2 * Driver for the Octeon bootbus compact flash.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 2005 - 2012 Cavium Inc.
9 * Copyright (C) 2008 Wind River Systems
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/hrtimer.h>
16 #include <linux/slab.h>
17 #include <linux/irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <scsi/scsi_host.h>
23 #include <asm/byteorder.h>
24 #include <asm/octeon/octeon.h>
27 * The Octeon bootbus compact flash interface is connected in at least
28 * 3 different configurations on various evaluation boards:
30 * -- 8 bits no irq, no DMA
31 * -- 16 bits no irq, no DMA
32 * -- 16 bits True IDE mode with DMA, but no irq.
34 * In the last case the DMA engine can generate an interrupt when the
35 * transfer is complete. For the first two cases only PIO is supported.
39 #define DRV_NAME "pata_octeon_cf"
40 #define DRV_VERSION "2.2"
42 /* Poll interval in nS. */
43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000
48 #define DMA_INT_EN 0x50
50 struct octeon_cf_port {
51 struct hrtimer delayed_finish;
61 static struct scsi_host_template octeon_cf_sht = {
62 ATA_PIO_SHT(DRV_NAME),
65 static int enable_dma;
66 module_param(enable_dma, int, 0444);
67 MODULE_PARM_DESC(enable_dma,
68 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
71 * Convert nanosecond based time to setting used in the
72 * boot bus timing register, based on timing multiple
74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
79 * Compute # of eclock periods to get desired duration in
82 val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
90 union cvmx_mio_boot_reg_cfgx reg_cfg;
91 unsigned int tim_mult;
108 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
109 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
110 reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */
111 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
112 reg_cfg.s.sam = 0; /* Don't combine write and output enable */
113 reg_cfg.s.we_ext = 0; /* No write enable extension */
114 reg_cfg.s.oe_ext = 0; /* No read enable extension */
115 reg_cfg.s.en = 1; /* Enable this region */
116 reg_cfg.s.orbit = 0; /* Don't combine with previous region */
117 reg_cfg.s.ale = 0; /* Don't do address multiplexing */
118 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
122 * Called after libata determines the needed PIO mode. This
123 * function programs the Octeon bootbus regions to support the
124 * timing requirements of the PIO mode.
126 * @ap: ATA port information
129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
131 struct octeon_cf_port *cf_port = ap->private_data;
132 union cvmx_mio_boot_reg_timx reg_tim;
134 struct ata_timing timing;
140 /* These names are timing parameters from the ATA spec */
144 * A divisor value of four will overflow the timing fields at
145 * clock rates greater than 800MHz
147 if (octeon_get_io_clock_rate() <= 800000000)
151 T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
153 BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
159 trh = ns_to_tim_reg(div, 20);
163 pause = (int)timing.cycle - (int)timing.active -
164 (int)timing.setup - trh;
170 octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
171 if (cf_port->is_true_ide)
172 /* True IDE mode, program both chip selects. */
173 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
176 use_iordy = ata_pio_need_iordy(dev);
178 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
179 /* Disable page mode */
181 /* Enable dynamic timing */
182 reg_tim.s.waitm = use_iordy;
183 /* Pages are disabled */
185 /* We don't use multiplexed address mode */
189 /* Time after IORDY to coninue to assert the data */
191 /* Time to wait to complete the cycle. */
192 reg_tim.s.pause = pause;
193 /* How long to hold after a write to de-assert CE. */
194 reg_tim.s.wr_hld = trh;
195 /* How long to wait after a read to de-assert CE. */
