Merge remote-tracking branch 'asoc/fix/wm2200' into tmp
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / ata / sata_dwc_460ex.c
1 /*
2  * drivers/ata/sata_dwc_460ex.c
3  *
4  * Synopsys DesignWare Cores (DWC) SATA host driver
5  *
6  * Author: Mark Miesfeld <mmiesfeld@amcc.com>
7  *
8  * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9  * Copyright 2008 DENX Software Engineering
10  *
11  * Based on versions provided by AMCC and Synopsys which are:
12  *          Copyright 2006 Applied Micro Circuits Corporation
13  *          COPYRIGHT (C) 2005  SYNOPSYS, INC.  ALL RIGHTS RESERVED
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  */
20
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
24
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_platform.h>
35 #include <linux/platform_device.h>
36 #include <linux/libata.h>
37 #include <linux/slab.h>
38 #include "libata.h"
39
40 #include <scsi/scsi_host.h>
41 #include <scsi/scsi_cmnd.h>
42
43 /* These two are defined in "libata.h" */
44 #undef  DRV_NAME
45 #undef  DRV_VERSION
46
47 #define DRV_NAME        "sata-dwc"
48 #define DRV_VERSION     "1.3"
49
50 /* SATA DMA driver Globals */
51 #define DMA_NUM_CHANS           1
52 #define DMA_NUM_CHAN_REGS       8
53
54 /* SATA DMA Register definitions */
55 #define AHB_DMA_BRST_DFLT       64      /* 16 data items burst length*/
56
57 struct dmareg {
58         u32 low;                /* Low bits 0-31 */
59         u32 high;               /* High bits 32-63 */
60 };
61
62 /* DMA Per Channel registers */
63 struct dma_chan_regs {
64         struct dmareg sar;      /* Source Address */
65         struct dmareg dar;      /* Destination address */
66         struct dmareg llp;      /* Linked List Pointer */
67         struct dmareg ctl;      /* Control */
68         struct dmareg sstat;    /* Source Status not implemented in core */
69         struct dmareg dstat;    /* Destination Status not implemented in core*/
70         struct dmareg sstatar;  /* Source Status Address not impl in core */
71         struct dmareg dstatar;  /* Destination Status Address not implemente */
72         struct dmareg cfg;      /* Config */
73         struct dmareg sgr;      /* Source Gather */
74         struct dmareg dsr;      /* Destination Scatter */
75 };
76
77 /* Generic Interrupt Registers */
78 struct dma_interrupt_regs {
79         struct dmareg tfr;      /* Transfer Interrupt */
80         struct dmareg block;    /* Block Interrupt */
81         struct dmareg srctran;  /* Source Transfer Interrupt */
82         struct dmareg dsttran;  /* Dest Transfer Interrupt */
83         struct dmareg error;    /* Error */
84 };
85
86 struct ahb_dma_regs {
87         struct dma_chan_regs    chan_regs[DMA_NUM_CHAN_REGS];
88         struct dma_interrupt_regs interrupt_raw;        /* Raw Interrupt */
89         struct dma_interrupt_regs interrupt_status;     /* Interrupt Status */
90         struct dma_interrupt_regs interrupt_mask;       /* Interrupt Mask */
91         struct dma_interrupt_regs interrupt_clear;      /* Interrupt Clear */
92         struct dmareg           statusInt;      /* Interrupt combined*/
93         struct dmareg           rq_srcreg;      /* Src Trans Req */
94         struct dmareg           rq_dstreg;      /* Dst Trans Req */
95         struct dmareg           rq_sgl_srcreg;  /* Sngl Src Trans Req*/
96         struct dmareg           rq_sgl_dstreg;  /* Sngl Dst Trans Req*/
97         struct dmareg           rq_lst_srcreg;  /* Last Src Trans Req*/
98         struct dmareg           rq_lst_dstreg;  /* Last Dst Trans Req*/
99         struct dmareg           dma_cfg;                /* DMA Config */
100         struct dmareg           dma_chan_en;            /* DMA Channel Enable*/
101         struct dmareg           dma_id;                 /* DMA ID */
102         struct dmareg           dma_test;               /* DMA Test */
103         struct dmareg           res1;                   /* reserved */
104         struct dmareg           res2;                   /* reserved */
105         /*
106          * DMA Comp Params
107          * Param 6 = dma_param[0], Param 5 = dma_param[1],
108          * Param 4 = dma_param[2] ...
109          */
110         struct dmareg           dma_params[6];
111 };
112
113 /* Data structure for linked list item */
114 struct lli {
115         u32             sar;            /* Source Address */
116         u32             dar;            /* Destination address */
117         u32             llp;            /* Linked List Pointer */
118         struct dmareg   ctl;            /* Control */
119         struct dmareg   dstat;          /* Destination Status */
120 };
121
122 enum {
123         SATA_DWC_DMAC_LLI_SZ =  (sizeof(struct lli)),
124         SATA_DWC_DMAC_LLI_NUM = 256,
125         SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
126                                         SATA_DWC_DMAC_LLI_NUM),
127         SATA_DWC_DMAC_TWIDTH_BYTES = 4,
128         SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
129                                                 SATA_DWC_DMAC_TWIDTH_BYTES),
130 };
131
132 /* DMA Register Operation Bits */
133 enum {
134         DMA_EN  =               0x00000001, /* Enable AHB DMA */
135         DMA_CTL_LLP_SRCEN =     0x10000000, /* Blk chain enable Src */
136         DMA_CTL_LLP_DSTEN =     0x08000000, /* Blk chain enable Dst */
137 };
138
139 #define DMA_CTL_BLK_TS(size)    ((size) & 0x000000FFF)  /* Blk Transfer size */
140 #define DMA_CHANNEL(ch)         (0x00000001 << (ch))    /* Select channel */
141         /* Enable channel */
142 #define DMA_ENABLE_CHAN(ch)     ((0x00000001 << (ch)) |                 \
143                                  ((0x000000001 << (ch)) << 8))
144         /* Disable channel */
145 #define DMA_DISABLE_CHAN(ch)    (0x00000000 | ((0x000000001 << (ch)) << 8))
146         /* Transfer Type & Flow Controller */
147 #define DMA_CTL_TTFC(type)      (((type) & 0x7) << 20)
148 #define DMA_CTL_SMS(num)        (((num) & 0x3) << 25) /* Src Master Select */
149 #define DMA_CTL_DMS(num)        (((num) & 0x3) << 23)/* Dst Master Select */
150         /* Src Burst Transaction Length */
151 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
152         /* Dst Burst Transaction Length */
153 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
154         /* Source Transfer Width */
155 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
156         /* Destination Transfer Width */
157 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
158
159 /* Assign HW handshaking interface (x) to destination / source peripheral */
160 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
161 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
162 #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
163 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
164
165 /*
166  * This define is used to set block chaining disabled in the control low
167  * register.  It is already in little endian format so it can be &'d dirctly.
