1 // SPDX-License-Identifier: GPL-2.0-only
3 * sata_mv.c - Marvell SATA support
5 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6 * Copyright 2005: EMC Corporation, all rights reserved.
7 * Copyright 2005 Red Hat, Inc. All rights reserved.
9 * Originally written by Brett Russ.
10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
18 * --> Develop a low-power-consumption strategy, and implement it.
20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
22 * --> [Experiment, Marvell value added] Is it possible to use target
23 * mode to cross-connect two Linux boxes with Marvell cards? If so,
24 * creating LibATA target mode support would be very interesting.
26 * Target mode, for those without docs, is the ability to directly
27 * connect two SATA ports.
31 * 80x1-B2 errata PCI#11:
33 * Users of the 6041/6081 Rev.B2 chips (current is C0)
34 * should be careful to insert those cards only onto PCI-X bus #0,
35 * and only in device slots 0..7, not higher. The chips may not
36 * work correctly otherwise (note: this is a pretty rare condition).
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
63 #define DRV_NAME "sata_mv"
64 #define DRV_VERSION "1.28"
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 "IRQ coalescing I/O count threshold (0..255)");
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 "IRQ coalescing time threshold in usecs");
87 /* BAR's are enumerated in terms of pci_resource_start() terms */
88 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
89 MV_IO_BAR = 2, /* offset 0x18: IO space */
90 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
92 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
93 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
95 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
97 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
98 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
103 * Per-chip ("all ports") interrupt coalescing feature.
104 * This is only for GEN_II / GEN_IIE hardware.
106 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
109 COAL_REG_BASE = 0x18000,
110 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
111 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
113 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
114 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
117 * Registers for the (unused here) transaction coalescing feature:
119 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
120 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
122 SATAHC0_REG_BASE = 0x20000,
124 GPIO_PORT_CTL = 0x104f0,
127 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
128 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
129 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
130 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
133 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
135 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 * CRPB needs alignment on a 256B boundary. Size == 256B
137 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
139 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
140 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
142 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
144 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 MV_PORT_HC_SHIFT = 2,
146 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
147 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
151 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
153 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
155 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
157 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
160 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
162 CRQB_FLAG_READ = (1 << 0),
164 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
165 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
166 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
167 CRQB_CMD_ADDR_SHIFT = 8,
168 CRQB_CMD_CS = (0x2 << 11),
169 CRQB_CMD_LAST = (1 << 15),
171 CRPB_FLAG_STATUS_SHIFT = 8,
172 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
173 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
175 EPRD_FLAG_END_OF_TBL = (1 << 31),
177 /* PCI interface registers */
179 MV_PCI_COMMAND = 0xc00,
180 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
181 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
183 PCI_MAIN_CMD_STS = 0xd30,
184 STOP_PCI_MASTER = (1 << 2),
185 PCI_MASTER_EMPTY = (1 << 3),
186 GLOB_SFT_RST = (1 << 4),
189 MV_PCI_MODE_MASK = 0x30,
191 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
192 MV_PCI_DISC_TIMER = 0xd04,
193 MV_PCI_MSI_TRIGGER = 0xc38,
194 MV_PCI_SERR_MASK = 0xc28,
195 MV_PCI_XBAR_TMOUT = 0x1d04,
196 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
197 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
198 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
199 MV_PCI_ERR_COMMAND = 0x1d50,
201 PCI_IRQ_CAUSE = 0x1d58,
202 PCI_IRQ_MASK = 0x1d5c,
203 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
205 PCIE_IRQ_CAUSE = 0x1900,
206 PCIE_IRQ_MASK = 0x1910,
207 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
209 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
211 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
212 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
213 SOC_HC_MAIN_IRQ_MASK = 0x20024,
214 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
215 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
216 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
217 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
218 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
219 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
221 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
222 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
223 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
224 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
225 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
226 GPIO_INT = (1 << 22),
227 SELF_INT = (1 << 23),
228 TWSI_INT = (1 << 24),
229 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
230 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
231 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
233 /* SATAHC registers */
237 DMA_IRQ = (1 << 0), /* shift by port # */
238 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
239 DEV_IRQ = (1 << 8), /* shift by port # */
242 * Per-HC (Host-Controller) interrupt coalescing feature.
243 * This is present on all chip generations.
245 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
248 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
249 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
252 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
253 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
254 /* with dev activity LED */
256 /* Shadow block registers */
258 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
261 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
263 FIS_IRQ_CAUSE = 0x364,
264 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
266 LTMODE = 0x30c, /* requires read-after-write */
267 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
272 PHY_MODE4 = 0x314, /* requires read-after-write */
273 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
274 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
275 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
276 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
279 SATA_TESTCTL = 0x348,
281 VENDOR_UNIQUE_FIS = 0x35c,
284 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
285 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
287 PHY_MODE9_GEN2 = 0x398,
288 PHY_MODE9_GEN1 = 0x39c,
289 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
296 LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
297 LP_PHY_CTL_PIN_PU_RX = (1 << 1),
298 LP_PHY_CTL_PIN_PU_TX = (1 << 2),
299 LP_PHY_CTL_GEN_TX_3G = (1 << 5),
300 LP_PHY_CTL_GEN_RX_3G = (1 << 9),
302 MV_M2_PREAMP_MASK = 0x7e0,
306 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
307 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
308 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
309 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
310 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
311 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
312 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
314 EDMA_ERR_IRQ_CAUSE = 0x8,
315 EDMA_ERR_IRQ_MASK = 0xc,
316 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
317 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
318 EDMA_ERR_DEV = (1 << 2), /* device error */
319 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
320 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
321 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
322 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
323 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
324 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
325 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
326 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
327 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
328 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
329 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
331 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
332 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
333 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
334 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
335 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
337 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
339 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
340 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
341 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
342 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
343 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
344 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
346 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
348 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
349 EDMA_ERR_OVERRUN_5 = (1 << 5),
350 EDMA_ERR_UNDERRUN_5 = (1 << 6),
352 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
353 EDMA_ERR_LNK_CTRL_RX_1 |
354 EDMA_ERR_LNK_CTRL_RX_3 |
355 EDMA_ERR_LNK_CTRL_TX,
357 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
367 EDMA_ERR_LNK_CTRL_RX_2 |
368 EDMA_ERR_LNK_DATA_RX |
369 EDMA_ERR_LNK_DATA_TX |
370 EDMA_ERR_TRANS_PROTO,
372 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
377 EDMA_ERR_UNDERRUN_5 |
378 EDMA_ERR_SELF_DIS_5 |
384 EDMA_REQ_Q_BASE_HI = 0x10,
385 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
387 EDMA_REQ_Q_OUT_PTR = 0x18,
388 EDMA_REQ_Q_PTR_SHIFT = 5,
390 EDMA_RSP_Q_BASE_HI = 0x1c,
391 EDMA_RSP_Q_IN_PTR = 0x20,
392 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
393 EDMA_RSP_Q_PTR_SHIFT = 3,
395 EDMA_CMD = 0x28, /* EDMA command register */
396 EDMA_EN = (1 << 0), /* enable EDMA */
397 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
398 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
400 EDMA_STATUS = 0x30, /* EDMA engine status */
401 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
402 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
404 EDMA_IORDY_TMOUT = 0x34,
407 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
408 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
410 BMDMA_CMD = 0x224, /* bmdma command register */
411 BMDMA_STATUS = 0x228, /* bmdma status register */
412 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
413 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
415 /* Host private flags (hp_flags) */
416 MV_HP_FLAG_MSI = (1 << 0),
417 MV_HP_ERRATA_50XXB0 = (1 << 1),
418 MV_HP_ERRATA_50XXB2 = (1 << 2),
419 MV_HP_ERRATA_60X1B2 = (1 << 3),
420 MV_HP_ERRATA_60X1C0 = (1 << 4),
421 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
422 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
423 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
424 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
425 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
426 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
427 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
428 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
430 /* Port private flags (pp_flags) */
431 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
432 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
433 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
434 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
435 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
444 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
448 /* DMA boundary 0xffff is required by the s/g splitting
449 * we need on /length/ in mv_fill-sg().
451 MV_DMA_BOUNDARY = 0xffffU,
453 /* mask of register bits containing lower 32 bits
454 * of EDMA request queue DMA address
456 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
458 /* ditto, for response queue */
459 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
473 /* Command ReQuest Block: 32B */
489 /* Command ResPonse Block: 8B */
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
505 * We keep a local cache of a few frequently accessed port
506 * registers here, to avoid having to read them (very slow)
507 * when switching between EDMA and non-EDMA modes.
509 struct mv_cached_regs {
516 struct mv_port_priv {
517 struct mv_crqb *crqb;
519 struct mv_crpb *crpb;
521 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
522 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
524 unsigned int req_idx;
525 unsigned int resp_idx;
528 struct mv_cached_regs cached;
529 unsigned int delayed_eh_pmp_map;
532 struct mv_port_signal {
537 struct mv_host_priv {
539 unsigned int board_idx;
541 struct mv_port_signal signal[8];
542 const struct mv_hw_ops *ops;
545 void __iomem *main_irq_cause_addr;
546 void __iomem *main_irq_mask_addr;
547 u32 irq_cause_offset;
552 * Needed on some devices that require their clocks to be enabled.
553 * These are optional: if the platform device does not have any
554 * clocks, they won't be used. Also, if the underlying hardware
555 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 * all the clock operations become no-ops (see clk.h).
559 struct clk **port_clks;
561 * Some devices have a SATA PHY which can be enabled/disabled
562 * in order to save power. These are optional: if the platform
563 * devices does not have any phy, they won't be used.
565 struct phy **port_phys;
567 * These consistent DMA memory pools give us guaranteed
568 * alignment for hardware-accessed data structures,
569 * and less memory waste in accomplishing the alignment.
571 struct dma_pool *crqb_pool;
572 struct dma_pool *crpb_pool;
573 struct dma_pool *sg_tbl_pool;
577 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
579 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
582 int (*reset_hc)(struct ata_host *host, void __iomem *mmio,
584 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
609 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
619 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
626 static int mv_soc_reset_hc(struct ata_host *host,
627 void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 unsigned long deadline);
643 static int mv_softreset(struct ata_link *link, unsigned int *class,
644 unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 struct mv_port_priv *pp);
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8 mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658 * because we have to allow room for worst case splitting of
659 * PRDs for 64K boundaries in mv_fill_sg().
