER_PORT;
1473                 }
1474         }
1475
1476         return ATA_DEFER_PORT;
1477 }
1478
1479 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1480 {
1481         struct mv_port_priv *pp = ap->private_data;
1482         void __iomem *port_mmio;
1483
1484         u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1485         u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1486         u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1487
1488         ltmode   = *old_ltmode & ~LTMODE_BIT8;
1489         haltcond = *old_haltcond | EDMA_ERR_DEV;
1490
1491         if (want_fbs) {
1492                 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1493                 ltmode = *old_ltmode | LTMODE_BIT8;
1494                 if (want_ncq)
1495                         haltcond &= ~EDMA_ERR_DEV;
1496                 else
1497                         fiscfg |=  FISCFG_WAIT_DEV_ERR;
1498         } else {
1499                 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1500         }
1501
1502         port_mmio = mv_ap_base(ap);
1503         mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1504         mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1505         mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1506 }
1507
1508 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1509 {
1510         struct mv_host_priv *hpriv = ap->host->private_data;
1511         u32 old, new;
1512
1513         /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1514         old = readl(hpriv->base + GPIO_PORT_CTL);
1515         if (want_ncq)
1516                 new = old | (1 << 22);
1517         else
1518                 new = old & ~(1 << 22);
1519         if (new != old)
1520                 writel(new, hpriv->base + GPIO_PORT_CTL);
1521 }
1522
1523 /**
1524  *      mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1525  *      @ap: Port being initialized
1526  *
1527  *      There are two DMA modes on these chips:  basic DMA, and EDMA.
1528  *
1529  *      Bit-0 of the "EDMA RESERVED" register enables/disables use
1530  *      of basic DMA on the GEN_IIE versions of the chips.
1531  *
1532  *      This bit survives EDMA resets, and must be set for basic DMA
1533  *      to function, and should be cleared when EDMA is active.
1534  */
1535 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1536 {
1537         struct mv_port_priv *pp = ap->private_data;
1538         u32 new, *old = &pp->cached.unknown_rsvd;
1539
1540         if (enable_bmdma)
1541                 new = *old | 1;
1542         else
1543                 new = *old & ~1;
1544         mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1545 }
1546
1547 /*
1548  * SOC chips have an issue whereby the HDD LEDs don't always blink
1549  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1550  * of the SOC takes care of it, generating a steady blink rate when
1551  * any drive on the chip is active.
1552  *
1553  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1554  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1555  *
1556  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1557  * LED operation works then, and provides better (more accurate) feedback.
1558  *
1559  * Note that this code assumes that an SOC never has more than one HC onboard.
1560  */
1561 static void mv_soc_led_blink_enable(struct ata_port *ap)
1562 {
1563         struct ata_host *host = ap->host;
1564         struct mv_host_priv *hpriv = host->private_data;
1565         void __iomem *hc_mmio;
1566         u32 led_ctrl;
1567
1568         if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1569                 return;
1570         hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1571         hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1572         led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1573         writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1574 }
1575
1576 static void mv_soc_led_blink_disable(struct ata_port *ap)
1577 {
1578         struct ata_host *host = ap->host;
1579         struct mv_host_priv *hpriv = host->private_data;
1580         void __iomem *hc_mmio;
1581         u32 led_ctrl;
1582         unsigned int port;
1583
1584         if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1585                 return;
1586
1587         /* disable led-blink only if no ports are using NCQ */
1588         for (port = 0; port < hpriv->n_ports; port++) {
1589                 struct ata_port *this_ap = host->ports[port];
1590                 struct mv_port_priv *pp = this_ap->private_data;
1591
1592                 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1593                         return;
1594         }
1595
1596         hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1597         hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1598         led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1599         writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1600 }
1601
1602 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1603 {
1604         u32 cfg;
1605         struct mv_port_priv *pp    = ap->private_data;
1606         struct mv_host_priv *hpriv = ap->host->private_data;
1607         void __iomem *port_mmio    = mv_ap_base(ap);
1608
1609         /* set up non-NCQ EDMA configuration */
1610         cfg = EDMA_CFG_Q_DEPTH;         /* always 0x1f for *all* chips */
1611         pp->pp_flags &=
1612           ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1613
1614         if (IS_GEN_I(hpriv))
1615                 cfg |= (1 << 8);        /* enab config burst size mask */
1616
1617         else if (IS_GEN_II(hpriv)) {
1618                 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1619                 mv_60x1_errata_sata25(ap, want_ncq);
1620
1621         } else if (IS_GEN_IIE(hpriv)) {
1622                 int want_fbs = sata_pmp_attached(ap);
1623                 /*
1624                  * Possible future enhancement:
1625                  *
1626                  * The chip can use FBS with non-NCQ, if we allow it,
1627                  * But first we need to have the error handling in place
1628                  * for this mode (datasheet section 7.3.15.4.2.3).
1629                  * So disallow non-NCQ FBS for now.
1630                  */
1631                 want_fbs &= want_ncq;
1632
1633                 mv_config_fbs(ap, want_ncq, want_fbs);
1634
1635                 if (want_fbs) {
1636                         pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1637                         cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1638                 }
1639
1640                 cfg |= (1 << 23);       /* do not mask PM field in rx'd FIS */
1641                 if (want_edma) {
1642                         cfg |= (1 << 22); /* enab 4-entry host queue cache */
1643                         if (!IS_SOC(hpriv))
1644                                 cfg |= (1 << 18); /* enab early completion */
1645                 }
1646                 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1647                         cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1648                 mv_bmdma_enable_iie(ap, !want_edma);
1649
1650                 if (IS_SOC(hpriv)) {
1651                         if (want_ncq)
1652                                 mv_soc_led_blink_enable(ap);
1653                         else
1654                                 mv_soc_led_blink_disable(ap);
1655                 }
1656         }
1657
1658         if (want_ncq) {
1659                 cfg |= EDMA_CFG_NCQ;
1660                 pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1661         }
1662
1663         writelfl(cfg, port_mmio + EDMA_CFG);
1664 }
1665
1666 static void mv_port_free_dma_mem(struct ata_port *ap)
1667 {
1668         struct mv_host_priv *hpriv = ap->host->private_data;
1669         struct mv_port_priv *pp = ap->private_data;
1670         int tag;
1671
1672         if (pp->crqb) {
1673                 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1674                 pp->crqb = NULL;
1675         }
1676         if (pp->crpb) {
1677                 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1678                 pp->crpb = NULL;
1679         }
1680         /*
1681          * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1682          * For later hardware, we have one unique sg_tbl per NCQ tag.
1683          */
1684         for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1685                 if (pp->sg_tbl[tag]) {
1686                         if (tag == 0 || !IS_GEN_I(hpriv))
1687                                 dma_pool_free(hpriv->sg_tbl_pool,
1688                                               pp->sg_tbl[tag],
1689                                               pp->sg_tbl_dma[tag]);
1690                         pp->sg_tbl[tag] = NULL;
1691                 }
1692         }
1693 }
1694
1695 /**
1696  *      mv_port_start - Port specific init/start routine.
1697  *      @ap: ATA channel to manipulate
1698  *
1699  *      Allocate and point to DMA memory, init port private memory,
1700  *      zero indices.
1701  *
1702  *      LOCKING:
1703  *      Inherited from caller.
1704  */
1705 static int mv_port_start(struct ata_port *ap)
1706 {
1707         struct device *dev = ap->host->dev;
1708         struct mv_host_priv *hpriv = ap->host->private_data;
1709         struct mv_port_priv *pp;
1710         unsigned long flags;
1711         int tag;
1712
1713         pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1714         if (!pp)
1715                 return -ENOMEM;
1716         ap->private_data = pp;
1717
1718         pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1719         if (!pp->crqb)
1720                 return -ENOMEM;
1721         memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1722
1723         pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1724         if (!pp->crpb)
1725                 goto out_port_free_dma_mem;
1726         memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1727
1728         /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1729         if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1730                 ap->flags |= ATA_FLAG_AN;
1731         /*
1732          * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1733          * For later hardware, we need one unique sg_tbl per NCQ tag.
1734          */
1735         for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1736                 if (tag == 0 || !IS_GEN_I(hpriv)) {
1737                         pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1738                                               GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1739                         if (!pp->sg_tbl[tag])
1740                                 goto out_port_free_dma_mem;
1741                 } else {
1742                         pp->sg_tbl[tag]     = pp->sg_tbl[0];
1743                         pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1744                 }
1745         }
1746
1747         spin_lock_irqsave(ap->lock, flags);
1748         mv_save_cached_regs(ap);
1749         mv_edma_cfg(ap, 0, 0);
1750         spin_unlock_irqrestore(ap->lock, flags);
1751
1752         return 0;
1753
1754 out_port_free_dma_mem:
1755         mv_port_free_dma_mem(ap);
1756         return -ENOMEM;
1757 }
1758
1759 /**
1760  *      mv_port_stop - Port specific cleanup/stop routine.
1761  *      @ap: ATA channel to manipulate
1762  *
1763  *      Stop DMA, cleanup port memory.
1764  *
1765  *      LOCKING:
1766  *      This routine uses the host lock to protect the DMA stop.
1767  */
1768 static void mv_port_stop(struct ata_port *ap)
1769 {
1770         unsigned long flags;
1771
1772         spin_lock_irqsave(ap->lock, flags);
1773         mv_stop_edma(ap);
1774         mv_enable_port_irqs(ap, 0);
1775         spin_unlock_irqrestore(ap->lock, flags);
1776         mv_port_free_dma_mem(ap);
1777 }
1778
1779 /**
1780  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1781  *      @qc: queued command whose SG list to source from
1782  *
1783  *      Populate the SG list and mark the last entry.
1784  *
1785  *      LOCKING:
1786  *      Inherited from caller.
1787  */
1788 static void mv_fill_sg(struct ata_queued_cmd *qc)
1789 {
1790         struct mv_port_priv *pp = qc->ap->private_data;
1791         struct scatterlist *sg;
1792         struct mv_sg *mv_sg, *last_sg = NULL;
1793         unsigned int si;
1794
1795         mv_sg = pp->sg_tbl[qc->tag];
1796         for_each_sg(qc->sg, sg, qc->n_elem, si) {
1797                 dma_addr_t addr = sg_dma_address(sg);
1798                 u32 sg_len = sg_dma_len(sg);
1799
1800                 while (sg_len) {
1801                         u32 offset = addr & 0xffff;
1802                         u32 len = sg_len;
1803
1804                         if (offset + len > 0x10000)
1805                                 len = 0x10000 - offset;
1806
1807                         mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1808                         mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1809                         mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1810                         mv_sg->reserved = 0;
1811
1812                         sg_len -= len;
1813                         addr += len;
1814
1815                         last_sg = mv_sg;
1816                         mv_sg++;
1817                 }
1818         }
1819
1820         if (likely(last_sg))
1821                 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1822         mb(); /* ensure data structure is visible to the chipset */
1823 }
1824
1825 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1826 {
1827         u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1828                 (last ? CRQB_CMD_LAST : 0);
1829         *cmdw = cpu_to_le16(tmp);
1830 }
1831
1832 /**
1833  *      mv_sff_irq_clear - Clear hardware interrupt after DMA.
1834  *      @ap: Port associated with this ATA transaction.
1835  *
1836  *      We need this only for ATAPI bmdma transactions,
1837  *      as otherwise we experience spurious interrupts
1838  *      after libata-sff handles the bmdma interrupts.
1839  */
1840 static void mv_sff_irq_clear(struct ata_port *ap)
1841 {
1842         mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1843 }
1844
1845 /**
1846  *      mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1847  *      @qc: queued command to check for chipset/DMA compatibility.
1848  *
1849  *      The bmdma engines cannot handle speculative data sizes
1850  *      (bytecount under/over flow).  So only allow DMA for
1851  *      data transfer commands with known data sizes.
1852  *
1853  *      LOCKING:
1854  *      Inherited from caller.