168  * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
169  */
170 enum {
171         DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
172         DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
173         DMA_CTL_TTFC_M2P_PER =  0x00000003, /* Mem to per, peripheral cntr */
174         DMA_CTL_SINC_INC =      0x00000000, /* Source Address Increment */
175         DMA_CTL_SINC_DEC =      0x00000200,
176         DMA_CTL_SINC_NOCHANGE = 0x00000400,
177         DMA_CTL_DINC_INC =      0x00000000, /* Destination Address Increment */
178         DMA_CTL_DINC_DEC =      0x00000080,
179         DMA_CTL_DINC_NOCHANGE = 0x00000100,
180         DMA_CTL_INT_EN =        0x00000001, /* Interrupt Enable */
181
182 /* Channel Configuration Register high bits */
183         DMA_CFG_FCMOD_REQ =     0x00000001, /* Flow Control - request based */
184         DMA_CFG_PROTCTL =       (0x00000003 << 2),/* Protection Control */
185
186 /* Channel Configuration Register low bits */
187         DMA_CFG_RELD_DST =      0x80000000, /* Reload Dest / Src Addr */
188         DMA_CFG_RELD_SRC =      0x40000000,
189         DMA_CFG_HS_SELSRC =     0x00000800, /* Software handshake Src/ Dest */
190         DMA_CFG_HS_SELDST =     0x00000400,
191         DMA_CFG_FIFOEMPTY =     (0x00000001 << 9), /* FIFO Empty bit */
192
193 /* Channel Linked List Pointer Register */
194         DMA_LLP_AHBMASTER1 =    0,      /* List Master Select */
195         DMA_LLP_AHBMASTER2 =    1,
196
197         SATA_DWC_MAX_PORTS = 1,
198
199         SATA_DWC_SCR_OFFSET = 0x24,
200         SATA_DWC_REG_OFFSET = 0x64,
201 };
202
203 /* DWC SATA Registers */
204 struct sata_dwc_regs {
205         u32 fptagr;             /* 1st party DMA tag */
206         u32 fpbor;              /* 1st party DMA buffer offset */
207         u32 fptcr;              /* 1st party DMA Xfr count */
208         u32 dmacr;              /* DMA Control */
209         u32 dbtsr;              /* DMA Burst Transac size */
210         u32 intpr;              /* Interrupt Pending */
211         u32 intmr;              /* Interrupt Mask */
212         u32 errmr;              /* Error Mask */
213         u32 llcr;               /* Link Layer Control */
214         u32 phycr;              /* PHY Control */
215         u32 physr;              /* PHY Status */
216         u32 rxbistpd;           /* Recvd BIST pattern def register */
217         u32 rxbistpd1;          /* Recvd BIST data dword1 */
218         u32 rxbistpd2;          /* Recvd BIST pattern data dword2 */
219         u32 txbistpd;           /* Trans BIST pattern def register */
220         u32 txbistpd1;          /* Trans BIST data dword1 */
221         u32 txbistpd2;          /* Trans BIST data dword2 */
222         u32 bistcr;             /* BIST Control Register */
223         u32 bistfctr;           /* BIST FIS Count Register */
224         u32 bistsr;             /* BIST Status Register */
225         u32 bistdecr;           /* BIST Dword Error count register */
226         u32 res[15];            /* Reserved locations */
227         u32 testr;              /* Test Register */
228         u32 versionr;           /* Version Register */
229         u32 idr;                /* ID Register */
230         u32 unimpl[192];        /* Unimplemented */
231         u32 dmadr[256]; /* FIFO Locations in DMA Mode */
232 };
233
234 enum {
235         SCR_SCONTROL_DET_ENABLE =       0x00000001,
236         SCR_SSTATUS_DET_PRESENT =       0x00000001,
237         SCR_SERROR_DIAG_X       =       0x04000000,
238 /* DWC SATA Register Operations */
239         SATA_DWC_TXFIFO_DEPTH   =       0x01FF,
240         SATA_DWC_RXFIFO_DEPTH   =       0x01FF,
241         SATA_DWC_DMACR_TMOD_TXCHEN =    0x00000004,
242         SATA_DWC_DMACR_TXCHEN   = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
243         SATA_DWC_DMACR_RXCHEN   = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
244         SATA_DWC_DMACR_TXRXCH_CLEAR =   SATA_DWC_DMACR_TMOD_TXCHEN,
245         SATA_DWC_INTPR_DMAT     =       0x00000001,
246         SATA_DWC_INTPR_NEWFP    =       0x00000002,
247         SATA_DWC_INTPR_PMABRT   =       0x00000004,
248         SATA_DWC_INTPR_ERR      =       0x00000008,
249         SATA_DWC_INTPR_NEWBIST  =       0x00000010,
250         SATA_DWC_INTPR_IPF      =       0x10000000,
251         SATA_DWC_INTMR_DMATM    =       0x00000001,
252         SATA_DWC_INTMR_NEWFPM   =       0x00000002,
253         SATA_DWC_INTMR_PMABRTM  =       0x00000004,
254         SATA_DWC_INTMR_ERRM     =       0x00000008,
255         SATA_DWC_INTMR_NEWBISTM =       0x00000010,
256         SATA_DWC_LLCR_SCRAMEN   =       0x00000001,
257         SATA_DWC_LLCR_DESCRAMEN =       0x00000002,
258         SATA_DWC_LLCR_RPDEN     =       0x00000004,
259 /* This is all error bits, zero's are reserved fields. */
260         SATA_DWC_SERROR_ERR_BITS =      0x0FFF0F03
261 };
262
263 #define SATA_DWC_SCR0_SPD_GET(v)        (((v) >> 4) & 0x0000000F)
264 #define SATA_DWC_DMACR_TX_CLEAR(v)      (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
265                                                  SATA_DWC_DMACR_TMOD_TXCHEN)
266 #define SATA_DWC_DMACR_RX_CLEAR(v)      (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
267                                                  SATA_DWC_DMACR_TMOD_TXCHEN)
268 #define SATA_DWC_DBTSR_MWR(size)        (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
269 #define SATA_DWC_DBTSR_MRD(size)        ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
270                                                  << 16)
271 struct sata_dwc_device {
272         struct device           *dev;           /* generic device struct */
273         struct ata_probe_ent    *pe;            /* ptr to probe-ent */
274         struct ata_host         *host;
275         u8                      *reg_base;
276         struct sata_dwc_regs    *sata_dwc_regs; /* DW Synopsys SATA specific */
277         int                     irq_dma;
278 };
279
280 #define SATA_DWC_QCMD_MAX       32
281
282 struct sata_dwc_device_port {
283         struct sata_dwc_device  *hsdev;
284         int                     cmd_issued[SATA_DWC_QCMD_MAX];
285         struct lli              *llit[SATA_DWC_QCMD_MAX];  /* DMA LLI table */
286         dma_addr_t              llit_dma[SATA_DWC_QCMD_MAX];
287         u32                     dma_chan[SATA_DWC_QCMD_MAX];
288         int                     dma_pending[SATA_DWC_QCMD_MAX];
289 };
290
291 /*
292  * Commonly used DWC SATA driver Macros
293  */
294 #define HSDEV_FROM_HOST(host)  ((struct sata_dwc_device *)\
295                                         (host)->private_data)
296 #define HSDEV_FROM_AP(ap)  ((struct sata_dwc_device *)\
297                                         (ap)->host->private_data)
298 #define HSDEVP_FROM_AP(ap)   ((struct sata_dwc_device_port *)\
299                                         (ap)->private_data)
300 #define HSDEV_FROM_QC(qc)       ((struct sata_dwc_device *)\
301                                         (qc)->ap->host->private_data)
302 #define HSDEV_FROM_HSDEVP(p)    ((struct sata_dwc_device *)\
303                                                 (hsdevp)->hsdev)
304
305 enum {
306         SATA_DWC_CMD_ISSUED_NOT         = 0,
307         SATA_DWC_CMD_ISSUED_PEND        = 1,
308         SATA_DWC_CMD_ISSUED_EXEC        = 2,
309         SATA_DWC_CMD_ISSUED_NODATA      = 3,
310
311         SATA_DWC_DMA_PENDING_NONE       = 0,
312         SATA_DWC_DMA_PENDING_TX         = 1,
313         SATA_DWC_DMA_PENDING_RX         = 2,
314 };
315
316 struct sata_dwc_host_priv {
317         void    __iomem  *scr_addr_sstatus;
318         u32     sata_dwc_sactive_issued ;
319         u32     sata_dwc_sactive_queued ;
320         u32     dma_interrupt_count;
321         struct  ahb_dma_regs    *sata_dma_regs;
322         struct  device  *dwc_dev;
323         int     dma_channel;
324 };
325 struct sata_dwc_host_priv host_pvt;
326 /*
327  * Prototypes
328  */
329 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
330 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
331                                 u32 check_status);
332 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
333 static void sata_dwc_port_stop(struct ata_port *ap);
334 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
335 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
336 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
337 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
338                               struct lli *lli, dma_addr_t dma_lli,
339                               void __iomem *addr, int dir);
340 static void dma_dwc_xfer_start(int dma_ch);
341