662 static const struct scsi_host_template mv5_sht = {
663 ATA_BASE_SHT(DRV_NAME),
664 .sg_tablesize = MV_MAX_SG_CT / 2,
665 .dma_boundary = MV_DMA_BOUNDARY,
668 static const struct scsi_host_template mv6_sht = {
669 __ATA_BASE_SHT(DRV_NAME),
670 .can_queue = MV_MAX_Q_DEPTH - 1,
671 .sg_tablesize = MV_MAX_SG_CT / 2,
672 .dma_boundary = MV_DMA_BOUNDARY,
673 .sdev_groups = ata_ncq_sdev_groups,
674 .change_queue_depth = ata_scsi_change_queue_depth,
675 .tag_alloc_policy = BLK_TAG_ALLOC_RR,
676 .slave_configure = ata_scsi_slave_config
679 static struct ata_port_operations mv5_ops = {
680 .inherits = &ata_sff_port_ops,
682 .lost_interrupt = ATA_OP_NULL,
684 .qc_defer = mv_qc_defer,
685 .qc_prep = mv_qc_prep,
686 .qc_issue = mv_qc_issue,
688 .freeze = mv_eh_freeze,
690 .hardreset = mv_hardreset,
692 .scr_read = mv5_scr_read,
693 .scr_write = mv5_scr_write,
695 .port_start = mv_port_start,
696 .port_stop = mv_port_stop,
699 static struct ata_port_operations mv6_ops = {
700 .inherits = &ata_bmdma_port_ops,
702 .lost_interrupt = ATA_OP_NULL,
704 .qc_defer = mv_qc_defer,
705 .qc_prep = mv_qc_prep,
706 .qc_issue = mv_qc_issue,
708 .dev_config = mv6_dev_config,
710 .freeze = mv_eh_freeze,
712 .hardreset = mv_hardreset,
713 .softreset = mv_softreset,
714 .pmp_hardreset = mv_pmp_hardreset,
715 .pmp_softreset = mv_softreset,
716 .error_handler = mv_pmp_error_handler,
718 .scr_read = mv_scr_read,
719 .scr_write = mv_scr_write,
721 .sff_check_status = mv_sff_check_status,
722 .sff_irq_clear = mv_sff_irq_clear,
723 .check_atapi_dma = mv_check_atapi_dma,
724 .bmdma_setup = mv_bmdma_setup,
725 .bmdma_start = mv_bmdma_start,
726 .bmdma_stop = mv_bmdma_stop,
727 .bmdma_status = mv_bmdma_status,
729 .port_start = mv_port_start,
730 .port_stop = mv_port_stop,
733 static struct ata_port_operations mv_iie_ops = {
734 .inherits = &mv6_ops,
735 .dev_config = ATA_OP_NULL,
736 .qc_prep = mv_qc_prep_iie,
739 static const struct ata_port_info mv_port_info[] = {
741 .flags = MV_GEN_I_FLAGS,
742 .pio_mask = ATA_PIO4,
743 .udma_mask = ATA_UDMA6,
744 .port_ops = &mv5_ops,
747 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
748 .pio_mask = ATA_PIO4,
749 .udma_mask = ATA_UDMA6,
750 .port_ops = &mv5_ops,
753 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
754 .pio_mask = ATA_PIO4,
755 .udma_mask = ATA_UDMA6,
756 .port_ops = &mv5_ops,
759 .flags = MV_GEN_II_FLAGS,
760 .pio_mask = ATA_PIO4,
761 .udma_mask = ATA_UDMA6,
762 .port_ops = &mv6_ops,
765 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
766 .pio_mask = ATA_PIO4,
767 .udma_mask = ATA_UDMA6,
768 .port_ops = &mv6_ops,
771 .flags = MV_GEN_IIE_FLAGS,
772 .pio_mask = ATA_PIO4,
773 .udma_mask = ATA_UDMA6,
774 .port_ops = &mv_iie_ops,
777 .flags = MV_GEN_IIE_FLAGS,
778 .pio_mask = ATA_PIO4,
779 .udma_mask = ATA_UDMA6,
780 .port_ops = &mv_iie_ops,
783 .flags = MV_GEN_IIE_FLAGS,
784 .pio_mask = ATA_PIO4,
785 .udma_mask = ATA_UDMA6,
786 .port_ops = &mv_iie_ops,
790 static const struct pci_device_id mv_pci_tbl[] = {
791 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
792 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
793 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
794 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
795 /* RocketRAID 1720/174x have different identifiers */
796 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
797 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
798 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
800 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
801 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
802 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
803 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
804 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
806 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
809 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
811 /* Marvell 7042 support */
812 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
814 /* Highpoint RocketRAID PCIe series */
815 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
816 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
818 { } /* terminate list */
821 static const struct mv_hw_ops mv5xxx_ops = {
822 .phy_errata = mv5_phy_errata,
823 .enable_leds = mv5_enable_leds,
824 .read_preamp = mv5_read_preamp,
825 .reset_hc = mv5_reset_hc,
826 .reset_flash = mv5_reset_flash,
827 .reset_bus = mv5_reset_bus,
830 static const struct mv_hw_ops mv6xxx_ops = {
831 .phy_errata = mv6_phy_errata,
832 .enable_leds = mv6_enable_leds,
833 .read_preamp = mv6_read_preamp,
834 .reset_hc = mv6_reset_hc,
835 .reset_flash = mv6_reset_flash,
836 .reset_bus = mv_reset_pci_bus,
839 static const struct mv_hw_ops mv_soc_ops = {
840 .phy_errata = mv6_phy_errata,
841 .enable_leds = mv_soc_enable_leds,
842 .read_preamp = mv_soc_read_preamp,
843 .reset_hc = mv_soc_reset_hc,
844 .reset_flash = mv_soc_reset_flash,
845 .reset_bus = mv_soc_reset_bus,
848 static const struct mv_hw_ops mv_soc_65n_ops = {
849 .phy_errata = mv_soc_65n_phy_errata,
850 .enable_leds = mv_soc_enable_leds,
851 .reset_hc = mv_soc_reset_hc,
852 .reset_flash = mv_soc_reset_flash,
853 .reset_bus = mv_soc_reset_bus,
860 static inline void writelfl(unsigned long data, void __iomem *addr)
863 (void) readl(addr); /* flush to avoid PCI posted write */
866 static inline unsigned int mv_hc_from_port(unsigned int port)
868 return port >> MV_PORT_HC_SHIFT;
871 static inline unsigned int mv_hardport_from_port(unsigned int port)
873 return port & MV_PORT_MASK;
877 * Consolidate some rather tricky bit shift calculations.
878 * This is hot-path stuff, so not a function.
879 * Simple code, with two return values, so macro rather than inline.
881 * port is the sole input, in range 0..7.
882 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
883 * hardport is the other output, in range 0..3.
885 * Note that port and hardport may be the same variable in some cases.
887 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
889 shift = mv_hc_from_port(port) * HC_SHIFT; \
890 hardport = mv_hardport_from_port(port); \
891 shift += hardport * 2; \
894 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
896 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
899 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
902 return mv_hc_base(base, mv_hc_from_port(port));
905 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
907 return mv_hc_base_from_port(base, port) +
908 MV_SATAHC_ARBTR_REG_SZ +
909 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
912 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
914 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
915 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
917 return hc_mmio + ofs;
920 static inline void __iomem *mv_host_base(struct ata_host *host)
922 struct mv_host_priv *hpriv = host->private_data;
926 static inline void __iomem *mv_ap_base(struct ata_port *ap)
928 return mv_port_base(mv_host_base(ap->host), ap->port_no);
931 static inline int mv_get_hc_count(unsigned long port_flags)
933 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
937 * mv_save_cached_regs - (re-)initialize cached port registers
938 * @ap: the port whose registers we are caching
940 * Initialize the local cache of port registers,
941 * so that reading them over and over again can
942 * be avoided on the hotter paths of this driver.
943 * This saves a few microseconds each time we switch
944 * to/from EDMA mode to perform (eg.) a drive cache flush.
946 static void mv_save_cached_regs(struct ata_port *ap)
948 void __iomem *port_mmio = mv_ap_base(ap);
949 struct mv_port_priv *pp = ap->private_data;
951 pp->cached.fiscfg = readl(port_mmio + FISCFG);
952 pp->cached.ltmode = readl(port_mmio + LTMODE);
953 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
954 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
958 * mv_write_cached_reg - write to a cached port register
959 * @addr: hardware address of the register
960 * @old: pointer to cached value of the register
961 * @new: new value for the register
963 * Write a new value to a cached register,
964 * but only if the value is different from before.
966 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
972 * Workaround for 88SX60x1-B2 FEr SATA#13:
973 * Read-after-write is needed to prevent generating 64-bit
974 * write cycles on the PCI bus for SATA interface registers
975 * at offsets ending in 0x4 or 0xc.
977 * Looks like a lot of fuss, but it avoids an unnecessary
978 * +1 usec read-after-write delay for unaffected registers.
980 laddr = (unsigned long)addr & 0xffff;
981 if (laddr >= 0x300 && laddr <= 0x33c) {
983 if (laddr == 0x4 || laddr == 0xc) {
984 writelfl(new, addr); /* read after write */
988 writel(new, addr); /* unaffected by the errata */
992 static void mv_set_edma_ptrs(void __iomem *port_mmio,
993 struct mv_host_priv *hpriv,
994 struct mv_port_priv *pp)
999 * initialize request queue
1001 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1002 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1004 WARN_ON(pp->crqb_dma & 0x3ff);
1005 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1006 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1007 port_mmio + EDMA_REQ_Q_IN_PTR);
1008 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1011 * initialize response queue
1013 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1014 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1016 WARN_ON(pp->crpb_dma & 0xff);
1017 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1018 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1019 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1020 port_mmio + EDMA_RSP_Q_OUT_PTR);
1023 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1026 * When writing to the main_irq_mask in hardware,
1027 * we must ensure exclusivity between the interrupt coalescing bits
1028 * and the corresponding individual port DONE_IRQ bits.
1030 * Note that this register is really an "IRQ enable" register,
1031 * not an "IRQ mask" register as Marvell's naming might suggest.
1033 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1034 mask &= ~DONE_IRQ_0_3;
1035 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1036 mask &= ~DONE_IRQ_4_7;
1037 writelfl(mask, hpriv->main_irq_mask_addr);
1040 static void mv_set_main_irq_mask(struct ata_host *host,
1041 u32 disable_bits, u32 enable_bits)
1043 struct mv_host_priv *hpriv = host->private_data;
1044 u32 old_mask, new_mask;
1046 old_mask = hpriv->main_irq_mask;
1047 new_mask = (old_mask & ~disable_bits) | enable_bits;
1048 if (new_mask != old_mask) {
1049 hpriv->main_irq_mask = new_mask;
1050 mv_write_main_irq_mask(new_mask, hpriv);
1054 static void mv_enable_port_irqs(struct ata_port *ap,
1055 unsigned int port_bits)
1057 unsigned int shift, hardport, port = ap->port_no;
1058 u32 disable_bits, enable_bits;
1060 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1062 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1063 enable_bits = port_bits << shift;
1064 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1067 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1068 void __iomem *port_mmio,
1069 unsigned int port_irqs)
1071 struct mv_host_priv *hpriv = ap->host->private_data;
1072 int hardport = mv_hardport_from_port(ap->port_no);
1073 void __iomem *hc_mmio = mv_hc_base_from_port(
1074 mv_host_base(ap->host), ap->port_no);
1077 /* clear EDMA event indicators, if any */
1078 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1080 /* clear pending irq events */
1081 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1082 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1084 /* clear FIS IRQ Cause */
1085 if (IS_GEN_IIE(hpriv))
1086 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1088 mv_enable_port_irqs(ap, port_irqs);
1091 static void mv_set_irq_coalescing(struct ata_host *host,
1092 unsigned int count, unsigned int usecs)
1094 struct mv_host_priv *hpriv = host->private_data;
1095 void __iomem *mmio = hpriv->base, *hc_mmio;
1096 u32 coal_enable = 0;
1097 unsigned long flags;
1098 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1099 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1100 ALL_PORTS_COAL_DONE;
1102 /* Disable IRQ coalescing if either threshold is zero */
1103 if (!usecs || !count) {
1106 /* Respect maximum limits of the hardware */
1107 clks = usecs * COAL_CLOCKS_PER_USEC;
1108 if (clks > MAX_COAL_TIME_THRESHOLD)
1109 clks = MAX_COAL_TIME_THRESHOLD;
1110 if (count > MAX_COAL_IO_COUNT)
1111 count = MAX_COAL_IO_COUNT;
1114 spin_lock_irqsave(&host->lock, flags);
1115 mv_set_main_irq_mask(host, coal_disable, 0);
1117 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1119 * GEN_II/GEN_IIE with dual host controllers:
1120 * one set of global thresholds for the entire chip.
1122 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1123 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1124 /* clear leftover coal IRQ bit */
1125 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1127 coal_enable = ALL_PORTS_COAL_DONE;
1128 clks = count = 0; /* force clearing of regular regs below */
1132 * All chips: independent thresholds for each HC on the chip.
1134 hc_mmio = mv_hc_base_from_port(mmio, 0);
1135 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1136 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1137 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1139 coal_enable |= PORTS_0_3_COAL_DONE;
1141 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1142 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1143 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1144 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1146 coal_enable |= PORTS_4_7_COAL_DONE;
1149 mv_set_main_irq_mask(host, 0, coal_enable);
1150 spin_unlock_irqrestore(&host->lock, flags);
1154 * mv_start_edma - Enable eDMA engine
1155 * @pp: port private data
1157 * Verify the local cache of the eDMA state is accurate with a
1161 * Inherited from caller.
1163 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1164 struct mv_port_priv *pp, u8 protocol)
1166 int want_ncq = (protocol == ATA_PROT_NCQ);
1168 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1169 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1170 if (want_ncq != using_ncq)
1173 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1174 struct mv_host_priv *hpriv = ap->host->private_data;
1176 mv_edma_cfg(ap, want_ncq, 1);
1178 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1179 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1181 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1182 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1186 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1188 void __iomem *port_mmio = mv_ap_base(ap);
1189 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1190 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1194 * Wait for the EDMA engine to finish transactions in progress.
1195 * No idea what a good "timeout" value might be, but measurements
1196 * indicate that it often requires hundreds of microseconds
1197 * with two drives in-use. So we use the 15msec value above
1198 * as a rough guess at what even more drives might require.
1200 for (i = 0; i < timeout; ++i) {
1201 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1202 if ((edma_stat & empty_idle) == empty_idle)
1206 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1210 * mv_stop_edma_engine - Disable eDMA engine
1211 * @port_mmio: io base address
1214 * Inherited from caller.