1855  */
1856 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1857 {
1858         struct scsi_cmnd *scmd = qc->scsicmd;
1859
1860         if (scmd) {
1861                 switch (scmd->cmnd[0]) {
1862                 case READ_6:
1863                 case READ_10:
1864                 case READ_12:
1865                 case WRITE_6:
1866                 case WRITE_10:
1867                 case WRITE_12:
1868                 case GPCMD_READ_CD:
1869                 case GPCMD_SEND_DVD_STRUCTURE:
1870                 case GPCMD_SEND_CUE_SHEET:
1871                         return 0; /* DMA is safe */
1872                 }
1873         }
1874         return -EOPNOTSUPP; /* use PIO instead */
1875 }
1876
1877 /**
1878  *      mv_bmdma_setup - Set up BMDMA transaction
1879  *      @qc: queued command to prepare DMA for.
1880  *
1881  *      LOCKING:
1882  *      Inherited from caller.
1883  */
1884 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1885 {
1886         struct ata_port *ap = qc->ap;
1887         void __iomem *port_mmio = mv_ap_base(ap);
1888         struct mv_port_priv *pp = ap->private_data;
1889
1890         mv_fill_sg(qc);
1891
1892         /* clear all DMA cmd bits */
1893         writel(0, port_mmio + BMDMA_CMD);
1894
1895         /* load PRD table addr. */
1896         writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1897                 port_mmio + BMDMA_PRD_HIGH);
1898         writelfl(pp->sg_tbl_dma[qc->tag],
1899                 port_mmio + BMDMA_PRD_LOW);
1900
1901         /* issue r/w command */
1902         ap->ops->sff_exec_command(ap, &qc->tf);
1903 }
1904
1905 /**
1906  *      mv_bmdma_start - Start a BMDMA transaction
1907  *      @qc: queued command to start DMA on.
1908  *
1909  *      LOCKING:
1910  *      Inherited from caller.
1911  */
1912 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1913 {
1914         struct ata_port *ap = qc->ap;
1915         void __iomem *port_mmio = mv_ap_base(ap);
1916         unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1917         u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1918
1919         /* start host DMA transaction */
1920         writelfl(cmd, port_mmio + BMDMA_CMD);
1921 }
1922
1923 /**
1924  *      mv_bmdma_stop - Stop BMDMA transfer
1925  *      @qc: queued command to stop DMA on.
1926  *
1927  *      Clears the ATA_DMA_START flag in the bmdma control register
1928  *
1929  *      LOCKING:
1930  *      Inherited from caller.
1931  */
1932 static void mv_bmdma_stop_ap(struct ata_port *ap)
1933 {
1934         void __iomem *port_mmio = mv_ap_base(ap);
1935         u32 cmd;
1936
1937         /* clear start/stop bit */
1938         cmd = readl(port_mmio + BMDMA_CMD);
1939         if (cmd & ATA_DMA_START) {
1940                 cmd &= ~ATA_DMA_START;
1941                 writelfl(cmd, port_mmio + BMDMA_CMD);
1942
1943                 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1944                 ata_sff_dma_pause(ap);
1945         }
1946 }
1947
1948 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1949 {
1950         mv_bmdma_stop_ap(qc->ap);
1951 }
1952
1953 /**
1954  *      mv_bmdma_status - Read BMDMA status
1955  *      @ap: port for which to retrieve DMA status.
1956  *
1957  *      Read and return equivalent of the sff BMDMA status register.
1958  *
1959  *      LOCKING:
1960  *      Inherited from caller.
1961  */
1962 static u8 mv_bmdma_status(struct ata_port *ap)
1963 {
1964         void __iomem *port_mmio = mv_ap_base(ap);
1965         u32 reg, status;
1966
1967         /*
1968          * Other bits are valid only if ATA_DMA_ACTIVE==0,
1969          * and the ATA_DMA_INTR bit doesn't exist.
1970          */
1971         reg = readl(port_mmio + BMDMA_STATUS);
1972         if (reg & ATA_DMA_ACTIVE)
1973                 status = ATA_DMA_ACTIVE;
1974         else if (reg & ATA_DMA_ERR)
1975                 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1976         else {
1977                 /*
1978                  * Just because DMA_ACTIVE is 0 (DMA completed),
1979                  * this does _not_ mean the device is "done".
1980                  * So we should not yet be signalling ATA_DMA_INTR
1981                  * in some cases.  Eg. DSM/TRIM, and perhaps others.
1982                  */
1983                 mv_bmdma_stop_ap(ap);
1984                 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1985                         status = 0;
1986                 else
1987                         status = ATA_DMA_INTR;
1988         }
1989         return status;
1990 }
1991
1992 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1993 {
1994         struct ata_taskfile *tf = &qc->tf;
1995         /*
1996          * Workaround for 88SX60x1 FEr SATA#24.
1997          *
1998          * Chip may corrupt WRITEs if multi_count >= 4kB.
1999          * Note that READs are unaffected.
2000          *
2001          * It's not clear if this errata really means "4K bytes",
2002          * or if it always happens for multi_count > 7
2003          * regardless of device sector_size.
2004          *
2005          * So, for safety, any write with multi_count > 7
2006          * gets converted here into a regular PIO write instead:
2007          */
2008         if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2009                 if (qc->dev->multi_count > 7) {
2010                         switch (tf->command) {
2011                         case ATA_CMD_WRITE_MULTI:
2012                                 tf->command = ATA_CMD_PIO_WRITE;
2013                                 break;
2014                         case ATA_CMD_WRITE_MULTI_FUA_EXT:
2015                                 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2016                                 /* fall through */
2017                         case ATA_CMD_WRITE_MULTI_EXT:
2018                                 tf->command = ATA_CMD_PIO_WRITE_EXT;
2019                                 break;
2020                         }
2021                 }
2022         }
2023 }
2024
2025 /**
2026  *      mv_qc_prep - Host specific command preparation.
2027  *      @qc: queued command to prepare
2028  *
2029  *      This routine simply redirects to the general purpose routine
2030  *      if command is not DMA.  Else, it handles prep of the CRQB
2031  *      (command request block), does some sanity checking, and calls
2032  *      the SG load routine.
2033  *
2034  *      LOCKING:
2035  *      Inherited from caller.
2036  */
2037 static void mv_qc_prep(struct ata_queued_cmd *qc)
2038 {
2039         struct ata_port *ap = qc->ap;
2040         struct mv_port_priv *pp = ap->private_data;
2041         __le16 *cw;
2042         struct ata_taskfile *tf = &qc->tf;
2043         u16 flags = 0;
2044         unsigned in_index;
2045
2046         switch (tf->protocol) {
2047         case ATA_PROT_DMA:
2048                 if (tf->command == ATA_CMD_DSM)
2049                         return;
2050                 /* fall-thru */
2051         case ATA_PROT_NCQ:
2052                 break;  /* continue below */
2053         case ATA_PROT_PIO:
2054                 mv_rw_multi_errata_sata24(qc);
2055                 return;
2056         default:
2057                 return;
2058         }
2059
2060         /* Fill in command request block
2061          */
2062         if (!(tf->flags & ATA_TFLAG_WRITE))
2063                 flags |= CRQB_FLAG_READ;
2064         WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2065         flags |= qc->tag << CRQB_TAG_SHIFT;
2066         flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2067
2068         /* get current queue index from software */
2069         in_index = pp->req_idx;
2070
2071         pp->crqb[in_index].sg_addr =
2072                 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2073         pp->crqb[in_index].sg_addr_hi =
2074                 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2075         pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2076
2077         cw = &pp->crqb[in_index].ata_cmd[0];
2078
2079         /* Sadly, the CRQB cannot accommodate all registers--there are
2080          * only 11 bytes...so we must pick and choose required
2081          * registers based on the command.  So, we drop feature and
2082          * hob_feature for [RW] DMA commands, but they are needed for
2083          * NCQ.  NCQ will drop hob_nsect, which is not needed there
2084          * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2085          */
2086         switch (tf->command) {
2087         case ATA_CMD_READ:
2088         case ATA_CMD_READ_EXT:
2089         case ATA_CMD_WRITE:
2090         case ATA_CMD_WRITE_EXT:
2091         case ATA_CMD_WRITE_FUA_EXT:
2092                 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2093                 break;
2094         case ATA_CMD_FPDMA_READ:
2095         case ATA_CMD_FPDMA_WRITE:
2096                 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2097                 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2098                 break;
2099         default:
2100                 /* The only other commands EDMA supports in non-queued and
2101                  * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2102                  * of which are defined/used by Linux.  If we get here, this
2103                  * driver needs work.
2104                  *
2105                  * FIXME: modify libata to give qc_prep a return value and
2106                  * return error here.
2107                  */
2108                 BUG_ON(tf->command);
2109                 break;
2110         }
2111         mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2112         mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2113         mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2114         mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2115         mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2116         mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2117         mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2118         mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2119         mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);    /* last */
2120
2121         if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2122                 return;
2123         mv_fill_sg(qc);
2124 }
2125
2126 /**
2127  *      mv_qc_prep_iie - Host specific command preparation.
2128  *      @qc: queued command to prepare
2129  *
2130  *      This routine simply redirects to the general purpose routine
2131  *      if command is not DMA.  Else, it handles prep of the CRQB
2132  *      (command request block), does some sanity checking, and calls
2133  *      the SG load routine.
2134  *
2135  *      LOCKING:
2136  *      Inherited from caller.
2137  */
2138 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2139 {
2140         struct ata_port *ap = qc->ap;
2141         struct mv_port_priv *pp = ap->private_data;
2142         struct mv_crqb_iie *crqb;
2143         struct ata_taskfile *tf = &qc->tf;
2144         unsigned in_index;
2145         u32 flags = 0;
2146
2147         if ((tf->protocol != ATA_PROT_DMA) &&
2148             (tf->protocol != ATA_PROT_NCQ))
2149                 return;
2150         if (tf->command == ATA_CMD_DSM)
2151                 return;  /* use bmdma for this */
2152
2153         /* Fill in Gen IIE command request block */
2154         if (!(tf->flags & ATA_TFLAG_WRITE))
2155                 flags |= CRQB_FLAG_READ;
2156
2157         WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2158         flags |= qc->tag << CRQB_TAG_SHIFT;
2159         flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2160         flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2161
2162         /* get current queue index from software */
2163         in_index = pp->req_idx;
2164
2165         crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2166         crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2167         crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2168         crqb->flags = cpu_to_le32(flags);
2169
2170         crqb->ata_cmd[0] = cpu_to_le32(
2171                         (tf->command << 16) |
2172                         (tf->feature << 24)
2173                 );
2174         crqb->ata_cmd[1] = cpu_to_le32(
2175                         (tf->lbal << 0) |
2176                         (tf->lbam << 8) |
2177                         (tf->lbah << 16) |
2178                         (tf->device << 24)
2179                 );
2180         crqb->ata_cmd[2] = cpu_to_le32(
2181                         (tf->hob_lbal << 0) |
2182                         (tf->hob_lbam << 8) |
2183                         (tf->hob_lbah << 16) |
2184                         (tf->hob_feature << 24)
2185                 );
2186         crqb->ata_cmd[3] = cpu_to_le32(
2187                         (tf->nsect << 0) |
2188                         (tf->hob_nsect << 8)
2189                 );
2190
2191         if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2192                 return;
2193         mv_fill_sg(qc);
2194 }
2195
2196 /**
2197  *      mv_sff_check_status - fetch device status, if valid
2198  *      @ap: ATA port to fetch status from
2199  *
2200  *      When using command issue via mv_qc_issue_fis(),
2201  *      the initial ATA_BUSY state does not show up in the
2202  *      ATA status (shadow) register.  This can confuse libata!
2203  *
2204  *      So we have a hook here to fake ATA_BUSY for that situation,
2205  *      until the first time a BUSY, DRQ, or ERR bit is seen.
2206  *
2207  *      The rest of the time, it simply returns the ATA status register.
2208  */
2209 static u8 mv_sff_check_status(struct ata_port *ap)
2210 {
2211         u8 stat = ioread8(ap->ioaddr.status_addr);
2212         struct mv_port_priv *pp = ap->private_data;
2213
2214         if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2215                 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2216                         pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2217                 else
2218                         stat = ATA_BUSY;
2219         }
2220         return stat;
2221 }
2222
2223 /**
2224  *      mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2225  *      @fis: fis to be sent
2226  *      @nwords: number of 32-bit words in the fis
2227  */
2228 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2229 {
2230         void __iomem *port_mmio = mv_ap_base(ap);
2231         u32 ifctl, old_ifctl, ifstat;
2232         int i, timeout = 200, final_word = nwords - 1;
2233
2234         /* Initiate FIS transmission mode */
2235         old_ifctl = readl(port_mmio + SATA_IFCTL);
2236         ifctl = 0x100 | (old_ifctl & 0xf);
2237         writelfl(ifctl, port_mmio + SATA_IFCTL);
2238
2239         /* Send all words of the FIS except for the final word */
2240         for (i = 0; i < final_word; ++i)
2241                 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2242
2243         /* Flag end-of-transmission, and then send the final word */
2244         writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2245         writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2246
2247         /*
2248          * Wait for FIS transmission to complete.