342 static const char *get_prot_descript(u8 protocol)
343 {
344         switch ((enum ata_tf_protocols)protocol) {
345         case ATA_PROT_NODATA:
346                 return "ATA no data";
347         case ATA_PROT_PIO:
348                 return "ATA PIO";
349         case ATA_PROT_DMA:
350                 return "ATA DMA";
351         case ATA_PROT_NCQ:
352                 return "ATA NCQ";
353         case ATAPI_PROT_NODATA:
354                 return "ATAPI no data";
355         case ATAPI_PROT_PIO:
356                 return "ATAPI PIO";
357         case ATAPI_PROT_DMA:
358                 return "ATAPI DMA";
359         default:
360                 return "unknown";
361         }
362 }
363
364 static const char *get_dma_dir_descript(int dma_dir)
365 {
366         switch ((enum dma_data_direction)dma_dir) {
367         case DMA_BIDIRECTIONAL:
368                 return "bidirectional";
369         case DMA_TO_DEVICE:
370                 return "to device";
371         case DMA_FROM_DEVICE:
372                 return "from device";
373         default:
374                 return "none";
375         }
376 }
377
378 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
379 {
380         dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
381                 "0x%lx device: %x\n", tf->command,
382                 get_prot_descript(tf->protocol), tf->flags, tf->device);
383         dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
384                 "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
385                  tf->lbam, tf->lbah);
386         dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
387                 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
388                 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
389                 tf->hob_lbah);
390 }
391
392 /*
393  * Function: get_burst_length_encode
394  * arguments: datalength: length in bytes of data
395  * returns value to be programmed in register corresponding to data length
396  * This value is effectively the log(base 2) of the length
397  */
398 static  int get_burst_length_encode(int datalength)
399 {
400         int items = datalength >> 2;    /* div by 4 to get lword count */
401
402         if (items >= 64)
403                 return 5;
404
405         if (items >= 32)
406                 return 4;
407
408         if (items >= 16)
409                 return 3;
410
411         if (items >= 8)
412                 return 2;
413
414         if (items >= 4)
415                 return 1;
416
417         return 0;
418 }
419
420 static  void clear_chan_interrupts(int c)
421 {
422         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
423                  DMA_CHANNEL(c));
424         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
425                  DMA_CHANNEL(c));
426         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
427                  DMA_CHANNEL(c));
428         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
429                  DMA_CHANNEL(c));
430         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
431                  DMA_CHANNEL(c));
432 }
433
434 /*
435  * Function: dma_request_channel
436  * arguments: None
437  * returns channel number if available else -1
438  * This function assigns the next available DMA channel from the list to the
439  * requester
440  */
441 static int dma_request_channel(void)
442 {
443         /* Check if the channel is not currently in use */
444         if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &
445                 DMA_CHANNEL(host_pvt.dma_channel)))
446                 return host_pvt.dma_channel;
447         dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n",
448                 __func__, host_pvt.dma_channel);
449         return -1;
450 }
451
452 /*
453  * Function: dma_dwc_interrupt
454  * arguments: irq, dev_id, pt_regs
455  * returns channel number if available else -1
456  * Interrupt Handler for DW AHB SATA DMA
457  */
458 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
459 {
460         int chan;
461         u32 tfr_reg, err_reg;
462         unsigned long flags;
463         struct sata_dwc_device *hsdev =
464                 (struct sata_dwc_device *)hsdev_instance;
465         struct ata_host *host = (struct ata_host *)hsdev->host;
466         struct ata_port *ap;
467         struct sata_dwc_device_port *hsdevp;
468         u8 tag = 0;
469         unsigned int port = 0;
470
471         spin_lock_irqsave(&host->lock, flags);
472         ap = host->ports[port];
473         hsdevp = HSDEVP_FROM_AP(ap);
474         tag = ap->link.active_tag;
475
476         tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
477                         .low));
478         err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
479                         .low));
480
481         dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
482                 tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
483
484         chan = host_pvt.dma_channel;
485         if (chan >= 0) {
486                 /* Check for end-of-transfer interrupt. */
487                 if (tfr_reg & DMA_CHANNEL(chan)) {
488                         /*
489                          * Each DMA command produces 2 interrupts.  Only
490                          * complete the command after both interrupts have been
491                          * seen. (See sata_dwc_isr())
492                          */
493                         host_pvt.dma_interrupt_count++;
494                         sata_dwc_clear_dmacr(hsdevp, tag);
495
496                         if (hsdevp->dma_pending[tag] ==
497                             SATA_DWC_DMA_PENDING_NONE) {
498                                 dev_err(ap->dev, "DMA not pending eot=0x%08x "
499                                         "err=0x%08x tag=0x%02x pending=%d\n",
500                                         tfr_reg, err_reg, tag,
501                                         hsdevp->dma_pending[tag]);
502                         }
503
504                         if ((host_pvt.dma_interrupt_count % 2) == 0)
505                                 sata_dwc_dma_xfer_complete(ap, 1);
506
507                         /* Clear the interrupt */
508                         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
509                                 .tfr.low),
510                                  DMA_CHANNEL(chan));
511                 }
512
513                 /* Check for error interrupt. */
514                 if (err_reg & DMA_CHANNEL(chan)) {
515                         /* TODO Need error handler ! */
516                         dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
517                                 err_reg);
518
519                         /* Clear the interrupt. */
520                         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
521                                 .error.low),
522                                  DMA_CHANNEL(chan));
523                 }
524         }
525         spin_unlock_irqrestore(&host->lock, flags);
526         return IRQ_HANDLED;
527 }
528
529 /*
530  * Function: dma_request_interrupts
531  * arguments: hsdev
532  * returns status
533  * This function registers ISR for a particular DMA channel interrupt
534  */
535 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
536 {
537         int retval = 0;
538         int chan = host_pvt.dma_channel;
539
540         if (chan >= 0) {
541                 /* Unmask error interrupt */
542                 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
543                          DMA_ENABLE_CHAN(chan));
544
545                 /* Unmask end-of-transfer interrupt */
546                 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
547                          DMA_ENABLE_CHAN(chan));
548         }
549
550         retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
551         if (retval) {
552                 dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
553                 __func__, irq);
554                 return -ENODEV;
555         }
556
557         /* Mark this interrupt as requested */
558         hsdev->irq_dma = irq;
559         return 0;
560 }
561
562 /*
563  * Function: map_sg_to_lli
564  * The Synopsis driver has a comment proposing that better performance
565  * is possible by only enabling interrupts on the last item in the linked list.
566  * However, it seems that could be a problem if an error happened on one of the
567  * first items.  The transfer would halt, but no error interrupt would occur.
568  * Currently this function sets interrupts enabled for each linked list item:
569  * DMA_CTL_INT_EN.