1216 static int mv_stop_edma_engine(void __iomem *port_mmio)
1220 /* Disable eDMA. The disable bit auto clears. */
1221 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1223 /* Wait for the chip to confirm eDMA is off. */
1224 for (i = 10000; i > 0; i--) {
1225 u32 reg = readl(port_mmio + EDMA_CMD);
1226 if (!(reg & EDMA_EN))
1233 static int mv_stop_edma(struct ata_port *ap)
1235 void __iomem *port_mmio = mv_ap_base(ap);
1236 struct mv_port_priv *pp = ap->private_data;
1239 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1241 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1242 mv_wait_for_edma_empty_idle(ap);
1243 if (mv_stop_edma_engine(port_mmio)) {
1244 ata_port_err(ap, "Unable to stop eDMA\n");
1247 mv_edma_cfg(ap, 0, 0);
1251 static void mv_dump_mem(struct device *dev, void __iomem *start, unsigned bytes)
1254 unsigned char linebuf[38];
1256 for (b = 0; b < bytes; ) {
1257 for (w = 0, o = 0; b < bytes && w < 4; w++) {
1258 o += scnprintf(linebuf + o, sizeof(linebuf) - o,
1259 "%08x ", readl(start + b));
1262 dev_dbg(dev, "%s: %p: %s\n",
1263 __func__, start + b, linebuf);
1267 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1271 unsigned char linebuf[38];
1273 for (b = 0; b < bytes; ) {
1274 for (w = 0, o = 0; b < bytes && w < 4; w++) {
1275 (void) pci_read_config_dword(pdev, b, &dw);
1276 o += snprintf(linebuf + o, sizeof(linebuf) - o,
1280 dev_dbg(&pdev->dev, "%s: %02x: %s\n",
1281 __func__, b, linebuf);
1285 static void mv_dump_all_regs(void __iomem *mmio_base,
1286 struct pci_dev *pdev)
1288 void __iomem *hc_base;
1289 void __iomem *port_base;
1290 int start_port, num_ports, p, start_hc, num_hcs, hc;
1292 start_hc = start_port = 0;
1293 num_ports = 8; /* should be benign for 4 port devs */
1296 "%s: All registers for port(s) %u-%u:\n", __func__,
1297 start_port, num_ports > 1 ? num_ports - 1 : start_port);
1299 dev_dbg(&pdev->dev, "%s: PCI config space regs:\n", __func__);
1300 mv_dump_pci_cfg(pdev, 0x68);
1302 dev_dbg(&pdev->dev, "%s: PCI regs:\n", __func__);
1303 mv_dump_mem(&pdev->dev, mmio_base+0xc00, 0x3c);
1304 mv_dump_mem(&pdev->dev, mmio_base+0xd00, 0x34);
1305 mv_dump_mem(&pdev->dev, mmio_base+0xf00, 0x4);
1306 mv_dump_mem(&pdev->dev, mmio_base+0x1d00, 0x6c);
1307 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1308 hc_base = mv_hc_base(mmio_base, hc);
1309 dev_dbg(&pdev->dev, "%s: HC regs (HC %i):\n", __func__, hc);
1310 mv_dump_mem(&pdev->dev, hc_base, 0x1c);
1312 for (p = start_port; p < start_port + num_ports; p++) {
1313 port_base = mv_port_base(mmio_base, p);
1314 dev_dbg(&pdev->dev, "%s: EDMA regs (port %i):\n", __func__, p);
1315 mv_dump_mem(&pdev->dev, port_base, 0x54);
1316 dev_dbg(&pdev->dev, "%s: SATA regs (port %i):\n", __func__, p);
1317 mv_dump_mem(&pdev->dev, port_base+0x300, 0x60);
1321 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1325 switch (sc_reg_in) {
1329 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1332 ofs = SATA_ACTIVE; /* active is not with the others */
1341 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1343 unsigned int ofs = mv_scr_offset(sc_reg_in);
1345 if (ofs != 0xffffffffU) {
1346 *val = readl(mv_ap_base(link->ap) + ofs);
1352 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1354 unsigned int ofs = mv_scr_offset(sc_reg_in);
1356 if (ofs != 0xffffffffU) {
1357 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1358 struct mv_host_priv *hpriv = link->ap->host->private_data;
1359 if (sc_reg_in == SCR_CONTROL) {
1361 * Workaround for 88SX60x1 FEr SATA#26:
1363 * COMRESETs have to take care not to accidentally
1364 * put the drive to sleep when writing SCR_CONTROL.
1365 * Setting bits 12..15 prevents this problem.
1367 * So if we see an outbound COMMRESET, set those bits.
1368 * Ditto for the followup write that clears the reset.
1370 * The proprietary driver does this for
1371 * all chip versions, and so do we.
1373 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1376 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1377 void __iomem *lp_phy_addr =
1378 mv_ap_base(link->ap) + LP_PHY_CTL;
1380 * Set PHY speed according to SControl speed.
1383 LP_PHY_CTL_PIN_PU_PLL |
1384 LP_PHY_CTL_PIN_PU_RX |
1385 LP_PHY_CTL_PIN_PU_TX;
1387 if ((val & 0xf0) != 0x10)
1389 LP_PHY_CTL_GEN_TX_3G |
1390 LP_PHY_CTL_GEN_RX_3G;
1392 writelfl(lp_phy_val, lp_phy_addr);
1395 writelfl(val, addr);
1401 static void mv6_dev_config(struct ata_device *adev)
1404 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1406 * Gen-II does not support NCQ over a port multiplier
1407 * (no FIS-based switching).
1409 if (adev->flags & ATA_DFLAG_NCQ) {
1410 if (sata_pmp_attached(adev->link->ap)) {
1411 adev->flags &= ~ATA_DFLAG_NCQ;
1413 "NCQ disabled for command-based switching\n");
1418 static int mv_qc_defer(struct ata_queued_cmd *qc)
1420 struct ata_link *link = qc->dev->link;
1421 struct ata_port *ap = link->ap;
1422 struct mv_port_priv *pp = ap->private_data;
1425 * Don't allow new commands if we're in a delayed EH state
1426 * for NCQ and/or FIS-based switching.
1428 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1429 return ATA_DEFER_PORT;
1431 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1432 * can run concurrently.
1433 * set excl_link when we want to send a PIO command in DMA mode
1434 * or a non-NCQ command in NCQ mode.
1435 * When we receive a command from that link, and there are no
1436 * outstanding commands, mark a flag to clear excl_link and let
1437 * the command go through.
1439 if (unlikely(ap->excl_link)) {
1440 if (link == ap->excl_link) {
1441 if (ap->nr_active_links)
1442 return ATA_DEFER_PORT;
1443 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1446 return ATA_DEFER_PORT;
1450 * If the port is completely idle, then allow the new qc.
1452 if (ap->nr_active_links == 0)
1456 * The port is operating in host queuing mode (EDMA) with NCQ
1457 * enabled, allow multiple NCQ commands. EDMA also allows
1458 * queueing multiple DMA commands but libata core currently
1461 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1462 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1463 if (ata_is_ncq(qc->tf.protocol))
1466 ap->excl_link = link;
1467 return ATA_DEFER_PORT;
1471 return ATA_DEFER_PORT;
1474 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1476 struct mv_port_priv *pp = ap->private_data;
1477 void __iomem *port_mmio;
1479 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1480 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1481 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1483 ltmode = *old_ltmode & ~LTMODE_BIT8;
1484 haltcond = *old_haltcond | EDMA_ERR_DEV;
1487 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1488 ltmode = *old_ltmode | LTMODE_BIT8;
1490 haltcond &= ~EDMA_ERR_DEV;
1492 fiscfg |= FISCFG_WAIT_DEV_ERR;
1494 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1497 port_mmio = mv_ap_base(ap);
1498 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1499 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1500 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1503 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1505 struct mv_host_priv *hpriv = ap->host->private_data;
1508 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1509 old = readl(hpriv->base + GPIO_PORT_CTL);
1511 new = old | (1 << 22);
1513 new = old & ~(1 << 22);
1515 writel(new, hpriv->base + GPIO_PORT_CTL);
1519 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1520 * @ap: Port being initialized
1522 * There are two DMA modes on these chips: basic DMA, and EDMA.
1524 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1525 * of basic DMA on the GEN_IIE versions of the chips.
1527 * This bit survives EDMA resets, and must be set for basic DMA
1528 * to function, and should be cleared when EDMA is active.
1530 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1532 struct mv_port_priv *pp = ap->private_data;
1533 u32 new, *old = &pp->cached.unknown_rsvd;
1539 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1543 * SOC chips have an issue whereby the HDD LEDs don't always blink
1544 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1545 * of the SOC takes care of it, generating a steady blink rate when
1546 * any drive on the chip is active.
1548 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1549 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1551 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1552 * LED operation works then, and provides better (more accurate) feedback.
1554 * Note that this code assumes that an SOC never has more than one HC onboard.
1556 static void mv_soc_led_blink_enable(struct ata_port *ap)
1558 struct ata_host *host = ap->host;
1559 struct mv_host_priv *hpriv = host->private_data;
1560 void __iomem *hc_mmio;
1563 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1565 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1566 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1567 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1571 static void mv_soc_led_blink_disable(struct ata_port *ap)
1573 struct ata_host *host = ap->host;
1574 struct mv_host_priv *hpriv = host->private_data;
1575 void __iomem *hc_mmio;
1579 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1582 /* disable led-blink only if no ports are using NCQ */
1583 for (port = 0; port < hpriv->n_ports; port++) {
1584 struct ata_port *this_ap = host->ports[port];
1585 struct mv_port_priv *pp = this_ap->private_data;
1587 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1591 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1592 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1593 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1594 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1597 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1600 struct mv_port_priv *pp = ap->private_data;
1601 struct mv_host_priv *hpriv = ap->host->private_data;
1602 void __iomem *port_mmio = mv_ap_base(ap);
1604 /* set up non-NCQ EDMA configuration */
1605 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1607 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1609 if (IS_GEN_I(hpriv))
1610 cfg |= (1 << 8); /* enab config burst size mask */
1612 else if (IS_GEN_II(hpriv)) {
1613 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1614 mv_60x1_errata_sata25(ap, want_ncq);
1616 } else if (IS_GEN_IIE(hpriv)) {
1617 int want_fbs = sata_pmp_attached(ap);
1619 * Possible future enhancement:
1621 * The chip can use FBS with non-NCQ, if we allow it,
1622 * But first we need to have the error handling in place
1623 * for this mode (datasheet section 7.3.15.4.2.3).
1624 * So disallow non-NCQ FBS for now.
1626 want_fbs &= want_ncq;
1628 mv_config_fbs(ap, want_ncq, want_fbs);
1631 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1632 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1635 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1637 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1639 cfg |= (1 << 18); /* enab early completion */
1641 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1642 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1643 mv_bmdma_enable_iie(ap, !want_edma);
1645 if (IS_SOC(hpriv)) {
1647 mv_soc_led_blink_enable(ap);
1649 mv_soc_led_blink_disable(ap);
1654 cfg |= EDMA_CFG_NCQ;
1655 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1658 writelfl(cfg, port_mmio + EDMA_CFG);
1661 static void mv_port_free_dma_mem(struct ata_port *ap)
1663 struct mv_host_priv *hpriv = ap->host->private_data;
1664 struct mv_port_priv *pp = ap->private_data;
1668 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1672 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1676 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1677 * For later hardware, we have one unique sg_tbl per NCQ tag.
1679 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1680 if (pp->sg_tbl[tag]) {
1681 if (tag == 0 || !IS_GEN_I(hpriv))
1682 dma_pool_free(hpriv->sg_tbl_pool,
1684 pp->sg_tbl_dma[tag]);
1685 pp->sg_tbl[tag] = NULL;
1691 * mv_port_start - Port specific init/start routine.
1692 * @ap: ATA channel to manipulate
1694 * Allocate and point to DMA memory, init port private memory,
1698 * Inherited from caller.
1700 static int mv_port_start(struct ata_port *ap)
1702 struct device *dev = ap->host->dev;
1703 struct mv_host_priv *hpriv = ap->host->private_data;
1704 struct mv_port_priv *pp;
1705 unsigned long flags;
1708 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1711 ap->private_data = pp;
1713 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1717 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1719 goto out_port_free_dma_mem;
1721 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1722 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1723 ap->flags |= ATA_FLAG_AN;
1725 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1726 * For later hardware, we need one unique sg_tbl per NCQ tag.
1728 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1729 if (tag == 0 || !IS_GEN_I(hpriv)) {
1730 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1731 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1732 if (!pp->sg_tbl[tag])
1733 goto out_port_free_dma_mem;
1735 pp->sg_tbl[tag] = pp->sg_tbl[0];
1736 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1740 spin_lock_irqsave(ap->lock, flags);
1741 mv_save_cached_regs(ap);
1742 mv_edma_cfg(ap, 0, 0);
1743 spin_unlock_irqrestore(ap->lock, flags);
1747 out_port_free_dma_mem:
1748 mv_port_free_dma_mem(ap);
1753 * mv_port_stop - Port specific cleanup/stop routine.