2249          * This typically takes just a single iteration.
2250          */
2251         do {
2252                 ifstat = readl(port_mmio + SATA_IFSTAT);
2253         } while (!(ifstat & 0x1000) && --timeout);
2254
2255         /* Restore original port configuration */
2256         writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2257
2258         /* See if it worked */
2259         if ((ifstat & 0x3000) != 0x1000) {
2260                 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2261                               __func__, ifstat);
2262                 return AC_ERR_OTHER;
2263         }
2264         return 0;
2265 }
2266
2267 /**
2268  *      mv_qc_issue_fis - Issue a command directly as a FIS
2269  *      @qc: queued command to start
2270  *
2271  *      Note that the ATA shadow registers are not updated
2272  *      after command issue, so the device will appear "READY"
2273  *      if polled, even while it is BUSY processing the command.
2274  *
2275  *      So we use a status hook to fake ATA_BUSY until the drive changes state.
2276  *
2277  *      Note: we don't get updated shadow regs on *completion*
2278  *      of non-data commands. So avoid sending them via this function,
2279  *      as they will appear to have completed immediately.
2280  *
2281  *      GEN_IIE has special registers that we could get the result tf from,
2282  *      but earlier chipsets do not.  For now, we ignore those registers.
2283  */
2284 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2285 {
2286         struct ata_port *ap = qc->ap;
2287         struct mv_port_priv *pp = ap->private_data;
2288         struct ata_link *link = qc->dev->link;
2289         u32 fis[5];
2290         int err = 0;
2291
2292         ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2293         err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2294         if (err)
2295                 return err;
2296
2297         switch (qc->tf.protocol) {
2298         case ATAPI_PROT_PIO:
2299                 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2300                 /* fall through */
2301         case ATAPI_PROT_NODATA:
2302                 ap->hsm_task_state = HSM_ST_FIRST;
2303                 break;
2304         case ATA_PROT_PIO:
2305                 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2306                 if (qc->tf.flags & ATA_TFLAG_WRITE)
2307                         ap->hsm_task_state = HSM_ST_FIRST;
2308                 else
2309                         ap->hsm_task_state = HSM_ST;
2310                 break;
2311         default:
2312                 ap->hsm_task_state = HSM_ST_LAST;
2313                 break;
2314         }
2315
2316         if (qc->tf.flags & ATA_TFLAG_POLLING)
2317                 ata_sff_queue_pio_task(link, 0);
2318         return 0;
2319 }
2320
2321 /**
2322  *      mv_qc_issue - Initiate a command to the host
2323  *      @qc: queued command to start
2324  *
2325  *      This routine simply redirects to the general purpose routine
2326  *      if command is not DMA.  Else, it sanity checks our local
2327  *      caches of the request producer/consumer indices then enables
2328  *      DMA and bumps the request producer index.
2329  *
2330  *      LOCKING:
2331  *      Inherited from caller.
2332  */
2333 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2334 {
2335         static int limit_warnings = 10;
2336         struct ata_port *ap = qc->ap;
2337         void __iomem *port_mmio = mv_ap_base(ap);
2338         struct mv_port_priv *pp = ap->private_data;
2339         u32 in_index;
2340         unsigned int port_irqs;
2341
2342         pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2343
2344         switch (qc->tf.protocol) {
2345         case ATA_PROT_DMA:
2346                 if (qc->tf.command == ATA_CMD_DSM) {
2347                         if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2348                                 return AC_ERR_OTHER;
2349                         break;  /* use bmdma for this */
2350                 }
2351                 /* fall thru */
2352         case ATA_PROT_NCQ:
2353                 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2354                 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2355                 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2356
2357                 /* Write the request in pointer to kick the EDMA to life */
2358                 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2359                                         port_mmio + EDMA_REQ_Q_IN_PTR);
2360                 return 0;
2361
2362         case ATA_PROT_PIO:
2363                 /*
2364                  * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2365                  *
2366                  * Someday, we might implement special polling workarounds
2367                  * for these, but it all seems rather unnecessary since we
2368                  * normally use only DMA for commands which transfer more
2369                  * than a single block of data.
2370                  *
2371                  * Much of the time, this could just work regardless.
2372                  * So for now, just log the incident, and allow the attempt.
2373                  */
2374                 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2375                         --limit_warnings;
2376                         ata_link_warn(qc->dev->link, DRV_NAME
2377                                       ": attempting PIO w/multiple DRQ: "
2378                                       "this may fail due to h/w errata\n");
2379                 }
2380                 /* drop through */
2381         case ATA_PROT_NODATA:
2382         case ATAPI_PROT_PIO:
2383         case ATAPI_PROT_NODATA:
2384                 if (ap->flags & ATA_FLAG_PIO_POLLING)
2385                         qc->tf.flags |= ATA_TFLAG_POLLING;
2386                 break;
2387         }
2388
2389         if (qc->tf.flags & ATA_TFLAG_POLLING)
2390                 port_irqs = ERR_IRQ;    /* mask device interrupt when polling */
2391         else
2392                 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2393
2394         /*
2395          * We're about to send a non-EDMA capable command to the
2396          * port.  Turn off EDMA so there won't be problems accessing
2397          * shadow block, etc registers.
2398          */
2399         mv_stop_edma(ap);
2400         mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2401         mv_pmp_select(ap, qc->dev->link->pmp);
2402
2403         if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2404                 struct mv_host_priv *hpriv = ap->host->private_data;
2405                 /*
2406                  * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2407                  *
2408                  * After any NCQ error, the READ_LOG_EXT command
2409                  * from libata-eh *must* use mv_qc_issue_fis().
2410                  * Otherwise it might fail, due to chip errata.
2411                  *
2412                  * Rather than special-case it, we'll just *always*
2413                  * use this method here for READ_LOG_EXT, making for
2414                  * easier testing.
2415                  */
2416                 if (IS_GEN_II(hpriv))
2417                         return mv_qc_issue_fis(qc);
2418         }
2419         return ata_bmdma_qc_issue(qc);
2420 }
2421
2422 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2423 {
2424         struct mv_port_priv *pp = ap->private_data;
2425         struct ata_queued_cmd *qc;
2426
2427         if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2428                 return NULL;
2429         qc = ata_qc_from_tag(ap, ap->link.active_tag);
2430         if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2431                 return qc;
2432         return NULL;
2433 }
2434
2435 static void mv_pmp_error_handler(struct ata_port *ap)
2436 {
2437         unsigned int pmp, pmp_map;
2438         struct mv_port_priv *pp = ap->private_data;
2439
2440         if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2441                 /*
2442                  * Perform NCQ error analysis on failed PMPs
2443                  * before we freeze the port entirely.
2444                  *
2445                  * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2446                  */
2447                 pmp_map = pp->delayed_eh_pmp_map;
2448                 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2449                 for (pmp = 0; pmp_map != 0; pmp++) {
2450                         unsigned int this_pmp = (1 << pmp);
2451                         if (pmp_map & this_pmp) {
2452                                 struct ata_link *link = &ap->pmp_link[pmp];
2453                                 pmp_map &= ~this_pmp;
2454                                 ata_eh_analyze_ncq_error(link);
2455                         }
2456                 }
2457                 ata_port_freeze(ap);
2458         }
2459         sata_pmp_error_handler(ap);
2460 }
2461
2462 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2463 {
2464         void __iomem *port_mmio = mv_ap_base(ap);
2465
2466         return readl(port_mmio + SATA_TESTCTL) >> 16;
2467 }
2468
2469 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2470 {
2471         struct ata_eh_info *ehi;
2472         unsigned int pmp;
2473
2474         /*
2475          * Initialize EH info for PMPs which saw device errors
2476          */
2477         ehi = &ap->link.eh_info;
2478         for (pmp = 0; pmp_map != 0; pmp++) {
2479                 unsigned int this_pmp = (1 << pmp);
2480                 if (pmp_map & this_pmp) {
2481                         struct ata_link *link = &ap->pmp_link[pmp];
2482
2483                         pmp_map &= ~this_pmp;
2484                         ehi = &link->eh_info;
2485                         ata_ehi_clear_desc(ehi);
2486                         ata_ehi_push_desc(ehi, "dev err");
2487                         ehi->err_mask |= AC_ERR_DEV;
2488                         ehi->action |= ATA_EH_RESET;
2489                         ata_link_abort(link);
2490                 }
2491         }
2492 }
2493
2494 static int mv_req_q_empty(struct ata_port *ap)
2495 {
2496         void __iomem *port_mmio = mv_ap_base(ap);
2497         u32 in_ptr, out_ptr;
2498
2499         in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2500                         >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2501         out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2502                         >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2503         return (in_ptr == out_ptr);     /* 1 == queue_is_empty */
2504 }
2505
2506 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2507 {
2508         struct mv_port_priv *pp = ap->private_data;
2509         int failed_links;
2510         unsigned int old_map, new_map;
2511
2512         /*
2513          * Device error during FBS+NCQ operation:
2514          *
2515          * Set a port flag to prevent further I/O being enqueued.
2516          * Leave the EDMA running to drain outstanding commands from this port.
2517          * Perform the post-mortem/EH only when all responses are complete.
2518          * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2519          */
2520         if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2521                 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2522                 pp->delayed_eh_pmp_map = 0;
2523         }
2524         old_map = pp->delayed_eh_pmp_map;
2525         new_map = old_map | mv_get_err_pmp_map(ap);
2526
2527         if (old_map != new_map) {
2528                 pp->delayed_eh_pmp_map = new_map;
2529                 mv_pmp_eh_prep(ap, new_map & ~old_map);
2530         }
2531         failed_links = hweight16(new_map);
2532
2533         ata_port_info(ap,
2534                       "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2535                       __func__, pp->delayed_eh_pmp_map,
2536                       ap->qc_active, failed_links,
2537                       ap->nr_active_links);
2538
2539         if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2540                 mv_process_crpb_entries(ap, pp);
2541                 mv_stop_edma(ap);
2542                 mv_eh_freeze(ap);
2543                 ata_port_info(ap, "%s: done\n", __func__);
2544                 return 1;       /* handled */
2545         }
2546         ata_port_info(ap, "%s: waiting\n", __func__);
2547         return 1;       /* handled */
2548 }
2549
2550 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2551 {
2552         /*
2553          * Possible future enhancement:
2554          *
2555          * FBS+non-NCQ operation is not yet implemented.
2556          * See related notes in mv_edma_cfg().
2557          *
2558          * Device error during FBS+non-NCQ operation:
2559          *
2560          * We need to snapshot the shadow registers for each failed command.
2561          * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2562          */
2563         return 0;       /* not handled */
2564 }
2565
2566 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2567 {
2568         struct mv_port_priv *pp = ap->private_data;
2569
2570         if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2571                 return 0;       /* EDMA was not active: not handled */
2572         if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2573                 return 0;       /* FBS was not active: not handled */
2574
2575         if (!(edma_err_cause & EDMA_ERR_DEV))
2576                 return 0;       /* non DEV error: not handled */
2577         edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2578         if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2579                 return 0;       /* other problems: not handled */
2580
2581         if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2582                 /*
2583                  * EDMA should NOT have self-disabled for this case.
2584                  * If it did, then something is wrong elsewhere,
2585                  * and we cannot handle it here.
2586                  */
2587                 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2588                         ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2589                                       __func__, edma_err_cause, pp->pp_flags);
2590                         return 0; /* not handled */
2591                 }
2592                 return mv_handle_fbs_ncq_dev_err(ap);
2593         } else {
2594                 /*
2595                  * EDMA should have self-disabled for this case.
2596                  * If it did not, then something is wrong elsewhere,
2597                  * and we cannot handle it here.