570  */
571 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
572                         struct lli *lli, dma_addr_t dma_lli,
573                         void __iomem *dmadr_addr, int dir)
574 {
575         int i, idx = 0;
576         int fis_len = 0;
577         dma_addr_t next_llp;
578         int bl;
579         int sms_val, dms_val;
580
581         sms_val = 0;
582         dms_val = 1 + host_pvt.dma_channel;
583         dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
584                 " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
585                 (u32)dmadr_addr);
586
587         bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
588
589         for (i = 0; i < num_elems; i++, sg++) {
590                 u32 addr, offset;
591                 u32 sg_len, len;
592
593                 addr = (u32) sg_dma_address(sg);
594                 sg_len = sg_dma_len(sg);
595
596                 dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
597                         "=%d\n", __func__, i, addr, sg_len);
598
599                 while (sg_len) {
600                         if (idx >= SATA_DWC_DMAC_LLI_NUM) {
601                                 /* The LLI table is not large enough. */
602                                 dev_err(host_pvt.dwc_dev, "LLI table overrun "
603                                 "(idx=%d)\n", idx);
604                                 break;
605                         }
606                         len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
607                                 SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
608
609                         offset = addr & 0xffff;
610                         if ((offset + sg_len) > 0x10000)
611                                 len = 0x10000 - offset;
612
613                         /*
614                          * Make sure a LLI block is not created that will span
615                          * 8K max FIS boundary.  If the block spans such a FIS
616                          * boundary, there is a chance that a DMA burst will
617                          * cross that boundary -- this results in an error in
618                          * the host controller.
619                          */
620                         if (fis_len + len > 8192) {
621                                 dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
622                                         "%d(0x%x) len=%d(0x%x)\n", fis_len,
623                                          fis_len, len, len);
624                                 len = 8192 - fis_len;
625                                 fis_len = 0;
626                         } else {
627                                 fis_len += len;
628                         }
629                         if (fis_len == 8192)
630                                 fis_len = 0;
631
632                         /*
633                          * Set DMA addresses and lower half of control register
634                          * based on direction.
635                          */
636                         if (dir == DMA_FROM_DEVICE) {
637                                 lli[idx].dar = cpu_to_le32(addr);
638                                 lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
639
640                                 lli[idx].ctl.low = cpu_to_le32(
641                                         DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
642                                         DMA_CTL_SMS(sms_val) |
643                                         DMA_CTL_DMS(dms_val) |
644                                         DMA_CTL_SRC_MSIZE(bl) |
645                                         DMA_CTL_DST_MSIZE(bl) |
646                                         DMA_CTL_SINC_NOCHANGE |
647                                         DMA_CTL_SRC_TRWID(2) |
648                                         DMA_CTL_DST_TRWID(2) |
649                                         DMA_CTL_INT_EN |
650                                         DMA_CTL_LLP_SRCEN |
651                                         DMA_CTL_LLP_DSTEN);
652                         } else {        /* DMA_TO_DEVICE */
653                                 lli[idx].sar = cpu_to_le32(addr);
654                                 lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
655
656                                 lli[idx].ctl.low = cpu_to_le32(
657                                         DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
658                                         DMA_CTL_SMS(dms_val) |
659                                         DMA_CTL_DMS(sms_val) |
660                                         DMA_CTL_SRC_MSIZE(bl) |
661                                         DMA_CTL_DST_MSIZE(bl) |
662                                         DMA_CTL_DINC_NOCHANGE |
663                                         DMA_CTL_SRC_TRWID(2) |
664                                         DMA_CTL_DST_TRWID(2) |
665                                         DMA_CTL_INT_EN |
666                                         DMA_CTL_LLP_SRCEN |
667                                         DMA_CTL_LLP_DSTEN);
668                         }
669
670                         dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
671                                 "0x%08x val: 0x%08x\n", __func__,
672                                 len, DMA_CTL_BLK_TS(len / 4));
673
674                         /* Program the LLI CTL high register */
675                         lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
676                                                 (len / 4));
677
678                         /* Program the next pointer.  The next pointer must be
679                          * the physical address, not the virtual address.
680                          */
681                         next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
682                                                         lli)));
683
684                         /* The last 2 bits encode the list master select. */
685                         next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
686
687                         lli[idx].llp = cpu_to_le32(next_llp);
688                         idx++;
689                         sg_len -= len;
690                         addr += len;
691                 }
692         }
693
694         /*
695          * The last next ptr has to be zero and the last control low register
696          * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
697          * and destination enable) set back to 0 (disabled.) This is what tells
698          * the core that this is the last item in the linked list.
699          */
700         if (idx) {
701                 lli[idx-1].llp = 0x00000000;
702                 lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
703
704                 /* Flush cache to memory */
705                 dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
706                                DMA_BIDIRECTIONAL);
707         }
708
709         return idx;
710 }
711
712 /*
713  * Function: dma_dwc_xfer_start
714  * arguments: Channel number
715  * Return : None
716  * Enables the DMA channel
717  */
718 static void dma_dwc_xfer_start(int dma_ch)
719 {
720         /* Enable the DMA channel */
721         out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
722                  in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
723                  DMA_ENABLE_CHAN(dma_ch));
724 }
725
726 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
727                               struct lli *lli, dma_addr_t dma_lli,
728                               void __iomem *addr, int dir)
729 {
730         int dma_ch;
731         int num_lli;
732         /* Acquire DMA channel */
733         dma_ch = dma_request_channel();
734         if (dma_ch == -1) {
735                 dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
736                          __func__);
737                 return -EAGAIN;
738         }
739
740         /* Convert SG list to linked list of items (LLIs) for AHB DMA */
741         num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
742
743         dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
744                 " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
745                  lli, (u32)dma_lli, addr, num_lli);
746
747         clear_chan_interrupts(dma_ch);
748
749         /* Program the CFG register. */
750         out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
751                  DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) |
752                  DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
753         out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low),
754                  DMA_CFG_HW_CH_PRIOR(dma_ch));
755
756         /* Program the address of the linked list */
757         out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
758                  DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
759
760         /* Program the CTL register with src enable / dst enable */
761         out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
762                  DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
763         return dma_ch;
764 }
765
766 /*
767  * Function: dma_dwc_exit
768  * arguments: None
769  * returns status
770  * This function exits the SATA DMA driver
771  */
772 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
773 {
774         dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
775         if (host_pvt.sata_dma_regs) {
776                 iounmap(host_pvt.sata_dma_regs);
777                 host_pvt.sata_dma_regs = NULL;
778         }
779
780         if (hsdev->irq_dma) {
781                 free_irq(hsdev->irq_dma, hsdev);
782                 hsdev->irq_dma = 0;
783         }
784 }
785
786 /*
787  * Function: dma_dwc_init
788  * arguments: hsdev
789  * returns status
790  * This function initializes the SATA DMA driver
791  */
792 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
793 {
794         int err;
795
796         err = dma_request_interrupts(hsdev, irq);
797         if (err) {
798                 dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
799                         " %d\n", __func__, err);
800                 goto error_out;
801         }
802
803         /* Enabe DMA */
804         out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
805
806         dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
807         dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
808                 sata_dma_regs);
809
810         return 0;
811
812 error_out:
813         dma_dwc_exit(hsdev);
814
815         return err;
816 }
817
818 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
819 {
820         if (scr > SCR_NOTIFICATION) {
821                 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
822                         __func__, scr);
823                 return -EINVAL;
824         }
825
826         *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
827         dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
828                 __func__, link->ap->print_id, scr, *val);
829
830         return 0;
831 }
832
833 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
834 {
835         dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
836                 __func__, link->ap->print_id, scr, val);
837         if (scr > SCR_NOTIFICATION) {
838                 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
839                          __func__, scr);
840                 return -EINVAL;
841         }
842         out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
843
844         return 0;
845 }
846
847 static u32 core_scr_read(unsigned int scr)
848 {
849         return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
850                         (scr * 4));
851 }
852
853 static void core_scr_write(unsigned int scr, u32 val)
854 {
855         out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
856                 val);
857 }
858
859 static void clear_serror(void)
860 {
861         u32 val;
862         val = core_scr_read(SCR_ERROR);
863         core_scr_write(SCR_ERROR, val);
864
865 }
866
867 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
868 {
869         out_le32(&hsdev->sata_dwc_regs->intpr,
870                  in_le32(&hsdev->sata_dwc_regs->intpr));
871 }
872
873 static u32 qcmd_tag_to_mask(u8 tag)
874 {
875         return 0x00000001 << (tag & 0x1f);
876 }
877
878 /* See ahci.c */
879 static void sata_dwc_error_intr(struct ata_port *ap,
880                                 struct sata_dwc_device *hsdev, uint intpr)
881 {
882         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
883         struct ata_eh_info *ehi = &ap->link.eh_info;
884         unsigned int err_mask = 0, action = 0;
885         struct ata_queued_cmd *qc;
886         u32 serror;
887         u8 status, tag;
888         u32 err_reg;
889
890         ata_ehi_clear_desc(ehi);
891
892         serror = core_scr_read(SCR_ERROR);
893         status = ap->ops->sff_check_status(ap);
894
895         err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
896                         low));
897         tag = ap->link.active_tag;
898
899         dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
900                 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
901                 __func__, serror, intpr, status, host_pvt.dma_interrupt_count,
902                 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
903
904         /* Clear error register and interrupt bit */
905         clear_serror();
906         clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
907
908         /* This is the only error happening now.  TODO check for exact error */
909
910         err_mask |= AC_ERR_HOST_BUS;
911         action |= ATA_EH_RESET;
912
913         /* Pass this on to EH */
914         ehi->serror |= serror;
915         ehi->action |= action;
916
917         qc = ata_qc_from_tag(ap, tag);
918         if (qc)
919                 qc->err_mask |= err_mask;
920         else
921                 ehi->err_mask |= err_mask;
922
923         ata_port_abort(ap);
924 }
925
926 /*
927  * Function : sata_dwc_isr
928  * arguments : irq, void *dev_instance, struct pt_regs *regs
929  * Return value : irqreturn_t - status of IRQ
930  * This Interrupt handler called via port ops registered function.