1754 * @ap: ATA channel to manipulate
1756 * Stop DMA, cleanup port memory.
1759 * This routine uses the host lock to protect the DMA stop.
1761 static void mv_port_stop(struct ata_port *ap)
1763 unsigned long flags;
1765 spin_lock_irqsave(ap->lock, flags);
1767 mv_enable_port_irqs(ap, 0);
1768 spin_unlock_irqrestore(ap->lock, flags);
1769 mv_port_free_dma_mem(ap);
1773 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1774 * @qc: queued command whose SG list to source from
1776 * Populate the SG list and mark the last entry.
1779 * Inherited from caller.
1781 static void mv_fill_sg(struct ata_queued_cmd *qc)
1783 struct mv_port_priv *pp = qc->ap->private_data;
1784 struct scatterlist *sg;
1785 struct mv_sg *mv_sg, *last_sg = NULL;
1788 mv_sg = pp->sg_tbl[qc->hw_tag];
1789 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1790 dma_addr_t addr = sg_dma_address(sg);
1791 u32 sg_len = sg_dma_len(sg);
1794 u32 offset = addr & 0xffff;
1797 if (offset + len > 0x10000)
1798 len = 0x10000 - offset;
1800 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1801 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1802 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1803 mv_sg->reserved = 0;
1813 if (likely(last_sg))
1814 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1815 mb(); /* ensure data structure is visible to the chipset */
1818 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1820 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1821 (last ? CRQB_CMD_LAST : 0);
1822 *cmdw = cpu_to_le16(tmp);
1826 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1827 * @ap: Port associated with this ATA transaction.
1829 * We need this only for ATAPI bmdma transactions,
1830 * as otherwise we experience spurious interrupts
1831 * after libata-sff handles the bmdma interrupts.
1833 static void mv_sff_irq_clear(struct ata_port *ap)
1835 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1839 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1840 * @qc: queued command to check for chipset/DMA compatibility.
1842 * The bmdma engines cannot handle speculative data sizes
1843 * (bytecount under/over flow). So only allow DMA for
1844 * data transfer commands with known data sizes.
1847 * Inherited from caller.
1849 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1851 struct scsi_cmnd *scmd = qc->scsicmd;
1854 switch (scmd->cmnd[0]) {
1862 case GPCMD_SEND_DVD_STRUCTURE:
1863 case GPCMD_SEND_CUE_SHEET:
1864 return 0; /* DMA is safe */
1867 return -EOPNOTSUPP; /* use PIO instead */
1871 * mv_bmdma_setup - Set up BMDMA transaction
1872 * @qc: queued command to prepare DMA for.
1875 * Inherited from caller.
1877 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1879 struct ata_port *ap = qc->ap;
1880 void __iomem *port_mmio = mv_ap_base(ap);
1881 struct mv_port_priv *pp = ap->private_data;
1885 /* clear all DMA cmd bits */
1886 writel(0, port_mmio + BMDMA_CMD);
1888 /* load PRD table addr. */
1889 writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1890 port_mmio + BMDMA_PRD_HIGH);
1891 writelfl(pp->sg_tbl_dma[qc->hw_tag],
1892 port_mmio + BMDMA_PRD_LOW);
1894 /* issue r/w command */
1895 ap->ops->sff_exec_command(ap, &qc->tf);
1899 * mv_bmdma_start - Start a BMDMA transaction
1900 * @qc: queued command to start DMA on.
1903 * Inherited from caller.
1905 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1907 struct ata_port *ap = qc->ap;
1908 void __iomem *port_mmio = mv_ap_base(ap);
1909 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1910 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1912 /* start host DMA transaction */
1913 writelfl(cmd, port_mmio + BMDMA_CMD);
1917 * mv_bmdma_stop_ap - Stop BMDMA transfer
1920 * Clears the ATA_DMA_START flag in the bmdma control register
1923 * Inherited from caller.
1925 static void mv_bmdma_stop_ap(struct ata_port *ap)
1927 void __iomem *port_mmio = mv_ap_base(ap);
1930 /* clear start/stop bit */
1931 cmd = readl(port_mmio + BMDMA_CMD);
1932 if (cmd & ATA_DMA_START) {
1933 cmd &= ~ATA_DMA_START;
1934 writelfl(cmd, port_mmio + BMDMA_CMD);
1936 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1937 ata_sff_dma_pause(ap);
1941 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1943 mv_bmdma_stop_ap(qc->ap);
1947 * mv_bmdma_status - Read BMDMA status
1948 * @ap: port for which to retrieve DMA status.
1950 * Read and return equivalent of the sff BMDMA status register.
1953 * Inherited from caller.
1955 static u8 mv_bmdma_status(struct ata_port *ap)
1957 void __iomem *port_mmio = mv_ap_base(ap);
1961 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1962 * and the ATA_DMA_INTR bit doesn't exist.
1964 reg = readl(port_mmio + BMDMA_STATUS);
1965 if (reg & ATA_DMA_ACTIVE)
1966 status = ATA_DMA_ACTIVE;
1967 else if (reg & ATA_DMA_ERR)
1968 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1971 * Just because DMA_ACTIVE is 0 (DMA completed),
1972 * this does _not_ mean the device is "done".
1973 * So we should not yet be signalling ATA_DMA_INTR
1974 * in some cases. Eg. DSM/TRIM, and perhaps others.
1976 mv_bmdma_stop_ap(ap);
1977 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1980 status = ATA_DMA_INTR;
1985 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1987 struct ata_taskfile *tf = &qc->tf;
1989 * Workaround for 88SX60x1 FEr SATA#24.
1991 * Chip may corrupt WRITEs if multi_count >= 4kB.
1992 * Note that READs are unaffected.
1994 * It's not clear if this errata really means "4K bytes",
1995 * or if it always happens for multi_count > 7
1996 * regardless of device sector_size.
1998 * So, for safety, any write with multi_count > 7
1999 * gets converted here into a regular PIO write instead:
2001 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2002 if (qc->dev->multi_count > 7) {
2003 switch (tf->command) {
2004 case ATA_CMD_WRITE_MULTI:
2005 tf->command = ATA_CMD_PIO_WRITE;
2007 case ATA_CMD_WRITE_MULTI_FUA_EXT:
2008 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2010 case ATA_CMD_WRITE_MULTI_EXT:
2011 tf->command = ATA_CMD_PIO_WRITE_EXT;
2019 * mv_qc_prep - Host specific command preparation.
2020 * @qc: queued command to prepare
2022 * This routine simply redirects to the general purpose routine
2023 * if command is not DMA. Else, it handles prep of the CRQB
2024 * (command request block), does some sanity checking, and calls
2025 * the SG load routine.
2028 * Inherited from caller.
2030 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2032 struct ata_port *ap = qc->ap;
2033 struct mv_port_priv *pp = ap->private_data;
2035 struct ata_taskfile *tf = &qc->tf;
2039 switch (tf->protocol) {
2041 if (tf->command == ATA_CMD_DSM)
2045 break; /* continue below */
2047 mv_rw_multi_errata_sata24(qc);
2053 /* Fill in command request block
2055 if (!(tf->flags & ATA_TFLAG_WRITE))
2056 flags |= CRQB_FLAG_READ;
2057 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2058 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2059 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2061 /* get current queue index from software */
2062 in_index = pp->req_idx;
2064 pp->crqb[in_index].sg_addr =
2065 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2066 pp->crqb[in_index].sg_addr_hi =
2067 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2068 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2070 cw = &pp->crqb[in_index].ata_cmd[0];
2072 /* Sadly, the CRQB cannot accommodate all registers--there are
2073 * only 11 bytes...so we must pick and choose required
2074 * registers based on the command. So, we drop feature and
2075 * hob_feature for [RW] DMA commands, but they are needed for
2076 * NCQ. NCQ will drop hob_nsect, which is not needed there
2077 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2079 switch (tf->command) {
2081 case ATA_CMD_READ_EXT:
2083 case ATA_CMD_WRITE_EXT:
2084 case ATA_CMD_WRITE_FUA_EXT:
2085 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2087 case ATA_CMD_FPDMA_READ:
2088 case ATA_CMD_FPDMA_WRITE:
2089 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2090 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2093 /* The only other commands EDMA supports in non-queued and
2094 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2095 * of which are defined/used by Linux. If we get here, this
2096 * driver needs work.
2098 ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2100 return AC_ERR_INVALID;
2102 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2103 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2104 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2105 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2106 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2107 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2108 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2109 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2110 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2112 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2120 * mv_qc_prep_iie - Host specific command preparation.
2121 * @qc: queued command to prepare
2123 * This routine simply redirects to the general purpose routine
2124 * if command is not DMA. Else, it handles prep of the CRQB
2125 * (command request block), does some sanity checking, and calls
2126 * the SG load routine.
2129 * Inherited from caller.
2131 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2133 struct ata_port *ap = qc->ap;
2134 struct mv_port_priv *pp = ap->private_data;
2135 struct mv_crqb_iie *crqb;
2136 struct ata_taskfile *tf = &qc->tf;
2140 if ((tf->protocol != ATA_PROT_DMA) &&
2141 (tf->protocol != ATA_PROT_NCQ))
2143 if (tf->command == ATA_CMD_DSM)
2144 return AC_ERR_OK; /* use bmdma for this */
2146 /* Fill in Gen IIE command request block */
2147 if (!(tf->flags & ATA_TFLAG_WRITE))
2148 flags |= CRQB_FLAG_READ;
2150 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2151 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2152 flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2153 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2155 /* get current queue index from software */
2156 in_index = pp->req_idx;
2158 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2159 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2160 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2161 crqb->flags = cpu_to_le32(flags);
2163 crqb->ata_cmd[0] = cpu_to_le32(
2164 (tf->command << 16) |
2167 crqb->ata_cmd[1] = cpu_to_le32(
2173 crqb->ata_cmd[2] = cpu_to_le32(
2174 (tf->hob_lbal << 0) |
2175 (tf->hob_lbam << 8) |
2176 (tf->hob_lbah << 16) |
2177 (tf->hob_feature << 24)
2179 crqb->ata_cmd[3] = cpu_to_le32(
2181 (tf->hob_nsect << 8)
2184 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2192 * mv_sff_check_status - fetch device status, if valid
2193 * @ap: ATA port to fetch status from
2195 * When using command issue via mv_qc_issue_fis(),
2196 * the initial ATA_BUSY state does not show up in the
2197 * ATA status (shadow) register. This can confuse libata!
2199 * So we have a hook here to fake ATA_BUSY for that situation,
2200 * until the first time a BUSY, DRQ, or ERR bit is seen.
2202 * The rest of the time, it simply returns the ATA status register.
2204 static u8 mv_sff_check_status(struct ata_port *ap)
2206 u8 stat = ioread8(ap->ioaddr.status_addr);
2207 struct mv_port_priv *pp = ap->private_data;
2209 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2210 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2211 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2219 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2220 * @ap: ATA port to send a FIS
2221 * @fis: fis to be sent
2222 * @nwords: number of 32-bit words in the fis
2224 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2226 void __iomem *port_mmio = mv_ap_base(ap);
2227 u32 ifctl, old_ifctl, ifstat;
2228 int i, timeout = 200, final_word = nwords - 1;
2230 /* Initiate FIS transmission mode */
2231 old_ifctl = readl(port_mmio + SATA_IFCTL);
2232 ifctl = 0x100 | (old_ifctl & 0xf);
2233 writelfl(ifctl, port_mmio + SATA_IFCTL);
2235 /* Send all words of the FIS except for the final word */
2236 for (i = 0; i < final_word; ++i)
2237 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2239 /* Flag end-of-transmission, and then send the final word */
2240 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2241 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2244 * Wait for FIS transmission to complete.
2245 * This typically takes just a single iteration.
2248 ifstat = readl(port_mmio + SATA_IFSTAT);
2249 } while (!(ifstat & 0x1000) && --timeout);
2251 /* Restore original port configuration */
2252 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2254 /* See if it worked */
2255 if ((ifstat & 0x3000) != 0x1000) {
2256 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2258 return AC_ERR_OTHER;
2264 * mv_qc_issue_fis - Issue a command directly as a FIS
2265 * @qc: queued command to start
2267 * Note that the ATA shadow registers are not updated
2268 * after command issue, so the device will appear "READY"
2269 * if polled, even while it is BUSY processing the command.
2271 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2273 * Note: we don't get updated shadow regs on *completion*
2274 * of non-data commands. So avoid sending them via this function,
2275 * as they will appear to have completed immediately.
2277 * GEN_IIE has special registers that we could get the result tf from,
2278 * but earlier chipsets do not. For now, we ignore those registers.