2598                  */
2599                 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2600                         ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2601                                       __func__, edma_err_cause, pp->pp_flags);
2602                         return 0; /* not handled */
2603                 }
2604                 return mv_handle_fbs_non_ncq_dev_err(ap);
2605         }
2606         return 0;       /* not handled */
2607 }
2608
2609 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2610 {
2611         struct ata_eh_info *ehi = &ap->link.eh_info;
2612         char *when = "idle";
2613
2614         ata_ehi_clear_desc(ehi);
2615         if (edma_was_enabled) {
2616                 when = "EDMA enabled";
2617         } else {
2618                 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2619                 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2620                         when = "polling";
2621         }
2622         ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2623         ehi->err_mask |= AC_ERR_OTHER;
2624         ehi->action   |= ATA_EH_RESET;
2625         ata_port_freeze(ap);
2626 }
2627
2628 /**
2629  *      mv_err_intr - Handle error interrupts on the port
2630  *      @ap: ATA channel to manipulate
2631  *
2632  *      Most cases require a full reset of the chip's state machine,
2633  *      which also performs a COMRESET.
2634  *      Also, if the port disabled DMA, update our cached copy to match.
2635  *
2636  *      LOCKING:
2637  *      Inherited from caller.
2638  */
2639 static void mv_err_intr(struct ata_port *ap)
2640 {
2641         void __iomem *port_mmio = mv_ap_base(ap);
2642         u32 edma_err_cause, eh_freeze_mask, serr = 0;
2643         u32 fis_cause = 0;
2644         struct mv_port_priv *pp = ap->private_data;
2645         struct mv_host_priv *hpriv = ap->host->private_data;
2646         unsigned int action = 0, err_mask = 0;
2647         struct ata_eh_info *ehi = &ap->link.eh_info;
2648         struct ata_queued_cmd *qc;
2649         int abort = 0;
2650
2651         /*
2652          * Read and clear the SError and err_cause bits.
2653          * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2654          * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2655          */
2656         sata_scr_read(&ap->link, SCR_ERROR, &serr);
2657         sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2658
2659         edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2660         if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2661                 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2662                 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2663         }
2664         writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2665
2666         if (edma_err_cause & EDMA_ERR_DEV) {
2667                 /*
2668                  * Device errors during FIS-based switching operation
2669                  * require special handling.
2670                  */
2671                 if (mv_handle_dev_err(ap, edma_err_cause))
2672                         return;
2673         }
2674
2675         qc = mv_get_active_qc(ap);
2676         ata_ehi_clear_desc(ehi);
2677         ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2678                           edma_err_cause, pp->pp_flags);
2679
2680         if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2681                 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2682                 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2683                         u32 ec = edma_err_cause &
2684                                ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2685                         sata_async_notification(ap);
2686                         if (!ec)
2687                                 return; /* Just an AN; no need for the nukes */
2688                         ata_ehi_push_desc(ehi, "SDB notify");
2689                 }
2690         }
2691         /*
2692          * All generations share these EDMA error cause bits:
2693          */
2694         if (edma_err_cause & EDMA_ERR_DEV) {
2695                 err_mask |= AC_ERR_DEV;
2696                 action |= ATA_EH_RESET;
2697                 ata_ehi_push_desc(ehi, "dev error");
2698         }
2699         if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2700                         EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2701                         EDMA_ERR_INTRL_PAR)) {
2702                 err_mask |= AC_ERR_ATA_BUS;
2703                 action |= ATA_EH_RESET;
2704                 ata_ehi_push_desc(ehi, "parity error");
2705         }
2706         if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2707                 ata_ehi_hotplugged(ehi);
2708                 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2709                         "dev disconnect" : "dev connect");
2710                 action |= ATA_EH_RESET;
2711         }
2712
2713         /*
2714          * Gen-I has a different SELF_DIS bit,
2715          * different FREEZE bits, and no SERR bit:
2716          */
2717         if (IS_GEN_I(hpriv)) {
2718                 eh_freeze_mask = EDMA_EH_FREEZE_5;
2719                 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2720                         pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2721                         ata_ehi_push_desc(ehi, "EDMA self-disable");
2722                 }
2723         } else {
2724                 eh_freeze_mask = EDMA_EH_FREEZE;
2725                 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2726                         pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2727                         ata_ehi_push_desc(ehi, "EDMA self-disable");
2728                 }
2729                 if (edma_err_cause & EDMA_ERR_SERR) {
2730                         ata_ehi_push_desc(ehi, "SError=%08x", serr);
2731                         err_mask |= AC_ERR_ATA_BUS;
2732                         action |= ATA_EH_RESET;
2733                 }
2734         }
2735
2736         if (!err_mask) {
2737                 err_mask = AC_ERR_OTHER;
2738                 action |= ATA_EH_RESET;
2739         }
2740
2741         ehi->serror |= serr;
2742         ehi->action |= action;
2743
2744         if (qc)
2745                 qc->err_mask |= err_mask;
2746         else
2747                 ehi->err_mask |= err_mask;
2748
2749         if (err_mask == AC_ERR_DEV) {
2750                 /*
2751                  * Cannot do ata_port_freeze() here,
2752                  * because it would kill PIO access,
2753                  * which is needed for further diagnosis.
2754                  */
2755                 mv_eh_freeze(ap);
2756                 abort = 1;
2757         } else if (edma_err_cause & eh_freeze_mask) {
2758                 /*
2759                  * Note to self: ata_port_freeze() calls ata_port_abort()
2760                  */
2761                 ata_port_freeze(ap);
2762         } else {
2763                 abort = 1;
2764         }
2765
2766         if (abort) {
2767                 if (qc)
2768                         ata_link_abort(qc->dev->link);
2769                 else
2770                         ata_port_abort(ap);
2771         }
2772 }
2773
2774 static bool mv_process_crpb_response(struct ata_port *ap,
2775                 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2776 {
2777         u8 ata_status;
2778         u16 edma_status = le16_to_cpu(response->flags);
2779
2780         /*
2781          * edma_status from a response queue entry:
2782          *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2783          *   MSB is saved ATA status from command completion.
2784          */
2785         if (!ncq_enabled) {
2786                 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2787                 if (err_cause) {
2788                         /*
2789                          * Error will be seen/handled by
2790                          * mv_err_intr().  So do nothing at all here.
2791                          */
2792                         return false;
2793                 }
2794         }
2795         ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2796         if (!ac_err_mask(ata_status))
2797                 return true;
2798         /* else: leave it for mv_err_intr() */
2799         return false;
2800 }
2801
2802 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2803 {
2804         void __iomem *port_mmio = mv_ap_base(ap);
2805         struct mv_host_priv *hpriv = ap->host->private_data;
2806         u32 in_index;
2807         bool work_done = false;
2808         u32 done_mask = 0;
2809         int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2810
2811         /* Get the hardware queue position index */
2812         in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2813                         >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2814
2815         /* Process new responses from since the last time we looked */
2816         while (in_index != pp->resp_idx) {
2817                 unsigned int tag;
2818                 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2819
2820                 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2821
2822                 if (IS_GEN_I(hpriv)) {
2823                         /* 50xx: no NCQ, only one command active at a time */
2824                         tag = ap->link.active_tag;
2825                 } else {
2826                         /* Gen II/IIE: get command tag from CRPB entry */
2827                         tag = le16_to_cpu(response->id) & 0x1f;
2828                 }
2829                 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2830                         done_mask |= 1 << tag;
2831                 work_done = true;
2832         }
2833
2834         if (work_done) {
2835                 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2836
2837                 /* Update the software queue position index in hardware */
2838                 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2839                          (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2840                          port_mmio + EDMA_RSP_Q_OUT_PTR);
2841         }
2842 }
2843
2844 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2845 {
2846         struct mv_port_priv *pp;
2847         int edma_was_enabled;
2848
2849         /*
2850          * Grab a snapshot of the EDMA_EN flag setting,
2851          * so that we have a consistent view for this port,
2852          * even if something we call of our routines changes it.
2853          */
2854         pp = ap->private_data;
2855         edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2856         /*
2857          * Process completed CRPB response(s) before other events.
2858          */
2859         if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2860                 mv_process_crpb_entries(ap, pp);
2861                 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2862                         mv_handle_fbs_ncq_dev_err(ap);
2863         }
2864         /*
2865          * Handle chip-reported errors, or continue on to handle PIO.
2866          */
2867         if (unlikely(port_cause & ERR_IRQ)) {
2868                 mv_err_intr(ap);
2869         } else if (!edma_was_enabled) {
2870                 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2871                 if (qc)
2872                         ata_bmdma_port_intr(ap, qc);
2873                 else
2874                         mv_unexpected_intr(ap, edma_was_enabled);
2875         }
2876 }
2877
2878 /**
2879  *      mv_host_intr - Handle all interrupts on the given host controller
2880  *      @host: host specific structure
2881  *      @main_irq_cause: Main interrupt cause register for the chip.
2882  *
2883  *      LOCKING:
2884  *      Inherited from caller.
2885  */
2886 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2887 {
2888         struct mv_host_priv *hpriv = host->private_data;
2889         void __iomem *mmio = hpriv->base, *hc_mmio;
2890         unsigned int handled = 0, port;
2891
2892         /* If asserted, clear the "all ports" IRQ coalescing bit */
2893         if (main_irq_cause & ALL_PORTS_COAL_DONE)
2894                 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2895
2896         for (port = 0; port < hpriv->n_ports; port++) {
2897                 struct ata_port *ap = host->ports[port];
2898                 unsigned int p, shift, hardport, port_cause;
2899
2900                 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2901                 /*
2902                  * Each hc within the host has its own hc_irq_cause register,
2903                  * where the interrupting ports bits get ack'd.
2904                  */
2905                 if (hardport == 0) {    /* first port on this hc ? */
2906                         u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2907                         u32 port_mask, ack_irqs;
2908                         /*
2909                          * Skip this entire hc if nothing pending for any ports
2910                          */
2911                         if (!hc_cause) {
2912                                 port += MV_PORTS_PER_HC - 1;
2913                                 continue;
2914                         }
2915                         /*
2916                          * We don't need/want to read the hc_irq_cause register,
2917                          * because doing so hurts performance, and
2918                          * main_irq_cause already gives us everything we need.
2919                          *
2920                          * But we do have to *write* to the hc_irq_cause to ack
2921                          * the ports that we are handling this time through.
2922                          *
2923                          * This requires that we create a bitmap for those
2924                          * ports which interrupted us, and use that bitmap
2925                          * to ack (only) those ports via hc_irq_cause.
2926                          */
2927                         ack_irqs = 0;
2928                         if (hc_cause & PORTS_0_3_COAL_DONE)
2929                                 ack_irqs = HC_COAL_IRQ;
2930                         for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2931                                 if ((port + p) >= hpriv->n_ports)
2932                                         break;
2933                                 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2934                                 if (hc_cause & port_mask)
2935                                         ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2936                         }
2937                         hc_mmio = mv_hc_base_from_port(mmio, port);
2938                         writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2939                         handled = 1;
2940                 }
2941                 /*
2942                  * Handle interrupts signalled for this port:
2943                  */
2944                 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2945                 if (port_cause)
2946                         mv_port_intr(ap, port_cause);
2947         }
2948         return handled;
2949 }
2950
2951 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2952 {
2953         struct mv_host_priv *hpriv = host->private_data;
2954         struct ata_port *ap;
2955         struct ata_queued_cmd *qc;
2956         struct ata_eh_info *ehi;
2957         unsigned int i, err_mask, printed = 0;
2958         u32 err_cause;
2959
2960         err_cause = readl(mmio + hpriv->irq_cause_offset);
2961
2962         dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2963
2964         DPRINTK("All regs @ PCI error\n");
2965         mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2966
2967         writelfl(0, mmio + hpriv->irq_cause_offset);
2968
2969         for (i = 0; i < host->n_ports; i++) {
2970                 ap = host->ports[i];
2971                 if (!ata_link_offline(&ap->link)) {
2972                         ehi = &ap->link.eh_info;
2973                         ata_ehi_clear_desc(ehi);
2974                         if (!printed++)
2975                                 ata_ehi_push_desc(ehi,
2976                                         "PCI err cause 0x%08x", err_cause);
2977                         err_mask = AC_ERR_HOST_BUS;
2978                         ehi->action = ATA_EH_RESET;
2979                         qc = ata_qc_from_tag(ap, ap->link.active_tag);
2980                         if (qc)
2981                                 qc->err_mask |= err_mask;
2982                         else
2983                                 ehi->err_mask |= err_mask;
2984
2985                         ata_port_freeze(ap);
2986                 }
2987         }
2988         return 1;       /* handled */
2989 }
2990
2991 /**
2992  *      mv_interrupt - Main interrupt event handler
2993  *      @irq: unused
2994  *      @dev_instance: private data; in this case the host structure
2995  *
2996  *      Read the read only register to determine if any host
2997  *      controllers have pending interrupts.  If so, call lower level
2998  *      routine to handle.  Also check for PCI errors which are only
2999  *      reported here.