931  * .irq_handler = sata_dwc_isr
932  */
933 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
934 {
935         struct ata_host *host = (struct ata_host *)dev_instance;
936         struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
937         struct ata_port *ap;
938         struct ata_queued_cmd *qc;
939         unsigned long flags;
940         u8 status, tag;
941         int handled, num_processed, port = 0;
942         uint intpr, sactive, sactive2, tag_mask;
943         struct sata_dwc_device_port *hsdevp;
944         host_pvt.sata_dwc_sactive_issued = 0;
945
946         spin_lock_irqsave(&host->lock, flags);
947
948         /* Read the interrupt register */
949         intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
950
951         ap = host->ports[port];
952         hsdevp = HSDEVP_FROM_AP(ap);
953
954         dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
955                 ap->link.active_tag);
956
957         /* Check for error interrupt */
958         if (intpr & SATA_DWC_INTPR_ERR) {
959                 sata_dwc_error_intr(ap, hsdev, intpr);
960                 handled = 1;
961                 goto DONE;
962         }
963
964         /* Check for DMA SETUP FIS (FP DMA) interrupt */
965         if (intpr & SATA_DWC_INTPR_NEWFP) {
966                 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
967
968                 tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
969                 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
970                 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
971                         dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
972
973                 host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
974
975                 qc = ata_qc_from_tag(ap, tag);
976                 /*
977                  * Start FP DMA for NCQ command.  At this point the tag is the
978                  * active tag.  It is the tag that matches the command about to
979                  * be completed.
980                  */
981                 qc->ap->link.active_tag = tag;
982                 sata_dwc_bmdma_start_by_tag(qc, tag);
983
984                 handled = 1;
985                 goto DONE;
986         }
987         sactive = core_scr_read(SCR_ACTIVE);
988         tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
989
990         /* If no sactive issued and tag_mask is zero then this is not NCQ */
991         if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
992                 if (ap->link.active_tag == ATA_TAG_POISON)
993                         tag = 0;
994                 else
995                         tag = ap->link.active_tag;
996                 qc = ata_qc_from_tag(ap, tag);
997
998                 /* DEV interrupt w/ no active qc? */
999                 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
1000                         dev_err(ap->dev, "%s interrupt with no active qc "
1001                                 "qc=%p\n", __func__, qc);
1002                         ap->ops->sff_check_status(ap);
1003                         handled = 1;
1004                         goto DONE;
1005                 }
1006                 status = ap->ops->sff_check_status(ap);
1007
1008                 qc->ap->link.active_tag = tag;
1009                 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1010
1011                 if (status & ATA_ERR) {
1012                         dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1013                         sata_dwc_qc_complete(ap, qc, 1);
1014                         handled = 1;
1015                         goto DONE;
1016                 }
1017
1018                 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1019                         __func__, get_prot_descript(qc->tf.protocol));
1020 DRVSTILLBUSY:
1021                 if (ata_is_dma(qc->tf.protocol)) {
1022                         /*
1023                          * Each DMA transaction produces 2 interrupts. The DMAC
1024                          * transfer complete interrupt and the SATA controller
1025                          * operation done interrupt. The command should be
1026                          * completed only after both interrupts are seen.
1027                          */
1028                         host_pvt.dma_interrupt_count++;
1029                         if (hsdevp->dma_pending[tag] == \
1030                                         SATA_DWC_DMA_PENDING_NONE) {
1031                                 dev_err(ap->dev, "%s: DMA not pending "
1032                                         "intpr=0x%08x status=0x%08x pending"
1033                                         "=%d\n", __func__, intpr, status,
1034                                         hsdevp->dma_pending[tag]);
1035                         }
1036
1037                         if ((host_pvt.dma_interrupt_count % 2) == 0)
1038                                 sata_dwc_dma_xfer_complete(ap, 1);
1039                 } else if (ata_is_pio(qc->tf.protocol)) {
1040                         ata_sff_hsm_move(ap, qc, status, 0);
1041                         handled = 1;
1042                         goto DONE;
1043                 } else {
1044                         if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1045                                 goto DRVSTILLBUSY;
1046                 }
1047
1048                 handled = 1;
1049                 goto DONE;
1050         }
1051
1052         /*
1053          * This is a NCQ command. At this point we need to figure out for which
1054          * tags we have gotten a completion interrupt.  One interrupt may serve
1055          * as completion for more than one operation when commands are queued
1056          * (NCQ).  We need to process each completed command.