2280 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2282 struct ata_port *ap = qc->ap;
2283 struct mv_port_priv *pp = ap->private_data;
2284 struct ata_link *link = qc->dev->link;
2288 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2289 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2293 switch (qc->tf.protocol) {
2294 case ATAPI_PROT_PIO:
2295 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2297 case ATAPI_PROT_NODATA:
2298 ap->hsm_task_state = HSM_ST_FIRST;
2301 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2302 if (qc->tf.flags & ATA_TFLAG_WRITE)
2303 ap->hsm_task_state = HSM_ST_FIRST;
2305 ap->hsm_task_state = HSM_ST;
2308 ap->hsm_task_state = HSM_ST_LAST;
2312 if (qc->tf.flags & ATA_TFLAG_POLLING)
2313 ata_sff_queue_pio_task(link, 0);
2318 * mv_qc_issue - Initiate a command to the host
2319 * @qc: queued command to start
2321 * This routine simply redirects to the general purpose routine
2322 * if command is not DMA. Else, it sanity checks our local
2323 * caches of the request producer/consumer indices then enables
2324 * DMA and bumps the request producer index.
2327 * Inherited from caller.
2329 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2331 static int limit_warnings = 10;
2332 struct ata_port *ap = qc->ap;
2333 void __iomem *port_mmio = mv_ap_base(ap);
2334 struct mv_port_priv *pp = ap->private_data;
2336 unsigned int port_irqs;
2338 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2340 switch (qc->tf.protocol) {
2342 if (qc->tf.command == ATA_CMD_DSM) {
2343 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2344 return AC_ERR_OTHER;
2345 break; /* use bmdma for this */
2349 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2350 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2351 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2353 /* Write the request in pointer to kick the EDMA to life */
2354 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2355 port_mmio + EDMA_REQ_Q_IN_PTR);
2360 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2362 * Someday, we might implement special polling workarounds
2363 * for these, but it all seems rather unnecessary since we
2364 * normally use only DMA for commands which transfer more
2365 * than a single block of data.
2367 * Much of the time, this could just work regardless.
2368 * So for now, just log the incident, and allow the attempt.
2370 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2372 ata_link_warn(qc->dev->link, DRV_NAME
2373 ": attempting PIO w/multiple DRQ: "
2374 "this may fail due to h/w errata\n");
2377 case ATA_PROT_NODATA:
2378 case ATAPI_PROT_PIO:
2379 case ATAPI_PROT_NODATA:
2380 if (ap->flags & ATA_FLAG_PIO_POLLING)
2381 qc->tf.flags |= ATA_TFLAG_POLLING;
2385 if (qc->tf.flags & ATA_TFLAG_POLLING)
2386 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2388 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2391 * We're about to send a non-EDMA capable command to the
2392 * port. Turn off EDMA so there won't be problems accessing
2393 * shadow block, etc registers.
2396 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2397 mv_pmp_select(ap, qc->dev->link->pmp);
2399 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2400 struct mv_host_priv *hpriv = ap->host->private_data;
2402 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2404 * After any NCQ error, the READ_LOG_EXT command
2405 * from libata-eh *must* use mv_qc_issue_fis().
2406 * Otherwise it might fail, due to chip errata.
2408 * Rather than special-case it, we'll just *always*
2409 * use this method here for READ_LOG_EXT, making for
2412 if (IS_GEN_II(hpriv))
2413 return mv_qc_issue_fis(qc);
2415 return ata_bmdma_qc_issue(qc);
2418 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2420 struct mv_port_priv *pp = ap->private_data;
2421 struct ata_queued_cmd *qc;
2423 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2425 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2426 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2431 static void mv_pmp_error_handler(struct ata_port *ap)
2433 unsigned int pmp, pmp_map;
2434 struct mv_port_priv *pp = ap->private_data;
2436 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2438 * Perform NCQ error analysis on failed PMPs
2439 * before we freeze the port entirely.
2441 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2443 pmp_map = pp->delayed_eh_pmp_map;
2444 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2445 for (pmp = 0; pmp_map != 0; pmp++) {
2446 unsigned int this_pmp = (1 << pmp);
2447 if (pmp_map & this_pmp) {
2448 struct ata_link *link = &ap->pmp_link[pmp];
2449 pmp_map &= ~this_pmp;
2450 ata_eh_analyze_ncq_error(link);
2453 ata_port_freeze(ap);
2455 sata_pmp_error_handler(ap);
2458 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2460 void __iomem *port_mmio = mv_ap_base(ap);
2462 return readl(port_mmio + SATA_TESTCTL) >> 16;
2465 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2470 * Initialize EH info for PMPs which saw device errors
2472 for (pmp = 0; pmp_map != 0; pmp++) {
2473 unsigned int this_pmp = (1 << pmp);
2474 if (pmp_map & this_pmp) {
2475 struct ata_link *link = &ap->pmp_link[pmp];
2476 struct ata_eh_info *ehi = &link->eh_info;
2478 pmp_map &= ~this_pmp;
2479 ata_ehi_clear_desc(ehi);
2480 ata_ehi_push_desc(ehi, "dev err");
2481 ehi->err_mask |= AC_ERR_DEV;
2482 ehi->action |= ATA_EH_RESET;
2483 ata_link_abort(link);
2488 static int mv_req_q_empty(struct ata_port *ap)
2490 void __iomem *port_mmio = mv_ap_base(ap);
2491 u32 in_ptr, out_ptr;
2493 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2494 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2495 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2496 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2497 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2500 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2502 struct mv_port_priv *pp = ap->private_data;
2504 unsigned int old_map, new_map;
2507 * Device error during FBS+NCQ operation:
2509 * Set a port flag to prevent further I/O being enqueued.
2510 * Leave the EDMA running to drain outstanding commands from this port.
2511 * Perform the post-mortem/EH only when all responses are complete.
2512 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2514 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2515 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2516 pp->delayed_eh_pmp_map = 0;
2518 old_map = pp->delayed_eh_pmp_map;
2519 new_map = old_map | mv_get_err_pmp_map(ap);
2521 if (old_map != new_map) {
2522 pp->delayed_eh_pmp_map = new_map;
2523 mv_pmp_eh_prep(ap, new_map & ~old_map);
2525 failed_links = hweight16(new_map);
2528 "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2529 __func__, pp->delayed_eh_pmp_map,
2530 ap->qc_active, failed_links,
2531 ap->nr_active_links);
2533 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2534 mv_process_crpb_entries(ap, pp);
2537 ata_port_info(ap, "%s: done\n", __func__);
2538 return 1; /* handled */
2540 ata_port_info(ap, "%s: waiting\n", __func__);
2541 return 1; /* handled */
2544 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2547 * Possible future enhancement:
2549 * FBS+non-NCQ operation is not yet implemented.
2550 * See related notes in mv_edma_cfg().
2552 * Device error during FBS+non-NCQ operation:
2554 * We need to snapshot the shadow registers for each failed command.
2555 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2557 return 0; /* not handled */
2560 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2562 struct mv_port_priv *pp = ap->private_data;
2564 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2565 return 0; /* EDMA was not active: not handled */
2566 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2567 return 0; /* FBS was not active: not handled */
2569 if (!(edma_err_cause & EDMA_ERR_DEV))
2570 return 0; /* non DEV error: not handled */
2571 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2572 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2573 return 0; /* other problems: not handled */
2575 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2577 * EDMA should NOT have self-disabled for this case.
2578 * If it did, then something is wrong elsewhere,
2579 * and we cannot handle it here.
2581 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2582 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2583 __func__, edma_err_cause, pp->pp_flags);
2584 return 0; /* not handled */
2586 return mv_handle_fbs_ncq_dev_err(ap);
2589 * EDMA should have self-disabled for this case.
2590 * If it did not, then something is wrong elsewhere,
2591 * and we cannot handle it here.
2593 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2594 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2595 __func__, edma_err_cause, pp->pp_flags);
2596 return 0; /* not handled */
2598 return mv_handle_fbs_non_ncq_dev_err(ap);
2600 return 0; /* not handled */
2603 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2605 struct ata_eh_info *ehi = &ap->link.eh_info;
2606 char *when = "idle";
2608 ata_ehi_clear_desc(ehi);
2609 if (edma_was_enabled) {
2610 when = "EDMA enabled";
2612 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2613 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2616 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2617 ehi->err_mask |= AC_ERR_OTHER;
2618 ehi->action |= ATA_EH_RESET;
2619 ata_port_freeze(ap);
2623 * mv_err_intr - Handle error interrupts on the port
2624 * @ap: ATA channel to manipulate
2626 * Most cases require a full reset of the chip's state machine,
2627 * which also performs a COMRESET.
2628 * Also, if the port disabled DMA, update our cached copy to match.
2631 * Inherited from caller.
2633 static void mv_err_intr(struct ata_port *ap)
2635 void __iomem *port_mmio = mv_ap_base(ap);
2636 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2638 struct mv_port_priv *pp = ap->private_data;
2639 struct mv_host_priv *hpriv = ap->host->private_data;
2640 unsigned int action = 0, err_mask = 0;
2641 struct ata_eh_info *ehi = &ap->link.eh_info;
2642 struct ata_queued_cmd *qc;
2646 * Read and clear the SError and err_cause bits.
2647 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2648 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2650 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2651 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2653 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2654 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2655 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2656 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2658 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2660 if (edma_err_cause & EDMA_ERR_DEV) {
2662 * Device errors during FIS-based switching operation
2663 * require special handling.
2665 if (mv_handle_dev_err(ap, edma_err_cause))
2669 qc = mv_get_active_qc(ap);
2670 ata_ehi_clear_desc(ehi);
2671 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2672 edma_err_cause, pp->pp_flags);
2674 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2675 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2676 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2677 u32 ec = edma_err_cause &
2678 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2679 sata_async_notification(ap);
2681 return; /* Just an AN; no need for the nukes */
2682 ata_ehi_push_desc(ehi, "SDB notify");
2686 * All generations share these EDMA error cause bits:
2688 if (edma_err_cause & EDMA_ERR_DEV) {
2689 err_mask |= AC_ERR_DEV;
2690 action |= ATA_EH_RESET;
2691 ata_ehi_push_desc(ehi, "dev error");
2693 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2694 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2695 EDMA_ERR_INTRL_PAR)) {
2696 err_mask |= AC_ERR_ATA_BUS;
2697 action |= ATA_EH_RESET;
2698 ata_ehi_push_desc(ehi, "parity error");
2700 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2701 ata_ehi_hotplugged(ehi);
2702 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2703 "dev disconnect" : "dev connect");
2704 action |= ATA_EH_RESET;
2708 * Gen-I has a different SELF_DIS bit,
2709 * different FREEZE bits, and no SERR bit:
2711 if (IS_GEN_I(hpriv)) {
2712 eh_freeze_mask = EDMA_EH_FREEZE_5;
2713 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2714 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2715 ata_ehi_push_desc(ehi, "EDMA self-disable");
2718 eh_freeze_mask = EDMA_EH_FREEZE;
2719 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2720 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2721 ata_ehi_push_desc(ehi, "EDMA self-disable");
2723 if (edma_err_cause & EDMA_ERR_SERR) {
2724 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2725 err_mask |= AC_ERR_ATA_BUS;
2726 action |= ATA_EH_RESET;
2731 err_mask = AC_ERR_OTHER;
2732 action |= ATA_EH_RESET;
2735 ehi->serror |= serr;
2736 ehi->action |= action;
2739 qc->err_mask |= err_mask;
2741 ehi->err_mask |= err_mask;
2743 if (err_mask == AC_ERR_DEV) {
2745 * Cannot do ata_port_freeze() here,
2746 * because it would kill PIO access,
2747 * which is needed for further diagnosis.
2751 } else if (edma_err_cause & eh_freeze_mask) {
2753 * Note to self: ata_port_freeze() calls ata_port_abort()
2755 ata_port_freeze(ap);
2762 ata_link_abort(qc->dev->link);
2768 static bool mv_process_crpb_response(struct ata_port *ap,
2769 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2772 u16 edma_status = le16_to_cpu(response->flags);
2775 * edma_status from a response queue entry:
2776 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2777 * MSB is saved ATA status from command completion.
2780 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2783 * Error will be seen/handled by
2784 * mv_err_intr(). So do nothing at all here.