3000  *
3001  *      LOCKING:
3002  *      This routine holds the host lock while processing pending
3003  *      interrupts.
3004  */
3005 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3006 {
3007         struct ata_host *host = dev_instance;
3008         struct mv_host_priv *hpriv = host->private_data;
3009         unsigned int handled = 0;
3010         int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3011         u32 main_irq_cause, pending_irqs;
3012
3013         spin_lock(&host->lock);
3014
3015         /* for MSI:  block new interrupts while in here */
3016         if (using_msi)
3017                 mv_write_main_irq_mask(0, hpriv);
3018
3019         main_irq_cause = readl(hpriv->main_irq_cause_addr);
3020         pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3021         /*
3022          * Deal with cases where we either have nothing pending, or have read
3023          * a bogus register value which can indicate HW removal or PCI fault.
3024          */
3025         if (pending_irqs && main_irq_cause != 0xffffffffU) {
3026                 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3027                         handled = mv_pci_error(host, hpriv->base);
3028                 else
3029                         handled = mv_host_intr(host, pending_irqs);
3030         }
3031
3032         /* for MSI: unmask; interrupt cause bits will retrigger now */
3033         if (using_msi)
3034                 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3035
3036         spin_unlock(&host->lock);
3037
3038         return IRQ_RETVAL(handled);
3039 }
3040
3041 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3042 {
3043         unsigned int ofs;
3044
3045         switch (sc_reg_in) {
3046         case SCR_STATUS:
3047         case SCR_ERROR:
3048         case SCR_CONTROL:
3049                 ofs = sc_reg_in * sizeof(u32);
3050                 break;
3051         default:
3052                 ofs = 0xffffffffU;
3053                 break;
3054         }
3055         return ofs;
3056 }
3057
3058 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3059 {
3060         struct mv_host_priv *hpriv = link->ap->host->private_data;
3061         void __iomem *mmio = hpriv->base;
3062         void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3063         unsigned int ofs = mv5_scr_offset(sc_reg_in);
3064
3065         if (ofs != 0xffffffffU) {
3066                 *val = readl(addr + ofs);
3067                 return 0;
3068         } else
3069                 return -EINVAL;
3070 }
3071
3072 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3073 {
3074         struct mv_host_priv *hpriv = link->ap->host->private_data;
3075         void __iomem *mmio = hpriv->base;
3076         void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3077         unsigned int ofs = mv5_scr_offset(sc_reg_in);
3078
3079         if (ofs != 0xffffffffU) {
3080                 writelfl(val, addr + ofs);
3081                 return 0;
3082         } else
3083                 return -EINVAL;
3084 }
3085
3086 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3087 {
3088         struct pci_dev *pdev = to_pci_dev(host->dev);
3089         int early_5080;
3090
3091         early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3092
3093         if (!early_5080) {
3094                 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3095                 tmp |= (1 << 0);
3096                 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3097         }
3098
3099         mv_reset_pci_bus(host, mmio);
3100 }
3101
3102 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3103 {
3104         writel(0x0fcfffff, mmio + FLASH_CTL);
3105 }
3106
3107 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3108                            void __iomem *mmio)
3109 {
3110         void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3111         u32 tmp;
3112
3113         tmp = readl(phy_mmio + MV5_PHY_MODE);
3114
3115         hpriv->signal[idx].pre = tmp & 0x1800;  /* bits 12:11 */
3116         hpriv->signal[idx].amps = tmp & 0xe0;   /* bits 7:5 */
3117 }
3118
3119 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3120 {
3121         u32 tmp;
3122
3123         writel(0, mmio + GPIO_PORT_CTL);
3124
3125         /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3126
3127         tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3128         tmp |= ~(1 << 0);
3129         writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3130 }
3131
3132 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3133                            unsigned int port)
3134 {
3135         void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3136         const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3137         u32 tmp;
3138         int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3139
3140         if (fix_apm_sq) {
3141                 tmp = readl(phy_mmio + MV5_LTMODE);
3142                 tmp |= (1 << 19);
3143                 writel(tmp, phy_mmio + MV5_LTMODE);
3144
3145                 tmp = readl(phy_mmio + MV5_PHY_CTL);
3146                 tmp &= ~0x3;
3147                 tmp |= 0x1;
3148                 writel(tmp, phy_mmio + MV5_PHY_CTL);
3149         }
3150
3151         tmp = readl(phy_mmio + MV5_PHY_MODE);
3152         tmp &= ~mask;
3153         tmp |= hpriv->signal[port].pre;
3154         tmp |= hpriv->signal[port].amps;
3155         writel(tmp, phy_mmio + MV5_PHY_MODE);
3156 }
3157
3158
3159 #undef ZERO
3160 #define ZERO(reg) writel(0, port_mmio + (reg))
3161 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3162                              unsigned int port)
3163 {
3164         void __iomem *port_mmio = mv_port_base(mmio, port);
3165
3166         mv_reset_channel(hpriv, mmio, port);
3167
3168         ZERO(0x028);    /* command */
3169         writel(0x11f, port_mmio + EDMA_CFG);
3170         ZERO(0x004);    /* timer */
3171         ZERO(0x008);    /* irq err cause */
3172         ZERO(0x00c);    /* irq err mask */
3173         ZERO(0x010);    /* rq bah */
3174         ZERO(0x014);    /* rq inp */
3175         ZERO(0x018);    /* rq outp */
3176         ZERO(0x01c);    /* respq bah */
3177         ZERO(0x024);    /* respq outp */
3178         ZERO(0x020);    /* respq inp */
3179         ZERO(0x02c);    /* test control */
3180         writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3181 }
3182 #undef ZERO
3183
3184 #define ZERO(reg) writel(0, hc_mmio + (reg))
3185 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3186                         unsigned int hc)
3187 {
3188         void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3189         u32 tmp;
3190
3191         ZERO(0x00c);
3192         ZERO(0x010);
3193         ZERO(0x014);
3194         ZERO(0x018);
3195
3196         tmp = readl(hc_mmio + 0x20);
3197         tmp &= 0x1c1c1c1c;
3198         tmp |= 0x03030303;
3199         writel(tmp, hc_mmio + 0x20);
3200 }
3201 #undef ZERO
3202
3203 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3204                         unsigned int n_hc)
3205 {
3206         unsigned int hc, port;
3207
3208         for (hc = 0; hc < n_hc; hc++) {
3209                 for (port = 0; port < MV_PORTS_PER_HC; port++)
3210                         mv5_reset_hc_port(hpriv, mmio,
3211                                           (hc * MV_PORTS_PER_HC) + port);
3212
3213                 mv5_reset_one_hc(hpriv, mmio, hc);
3214         }
3215
3216         return 0;
3217 }
3218
3219 #undef ZERO
3220 #define ZERO(reg) writel(0, mmio + (reg))
3221 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3222 {
3223         struct mv_host_priv *hpriv = host->private_data;
3224         u32 tmp;
3225
3226         tmp = readl(mmio + MV_PCI_MODE);
3227         tmp &= 0xff00ffff;
3228         writel(tmp, mmio + MV_PCI_MODE);
3229
3230         ZERO(MV_PCI_DISC_TIMER);
3231         ZERO(MV_PCI_MSI_TRIGGER);
3232         writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3233         ZERO(MV_PCI_SERR_MASK);
3234         ZERO(hpriv->irq_cause_offset);
3235         ZERO(hpriv->irq_mask_offset);
3236         ZERO(MV_PCI_ERR_LOW_ADDRESS);
3237         ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3238         ZERO(MV_PCI_ERR_ATTRIBUTE);
3239         ZERO(MV_PCI_ERR_COMMAND);
3240 }
3241 #undef ZERO
3242
3243 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3244 {
3245         u32 tmp;
3246
3247         mv5_reset_flash(hpriv, mmio);
3248
3249         tmp = readl(mmio + GPIO_PORT_CTL);
3250         tmp &= 0x3;
3251         tmp |= (1 << 5) | (1 << 6);
3252         writel(tmp, mmio + GPIO_PORT_CTL);
3253 }
3254
3255 /**
3256  *      mv6_reset_hc - Perform the 6xxx global soft reset
3257  *      @mmio: base address of the HBA
3258  *
3259  *      This routine only applies to 6xxx parts.
3260  *
3261  *      LOCKING:
3262  *      Inherited from caller.
3263  */
3264 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3265                         unsigned int n_hc)
3266 {
3267         void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3268         int i, rc = 0;
3269         u32 t;
3270
3271         /* Following procedure defined in PCI "main command and status
3272          * register" table.
3273          */
3274         t = readl(reg);
3275         writel(t | STOP_PCI_MASTER, reg);
3276
3277         for (i = 0; i < 1000; i++) {
3278                 udelay(1);
3279                 t = readl(reg);
3280                 if (PCI_MASTER_EMPTY & t)
3281                         break;
3282         }
3283         if (!(PCI_MASTER_EMPTY & t)) {
3284                 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3285                 rc = 1;
3286                 goto done;
3287         }
3288
3289         /* set reset */
3290         i = 5;
3291         do {
3292                 writel(t | GLOB_SFT_RST, reg);
3293                 t = readl(reg);
3294                 udelay(1);
3295         } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3296
3297         if (!(GLOB_SFT_RST & t)) {
3298                 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3299                 rc = 1;
3300                 goto done;
3301         }
3302
3303         /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3304         i = 5;
3305         do {
3306                 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3307                 t = readl(reg);
3308                 udelay(1);
3309         } while ((GLOB_SFT_RST & t) && (i-- > 0));
3310
3311         if (GLOB_SFT_RST & t) {
3312                 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3313                 rc = 1;
3314         }
3315 done:
3316         return rc;
3317 }
3318
3319 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3320                            void __iomem *mmio)
3321 {
3322         void __iomem *port_mmio;
3323         u32 tmp;
3324
3325         tmp = readl(mmio + RESET_CFG);
3326         if ((tmp & (1 << 0)) == 0) {
3327                 hpriv->signal[idx].amps = 0x7 << 8;
3328                 hpriv->signal[idx].pre = 0x1 << 5;
3329                 return;
3330         }
3331
3332         port_mmio = mv_port_base(mmio, idx);
3333         tmp = readl(port_mmio + PHY_MODE2);
3334
3335         hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3336         hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3337 }
3338
3339 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3340 {
3341         writel(0x00000060, mmio + GPIO_PORT_CTL);
3342 }
3343
3344 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3345                            unsigned int port)
3346 {
3347         void __iomem *port_mmio = mv_port_base(mmio, port);
3348
3349         u32 hp_flags = hpriv->hp_flags;
3350         int fix_phy_mode2 =
3351                 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3352         int fix_phy_mode4 =
3353                 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3354         u32 m2, m3;
3355
3356         if (fix_phy_mode2) {
3357                 m2 = readl(port_mmio + PHY_MODE2);
3358                 m2 &= ~(1 << 16);
3359                 m2 |= (1 << 31);
3360                 writel(m2, port_mmio + PHY_MODE2);
3361
3362                 udelay(200);
3363
3364                 m2 = readl(port_mmio + PHY_MODE2);
3365                 m2 &= ~((1 << 16) | (1 << 31));
3366                 writel(m2, port_mmio + PHY_MODE2);
3367
3368                 udelay(200);
3369         }
3370
3371         /*
3372          * Gen-II/IIe PHY_MODE3 errata RM#2:
3373          * Achieves better receiver noise performance than the h/w default:
3374          */
3375         m3 = readl(port_mmio + PHY_MODE3);
3376         m3 = (m3 & 0x1f) | (0x5555601 << 5);
3377
3378         /* Guideline 88F5182 (GL# SATA-S11) */
3379         if (IS_SOC(hpriv))
3380                 m3 &= ~0x1c;
3381
3382         if (fix_phy_mode4) {
3383                 u32 m4 = readl(port_mmio + PHY_MODE4);
3384                 /*
3385                  * Enforce reserved-bit restrictions on GenIIe devices only.