196 reg_tim.s.rd_hld = trh;
197 /* How long write enable is asserted */
199 /* How long read enable is asserted */
201 /* Time after CE that read/write starts */
202 reg_tim.s.ce = ns_to_tim_reg(div, 5);
203 /* Time before CE that address is valid */
206 /* Program the bootbus region timing for the data port chip select. */
207 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
208 if (cf_port->is_true_ide)
209 /* True IDE mode, program both chip selects. */
210 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
214 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
216 struct octeon_cf_port *cf_port = ap->private_data;
217 union cvmx_mio_boot_pin_defs pin_defs;
218 union cvmx_mio_boot_dma_timx dma_tim;
221 unsigned int dma_ackh;
222 unsigned int dma_arq;
224 unsigned int T0, Tkr, Td;
225 unsigned int tim_mult;
228 const struct ata_timing *timing;
230 timing = ata_timing_find_mode(dev->dma_mode);
233 Tkr = timing->recover;
234 dma_ackh = timing->dmack_hold;
237 /* dma_tim.s.tim_mult = 0 --> 4x */
240 /* not spec'ed, value in eclocks, not affected by tim_mult */
242 pause = 25 - dma_arq * 1000 /
243 (octeon_get_io_clock_rate() / 1000000); /* Tz */
246 /* Tkr from cf spec, lengthened to meet T0 */
247 oe_n = max(T0 - oe_a, Tkr);
249 pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
251 /* DMA channel number. */
252 c = (cf_port->dma_base & 8) >> 3;
254 /* Invert the polarity if the default is 0*/
255 dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
257 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
258 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
261 * This is tI, C.F. spec. says 0, but Sony CF card requires
262 * more, we use 20 nS.
264 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
265 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
267 dma_tim.s.dmarq = dma_arq;
268 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
270 dma_tim.s.rd_dly = 0; /* Sample right on edge */
273 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
274 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
276 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
277 ns_to_tim_reg(tim_mult, 60));
278 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
279 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
280 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
282 cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
286 * Handle an 8 bit I/O request.
288 * @qc: Queued command
289 * @buffer: Data buffer
290 * @buflen: Length of the buffer.
291 * @rw: True to write.
293 static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
294 unsigned char *buffer,
298 struct ata_port *ap = qc->dev->link->ap;
299 void __iomem *data_addr = ap->ioaddr.data_addr;
307 iowrite8(*buffer, data_addr);
310 * Every 16 writes do a read so the bootbus
311 * FIFO doesn't fill up.
314 ioread8(ap->ioaddr.altstatus_addr);
319 ioread8_rep(data_addr, buffer, words);
325 * Handle a 16 bit I/O request.
327 * @qc: Queued command
328 * @buffer: Data buffer
329 * @buflen: Length of the buffer.
330 * @rw: True to write.
332 static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
333 unsigned char *buffer,
337 struct ata_port *ap = qc->dev->link->ap;
338 void __iomem *data_addr = ap->ioaddr.data_addr;
346 iowrite16(*(uint16_t *)buffer, data_addr);
347 buffer += sizeof(uint16_t);
349 * Every 16 writes do a read so the bootbus
350 * FIFO doesn't fill up.
353 ioread8(ap->ioaddr.altstatus_addr);
359 *(uint16_t *)buffer = ioread16(data_addr);
360 buffer += sizeof(uint16_t);
363 /* Transfer trailing 1 byte, if any. */
364 if (unlikely(buflen & 0x01)) {
365 __le16 align_buf[1] = { 0 };
368 align_buf[0] = cpu_to_le16(ioread16(data_addr));
369 memcpy(buffer, align_buf, 1);
371 memcpy(align_buf, buffer, 1);
372 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
380 * Read the taskfile for 16bit non-True IDE only.