1057          */
1058
1059          /* process completed commands */
1060         sactive = core_scr_read(SCR_ACTIVE);
1061         tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1062
1063         if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1064                                                         tag_mask > 1) {
1065                 dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x  sactive_issued=0x%08x"
1066                         "tag_mask=0x%08x\n", __func__, sactive,
1067                         host_pvt.sata_dwc_sactive_issued, tag_mask);
1068         }
1069
1070         if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1071                                         (host_pvt.sata_dwc_sactive_issued)) {
1072                 dev_warn(ap->dev, "Bad tag mask?  sactive=0x%08x "
1073                          "(host_pvt.sata_dwc_sactive_issued)=0x%08x  tag_mask"
1074                          "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1075                           tag_mask);
1076         }
1077
1078         /* read just to clear ... not bad if currently still busy */
1079         status = ap->ops->sff_check_status(ap);
1080         dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1081
1082         tag = 0;
1083         num_processed = 0;
1084         while (tag_mask) {
1085                 num_processed++;
1086                 while (!(tag_mask & 0x00000001)) {
1087                         tag++;
1088                         tag_mask <<= 1;
1089                 }
1090
1091                 tag_mask &= (~0x00000001);
1092                 qc = ata_qc_from_tag(ap, tag);
1093
1094                 /* To be picked up by completion functions */
1095                 qc->ap->link.active_tag = tag;
1096                 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1097
1098                 /* Let libata/scsi layers handle error */
1099                 if (status & ATA_ERR) {
1100                         dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1101                                 status);
1102                         sata_dwc_qc_complete(ap, qc, 1);
1103                         handled = 1;
1104                         goto DONE;
1105                 }
1106
1107                 /* Process completed command */
1108                 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1109                         get_prot_descript(qc->tf.protocol));
1110                 if (ata_is_dma(qc->tf.protocol)) {
1111                         host_pvt.dma_interrupt_count++;
1112                         if (hsdevp->dma_pending[tag] == \
1113                                         SATA_DWC_DMA_PENDING_NONE)
1114                                 dev_warn(ap->dev, "%s: DMA not pending?\n",
1115                                         __func__);
1116                         if ((host_pvt.dma_interrupt_count % 2) == 0)
1117                                 sata_dwc_dma_xfer_complete(ap, 1);
1118                 } else {
1119                         if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1120                                 goto STILLBUSY;
1121                 }
1122                 continue;
1123
1124 STILLBUSY:
1125                 ap->stats.idle_irq++;
1126                 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1127                         ap->print_id);
1128         } /* while tag_mask */
1129
1130         /*
1131          * Check to see if any commands completed while we were processing our
1132          * initial set of completed commands (read status clears interrupts,
1133          * so we might miss a completed command interrupt if one came in while
1134          * we were processing --we read status as part of processing a completed
1135          * command).
1136          */
1137         sactive2 = core_scr_read(SCR_ACTIVE);
1138         if (sactive2 != sactive) {
1139                 dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1140                         "=0x%x\n", sactive, sactive2);
1141         }
1142         handled = 1;
1143
1144 DONE:
1145         spin_unlock_irqrestore(&host->lock, flags);
1146         return IRQ_RETVAL(handled);
1147 }
1148
1149 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1150 {
1151         struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1152
1153         if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1154                 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1155                          SATA_DWC_DMACR_RX_CLEAR(
1156                                  in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1157         } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1158                 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1159                          SATA_DWC_DMACR_TX_CLEAR(
1160                                  in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1161         } else {
1162                 /*
1163                  * This should not happen, it indicates the driver is out of
1164                  * sync.  If it does happen, clear dmacr anyway.
1165                  */
1166                 dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1167                         "TX DMA not pending tag=0x%02x pending=%d"
1168                         " dmacr: 0x%08x\n", __func__, tag,
1169                         hsdevp->dma_pending[tag],
1170                         in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1171                 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1172                         SATA_DWC_DMACR_TXRXCH_CLEAR);
1173         }
1174 }
1175
1176 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1177 {
1178         struct ata_queued_cmd *qc;
1179         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1180         struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1181         u8 tag = 0;
1182
1183         tag = ap->link.active_tag;
1184         qc = ata_qc_from_tag(ap, tag);
1185         if (!qc) {
1186                 dev_err(ap->dev, "failed to get qc");
1187                 return;
1188         }
1189
1190 #ifdef DEBUG_NCQ
1191         if (tag > 0) {
1192                 dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1193                          "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1194                          get_dma_dir_descript(qc->dma_dir),
1195                          get_prot_descript(qc->tf.protocol),
1196                          in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1197         }
1198 #endif
1199
1200         if (ata_is_dma(qc->tf.protocol)) {
1201                 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1202                         dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1203                                 "pending dmacr: 0x%08x\n", __func__,
1204                                 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1205                 }
1206
1207                 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1208                 sata_dwc_qc_complete(ap, qc, check_status);
1209                 ap->link.active_tag = ATA_TAG_POISON;
1210         } else {
1211                 sata_dwc_qc_complete(ap, qc, check_status);
1212         }
1213 }
1214
1215 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1216                                 u32 check_status)
1217 {
1218         u8 status = 0;
1219         u32 mask = 0x0;
1220         u8 tag = qc->tag;
1221         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1222         host_pvt.sata_dwc_sactive_queued = 0;
1223         dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1224
1225         if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1226                 dev_err(ap->dev, "TX DMA PENDING\n");
1227         else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1228                 dev_err(ap->dev, "RX DMA PENDING\n");
1229         dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1230                 " protocol=%d\n", qc->tf.command, status, ap->print_id,
1231                  qc->tf.protocol);
1232
1233         /* clear active bit */
1234         mask = (~(qcmd_tag_to_mask(tag)));
1235         host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1236                                                 & mask;
1237         host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1238                                                 & mask;
1239         ata_qc_complete(qc);
1240         return 0;
1241 }
1242
1243 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1244 {
1245         /* Enable selective interrupts by setting the interrupt maskregister*/
1246         out_le32(&hsdev->sata_dwc_regs->intmr,
1247                  SATA_DWC_INTMR_ERRM |
1248                  SATA_DWC_INTMR_NEWFPM |
1249                  SATA_DWC_INTMR_PMABRTM |
1250                  SATA_DWC_INTMR_DMATM);
1251         /*
1252          * Unmask the error bits that should trigger an error interrupt by
1253          * setting the error mask register.
1254          */
1255         out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1256
1257         dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1258                  __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1259                 in_le32(&hsdev->sata_dwc_regs->errmr));
1260 }
1261
1262 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1263 {
1264         port->cmd_addr = (void *)base + 0x00;
1265         port->data_addr = (void *)base + 0x00;
1266
1267         port->error_addr = (void *)base + 0x04;
1268         port->feature_addr = (void *)base + 0x04;
1269
1270         port->nsect_addr = (void *)base + 0x08;
1271
1272         port->lbal_addr = (void *)base + 0x0c;
1273         port->lbam_addr = (void *)base + 0x10;
1274         port->lbah_addr = (void *)base + 0x14;
1275
1276         port->device_addr = (void *)base + 0x18;
1277         port->command_addr = (void *)base + 0x1c;
1278         port->status_addr = (void *)base + 0x1c;
1279
1280         port->altstatus_addr = (void *)base + 0x20;
1281         port->ctl_addr = (void *)base + 0x20;
1282 }
1283
1284 /*
1285  * Function : sata_dwc_port_start
1286  * arguments : struct ata_ioports *port
1287  * Return value : returns 0 if success, error code otherwise
1288  * This function allocates the scatter gather LLI table for AHB DMA
1289  */
1290 static int sata_dwc_port_start(struct ata_port *ap)
1291 {
1292         int err = 0;
1293         struct sata_dwc_device *hsdev;
1294         struct sata_dwc_device_port *hsdevp = NULL;
1295         struct device *pdev;
1296         int i;
1297
1298         hsdev = HSDEV_FROM_AP(ap);
1299
1300         dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1301
1302         hsdev->host = ap->host;
1303         pdev = ap->host->dev;
1304         if (!pdev) {
1305                 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1306                 err = -ENODEV;
1307                 goto CLEANUP;
1308         }
1309
1310         /* Allocate Port Struct */
1311         hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1312         if (!hsdevp) {
1313                 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1314                 err = -ENOMEM;
1315                 goto CLEANUP;
1316         }
1317         hsdevp->hsdev = hsdev;
1318
1319         for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1320                 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1321
1322         ap->bmdma_prd = 0;      /* set these so libata doesn't use them */
1323         ap->bmdma_prd_dma = 0;
1324
1325         /*
1326          * DMA - Assign scatter gather LLI table. We can't use the libata
1327          * version since it's PRD is IDE PCI specific.