3386                  * For earlier chipsets, force only the internal config field
3387                  *  (workaround for errata FEr SATA#10 part 1).
3388                  */
3389                 if (IS_GEN_IIE(hpriv))
3390                         m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3391                 else
3392                         m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3393                 writel(m4, port_mmio + PHY_MODE4);
3394         }
3395         /*
3396          * Workaround for 60x1-B2 errata SATA#13:
3397          * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3398          * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3399          * Or ensure we use writelfl() when writing PHY_MODE4.
3400          */
3401         writel(m3, port_mmio + PHY_MODE3);
3402
3403         /* Revert values of pre-emphasis and signal amps to the saved ones */
3404         m2 = readl(port_mmio + PHY_MODE2);
3405
3406         m2 &= ~MV_M2_PREAMP_MASK;
3407         m2 |= hpriv->signal[port].amps;
3408         m2 |= hpriv->signal[port].pre;
3409         m2 &= ~(1 << 16);
3410
3411         /* according to mvSata 3.6.1, some IIE values are fixed */
3412         if (IS_GEN_IIE(hpriv)) {
3413                 m2 &= ~0xC30FF01F;
3414                 m2 |= 0x0000900F;
3415         }
3416
3417         writel(m2, port_mmio + PHY_MODE2);
3418 }
3419
3420 /* TODO: use the generic LED interface to configure the SATA Presence */
3421 /* & Acitivy LEDs on the board */
3422 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3423                                       void __iomem *mmio)
3424 {
3425         return;
3426 }
3427
3428 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3429                            void __iomem *mmio)
3430 {
3431         void __iomem *port_mmio;
3432         u32 tmp;
3433
3434         port_mmio = mv_port_base(mmio, idx);
3435         tmp = readl(port_mmio + PHY_MODE2);
3436
3437         hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3438         hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3439 }
3440
3441 #undef ZERO
3442 #define ZERO(reg) writel(0, port_mmio + (reg))
3443 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3444                                         void __iomem *mmio, unsigned int port)
3445 {
3446         void __iomem *port_mmio = mv_port_base(mmio, port);
3447
3448         mv_reset_channel(hpriv, mmio, port);
3449
3450         ZERO(0x028);            /* command */
3451         writel(0x101f, port_mmio + EDMA_CFG);
3452         ZERO(0x004);            /* timer */
3453         ZERO(0x008);            /* irq err cause */
3454         ZERO(0x00c);            /* irq err mask */
3455         ZERO(0x010);            /* rq bah */
3456         ZERO(0x014);            /* rq inp */
3457         ZERO(0x018);            /* rq outp */
3458         ZERO(0x01c);            /* respq bah */
3459         ZERO(0x024);            /* respq outp */
3460         ZERO(0x020);            /* respq inp */
3461         ZERO(0x02c);            /* test control */
3462         writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3463 }
3464
3465 #undef ZERO
3466
3467 #define ZERO(reg) writel(0, hc_mmio + (reg))
3468 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3469                                        void __iomem *mmio)
3470 {
3471         void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3472
3473         ZERO(0x00c);
3474         ZERO(0x010);
3475         ZERO(0x014);
3476
3477 }
3478
3479 #undef ZERO
3480
3481 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3482                                   void __iomem *mmio, unsigned int n_hc)
3483 {
3484         unsigned int port;
3485
3486         for (port = 0; port < hpriv->n_ports; port++)
3487                 mv_soc_reset_hc_port(hpriv, mmio, port);
3488
3489         mv_soc_reset_one_hc(hpriv, mmio);
3490
3491         return 0;
3492 }
3493
3494 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3495                                       void __iomem *mmio)
3496 {
3497         return;
3498 }
3499
3500 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3501 {
3502         return;
3503 }
3504
3505 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3506                                   void __iomem *mmio, unsigned int port)
3507 {
3508         void __iomem *port_mmio = mv_port_base(mmio, port);
3509         u32     reg;
3510
3511         reg = readl(port_mmio + PHY_MODE3);
3512         reg &= ~(0x3 << 27);    /* SELMUPF (bits 28:27) to 1 */
3513         reg |= (0x1 << 27);
3514         reg &= ~(0x3 << 29);    /* SELMUPI (bits 30:29) to 1 */
3515         reg |= (0x1 << 29);
3516         writel(reg, port_mmio + PHY_MODE3);
3517
3518         reg = readl(port_mmio + PHY_MODE4);
3519         reg &= ~0x1;    /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3520         reg |= (0x1 << 16);
3521         writel(reg, port_mmio + PHY_MODE4);
3522
3523         reg = readl(port_mmio + PHY_MODE9_GEN2);
3524         reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3525         reg |= 0x8;
3526         reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3527         writel(reg, port_mmio + PHY_MODE9_GEN2);
3528
3529         reg = readl(port_mmio + PHY_MODE9_GEN1);
3530         reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3531         reg |= 0x8;
3532         reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3533         writel(reg, port_mmio + PHY_MODE9_GEN1);
3534 }
3535
3536 /**
3537  *      soc_is_65 - check if the soc is 65 nano device
3538  *
3539  *      Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3540  *      register, this register should contain non-zero value and it exists only
3541  *      in the 65 nano devices, when reading it from older devices we get 0.
3542  */
3543 static bool soc_is_65n(struct mv_host_priv *hpriv)
3544 {
3545         void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3546
3547         if (readl(port0_mmio + PHYCFG_OFS))
3548                 return true;
3549         return false;
3550 }
3551
3552 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3553 {
3554         u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3555
3556         ifcfg = (ifcfg & 0xf7f) | 0x9b1000;     /* from chip spec */
3557         if (want_gen2i)
3558                 ifcfg |= (1 << 7);              /* enable gen2i speed */
3559         writelfl(ifcfg, port_mmio + SATA_IFCFG);
3560 }
3561
3562 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3563                              unsigned int port_no)
3564 {
3565         void __iomem *port_mmio = mv_port_base(mmio, port_no);
3566
3567         /*
3568          * The datasheet warns against setting EDMA_RESET when EDMA is active
3569          * (but doesn't say what the problem might be).  So we first try
3570          * to disable the EDMA engine before doing the EDMA_RESET operation.
3571          */
3572         mv_stop_edma_engine(port_mmio);
3573         writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3574
3575         if (!IS_GEN_I(hpriv)) {
3576                 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3577                 mv_setup_ifcfg(port_mmio, 1);
3578         }
3579         /*
3580          * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3581          * link, and physical layers.  It resets all SATA interface registers
3582          * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3583          */
3584         writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3585         udelay(25);     /* allow reset propagation */
3586         writelfl(0, port_mmio + EDMA_CMD);
3587
3588         hpriv->ops->phy_errata(hpriv, mmio, port_no);
3589
3590         if (IS_GEN_I(hpriv))
3591                 mdelay(1);
3592 }
3593
3594 static void mv_pmp_select(struct ata_port *ap, int pmp)
3595 {
3596         if (sata_pmp_supported(ap)) {
3597                 void __iomem *port_mmio = mv_ap_base(ap);
3598                 u32 reg = readl(port_mmio + SATA_IFCTL);
3599                 int old = reg & 0xf;
3600
3601                 if (old != pmp) {
3602                         reg = (reg & ~0xf) | pmp;
3603                         writelfl(reg, port_mmio + SATA_IFCTL);
3604                 }
3605         }
3606 }
3607
3608 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3609                                 unsigned long deadline)
3610 {
3611         mv_pmp_select(link->ap, sata_srst_pmp(link));
3612         return sata_std_hardreset(link, class, deadline);
3613 }
3614
3615 static int mv_softreset(struct ata_link *link, unsigned int *class,
3616                                 unsigned long deadline)
3617 {
3618         mv_pmp_select(link->ap, sata_srst_pmp(link));
3619         return ata_sff_softreset(link, class, deadline);
3620 }
3621
3622 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3623                         unsigned long deadline)
3624 {
3625         struct ata_port *ap = link->ap;
3626         struct mv_host_priv *hpriv = ap->host->private_data;
3627         struct mv_port_priv *pp = ap->private_data;
3628         void __iomem *mmio = hpriv->base;
3629         int rc, attempts = 0, extra = 0;
3630         u32 sstatus;
3631         bool online;
3632
3633         mv_reset_channel(hpriv, mmio, ap->port_no);
3634         pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3635         pp->pp_flags &=
3636           ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3637
3638         /* Workaround for errata FEr SATA#10 (part 2) */
3639         do {
3640                 const unsigned long *timing =
3641                                 sata_ehc_deb_timing(&link->eh_context);
3642
3643                 rc = sata_link_hardreset(link, timing, deadline + extra,
3644                                          &online, NULL);
3645                 rc = online ? -EAGAIN : rc;
3646                 if (rc)
3647                         return rc;
3648                 sata_scr_read(link, SCR_STATUS, &sstatus);
3649                 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3650                         /* Force 1.5gb/s link speed and try again */
3651                         mv_setup_ifcfg(mv_ap_base(ap), 0);
3652                         if (time_after(jiffies + HZ, deadline))
3653                                 extra = HZ; /* only extend it once, max */
3654                 }
3655         } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3656         mv_save_cached_regs(ap);
3657         mv_edma_cfg(ap, 0, 0);
3658
3659         return rc;
3660 }
3661
3662 static void mv_eh_freeze(struct ata_port *ap)
3663 {
3664         mv_stop_edma(ap);
3665         mv_enable_port_irqs(ap, 0);
3666 }
3667
3668 static void mv_eh_thaw(struct ata_port *ap)
3669 {
3670         struct mv_host_priv *hpriv = ap->host->private_data;
3671         unsigned int port = ap->port_no;
3672         unsigned int hardport = mv_hardport_from_port(port);
3673         void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3674         void __iomem *port_mmio = mv_ap_base(ap);
3675         u32 hc_irq_cause;
3676
3677         /* clear EDMA errors on this port */
3678         writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3679
3680         /* clear pending irq events */
3681         hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3682         writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3683
3684         mv_enable_port_irqs(ap, ERR_IRQ);
3685 }
3686
3687 /**
3688  *      mv_port_init - Perform some early initialization on a single port.
3689  *      @port: libata data structure storing shadow register addresses
3690  *      @port_mmio: base address of the port
3691  *
3692  *      Initialize shadow register mmio addresses, clear outstanding
3693  *      interrupts on the port, and unmask interrupts for the future
3694  *      start of the port.
3695  *
3696  *      LOCKING:
3697  *      Inherited from caller.