2789 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2790 if (!ac_err_mask(ata_status))
2792 /* else: leave it for mv_err_intr() */
2796 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2798 void __iomem *port_mmio = mv_ap_base(ap);
2799 struct mv_host_priv *hpriv = ap->host->private_data;
2801 bool work_done = false;
2803 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2805 /* Get the hardware queue position index */
2806 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2807 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2809 /* Process new responses from since the last time we looked */
2810 while (in_index != pp->resp_idx) {
2812 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2814 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2816 if (IS_GEN_I(hpriv)) {
2817 /* 50xx: no NCQ, only one command active at a time */
2818 tag = ap->link.active_tag;
2820 /* Gen II/IIE: get command tag from CRPB entry */
2821 tag = le16_to_cpu(response->id) & 0x1f;
2823 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2824 done_mask |= 1 << tag;
2829 ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2831 /* Update the software queue position index in hardware */
2832 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2833 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2834 port_mmio + EDMA_RSP_Q_OUT_PTR);
2838 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2840 struct mv_port_priv *pp;
2841 int edma_was_enabled;
2844 * Grab a snapshot of the EDMA_EN flag setting,
2845 * so that we have a consistent view for this port,
2846 * even if something we call of our routines changes it.
2848 pp = ap->private_data;
2849 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2851 * Process completed CRPB response(s) before other events.
2853 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2854 mv_process_crpb_entries(ap, pp);
2855 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2856 mv_handle_fbs_ncq_dev_err(ap);
2859 * Handle chip-reported errors, or continue on to handle PIO.
2861 if (unlikely(port_cause & ERR_IRQ)) {
2863 } else if (!edma_was_enabled) {
2864 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2866 ata_bmdma_port_intr(ap, qc);
2868 mv_unexpected_intr(ap, edma_was_enabled);
2873 * mv_host_intr - Handle all interrupts on the given host controller
2874 * @host: host specific structure
2875 * @main_irq_cause: Main interrupt cause register for the chip.
2878 * Inherited from caller.
2880 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2882 struct mv_host_priv *hpriv = host->private_data;
2883 void __iomem *mmio = hpriv->base, *hc_mmio;
2884 unsigned int handled = 0, port;
2886 /* If asserted, clear the "all ports" IRQ coalescing bit */
2887 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2888 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2890 for (port = 0; port < hpriv->n_ports; port++) {
2891 struct ata_port *ap = host->ports[port];
2892 unsigned int p, shift, hardport, port_cause;
2894 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2896 * Each hc within the host has its own hc_irq_cause register,
2897 * where the interrupting ports bits get ack'd.
2899 if (hardport == 0) { /* first port on this hc ? */
2900 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2901 u32 port_mask, ack_irqs;
2903 * Skip this entire hc if nothing pending for any ports
2906 port += MV_PORTS_PER_HC - 1;
2910 * We don't need/want to read the hc_irq_cause register,
2911 * because doing so hurts performance, and
2912 * main_irq_cause already gives us everything we need.
2914 * But we do have to *write* to the hc_irq_cause to ack
2915 * the ports that we are handling this time through.
2917 * This requires that we create a bitmap for those
2918 * ports which interrupted us, and use that bitmap
2919 * to ack (only) those ports via hc_irq_cause.
2922 if (hc_cause & PORTS_0_3_COAL_DONE)
2923 ack_irqs = HC_COAL_IRQ;
2924 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2925 if ((port + p) >= hpriv->n_ports)
2927 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2928 if (hc_cause & port_mask)
2929 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2931 hc_mmio = mv_hc_base_from_port(mmio, port);
2932 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2936 * Handle interrupts signalled for this port:
2938 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2940 mv_port_intr(ap, port_cause);
2945 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2947 struct mv_host_priv *hpriv = host->private_data;
2948 struct ata_port *ap;
2949 struct ata_queued_cmd *qc;
2950 struct ata_eh_info *ehi;
2951 unsigned int i, err_mask, printed = 0;
2954 err_cause = readl(mmio + hpriv->irq_cause_offset);
2956 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2958 dev_dbg(host->dev, "%s: All regs @ PCI error\n", __func__);
2959 mv_dump_all_regs(mmio, to_pci_dev(host->dev));
2961 writelfl(0, mmio + hpriv->irq_cause_offset);
2963 for (i = 0; i < host->n_ports; i++) {
2964 ap = host->ports[i];
2965 if (!ata_link_offline(&ap->link)) {
2966 ehi = &ap->link.eh_info;
2967 ata_ehi_clear_desc(ehi);
2969 ata_ehi_push_desc(ehi,
2970 "PCI err cause 0x%08x", err_cause);
2971 err_mask = AC_ERR_HOST_BUS;
2972 ehi->action = ATA_EH_RESET;
2973 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2975 qc->err_mask |= err_mask;
2977 ehi->err_mask |= err_mask;
2979 ata_port_freeze(ap);
2982 return 1; /* handled */
2986 * mv_interrupt - Main interrupt event handler
2988 * @dev_instance: private data; in this case the host structure
2990 * Read the read only register to determine if any host
2991 * controllers have pending interrupts. If so, call lower level
2992 * routine to handle. Also check for PCI errors which are only
2996 * This routine holds the host lock while processing pending
2999 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3001 struct ata_host *host = dev_instance;
3002 struct mv_host_priv *hpriv = host->private_data;
3003 unsigned int handled = 0;
3004 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3005 u32 main_irq_cause, pending_irqs;
3007 spin_lock(&host->lock);
3009 /* for MSI: block new interrupts while in here */
3011 mv_write_main_irq_mask(0, hpriv);
3013 main_irq_cause = readl(hpriv->main_irq_cause_addr);
3014 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
3016 * Deal with cases where we either have nothing pending, or have read
3017 * a bogus register value which can indicate HW removal or PCI fault.
3019 if (pending_irqs && main_irq_cause != 0xffffffffU) {
3020 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3021 handled = mv_pci_error(host, hpriv->base);
3023 handled = mv_host_intr(host, pending_irqs);
3026 /* for MSI: unmask; interrupt cause bits will retrigger now */
3028 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3030 spin_unlock(&host->lock);
3032 return IRQ_RETVAL(handled);
3035 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3039 switch (sc_reg_in) {
3043 ofs = sc_reg_in * sizeof(u32);
3052 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3054 struct mv_host_priv *hpriv = link->ap->host->private_data;
3055 void __iomem *mmio = hpriv->base;
3056 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3057 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3059 if (ofs != 0xffffffffU) {
3060 *val = readl(addr + ofs);
3066 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3068 struct mv_host_priv *hpriv = link->ap->host->private_data;
3069 void __iomem *mmio = hpriv->base;
3070 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3071 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3073 if (ofs != 0xffffffffU) {
3074 writelfl(val, addr + ofs);
3080 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3082 struct pci_dev *pdev = to_pci_dev(host->dev);
3085 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3088 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3090 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3093 mv_reset_pci_bus(host, mmio);
3096 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3098 writel(0x0fcfffff, mmio + FLASH_CTL);
3101 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3104 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3107 tmp = readl(phy_mmio + MV5_PHY_MODE);
3109 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3110 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3113 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3117 writel(0, mmio + GPIO_PORT_CTL);
3119 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3121 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3123 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3126 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3129 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3130 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3132 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3135 tmp = readl(phy_mmio + MV5_LTMODE);
3137 writel(tmp, phy_mmio + MV5_LTMODE);
3139 tmp = readl(phy_mmio + MV5_PHY_CTL);
3142 writel(tmp, phy_mmio + MV5_PHY_CTL);
3145 tmp = readl(phy_mmio + MV5_PHY_MODE);
3147 tmp |= hpriv->signal[port].pre;
3148 tmp |= hpriv->signal[port].amps;
3149 writel(tmp, phy_mmio + MV5_PHY_MODE);
3154 #define ZERO(reg) writel(0, port_mmio + (reg))
3155 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3158 void __iomem *port_mmio = mv_port_base(mmio, port);
3160 mv_reset_channel(hpriv, mmio, port);
3162 ZERO(0x028); /* command */
3163 writel(0x11f, port_mmio + EDMA_CFG);
3164 ZERO(0x004); /* timer */
3165 ZERO(0x008); /* irq err cause */
3166 ZERO(0x00c); /* irq err mask */
3167 ZERO(0x010); /* rq bah */
3168 ZERO(0x014); /* rq inp */
3169 ZERO(0x018); /* rq outp */
3170 ZERO(0x01c); /* respq bah */
3171 ZERO(0x024); /* respq outp */
3172 ZERO(0x020); /* respq inp */
3173 ZERO(0x02c); /* test control */
3174 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3178 #define ZERO(reg) writel(0, hc_mmio + (reg))
3179 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3182 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3190 tmp = readl(hc_mmio + 0x20);
3193 writel(tmp, hc_mmio + 0x20);
3197 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
3200 struct mv_host_priv *hpriv = host->private_data;
3201 unsigned int hc, port;
3203 for (hc = 0; hc < n_hc; hc++) {
3204 for (port = 0; port < MV_PORTS_PER_HC; port++)
3205 mv5_reset_hc_port(hpriv, mmio,
3206 (hc * MV_PORTS_PER_HC) + port);
3208 mv5_reset_one_hc(hpriv, mmio, hc);
3215 #define ZERO(reg) writel(0, mmio + (reg))
3216 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3218 struct mv_host_priv *hpriv = host->private_data;
3221 tmp = readl(mmio + MV_PCI_MODE);
3223 writel(tmp, mmio + MV_PCI_MODE);
3225 ZERO(MV_PCI_DISC_TIMER);
3226 ZERO(MV_PCI_MSI_TRIGGER);
3227 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3228 ZERO(MV_PCI_SERR_MASK);
3229 ZERO(hpriv->irq_cause_offset);
3230 ZERO(hpriv->irq_mask_offset);
3231 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3232 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3233 ZERO(MV_PCI_ERR_ATTRIBUTE);
3234 ZERO(MV_PCI_ERR_COMMAND);
3238 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3242 mv5_reset_flash(hpriv, mmio);
3244 tmp = readl(mmio + GPIO_PORT_CTL);
3246 tmp |= (1 << 5) | (1 << 6);
3247 writel(tmp, mmio + GPIO_PORT_CTL);
3251 * mv6_reset_hc - Perform the 6xxx global soft reset
3252 * @mmio: base address of the HBA
3254 * This routine only applies to 6xxx parts.
3257 * Inherited from caller.
3259 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
3262 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3266 /* Following procedure defined in PCI "main command and status
3270 writel(t | STOP_PCI_MASTER, reg);
3272 for (i = 0; i < 1000; i++) {
3275 if (PCI_MASTER_EMPTY & t)
3278 if (!(PCI_MASTER_EMPTY & t)) {
3279 dev_err(host->dev, "PCI master won't flush\n");
3287 writel(t | GLOB_SFT_RST, reg);
3290 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3292 if (!(GLOB_SFT_RST & t)) {
3293 dev_err(host->dev, "can't set global reset\n");
3298 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3301 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3304 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3306 if (GLOB_SFT_RST & t) {
3307 dev_err(host->dev, "can't clear global reset\n");
3314 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3317 void __iomem *port_mmio;
3320 tmp = readl(mmio + RESET_CFG);
3321 if ((tmp & (1 << 0)) == 0) {
3322 hpriv->signal[idx].amps = 0x7 << 8;
3323 hpriv->signal[idx].pre = 0x1 << 5;
3327 port_mmio = mv_port_base(mmio, idx);
3328 tmp = readl(port_mmio + PHY_MODE2);
3330 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3331 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3334 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3336 writel(0x00000060, mmio + GPIO_PORT_CTL);
3339 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3342 void __iomem *port_mmio = mv_port_base(mmio, port);
3344 u32 hp_flags = hpriv->hp_flags;
3346 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3348 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3351 if (fix_phy_mode2) {
3352 m2 = readl(port_mmio + PHY_MODE2);
3355 writel(m2, port_mmio + PHY_MODE2);
3359 m2 = readl(port_mmio + PHY_MODE2);
3360 m2 &= ~((1 << 16) | (1 << 31));
3361 writel(m2, port_mmio + PHY_MODE2);
3367 * Gen-II/IIe PHY_MODE3 errata RM#2:
3368 * Achieves better receiver noise performance than the h/w default:
3370 m3 = readl(port_mmio + PHY_MODE3);
3371 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3373 /* Guideline 88F5182 (GL# SATA-S11) */
3377 if (fix_phy_mode4) {
3378 u32 m4 = readl(port_mmio + PHY_MODE4);
3380 * Enforce reserved-bit restrictions on GenIIe devices only.
3381 * For earlier chipsets, force only the internal config field
3382 * (workaround for errata FEr SATA#10 part 1).
3384 if (IS_GEN_IIE(hpriv))
3385 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3387 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3388 writel(m4, port_mmio + PHY_MODE4);
3391 * Workaround for 60x1-B2 errata SATA#13:
3392 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3393 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3394 * Or ensure we use writelfl() when writing PHY_MODE4.