382 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
385 /* The base of the registers is at ioaddr.data_addr. */
386 void __iomem *base = ap->ioaddr.data_addr;
388 blob = __raw_readw(base + 0xc);
389 tf->feature = blob >> 8;
391 blob = __raw_readw(base + 2);
392 tf->nsect = blob & 0xff;
393 tf->lbal = blob >> 8;
395 blob = __raw_readw(base + 4);
396 tf->lbam = blob & 0xff;
397 tf->lbah = blob >> 8;
399 blob = __raw_readw(base + 6);
400 tf->device = blob & 0xff;
401 tf->command = blob >> 8;
403 if (tf->flags & ATA_TFLAG_LBA48) {
404 if (likely(ap->ioaddr.ctl_addr)) {
405 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
407 blob = __raw_readw(base + 0xc);
408 tf->hob_feature = blob >> 8;
410 blob = __raw_readw(base + 2);
411 tf->hob_nsect = blob & 0xff;
412 tf->hob_lbal = blob >> 8;
414 blob = __raw_readw(base + 4);
415 tf->hob_lbam = blob & 0xff;
416 tf->hob_lbah = blob >> 8;
418 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
419 ap->last_ctl = tf->ctl;
426 static u8 octeon_cf_check_status16(struct ata_port *ap)
429 void __iomem *base = ap->ioaddr.data_addr;
431 blob = __raw_readw(base + 6);
435 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
436 unsigned long deadline)
438 struct ata_port *ap = link->ap;
439 void __iomem *base = ap->ioaddr.data_addr;
443 DPRINTK("about to softreset\n");
444 __raw_writew(ap->ctl, base + 0xe);
446 __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
448 __raw_writew(ap->ctl, base + 0xe);
450 rc = ata_sff_wait_after_reset(link, 1, deadline);
452 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
456 /* determine by signature whether we have ATA or ATAPI devices */
457 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
458 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
463 * Load the taskfile for 16bit non-True IDE only. The device_addr is
464 * not loaded, we do this as part of octeon_cf_exec_command16.
466 static void octeon_cf_tf_load16(struct ata_port *ap,
467 const struct ata_taskfile *tf)
469 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
470 /* The base of the registers is at ioaddr.data_addr. */
471 void __iomem *base = ap->ioaddr.data_addr;
473 if (tf->ctl != ap->last_ctl) {
474 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
475 ap->last_ctl = tf->ctl;
478 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
479 __raw_writew(tf->hob_feature << 8, base + 0xc);
480 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
481 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
482 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
490 __raw_writew(tf->feature << 8, base + 0xc);
491 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
492 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
493 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
504 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
506 /* There is only one device, do nothing. */
511 * Issue ATA command to host controller. The device_addr is also sent
512 * as it must be written in a combined write with the command.
514 static void octeon_cf_exec_command16(struct ata_port *ap,
515 const struct ata_taskfile *tf)
517 /* The base of the registers is at ioaddr.data_addr. */
518 void __iomem *base = ap->ioaddr.data_addr;
521 if (tf->flags & ATA_TFLAG_DEVICE) {
522 VPRINTK("device 0x%X\n", tf->device);
528 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
529 blob |= (tf->command << 8);
530 __raw_writew(blob, base + 6);
536 static void octeon_cf_ata_port_noaction(struct ata_port *ap)
540 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
542 struct ata_port *ap = qc->ap;
543 struct octeon_cf_port *cf_port;
545 cf_port = ap->private_data;
547 /* issue r/w command */
549 cf_port->dma_finished = 0;
550 ap->ops->sff_exec_command(ap, &qc->tf);
555 * Start a DMA transfer that was already setup
557 * @qc: Information about the DMA
559 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
561 struct octeon_cf_port *cf_port = qc->ap->private_data;
562 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
563 union cvmx_mio_boot_dma_intx mio_boot_dma_int;
564 struct scatterlist *sg;
566 VPRINTK("%d scatterlists\n", qc->n_elem);
568 /* Get the scatter list entry we need to DMA into */
573 * Clear the DMA complete status.