3698  */
3699 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3700 {
3701         void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3702
3703         /* PIO related setup
3704          */
3705         port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3706         port->error_addr =
3707                 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3708         port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3709         port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3710         port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3711         port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3712         port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3713         port->status_addr =
3714                 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3715         /* special case: control/altstatus doesn't have ATA_REG_ address */
3716         port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3717
3718         /* Clear any currently outstanding port interrupt conditions */
3719         serr = port_mmio + mv_scr_offset(SCR_ERROR);
3720         writelfl(readl(serr), serr);
3721         writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3722
3723         /* unmask all non-transient EDMA error interrupts */
3724         writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3725
3726         VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3727                 readl(port_mmio + EDMA_CFG),
3728                 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3729                 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3730 }
3731
3732 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3733 {
3734         struct mv_host_priv *hpriv = host->private_data;
3735         void __iomem *mmio = hpriv->base;
3736         u32 reg;
3737
3738         if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3739                 return 0;       /* not PCI-X capable */
3740         reg = readl(mmio + MV_PCI_MODE);
3741         if ((reg & MV_PCI_MODE_MASK) == 0)
3742                 return 0;       /* conventional PCI mode */
3743         return 1;       /* chip is in PCI-X mode */
3744 }
3745
3746 static int mv_pci_cut_through_okay(struct ata_host *host)
3747 {
3748         struct mv_host_priv *hpriv = host->private_data;
3749         void __iomem *mmio = hpriv->base;
3750         u32 reg;
3751
3752         if (!mv_in_pcix_mode(host)) {
3753                 reg = readl(mmio + MV_PCI_COMMAND);
3754                 if (reg & MV_PCI_COMMAND_MRDTRIG)
3755                         return 0; /* not okay */
3756         }
3757         return 1; /* okay */
3758 }
3759
3760 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3761 {
3762         struct mv_host_priv *hpriv = host->private_data;
3763         void __iomem *mmio = hpriv->base;
3764
3765         /* workaround for 60x1-B2 errata PCI#7 */
3766         if (mv_in_pcix_mode(host)) {
3767                 u32 reg = readl(mmio + MV_PCI_COMMAND);
3768                 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3769         }
3770 }
3771
3772 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3773 {
3774         struct pci_dev *pdev = to_pci_dev(host->dev);
3775         struct mv_host_priv *hpriv = host->private_data;
3776         u32 hp_flags = hpriv->hp_flags;
3777
3778         switch (board_idx) {
3779         case chip_5080:
3780                 hpriv->ops = &mv5xxx_ops;
3781                 hp_flags |= MV_HP_GEN_I;
3782
3783                 switch (pdev->revision) {
3784                 case 0x1:
3785                         hp_flags |= MV_HP_ERRATA_50XXB0;
3786                         break;
3787                 case 0x3:
3788                         hp_flags |= MV_HP_ERRATA_50XXB2;
3789                         break;
3790                 default:
3791                         dev_warn(&pdev->dev,
3792                                  "Applying 50XXB2 workarounds to unknown rev\n");
3793                         hp_flags |= MV_HP_ERRATA_50XXB2;
3794                         break;
3795                 }
3796                 break;
3797
3798         case chip_504x:
3799         case chip_508x:
3800                 hpriv->ops = &mv5xxx_ops;
3801                 hp_flags |= MV_HP_GEN_I;
3802
3803                 switch (pdev->revision) {
3804                 case 0x0:
3805                         hp_flags |= MV_HP_ERRATA_50XXB0;
3806                         break;
3807                 case 0x3:
3808                         hp_flags |= MV_HP_ERRATA_50XXB2;
3809                         break;
3810                 default:
3811                         dev_warn(&pdev->dev,
3812                                  "Applying B2 workarounds to unknown rev\n");
3813                         hp_flags |= MV_HP_ERRATA_50XXB2;
3814                         break;
3815                 }
3816                 break;
3817
3818         case chip_604x:
3819         case chip_608x:
3820                 hpriv->ops = &mv6xxx_ops;
3821                 hp_flags |= MV_HP_GEN_II;
3822
3823                 switch (pdev->revision) {
3824                 case 0x7:
3825                         mv_60x1b2_errata_pci7(host);
3826                         hp_flags |= MV_HP_ERRATA_60X1B2;
3827                         break;
3828                 case 0x9:
3829                         hp_flags |= MV_HP_ERRATA_60X1C0;
3830                         break;
3831                 default:
3832                         dev_warn(&pdev->dev,
3833                                  "Applying B2 workarounds to unknown rev\n");
3834                         hp_flags |= MV_HP_ERRATA_60X1B2;
3835                         break;
3836                 }
3837                 break;
3838
3839         case chip_7042:
3840                 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3841                 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3842                     (pdev->device == 0x2300 || pdev->device == 0x2310))
3843                 {
3844                         /*
3845                          * Highpoint RocketRAID PCIe 23xx series cards:
3846                          *
3847                          * Unconfigured drives are treated as "Legacy"
3848                          * by the BIOS, and it overwrites sector 8 with
3849                          * a "Lgcy" metadata block prior to Linux boot.
3850                          *
3851                          * Configured drives (RAID or JBOD) leave sector 8
3852                          * alone, but instead overwrite a high numbered
3853                          * sector for the RAID metadata.  This sector can
3854                          * be determined exactly, by truncating the physical
3855                          * drive capacity to a nice even GB value.
3856                          *
3857                          * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3858                          *
3859                          * Warn the user, lest they think we're just buggy.
3860                          */
3861                         printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3862                                 " BIOS CORRUPTS DATA on all attached drives,"
3863                                 " regardless of if/how they are configured."
3864                                 " BEWARE!\n");
3865                         printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3866                                 " use sectors 8-9 on \"Legacy\" drives,"
3867                                 " and avoid the final two gigabytes on"
3868                                 " all RocketRAID BIOS initialized drives.\n");
3869                 }
3870                 /* drop through */
3871         case chip_6042:
3872                 hpriv->ops = &mv6xxx_ops;
3873                 hp_flags |= MV_HP_GEN_IIE;
3874                 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3875                         hp_flags |= MV_HP_CUT_THROUGH;
3876
3877                 switch (pdev->revision) {
3878                 case 0x2: /* Rev.B0: the first/only public release */
3879                         hp_flags |= MV_HP_ERRATA_60X1C0;
3880                         break;
3881                 default:
3882                         dev_warn(&pdev->dev,
3883                                  "Applying 60X1C0 workarounds to unknown rev\n");
3884                         hp_flags |= MV_HP_ERRATA_60X1C0;
3885                         break;
3886                 }
3887                 break;
3888         case chip_soc:
3889                 if (soc_is_65n(hpriv))
3890                         hpriv->ops = &mv_soc_65n_ops;
3891                 else
3892                         hpriv->ops = &mv_soc_ops;
3893                 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3894                         MV_HP_ERRATA_60X1C0;
3895                 break;
3896
3897         default:
3898                 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3899                 return 1;
3900         }
3901
3902         hpriv->hp_flags = hp_flags;
3903         if (hp_flags & MV_HP_PCIE) {
3904                 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3905                 hpriv->irq_mask_offset  = PCIE_IRQ_MASK;
3906                 hpriv->unmask_all_irqs  = PCIE_UNMASK_ALL_IRQS;
3907         } else {
3908                 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3909                 hpriv->irq_mask_offset  = PCI_IRQ_MASK;
3910                 hpriv->unmask_all_irqs  = PCI_UNMASK_ALL_IRQS;
3911         }
3912
3913         return 0;
3914 }
3915
3916 /**
3917  *      mv_init_host - Perform some early initialization of the host.
3918  *      @host: ATA host to initialize
3919  *
3920  *      If possible, do an early global reset of the host.  Then do
3921  *      our port init and clear/unmask all/relevant host interrupts.
3922  *
3923  *      LOCKING:
3924  *      Inherited from caller.
3925  */
3926 static int mv_init_host(struct ata_host *host)
3927 {
3928         int rc = 0, n_hc, port, hc;
3929         struct mv_host_priv *hpriv = host->private_data;
3930         void __iomem *mmio = hpriv->base;
3931
3932         rc = mv_chip_id(host, hpriv->board_idx);
3933         if (rc)
3934                 goto done;
3935
3936         if (IS_SOC(hpriv)) {
3937                 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3938                 hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3939         } else {
3940                 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3941                 hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3942         }
3943
3944         /* initialize shadow irq mask with register's value */
3945         hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3946
3947         /* global interrupt mask: 0 == mask everything */
3948         mv_set_main_irq_mask(host, ~0, 0);
3949
3950         n_hc = mv_get_hc_count(host->ports[0]->flags);
3951
3952         for (port = 0; port < host->n_ports; port++)
3953                 if (hpriv->ops->read_preamp)
3954                         hpriv->ops->read_preamp(hpriv, port, mmio);
3955
3956         rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3957         if (rc)
3958                 goto done;
3959
3960         hpriv->ops->reset_flash(hpriv, mmio);
3961         hpriv->ops->reset_bus(host, mmio);
3962         hpriv->ops->enable_leds(hpriv, mmio);
3963
3964         for (port = 0; port < host->n_ports; port++) {
3965                 struct ata_port *ap = host->ports[port];
3966                 void __iomem *port_mmio = mv_port_base(mmio, port);
3967
3968                 mv_port_init(&ap->ioaddr, port_mmio);
3969         }
3970
3971         for (hc = 0; hc < n_hc; hc++) {
3972                 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3973
3974                 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3975                         "(before clear)=0x%08x\n", hc,
3976                         readl(hc_mmio + HC_CFG),
3977                         readl(hc_mmio + HC_IRQ_CAUSE));
3978
3979                 /* Clear any currently outstanding hc interrupt conditions */
3980                 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3981         }
3982
3983         if (!IS_SOC(hpriv)) {
3984                 /* Clear any currently outstanding host interrupt conditions */
3985                 writelfl(0, mmio + hpriv->irq_cause_offset);
3986
3987                 /* and unmask interrupt generation for host regs */
3988                 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3989         }
3990
3991         /*
3992          * enable only global host interrupts for now.
3993          * The per-port interrupts get done later as ports are set up.
3994          */
3995         mv_set_main_irq_mask(host, 0, PCI_ERR);
3996         mv_set_irq_coalescing(host, irq_coalescing_io_count,
3997                                     irq_coalescing_usecs);
3998 done:
3999         return rc;
4000 }
4001
4002 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4003 {
4004         hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4005                                                              MV_CRQB_Q_SZ, 0);
4006         if (!hpriv->crqb_pool)
4007                 return -ENOMEM;
4008
4009         hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4010                                                              MV_CRPB_Q_SZ, 0);
4011         if (!hpriv->crpb_pool)
4012                 return -ENOMEM;
4013
4014         hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4015                                                              MV_SG_TBL_SZ, 0);
4016         if (!hpriv->sg_tbl_pool)
4017                 return -ENOMEM;
4018
4019         return 0;
4020 }
4021
4022 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4023                                  const struct mbus_dram_target_info *dram)
4024 {
4025         int i;
4026
4027         for (i = 0; i < 4; i++) {
4028                 writel(0, hpriv->base + WINDOW_CTRL(i));
4029                 writel(0, hpriv->base + WINDOW_BASE(i));
4030         }
4031
4032         for (i = 0; i < dram->num_cs; i++) {
4033                 const struct mbus_dram_window *cs = dram->cs + i;
4034
4035                 writel(((cs->size - 1) & 0xffff0000) |
4036                         (cs->mbus_attr << 8) |
4037                         (dram->mbus_dram_target_id << 4) | 1,
4038                         hpriv->base + WINDOW_CTRL(i));
4039                 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4040         }
4041 }
4042
4043 /**
4044  *      mv_platform_probe - handle a positive probe of an soc Marvell
4045  *      host
4046  *      @pdev: platform device found
4047  *
4048  *      LOCKING:
4049  *      Inherited from caller.
4050  */
4051 static int mv_platform_probe(struct platform_device *pdev)
4052 {
4053         const struct mv_sata_platform_data *mv_platform_data;
4054         const struct mbus_dram_target_info *dram;
4055         const struct ata_port_info *ppi[] =
4056             { &mv_port_info[chip_soc], NULL };
4057         struct ata_host *host;
4058         struct mv_host_priv *hpriv;
4059         struct resource *res;
4060         int n_ports = 0, irq = 0;
4061         int rc;
4062         int port;
4063
4064         ata_print_version_once(&pdev->dev, DRV_VERSION);
4065
4066         /*
4067          * Simple resource validation ..
4068          */
4069         if (unlikely(pdev->num_resources != 2)) {
4070                 dev_err(&pdev->dev, "invalid number of resources\n");
4071                 return -EINVAL;
4072         }
4073
4074         /*
4075          * Get the register base first
4076          */
4077         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4078         if (res == NULL)
4079                 return -EINVAL;
4080
4081         /* allocate host */
4082         if (pdev->dev.of_node) {
4083                 of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4084                 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4085         } else {
4086                 mv_platform_data = dev_get_platdata(&pdev->dev);
4087                 n_ports = mv_platform_data->n_ports;
4088                 irq = platform_get_irq(pdev, 0);
4089         }
4090
4091         host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4092         hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4093
4094         if (!host || !hpriv)
4095                 return -ENOMEM;
4096         hpriv->port_clks = devm_kzalloc(&pdev->dev,
4097                                         sizeof(struct clk *) * n_ports,
4098                                         GFP_KERNEL);
4099         if (!hpriv->port_clks)
4100                 return -ENOMEM;
4101         hpriv->port_phys = devm_kzalloc(&pdev->dev,
4102                                         sizeof(struct phy *) * n_ports,
4103                                         GFP_KERNEL);
4104         if (!hpriv->port_phys)
4105                 return -ENOMEM;
4106         host->private_data = hpriv;
4107         hpriv->n_ports = n_ports;
4108         hpriv->board_idx = chip_soc;
4109
4110         host->iomap = NULL;
4111         hpriv->base = devm_ioremap(&pdev->dev, res->start,
4112                                    resource_size(res));
4113         hpriv->base -= SATAHC0_REG_BASE;
4114
4115         hpriv->clk = clk_get(&pdev->dev, NULL);
4116         if (IS_ERR(hpriv->clk))
4117                 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4118         else
4119                 clk_prepare_enable(hpriv->clk);
4120
4121         for (port = 0; port < n_ports; port++) {
4122                 char port_number[16];
4123                 sprintf(port_number, "%d", port);
4124                 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4125                 if (!IS_ERR(hpriv->port_clks[port]))
4126                         clk_prepare_enable(hpriv->port_clks[port]);
4127
4128                 sprintf(port_number, "port%d", port);
4129                 hpriv->port_phys[port] = devm_phy_get(&pdev->dev, port_number);
4130                 if (IS_ERR(hpriv->port_phys[port])) {
4131                         rc = PTR_ERR(hpriv->port_phys[port]);
4132                         hpriv->port_phys[port] = NULL;
4133                         if ((rc != -EPROBE_DEFER) && (rc != -ENODEV))
4134                                 dev_warn(&pdev->dev, "error getting phy");
4135                         goto err;
4136                 } else
4137                         phy_power_on(hpriv->port_phys[port]);
4138         }
4139
4140         /*
4141          * (Re-)program MBUS remapping windows if we are asked to.