3396 writel(m3, port_mmio + PHY_MODE3);
3398 /* Revert values of pre-emphasis and signal amps to the saved ones */
3399 m2 = readl(port_mmio + PHY_MODE2);
3401 m2 &= ~MV_M2_PREAMP_MASK;
3402 m2 |= hpriv->signal[port].amps;
3403 m2 |= hpriv->signal[port].pre;
3406 /* according to mvSata 3.6.1, some IIE values are fixed */
3407 if (IS_GEN_IIE(hpriv)) {
3412 writel(m2, port_mmio + PHY_MODE2);
3415 /* TODO: use the generic LED interface to configure the SATA Presence */
3416 /* & Acitivy LEDs on the board */
3417 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3423 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3426 void __iomem *port_mmio;
3429 port_mmio = mv_port_base(mmio, idx);
3430 tmp = readl(port_mmio + PHY_MODE2);
3432 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3433 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3437 #define ZERO(reg) writel(0, port_mmio + (reg))
3438 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3439 void __iomem *mmio, unsigned int port)
3441 void __iomem *port_mmio = mv_port_base(mmio, port);
3443 mv_reset_channel(hpriv, mmio, port);
3445 ZERO(0x028); /* command */
3446 writel(0x101f, port_mmio + EDMA_CFG);
3447 ZERO(0x004); /* timer */
3448 ZERO(0x008); /* irq err cause */
3449 ZERO(0x00c); /* irq err mask */
3450 ZERO(0x010); /* rq bah */
3451 ZERO(0x014); /* rq inp */
3452 ZERO(0x018); /* rq outp */
3453 ZERO(0x01c); /* respq bah */
3454 ZERO(0x024); /* respq outp */
3455 ZERO(0x020); /* respq inp */
3456 ZERO(0x02c); /* test control */
3457 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3462 #define ZERO(reg) writel(0, hc_mmio + (reg))
3463 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3466 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3476 static int mv_soc_reset_hc(struct ata_host *host,
3477 void __iomem *mmio, unsigned int n_hc)
3479 struct mv_host_priv *hpriv = host->private_data;
3482 for (port = 0; port < hpriv->n_ports; port++)
3483 mv_soc_reset_hc_port(hpriv, mmio, port);
3485 mv_soc_reset_one_hc(hpriv, mmio);
3490 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3496 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3501 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3502 void __iomem *mmio, unsigned int port)
3504 void __iomem *port_mmio = mv_port_base(mmio, port);
3507 reg = readl(port_mmio + PHY_MODE3);
3508 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3510 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3512 writel(reg, port_mmio + PHY_MODE3);
3514 reg = readl(port_mmio + PHY_MODE4);
3515 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3517 writel(reg, port_mmio + PHY_MODE4);
3519 reg = readl(port_mmio + PHY_MODE9_GEN2);
3520 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3522 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3523 writel(reg, port_mmio + PHY_MODE9_GEN2);
3525 reg = readl(port_mmio + PHY_MODE9_GEN1);
3526 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3528 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3529 writel(reg, port_mmio + PHY_MODE9_GEN1);
3533 * soc_is_65 - check if the soc is 65 nano device
3535 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3536 * register, this register should contain non-zero value and it exists only
3537 * in the 65 nano devices, when reading it from older devices we get 0.
3539 static bool soc_is_65n(struct mv_host_priv *hpriv)
3541 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3543 if (readl(port0_mmio + PHYCFG_OFS))
3548 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3550 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3552 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3554 ifcfg |= (1 << 7); /* enable gen2i speed */
3555 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3558 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3559 unsigned int port_no)
3561 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3564 * The datasheet warns against setting EDMA_RESET when EDMA is active
3565 * (but doesn't say what the problem might be). So we first try
3566 * to disable the EDMA engine before doing the EDMA_RESET operation.
3568 mv_stop_edma_engine(port_mmio);
3569 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3571 if (!IS_GEN_I(hpriv)) {
3572 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3573 mv_setup_ifcfg(port_mmio, 1);
3576 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3577 * link, and physical layers. It resets all SATA interface registers
3578 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3580 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3581 udelay(25); /* allow reset propagation */
3582 writelfl(0, port_mmio + EDMA_CMD);
3584 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3586 if (IS_GEN_I(hpriv))
3587 usleep_range(500, 1000);
3590 static void mv_pmp_select(struct ata_port *ap, int pmp)
3592 if (sata_pmp_supported(ap)) {
3593 void __iomem *port_mmio = mv_ap_base(ap);
3594 u32 reg = readl(port_mmio + SATA_IFCTL);
3595 int old = reg & 0xf;
3598 reg = (reg & ~0xf) | pmp;
3599 writelfl(reg, port_mmio + SATA_IFCTL);
3604 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3605 unsigned long deadline)
3607 mv_pmp_select(link->ap, sata_srst_pmp(link));
3608 return sata_std_hardreset(link, class, deadline);
3611 static int mv_softreset(struct ata_link *link, unsigned int *class,
3612 unsigned long deadline)
3614 mv_pmp_select(link->ap, sata_srst_pmp(link));
3615 return ata_sff_softreset(link, class, deadline);
3618 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3619 unsigned long deadline)
3621 struct ata_port *ap = link->ap;
3622 struct mv_host_priv *hpriv = ap->host->private_data;
3623 struct mv_port_priv *pp = ap->private_data;
3624 void __iomem *mmio = hpriv->base;
3625 int rc, attempts = 0, extra = 0;
3629 mv_reset_channel(hpriv, mmio, ap->port_no);
3630 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3632 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3634 /* Workaround for errata FEr SATA#10 (part 2) */
3636 const unsigned int *timing =
3637 sata_ehc_deb_timing(&link->eh_context);
3639 rc = sata_link_hardreset(link, timing, deadline + extra,
3641 rc = online ? -EAGAIN : rc;
3644 sata_scr_read(link, SCR_STATUS, &sstatus);
3645 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3646 /* Force 1.5gb/s link speed and try again */
3647 mv_setup_ifcfg(mv_ap_base(ap), 0);
3648 if (time_after(jiffies + HZ, deadline))
3649 extra = HZ; /* only extend it once, max */
3651 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3652 mv_save_cached_regs(ap);
3653 mv_edma_cfg(ap, 0, 0);
3658 static void mv_eh_freeze(struct ata_port *ap)
3661 mv_enable_port_irqs(ap, 0);
3664 static void mv_eh_thaw(struct ata_port *ap)
3666 struct mv_host_priv *hpriv = ap->host->private_data;
3667 unsigned int port = ap->port_no;
3668 unsigned int hardport = mv_hardport_from_port(port);
3669 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3670 void __iomem *port_mmio = mv_ap_base(ap);
3673 /* clear EDMA errors on this port */
3674 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3676 /* clear pending irq events */
3677 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3678 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3680 mv_enable_port_irqs(ap, ERR_IRQ);
3684 * mv_port_init - Perform some early initialization on a single port.
3685 * @port: libata data structure storing shadow register addresses
3686 * @port_mmio: base address of the port
3688 * Initialize shadow register mmio addresses, clear outstanding
3689 * interrupts on the port, and unmask interrupts for the future
3690 * start of the port.
3693 * Inherited from caller.
3695 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3697 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3699 /* PIO related setup
3701 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3703 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3704 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3705 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3706 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3707 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3708 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3710 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3711 /* special case: control/altstatus doesn't have ATA_REG_ address */
3712 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3714 /* Clear any currently outstanding port interrupt conditions */
3715 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3716 writelfl(readl(serr), serr);
3717 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3719 /* unmask all non-transient EDMA error interrupts */
3720 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3723 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3725 struct mv_host_priv *hpriv = host->private_data;
3726 void __iomem *mmio = hpriv->base;
3729 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3730 return 0; /* not PCI-X capable */
3731 reg = readl(mmio + MV_PCI_MODE);
3732 if ((reg & MV_PCI_MODE_MASK) == 0)
3733 return 0; /* conventional PCI mode */
3734 return 1; /* chip is in PCI-X mode */
3737 static int mv_pci_cut_through_okay(struct ata_host *host)
3739 struct mv_host_priv *hpriv = host->private_data;
3740 void __iomem *mmio = hpriv->base;
3743 if (!mv_in_pcix_mode(host)) {
3744 reg = readl(mmio + MV_PCI_COMMAND);
3745 if (reg & MV_PCI_COMMAND_MRDTRIG)
3746 return 0; /* not okay */
3748 return 1; /* okay */
3751 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3753 struct mv_host_priv *hpriv = host->private_data;
3754 void __iomem *mmio = hpriv->base;
3756 /* workaround for 60x1-B2 errata PCI#7 */
3757 if (mv_in_pcix_mode(host)) {
3758 u32 reg = readl(mmio + MV_PCI_COMMAND);
3759 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3763 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3765 struct pci_dev *pdev = to_pci_dev(host->dev);
3766 struct mv_host_priv *hpriv = host->private_data;
3767 u32 hp_flags = hpriv->hp_flags;
3769 switch (board_idx) {
3771 hpriv->ops = &mv5xxx_ops;
3772 hp_flags |= MV_HP_GEN_I;
3774 switch (pdev->revision) {
3776 hp_flags |= MV_HP_ERRATA_50XXB0;
3779 hp_flags |= MV_HP_ERRATA_50XXB2;
3782 dev_warn(&pdev->dev,
3783 "Applying 50XXB2 workarounds to unknown rev\n");
3784 hp_flags |= MV_HP_ERRATA_50XXB2;
3791 hpriv->ops = &mv5xxx_ops;
3792 hp_flags |= MV_HP_GEN_I;
3794 switch (pdev->revision) {
3796 hp_flags |= MV_HP_ERRATA_50XXB0;
3799 hp_flags |= MV_HP_ERRATA_50XXB2;
3802 dev_warn(&pdev->dev,
3803 "Applying B2 workarounds to unknown rev\n");
3804 hp_flags |= MV_HP_ERRATA_50XXB2;
3811 hpriv->ops = &mv6xxx_ops;
3812 hp_flags |= MV_HP_GEN_II;
3814 switch (pdev->revision) {
3816 mv_60x1b2_errata_pci7(host);
3817 hp_flags |= MV_HP_ERRATA_60X1B2;
3820 hp_flags |= MV_HP_ERRATA_60X1C0;
3823 dev_warn(&pdev->dev,
3824 "Applying B2 workarounds to unknown rev\n");
3825 hp_flags |= MV_HP_ERRATA_60X1B2;
3831 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3832 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3833 (pdev->device == 0x2300 || pdev->device == 0x2310))
3836 * Highpoint RocketRAID PCIe 23xx series cards:
3838 * Unconfigured drives are treated as "Legacy"
3839 * by the BIOS, and it overwrites sector 8 with
3840 * a "Lgcy" metadata block prior to Linux boot.
3842 * Configured drives (RAID or JBOD) leave sector 8
3843 * alone, but instead overwrite a high numbered
3844 * sector for the RAID metadata. This sector can
3845 * be determined exactly, by truncating the physical
3846 * drive capacity to a nice even GB value.
3848 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3850 * Warn the user, lest they think we're just buggy.
3852 dev_warn(&pdev->dev, "Highpoint RocketRAID"
3853 " BIOS CORRUPTS DATA on all attached drives,"
3854 " regardless of if/how they are configured."
3856 dev_warn(&pdev->dev, "For data safety, do not"
3857 " use sectors 8-9 on \"Legacy\" drives,"
3858 " and avoid the final two gigabytes on"
3859 " all RocketRAID BIOS initialized drives.\n");
3863 hpriv->ops = &mv6xxx_ops;
3864 hp_flags |= MV_HP_GEN_IIE;
3865 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3866 hp_flags |= MV_HP_CUT_THROUGH;
3868 switch (pdev->revision) {
3869 case 0x2: /* Rev.B0: the first/only public release */
3870 hp_flags |= MV_HP_ERRATA_60X1C0;
3873 dev_warn(&pdev->dev,
3874 "Applying 60X1C0 workarounds to unknown rev\n");
3875 hp_flags |= MV_HP_ERRATA_60X1C0;
3880 if (soc_is_65n(hpriv))
3881 hpriv->ops = &mv_soc_65n_ops;
3883 hpriv->ops = &mv_soc_ops;
3884 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3885 MV_HP_ERRATA_60X1C0;
3889 dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3893 hpriv->hp_flags = hp_flags;
3894 if (hp_flags & MV_HP_PCIE) {
3895 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3896 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3897 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3899 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3900 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3901 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3908 * mv_init_host - Perform some early initialization of the host.
3909 * @host: ATA host to initialize
3911 * If possible, do an early global reset of the host. Then do
3912 * our port init and clear/unmask all/relevant host interrupts.
3915 * Inherited from caller.