575 mio_boot_dma_int.u64 = 0;
576 mio_boot_dma_int.s.done = 1;
577 cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
579 /* Enable the interrupt. */
580 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
582 /* Set the direction of the DMA */
583 mio_boot_dma_cfg.u64 = 0;
584 #ifdef __LITTLE_ENDIAN
585 mio_boot_dma_cfg.s.endian = 1;
587 mio_boot_dma_cfg.s.en = 1;
588 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
591 * Don't stop the DMA if the device deasserts DMARQ. Many
592 * compact flashes deassert DMARQ for a short time between
593 * sectors. Instead of stopping and restarting the DMA, we'll
594 * let the hardware do it. If the DMA is really stopped early
595 * due to an error condition, a later timeout will force us to
598 mio_boot_dma_cfg.s.clr = 0;
600 /* Size is specified in 16bit words and minus one notation */
601 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
603 /* We need to swap the high and low bytes of every 16 bits */
604 mio_boot_dma_cfg.s.swap8 = 1;
606 mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
608 VPRINTK("%s %d bytes address=%p\n",
609 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
610 (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
612 cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
618 * spin_lock_irqsave(host lock)
621 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
622 struct ata_queued_cmd *qc)
624 struct ata_eh_info *ehi = &ap->link.eh_info;
625 struct octeon_cf_port *cf_port = ap->private_data;
626 union cvmx_mio_boot_dma_cfgx dma_cfg;
627 union cvmx_mio_boot_dma_intx dma_int;
630 VPRINTK("ata%u: protocol %d task_state %d\n",
631 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
634 if (ap->hsm_task_state != HSM_ST_LAST)
637 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
638 if (dma_cfg.s.size != 0xfffff) {
639 /* Error, the transfer was not complete. */
640 qc->err_mask |= AC_ERR_HOST_BUS;
641 ap->hsm_task_state = HSM_ST_ERR;
644 /* Stop and clear the dma engine. */
647 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
649 /* Disable the interrupt. */
651 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
653 /* Clear the DMA complete status */
655 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
657 status = ap->ops->sff_check_status(ap);
659 ata_sff_hsm_move(ap, qc, status, 0);
661 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
662 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
668 * Check if any queued commands have more DMAs, if so start the next
669 * transfer, else do end of transfer handling.
671 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
673 struct ata_host *host = dev_instance;
674 struct octeon_cf_port *cf_port;
676 unsigned int handled = 0;
679 spin_lock_irqsave(&host->lock, flags);
682 for (i = 0; i < host->n_ports; i++) {
685 struct ata_queued_cmd *qc;
686 union cvmx_mio_boot_dma_intx dma_int;
687 union cvmx_mio_boot_dma_cfgx dma_cfg;
690 cf_port = ap->private_data;
692 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
693 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
695 qc = ata_qc_from_tag(ap, ap->link.active_tag);
697 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
700 if (dma_int.s.done && !dma_cfg.s.en) {
701 if (!sg_is_last(qc->cursg)) {
702 qc->cursg = sg_next(qc->cursg);
704 octeon_cf_dma_start(qc);
707 cf_port->dma_finished = 1;
710 if (!cf_port->dma_finished)
712 status = ioread8(ap->ioaddr.altstatus_addr);
713 if (status & (ATA_BUSY | ATA_DRQ)) {
715 * We are busy, try to handle it later. This
716 * is the DMA finished interrupt, and it could
717 * take a little while for the card to be
718 * ready for more commands.
723 cvmx_write_csr(cf_port->dma_base + DMA_INT,
725 hrtimer_start_range_ns(&cf_port->delayed_finish,
726 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
727 OCTEON_CF_BUSY_POLL_INTERVAL / 5,
731 handled |= octeon_cf_dma_finished(ap, qc);
734 spin_unlock_irqrestore(&host->lock, flags);
736 return IRQ_RETVAL(handled);
739 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
741 struct octeon_cf_port *cf_port = container_of(hrt,
742 struct octeon_cf_port,
744 struct ata_port *ap = cf_port->ap;
745 struct ata_host *host = ap->host;
746 struct ata_queued_cmd *qc;
749 enum hrtimer_restart rv = HRTIMER_NORESTART;
751 spin_lock_irqsave(&host->lock, flags);
754 * If the port is not waiting for completion, it must have
755 * handled it previously. The hsm_task_state is
756 * protected by host->lock.