4142          */
4143         dram = mv_mbus_dram_info();
4144         if (dram)
4145                 mv_conf_mbus_windows(hpriv, dram);
4146
4147         rc = mv_create_dma_pools(hpriv, &pdev->dev);
4148         if (rc)
4149                 goto err;
4150
4151         /*
4152          * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4153          * updated in the LP_PHY_CTL register.
4154          */
4155         if (pdev->dev.of_node &&
4156                 of_device_is_compatible(pdev->dev.of_node,
4157                                         "marvell,armada-370-sata"))
4158                 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4159
4160         /* initialize adapter */
4161         rc = mv_init_host(host);
4162         if (rc)
4163                 goto err;
4164
4165         dev_info(&pdev->dev, "slots %u ports %d\n",
4166                  (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4167
4168         rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4169         if (!rc)
4170                 return 0;
4171
4172 err:
4173         if (!IS_ERR(hpriv->clk)) {
4174                 clk_disable_unprepare(hpriv->clk);
4175                 clk_put(hpriv->clk);
4176         }
4177         for (port = 0; port < n_ports; port++) {
4178                 if (!IS_ERR(hpriv->port_clks[port])) {
4179                         clk_disable_unprepare(hpriv->port_clks[port]);
4180                         clk_put(hpriv->port_clks[port]);
4181                 }
4182                 if (hpriv->port_phys[port])
4183                         phy_power_off(hpriv->port_phys[port]);
4184         }
4185
4186         return rc;
4187 }
4188
4189 /*
4190  *
4191  *      mv_platform_remove    -       unplug a platform interface
4192  *      @pdev: platform device
4193  *
4194  *      A platform bus SATA device has been unplugged. Perform the needed
4195  *      cleanup. Also called on module unload for any active devices.
4196  */
4197 static int mv_platform_remove(struct platform_device *pdev)
4198 {
4199         struct ata_host *host = platform_get_drvdata(pdev);
4200         struct mv_host_priv *hpriv = host->private_data;
4201         int port;
4202         ata_host_detach(host);
4203
4204         if (!IS_ERR(hpriv->clk)) {
4205                 clk_disable_unprepare(hpriv->clk);
4206                 clk_put(hpriv->clk);
4207         }
4208         for (port = 0; port < host->n_ports; port++) {
4209                 if (!IS_ERR(hpriv->port_clks[port])) {
4210                         clk_disable_unprepare(hpriv->port_clks[port]);
4211                         clk_put(hpriv->port_clks[port]);
4212                 }
4213                 if (hpriv->port_phys[port])
4214                         phy_power_off(hpriv->port_phys[port]);
4215         }
4216         return 0;
4217 }
4218
4219 #ifdef CONFIG_PM
4220 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4221 {
4222         struct ata_host *host = platform_get_drvdata(pdev);
4223         if (host)
4224                 return ata_host_suspend(host, state);
4225         else
4226                 return 0;
4227 }
4228
4229 static int mv_platform_resume(struct platform_device *pdev)
4230 {
4231         struct ata_host *host = platform_get_drvdata(pdev);
4232         const struct mbus_dram_target_info *dram;
4233         int ret;
4234
4235         if (host) {
4236                 struct mv_host_priv *hpriv = host->private_data;
4237
4238                 /*
4239                  * (Re-)program MBUS remapping windows if we are asked to.
4240                  */
4241                 dram = mv_mbus_dram_info();
4242                 if (dram)
4243                         mv_conf_mbus_windows(hpriv, dram);
4244
4245                 /* initialize adapter */
4246                 ret = mv_init_host(host);
4247                 if (ret) {
4248                         printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4249                         return ret;
4250                 }
4251                 ata_host_resume(host);
4252         }
4253
4254         return 0;
4255 }
4256 #else
4257 #define mv_platform_suspend NULL
4258 #define mv_platform_resume NULL
4259 #endif
4260
4261 #ifdef CONFIG_OF
4262 static struct of_device_id mv_sata_dt_ids[] = {
4263         { .compatible = "marvell,armada-370-sata", },
4264         { .compatible = "marvell,orion-sata", },
4265         {},
4266 };
4267 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4268 #endif
4269
4270 static struct platform_driver mv_platform_driver = {
4271         .probe          = mv_platform_probe,
4272         .remove         = mv_platform_remove,
4273         .suspend        = mv_platform_suspend,
4274         .resume         = mv_platform_resume,
4275         .driver         = {
4276                 .name = DRV_NAME,
4277                 .owner = THIS_MODULE,
4278                 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4279         },
4280 };
4281
4282
4283 #ifdef CONFIG_PCI
4284 static int mv_pci_init_one(struct pci_dev *pdev,
4285                            const struct pci_device_id *ent);
4286 #ifdef CONFIG_PM
4287 static int mv_pci_device_resume(struct pci_dev *pdev);
4288 #endif
4289
4290
4291 static struct pci_driver mv_pci_driver = {
4292         .name                   = DRV_NAME,
4293         .id_table               = mv_pci_tbl,
4294         .probe                  = mv_pci_init_one,
4295         .remove                 = ata_pci_remove_one,
4296 #ifdef CONFIG_PM
4297         .suspend                = ata_pci_device_suspend,
4298         .resume                 = mv_pci_device_resume,
4299 #endif
4300
4301 };
4302
4303 /* move to PCI layer or libata core? */
4304 static int pci_go_64(struct pci_dev *pdev)
4305 {
4306         int rc;
4307
4308         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4309                 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4310                 if (rc) {
4311                         rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4312                         if (rc) {
4313                                 dev_err(&pdev->dev,
4314                                         "64-bit DMA enable failed\n");
4315                                 return rc;
4316                         }
4317                 }
4318         } else {
4319                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4320                 if (rc) {
4321                         dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4322                         return rc;
4323                 }
4324                 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4325                 if (rc) {
4326                         dev_err(&pdev->dev,
4327                                 "32-bit consistent DMA enable failed\n");
4328                         return rc;
4329                 }
4330         }
4331
4332         return rc;
4333 }
4334
4335 /**
4336  *      mv_print_info - Dump key info to kernel log for perusal.
4337  *      @host: ATA host to print info about
4338  *
4339  *      FIXME: complete this.
4340  *
4341  *      LOCKING:
4342  *      Inherited from caller.
4343  */
4344 static void mv_print_info(struct ata_host *host)
4345 {
4346         struct pci_dev *pdev = to_pci_dev(host->dev);
4347         struct mv_host_priv *hpriv = host->private_data;
4348         u8 scc;
4349         const char *scc_s, *gen;
4350
4351         /* Use this to determine the HW stepping of the chip so we know
4352          * what errata to workaround
4353          */
4354         pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4355         if (scc == 0)
4356                 scc_s = "SCSI";
4357         else if (scc == 0x01)
4358                 scc_s = "RAID";
4359         else
4360                 scc_s = "?";
4361
4362         if (IS_GEN_I(hpriv))
4363                 gen = "I";
4364         else if (IS_GEN_II(hpriv))
4365                 gen = "II";
4366         else if (IS_GEN_IIE(hpriv))
4367                 gen = "IIE";
4368         else
4369                 gen = "?";
4370
4371         dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4372                  gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4373                  scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4374 }
4375
4376 /**
4377  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4378  *      @pdev: PCI device found
4379  *      @ent: PCI device ID entry for the matched host
4380  *
4381  *      LOCKING:
4382  *      Inherited from caller.
4383  */
4384 static int mv_pci_init_one(struct pci_dev *pdev,
4385                            const struct pci_device_id *ent)
4386 {
4387         unsigned int board_idx = (unsigned int)ent->driver_data;
4388         const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4389         struct ata_host *host;
4390         struct mv_host_priv *hpriv;
4391         int n_ports, port, rc;
4392
4393         ata_print_version_once(&pdev->dev, DRV_VERSION);
4394
4395         /* allocate host */
4396         n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4397
4398         host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4399         hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4400         if (!host || !hpriv)
4401                 return -ENOMEM;
4402         host->private_data = hpriv;
4403         hpriv->n_ports = n_ports;
4404         hpriv->board_idx = board_idx;
4405
4406         /* acquire resources */
4407         rc = pcim_enable_device(pdev);
4408         if (rc)
4409                 return rc;
4410
4411         rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4412         if (rc == -EBUSY)
4413                 pcim_pin_device(pdev);
4414         if (rc)
4415                 return rc;
4416         host->iomap = pcim_iomap_table(pdev);
4417         hpriv->base = host->iomap[MV_PRIMARY_BAR];
4418
4419         rc = pci_go_64(pdev);
4420         if (rc)
4421                 return rc;
4422
4423         rc = mv_create_dma_pools(hpriv, &pdev->dev);
4424         if (rc)
4425                 return rc;
4426
4427         for (port = 0; port < host->n_ports; port++) {
4428                 struct ata_port *ap = host->ports[port];
4429                 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4430                 unsigned int offset = port_mmio - hpriv->base;
4431
4432                 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4433                 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4434         }
4435
4436         /* initialize adapter */
4437         rc = mv_init_host(host);
4438         if (rc)
4439                 return rc;
4440
4441         /* Enable message-switched interrupts, if requested */
4442         if (msi && pci_enable_msi(pdev) == 0)
4443                 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4444
4445         mv_dump_pci_cfg(pdev, 0x68);
4446         mv_print_info(host);
4447
4448         pci_set_master(pdev);
4449         pci_try_set_mwi(pdev);
4450         return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4451                                  IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4452 }
4453
4454 #ifdef CONFIG_PM
4455 static int mv_pci_device_resume(struct pci_dev *pdev)
4456 {
4457         struct ata_host *host = pci_get_drvdata(pdev);
4458         int rc;
4459
4460         rc = ata_pci_device_do_resume(pdev);
4461         if (rc)
4462                 return rc;
4463
4464         /* initialize adapter */
4465         rc = mv_init_host(host);
4466         if (rc)
4467                 return rc;
4468
4469         ata_host_resume(host);
4470
4471         return 0;
4472 }
4473 #endif
4474 #endif
4475
4476 static int __init mv_init(void)
4477 {
4478         int rc = -ENODEV;
4479 #ifdef CONFIG_PCI
4480         rc = pci_register_driver(&mv_pci_driver);
4481         if (rc < 0)
4482                 return rc;
4483 #endif
4484         rc = platform_driver_register(&mv_platform_driver);
4485
4486 #ifdef CONFIG_PCI
4487         if (rc < 0)
4488                 pci_unregister_driver(&mv_pci_driver);
4489 #endif
4490         return rc;
4491 }
4492
4493 static void __exit mv_exit(void)
4494 {
4495 #ifdef CONFIG_PCI
4496         pci_unregister_driver(&mv_pci_driver);
4497 #endif
4498         platform_driver_unregister(&mv_platform_driver);
4499 }
4500
4501 MODULE_AUTHOR("Brett Russ");
4502 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4503 MODULE_LICENSE("GPL");
4504 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4505 MODULE_VERSION(DRV_VERSION);
4506 MODULE_ALIAS("platform:" DRV_NAME);
4507
4508 module_init(mv_init);
4509 module_exit(mv_exit);