3917 static int mv_init_host(struct ata_host *host)
3919 int rc = 0, n_hc, port, hc;
3920 struct mv_host_priv *hpriv = host->private_data;
3921 void __iomem *mmio = hpriv->base;
3923 rc = mv_chip_id(host, hpriv->board_idx);
3927 if (IS_SOC(hpriv)) {
3928 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3929 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3931 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3932 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3935 /* initialize shadow irq mask with register's value */
3936 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3938 /* global interrupt mask: 0 == mask everything */
3939 mv_set_main_irq_mask(host, ~0, 0);
3941 n_hc = mv_get_hc_count(host->ports[0]->flags);
3943 for (port = 0; port < host->n_ports; port++)
3944 if (hpriv->ops->read_preamp)
3945 hpriv->ops->read_preamp(hpriv, port, mmio);
3947 rc = hpriv->ops->reset_hc(host, mmio, n_hc);
3951 hpriv->ops->reset_flash(hpriv, mmio);
3952 hpriv->ops->reset_bus(host, mmio);
3953 hpriv->ops->enable_leds(hpriv, mmio);
3955 for (port = 0; port < host->n_ports; port++) {
3956 struct ata_port *ap = host->ports[port];
3957 void __iomem *port_mmio = mv_port_base(mmio, port);
3959 mv_port_init(&ap->ioaddr, port_mmio);
3962 for (hc = 0; hc < n_hc; hc++) {
3963 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3965 dev_dbg(host->dev, "HC%i: HC config=0x%08x HC IRQ cause "
3966 "(before clear)=0x%08x\n", hc,
3967 readl(hc_mmio + HC_CFG),
3968 readl(hc_mmio + HC_IRQ_CAUSE));
3970 /* Clear any currently outstanding hc interrupt conditions */
3971 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3974 if (!IS_SOC(hpriv)) {
3975 /* Clear any currently outstanding host interrupt conditions */
3976 writelfl(0, mmio + hpriv->irq_cause_offset);
3978 /* and unmask interrupt generation for host regs */
3979 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3983 * enable only global host interrupts for now.
3984 * The per-port interrupts get done later as ports are set up.
3986 mv_set_main_irq_mask(host, 0, PCI_ERR);
3987 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3988 irq_coalescing_usecs);
3993 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3995 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3997 if (!hpriv->crqb_pool)
4000 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4002 if (!hpriv->crpb_pool)
4005 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4007 if (!hpriv->sg_tbl_pool)
4013 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4014 const struct mbus_dram_target_info *dram)
4018 for (i = 0; i < 4; i++) {
4019 writel(0, hpriv->base + WINDOW_CTRL(i));
4020 writel(0, hpriv->base + WINDOW_BASE(i));
4023 for (i = 0; i < dram->num_cs; i++) {
4024 const struct mbus_dram_window *cs = dram->cs + i;
4026 writel(((cs->size - 1) & 0xffff0000) |
4027 (cs->mbus_attr << 8) |
4028 (dram->mbus_dram_target_id << 4) | 1,
4029 hpriv->base + WINDOW_CTRL(i));
4030 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4035 * mv_platform_probe - handle a positive probe of an soc Marvell
4037 * @pdev: platform device found
4040 * Inherited from caller.
4042 static int mv_platform_probe(struct platform_device *pdev)
4044 const struct mv_sata_platform_data *mv_platform_data;
4045 const struct mbus_dram_target_info *dram;
4046 const struct ata_port_info *ppi[] =
4047 { &mv_port_info[chip_soc], NULL };
4048 struct ata_host *host;
4049 struct mv_host_priv *hpriv;
4050 struct resource *res;
4051 int n_ports = 0, irq = 0;
4055 ata_print_version_once(&pdev->dev, DRV_VERSION);
4058 * Simple resource validation ..
4060 if (unlikely(pdev->num_resources != 1)) {
4061 dev_err(&pdev->dev, "invalid number of resources\n");
4066 * Get the register base first
4068 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4073 if (pdev->dev.of_node) {
4074 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4078 "error parsing nr-ports property: %d\n", rc);
4083 dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4088 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4090 mv_platform_data = dev_get_platdata(&pdev->dev);
4091 n_ports = mv_platform_data->n_ports;
4092 irq = platform_get_irq(pdev, 0);
4099 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4100 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4102 if (!host || !hpriv)
4104 hpriv->port_clks = devm_kcalloc(&pdev->dev,
4105 n_ports, sizeof(struct clk *),
4107 if (!hpriv->port_clks)
4109 hpriv->port_phys = devm_kcalloc(&pdev->dev,
4110 n_ports, sizeof(struct phy *),
4112 if (!hpriv->port_phys)
4114 host->private_data = hpriv;
4115 hpriv->board_idx = chip_soc;
4118 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4119 resource_size(res));
4123 hpriv->base -= SATAHC0_REG_BASE;
4125 hpriv->clk = clk_get(&pdev->dev, NULL);
4126 if (IS_ERR(hpriv->clk))
4127 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4129 clk_prepare_enable(hpriv->clk);
4131 for (port = 0; port < n_ports; port++) {
4132 char port_number[16];
4133 sprintf(port_number, "%d", port);
4134 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4135 if (!IS_ERR(hpriv->port_clks[port]))
4136 clk_prepare_enable(hpriv->port_clks[port]);
4138 sprintf(port_number, "port%d", port);
4139 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4141 if (IS_ERR(hpriv->port_phys[port])) {
4142 rc = PTR_ERR(hpriv->port_phys[port]);
4143 hpriv->port_phys[port] = NULL;
4144 if (rc != -EPROBE_DEFER)
4145 dev_warn(&pdev->dev, "error getting phy %d", rc);
4147 /* Cleanup only the initialized ports */
4148 hpriv->n_ports = port;
4151 phy_power_on(hpriv->port_phys[port]);
4154 /* All the ports have been initialized */
4155 hpriv->n_ports = n_ports;
4158 * (Re-)program MBUS remapping windows if we are asked to.
4160 dram = mv_mbus_dram_info();
4162 mv_conf_mbus_windows(hpriv, dram);
4164 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4169 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4170 * updated in the LP_PHY_CTL register.
4172 if (pdev->dev.of_node &&
4173 of_device_is_compatible(pdev->dev.of_node,
4174 "marvell,armada-370-sata"))
4175 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4177 /* initialize adapter */
4178 rc = mv_init_host(host);
4182 dev_info(&pdev->dev, "slots %u ports %d\n",
4183 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4185 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4190 if (!IS_ERR(hpriv->clk)) {
4191 clk_disable_unprepare(hpriv->clk);
4192 clk_put(hpriv->clk);
4194 for (port = 0; port < hpriv->n_ports; port++) {
4195 if (!IS_ERR(hpriv->port_clks[port])) {
4196 clk_disable_unprepare(hpriv->port_clks[port]);
4197 clk_put(hpriv->port_clks[port]);
4199 phy_power_off(hpriv->port_phys[port]);
4207 * mv_platform_remove - unplug a platform interface
4208 * @pdev: platform device
4210 * A platform bus SATA device has been unplugged. Perform the needed
4211 * cleanup. Also called on module unload for any active devices.
4213 static void mv_platform_remove(struct platform_device *pdev)
4215 struct ata_host *host = platform_get_drvdata(pdev);
4216 struct mv_host_priv *hpriv = host->private_data;
4218 ata_host_detach(host);
4220 if (!IS_ERR(hpriv->clk)) {
4221 clk_disable_unprepare(hpriv->clk);
4222 clk_put(hpriv->clk);
4224 for (port = 0; port < host->n_ports; port++) {
4225 if (!IS_ERR(hpriv->port_clks[port])) {
4226 clk_disable_unprepare(hpriv->port_clks[port]);
4227 clk_put(hpriv->port_clks[port]);
4229 phy_power_off(hpriv->port_phys[port]);
4233 #ifdef CONFIG_PM_SLEEP
4234 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4236 struct ata_host *host = platform_get_drvdata(pdev);
4239 ata_host_suspend(host, state);
4243 static int mv_platform_resume(struct platform_device *pdev)
4245 struct ata_host *host = platform_get_drvdata(pdev);
4246 const struct mbus_dram_target_info *dram;
4250 struct mv_host_priv *hpriv = host->private_data;
4253 * (Re-)program MBUS remapping windows if we are asked to.
4255 dram = mv_mbus_dram_info();
4257 mv_conf_mbus_windows(hpriv, dram);
4259 /* initialize adapter */
4260 ret = mv_init_host(host);
4262 dev_err(&pdev->dev, "Error during HW init\n");
4265 ata_host_resume(host);
4271 #define mv_platform_suspend NULL
4272 #define mv_platform_resume NULL
4276 static const struct of_device_id mv_sata_dt_ids[] = {
4277 { .compatible = "marvell,armada-370-sata", },
4278 { .compatible = "marvell,orion-sata", },
4281 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4284 static struct platform_driver mv_platform_driver = {
4285 .probe = mv_platform_probe,
4286 .remove_new = mv_platform_remove,
4287 .suspend = mv_platform_suspend,
4288 .resume = mv_platform_resume,
4291 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4297 static int mv_pci_init_one(struct pci_dev *pdev,
4298 const struct pci_device_id *ent);
4299 #ifdef CONFIG_PM_SLEEP
4300 static int mv_pci_device_resume(struct pci_dev *pdev);
4304 static struct pci_driver mv_pci_driver = {
4306 .id_table = mv_pci_tbl,
4307 .probe = mv_pci_init_one,
4308 .remove = ata_pci_remove_one,
4309 #ifdef CONFIG_PM_SLEEP
4310 .suspend = ata_pci_device_suspend,
4311 .resume = mv_pci_device_resume,
4317 * mv_print_info - Dump key info to kernel log for perusal.
4318 * @host: ATA host to print info about
4320 * FIXME: complete this.
4323 * Inherited from caller.
4325 static void mv_print_info(struct ata_host *host)
4327 struct pci_dev *pdev = to_pci_dev(host->dev);
4328 struct mv_host_priv *hpriv = host->private_data;
4330 const char *scc_s, *gen;
4332 /* Use this to determine the HW stepping of the chip so we know
4333 * what errata to workaround
4335 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4338 else if (scc == 0x01)
4343 if (IS_GEN_I(hpriv))
4345 else if (IS_GEN_II(hpriv))
4347 else if (IS_GEN_IIE(hpriv))
4352 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4353 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4354 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4358 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4359 * @pdev: PCI device found
4360 * @ent: PCI device ID entry for the matched host
4363 * Inherited from caller.
4365 static int mv_pci_init_one(struct pci_dev *pdev,
4366 const struct pci_device_id *ent)
4368 unsigned int board_idx = (unsigned int)ent->driver_data;
4369 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4370 struct ata_host *host;
4371 struct mv_host_priv *hpriv;
4372 int n_ports, port, rc;
4374 ata_print_version_once(&pdev->dev, DRV_VERSION);
4377 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4379 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4380 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4381 if (!host || !hpriv)
4383 host->private_data = hpriv;
4384 hpriv->n_ports = n_ports;
4385 hpriv->board_idx = board_idx;
4387 /* acquire resources */
4388 rc = pcim_enable_device(pdev);
4392 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4394 pcim_pin_device(pdev);
4397 host->iomap = pcim_iomap_table(pdev);
4398 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4400 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4402 dev_err(&pdev->dev, "DMA enable failed\n");
4406 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4410 for (port = 0; port < host->n_ports; port++) {
4411 struct ata_port *ap = host->ports[port];
4412 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4413 unsigned int offset = port_mmio - hpriv->base;
4415 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4416 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4419 /* initialize adapter */
4420 rc = mv_init_host(host);
4424 /* Enable message-switched interrupts, if requested */
4425 if (msi && pci_enable_msi(pdev) == 0)
4426 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4428 mv_dump_pci_cfg(pdev, 0x68);
4429 mv_print_info(host);
4431 pci_set_master(pdev);
4432 pci_try_set_mwi(pdev);
4433 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4434 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4437 #ifdef CONFIG_PM_SLEEP
4438 static int mv_pci_device_resume(struct pci_dev *pdev)
4440 struct ata_host *host = pci_get_drvdata(pdev);
4443 rc = ata_pci_device_do_resume(pdev);
4447 /* initialize adapter */
4448 rc = mv_init_host(host);
4452 ata_host_resume(host);
4459 static int __init mv_init(void)
4463 rc = pci_register_driver(&mv_pci_driver);
4467 rc = platform_driver_register(&mv_platform_driver);
4471 pci_unregister_driver(&mv_pci_driver);
4476 static void __exit mv_exit(void)
4479 pci_unregister_driver(&mv_pci_driver);
4481 platform_driver_unregister(&mv_platform_driver);
4484 MODULE_AUTHOR("Brett Russ");
4485 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4486 MODULE_LICENSE("GPL v2");
4487 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4488 MODULE_VERSION(DRV_VERSION);
4489 MODULE_ALIAS("platform:" DRV_NAME);
4491 module_init(mv_init);
4492 module_exit(mv_exit);