1328          */
1329         for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1330                 hsdevp->llit[i] = dma_alloc_coherent(pdev,
1331                                                      SATA_DWC_DMAC_LLI_TBL_SZ,
1332                                                      &(hsdevp->llit_dma[i]),
1333                                                      GFP_ATOMIC);
1334                 if (!hsdevp->llit[i]) {
1335                         dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1336                                  __func__);
1337                         err = -ENOMEM;
1338                         goto CLEANUP_ALLOC;
1339                 }
1340         }
1341
1342         if (ap->port_no == 0)  {
1343                 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1344                         __func__);
1345                 out_le32(&hsdev->sata_dwc_regs->dmacr,
1346                          SATA_DWC_DMACR_TXRXCH_CLEAR);
1347
1348                 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1349                          __func__);
1350                 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1351                          (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1352                           SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1353         }
1354
1355         /* Clear any error bits before libata starts issuing commands */
1356         clear_serror();
1357         ap->private_data = hsdevp;
1358         dev_dbg(ap->dev, "%s: done\n", __func__);
1359         return 0;
1360
1361 CLEANUP_ALLOC:
1362         kfree(hsdevp);
1363 CLEANUP:
1364         dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1365         return err;
1366 }
1367
1368 static void sata_dwc_port_stop(struct ata_port *ap)
1369 {
1370         int i;
1371         struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1372         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1373
1374         dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1375
1376         if (hsdevp && hsdev) {
1377                 /* deallocate LLI table */
1378                 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1379                         dma_free_coherent(ap->host->dev,
1380                                           SATA_DWC_DMAC_LLI_TBL_SZ,
1381                                          hsdevp->llit[i], hsdevp->llit_dma[i]);
1382                 }
1383
1384                 kfree(hsdevp);
1385         }
1386         ap->private_data = NULL;
1387 }
1388
1389 /*
1390  * Function : sata_dwc_exec_command_by_tag
1391  * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1392  * Return value : None
1393  * This function keeps track of individual command tag ids and calls
1394  * ata_exec_command in libata
1395  */
1396 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1397                                          struct ata_taskfile *tf,
1398                                          u8 tag, u32 cmd_issued)
1399 {
1400         unsigned long flags;
1401         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1402
1403         dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1404                 ata_get_cmd_descript(tf->command), tag);
1405
1406         spin_lock_irqsave(&ap->host->lock, flags);
1407         hsdevp->cmd_issued[tag] = cmd_issued;
1408         spin_unlock_irqrestore(&ap->host->lock, flags);
1409         /*
1410          * Clear SError before executing a new command.
1411          * sata_dwc_scr_write and read can not be used here. Clearing the PM
1412          * managed SError register for the disk needs to be done before the
1413          * task file is loaded.
1414          */
1415         clear_serror();
1416         ata_sff_exec_command(ap, tf);
1417 }
1418
1419 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1420 {
1421         sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1422                                      SATA_DWC_CMD_ISSUED_PEND);
1423 }
1424
1425 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1426 {
1427         u8 tag = qc->tag;
1428
1429         if (ata_is_ncq(qc->tf.protocol)) {
1430                 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1431                         __func__, qc->ap->link.sactive, tag);
1432         } else {
1433                 tag = 0;
1434         }
1435         sata_dwc_bmdma_setup_by_tag(qc, tag);
1436 }
1437
1438 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1439 {
1440         int start_dma;
1441         u32 reg, dma_chan;
1442         struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1443         struct ata_port *ap = qc->ap;
1444         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1445         int dir = qc->dma_dir;
1446         dma_chan = hsdevp->dma_chan[tag];
1447
1448         if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1449                 start_dma = 1;
1450                 if (dir == DMA_TO_DEVICE)
1451                         hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1452                 else
1453                         hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1454         } else {
1455                 dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1456                         "(tag=%d) DMA NOT started\n", __func__,
1457                         hsdevp->cmd_issued[tag], tag);
1458                 start_dma = 0;
1459         }
1460
1461         dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1462                 "start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1463                 get_dma_dir_descript(qc->dma_dir), start_dma);
1464         sata_dwc_tf_dump(&(qc->tf));
1465
1466         if (start_dma) {
1467                 reg = core_scr_read(SCR_ERROR);
1468                 if (reg & SATA_DWC_SERROR_ERR_BITS) {
1469                         dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1470                                 __func__, reg);
1471                 }
1472
1473                 if (dir == DMA_TO_DEVICE)
1474                         out_le32(&hsdev->sata_dwc_regs->dmacr,
1475                                 SATA_DWC_DMACR_TXCHEN);
1476                 else
1477                         out_le32(&hsdev->sata_dwc_regs->dmacr,
1478                                 SATA_DWC_DMACR_RXCHEN);
1479
1480                 /* Enable AHB DMA transfer on the specified channel */
1481                 dma_dwc_xfer_start(dma_chan);
1482         }
1483 }
1484
1485 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1486 {
1487         u8 tag = qc->tag;
1488
1489         if (ata_is_ncq(qc->tf.protocol)) {
1490                 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1491                         __func__, qc->ap->link.sactive, tag);
1492         } else {
1493                 tag = 0;
1494         }
1495         dev_dbg(qc->ap->dev, "%s\n", __func__);
1496         sata_dwc_bmdma_start_by_tag(qc, tag);
1497 }
1498
1499 /*
1500  * Function : sata_dwc_qc_prep_by_tag
1501  * arguments : ata_queued_cmd *qc, u8 tag
1502  * Return value : None
1503  * qc_prep for a particular queued command based on tag
1504  */
1505 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1506 {
1507         struct scatterlist *sg = qc->sg;
1508         struct ata_port *ap = qc->ap;
1509         int dma_chan;
1510         struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1511         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1512
1513         dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1514                 __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1515                  qc->n_elem);
1516
1517         dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1518                                       hsdevp->llit_dma[tag],
1519                                       (void *__iomem)(&hsdev->sata_dwc_regs->\
1520                                       dmadr), qc->dma_dir);
1521         if (dma_chan < 0) {
1522                 dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1523                         __func__, dma_chan);
1524                 return;
1525         }
1526         hsdevp->dma_chan[tag] = dma_chan;
1527 }
1528
1529 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1530 {
1531         u32 sactive;
1532         u8 tag = qc->tag;
1533         struct ata_port *ap = qc->ap;
1534
1535 #ifdef DEBUG_NCQ
1536         if (qc->tag > 0 || ap->link.sactive > 1)
1537                 dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1538                          "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1539                          __func__, ap->print_id, qc->tf.command,
1540                          ata_get_cmd_descript(qc->tf.command),
1541                          qc->tag, get_prot_descript(qc->tf.protocol),
1542                          ap->link.active_tag, ap->link.sactive);
1543 #endif
1544
1545         if (!ata_is_ncq(qc->tf.protocol))
1546                 tag = 0;
1547         sata_dwc_qc_prep_by_tag(qc, tag);
1548
1549         if (ata_is_ncq(qc->tf.protocol)) {
1550                 sactive = core_scr_read(SCR_ACTIVE);
1551                 sactive |= (0x00000001 << tag);
1552                 core_scr_write(SCR_ACTIVE, sactive);
1553
1554                 dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1555                         "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1556                         sactive);
1557
1558                 ap->ops->sff_tf_load(ap, &qc->tf);
1559                 sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1560                                              SATA_DWC_CMD_ISSUED_PEND);
1561         } else {
1562                 ata_sff_qc_issue(qc);
1563         }
1564         return 0;
1565 }
1566
1567 /*
1568  * Function : sata_dwc_qc_prep
1569  * arguments : ata_queued_cmd *qc
1570  * Return value : None
1571  * qc_prep for a particular queued command
1572  */
1573
1574 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1575 {
1576         if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1577                 return;
1578
1579 #ifdef DEBUG_NCQ
1580         if (qc->tag > 0)
1581                 dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1582                          __func__, qc->tag, qc->ap->link.active_tag);
1583
1584         return ;
1585 #endif
1586 }
1587
1588 static void sata_dwc_error_handler(struct ata_port *ap)
1589 {
1590         ata_sff_error_handler(ap);
1591 }
1592
1593 int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
1594                         unsigned long deadline)
1595 {
1596         struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
1597         int ret;
1598
1599         ret = sata_sff_hardreset(link, class, deadline);
1600
1601         sata_dwc_enable_interrupts(hsdev);
1602
1603         /* Reconfigure the DMA control register */
1604         out_le32(&hsdev->sata_dwc_regs->dmacr,
1605                  SATA_DWC_DMACR_TXRXCH_CLEAR);
1606
1607         /* Reconfigure the DMA Burst Transaction Size register */
1608         out_le32(&hsdev->sata_dwc_regs->dbtsr,
1609                  SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1610                  SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
1611
1612         return ret;
1613 }
1614
1615 /*
1616  * scsi mid-layer and libata interface structures
1617  */
1618 static struct scsi_host_template sata_dwc_sht = {
1619         ATA_NCQ_SHT(DRV_NAME),
1620         /*
1621          * test-only: Currently this driver doesn't handle NCQ
1622          * correctly. We enable NCQ but set the queue depth to a
1623          * max of 1. This will get fixed in in a future release.
1624          */
1625         .sg_tablesize           = LIBATA_MAX_PRD,
1626         .can_queue              = ATA_DEF_QUEUE,        /* ATA_MAX_QUEUE */
1627         .dma_boundary           = ATA_DMA_BOUNDARY,
1628 };
1629
1630 static struct ata_port_operations sata_dwc_ops = {
1631         .inherits               = &ata_sff_port_ops,
1632
1633         .error_handler          = sata_dwc_error_handler,
1634         .hardreset              = sata_dwc_hardreset,
1635
1636         .qc_prep                = sata_dwc_qc_prep,
1637         .qc_issue               = sata_dwc_qc_issue,
1638
1639         .scr_read               = sata_dwc_scr_read,
1640         .scr_write              = sata_dwc_scr_write,
1641
1642         .port_start             = sata_dwc_port_start,
1643         .port_stop              = sata_dwc_port_stop,
1644
1645         .bmdma_setup            = sata_dwc_bmdma_setup,
1646         .bmdma_start            = sata_dwc_bmdma_start,
1647 };
1648
1649 static const struct ata_port_info sata_dwc_port_info[] = {
1650         {
1651                 .flags          = ATA_FLAG_SATA | ATA_FLAG_NCQ,
1652                 .pio_mask       = ATA_PIO4,
1653                 .udma_mask      = ATA_UDMA6,
1654                 .port_ops       = &sata_dwc_ops,
1655         },
1656 };
1657
1658 static int sata_dwc_probe(struct platform_device *ofdev)
1659 {
1660         struct sata_dwc_device *hsdev;
1661         u32 idr, versionr;
1662         char *ver = (char *)&versionr;
1663         u8 *base = NULL;
1664         int err = 0;
1665         int irq, rc;
1666         struct ata_host *host;
1667         struct ata_port_info pi = sata_dwc_port_info[0];
1668         const struct ata_port_info *ppi[] = { &pi, NULL };
1669         struct device_node *np = ofdev->dev.of_node;
1670         u32 dma_chan;
1671
1672         /* Allocate DWC SATA device */
1673         hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL);
1674         if (hsdev == NULL) {
1675                 dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1676                 err = -ENOMEM;
1677                 goto error;
1678         }
1679
1680         if (of_property_read_u32(np, "dma-channel", &dma_chan)) {
1681                 dev_warn(&ofdev->dev, "no dma-channel property set."
1682                          " Use channel 0\n");
1683                 dma_chan = 0;
1684         }
1685         host_pvt.dma_channel = dma_chan;
1686
1687         /* Ioremap SATA registers */
1688         base = of_iomap(ofdev->dev.of_node, 0);
1689         if (!base) {
1690                 dev_err(&ofdev->dev, "ioremap failed for SATA register"
1691                         " address\n");
1692                 err = -ENODEV;
1693                 goto error_kmalloc;
1694         }
1695         hsdev->reg_base = base;
1696         dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1697
1698         /* Synopsys DWC SATA specific Registers */
1699         hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1700
1701         /* Allocate and fill host */
1702         host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1703         if (!host) {
1704                 dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1705                 err = -ENOMEM;
1706                 goto error_iomap;
1707         }
1708
1709         host->private_data = hsdev;
1710
1711         /* Setup port */
1712         host->ports[0]->ioaddr.cmd_addr = base;
1713         host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1714         host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1715         sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1716
1717         /* Read the ID and Version Registers */
1718         idr = in_le32(&hsdev->sata_dwc_regs->idr);
1719         versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1720         dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1721                    idr, ver[0], ver[1], ver[2]);
1722
1723         /* Get SATA DMA interrupt number */
1724         irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1725         if (irq == NO_IRQ) {
1726                 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1727                 err = -ENODEV;
1728                 goto error_out;
1729         }
1730
1731         /* Get physical SATA DMA register base address */
1732         host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1733         if (!(host_pvt.sata_dma_regs)) {
1734                 dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1735                         " address\n");
1736                 err = -ENODEV;
1737                 goto error_out;
1738         }
1739
1740         /* Save dev for later use in dev_xxx() routines */
1741         host_pvt.dwc_dev = &ofdev->dev;
1742
1743         /* Initialize AHB DMAC */
1744         dma_dwc_init(hsdev, irq);
1745
1746         /* Enable SATA Interrupts */
1747         sata_dwc_enable_interrupts(hsdev);
1748
1749         /* Get SATA interrupt number */
1750         irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1751         if (irq == NO_IRQ) {
1752                 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1753                 err = -ENODEV;
1754                 goto error_out;
1755         }
1756
1757         /*
1758          * Now, register with libATA core, this will also initiate the
1759          * device discovery process, invoking our port_start() handler &
1760          * error_handler() to execute a dummy Softreset EH session
1761          */
1762         rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1763
1764         if (rc != 0)
1765                 dev_err(&ofdev->dev, "failed to activate host");
1766
1767         dev_set_drvdata(&ofdev->dev, host);
1768         return 0;
1769
1770 error_out:
1771         /* Free SATA DMA resources */
1772         dma_dwc_exit(hsdev);
1773
1774 error_iomap:
1775         iounmap(base);
1776 error_kmalloc:
1777         kfree(hsdev);
1778 error:
1779         return err;
1780 }
1781
1782 static int sata_dwc_remove(struct platform_device *ofdev)
1783 {
1784         struct device *dev = &ofdev->dev;
1785         struct ata_host *host = dev_get_drvdata(dev);
1786         struct sata_dwc_device *hsdev = host->private_data;
1787
1788         ata_host_detach(host);
1789         dev_set_drvdata(dev, NULL);
1790
1791         /* Free SATA DMA resources */
1792         dma_dwc_exit(hsdev);
1793
1794         iounmap(hsdev->reg_base);
1795         kfree(hsdev);
1796         kfree(host);
1797         dev_dbg(&ofdev->dev, "done\n");
1798         return 0;
1799 }
1800
1801 static const struct of_device_id sata_dwc_match[] = {
1802         { .compatible = "amcc,sata-460ex", },
1803         {}
1804 };
1805 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1806
1807 static struct platform_driver sata_dwc_driver = {
1808         .driver = {
1809                 .name = DRV_NAME,
1810                 .owner = THIS_MODULE,
1811                 .of_match_table = sata_dwc_match,
1812         },
1813         .probe = sata_dwc_probe,
1814         .remove = sata_dwc_remove,
1815 };
1816
1817 module_platform_driver(sata_dwc_driver);
1818
1819 MODULE_LICENSE("GPL");
1820 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1821 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1822 MODULE_VERSION(DRV_VERSION);