758 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
761 status = ioread8(ap->ioaddr.altstatus_addr);
762 if (status & (ATA_BUSY | ATA_DRQ)) {
763 /* Still busy, try again. */
764 hrtimer_forward_now(hrt,
765 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
766 rv = HRTIMER_RESTART;
769 qc = ata_qc_from_tag(ap, ap->link.active_tag);
770 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
771 octeon_cf_dma_finished(ap, qc);
773 spin_unlock_irqrestore(&host->lock, flags);
777 static void octeon_cf_dev_config(struct ata_device *dev)
780 * A maximum of 2^20 - 1 16 bit transfers are possible with
781 * the bootbus DMA. So we need to throttle max_sectors to
782 * (2^12 - 1 == 4095) to assure that this can never happen.
784 dev->max_sectors = min(dev->max_sectors, 4095U);
788 * We don't do ATAPI DMA so return 0.
790 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
795 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
797 struct ata_port *ap = qc->ap;
799 switch (qc->tf.protocol) {
801 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
803 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
804 octeon_cf_dma_setup(qc); /* set up dma */
805 octeon_cf_dma_start(qc); /* initiate dma */
806 ap->hsm_task_state = HSM_ST_LAST;
810 dev_err(ap->dev, "Error, ATAPI not supported\n");
814 return ata_sff_qc_issue(qc);
820 static struct ata_port_operations octeon_cf_ops = {
821 .inherits = &ata_sff_port_ops,
822 .check_atapi_dma = octeon_cf_check_atapi_dma,
823 .qc_prep = ata_noop_qc_prep,
824 .qc_issue = octeon_cf_qc_issue,
825 .sff_dev_select = octeon_cf_dev_select,
826 .sff_irq_on = octeon_cf_ata_port_noaction,
827 .sff_irq_clear = octeon_cf_ata_port_noaction,
828 .cable_detect = ata_cable_40wire,
829 .set_piomode = octeon_cf_set_piomode,
830 .set_dmamode = octeon_cf_set_dmamode,
831 .dev_config = octeon_cf_dev_config,
834 static int octeon_cf_probe(struct platform_device *pdev)
836 struct resource *res_cs0, *res_cs1;
839 const __be32 *cs_num;
840 struct property *reg_prop;
841 int n_addr, n_size, reg_len;
842 struct device_node *node;
844 void __iomem *cs1 = NULL;
845 struct ata_host *host;
848 irq_handler_t irq_handler = NULL;
850 struct octeon_cf_port *cf_port;
854 node = pdev->dev.of_node;
858 cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
862 cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
864 if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
865 is_16bit = (bus_width == 16);
869 n_addr = of_n_addr_cells(node);
870 n_size = of_n_size_cells(node);
872 reg_prop = of_find_property(node, "reg", ®_len);
873 if (!reg_prop || reg_len < sizeof(__be32))
876 cs_num = reg_prop->value;
877 cf_port->cs0 = be32_to_cpup(cs_num);
879 if (cf_port->is_true_ide) {
880 struct device_node *dma_node;
881 dma_node = of_parse_phandle(node,
882 "cavium,dma-engine-handle", 0);
884 struct platform_device *dma_dev;
885 dma_dev = of_find_device_by_node(dma_node);
887 struct resource *res_dma;
889 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
891 of_node_put(dma_node);
894 cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start,
895 resource_size(res_dma));
896 if (!cf_port->dma_base) {
897 of_node_put(dma_node);
901 i = platform_get_irq(dma_dev, 0);
904 irq_handler = octeon_cf_interrupt;
907 of_node_put(dma_node);
909 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
913 cs1 = devm_ioremap(&pdev->dev, res_cs1->start,
914 resource_size(res_cs1));
918 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
921 cs_num += n_addr + n_size;
922 cf_port->cs1 = be32_to_cpup(cs_num);
925 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
929 cs0 = devm_ioremap(&pdev->dev, res_cs0->start,
930 resource_size(res_cs0));
935 host = ata_host_alloc(&pdev->dev, 1);
940 ap->private_data = cf_port;
941 pdev->dev.platform_data = cf_port;
943 ap->ops = &octeon_cf_ops;
944 ap->pio_mask = ATA_PIO6;
945 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
949 ap->ioaddr.cmd_addr = base;
950 ata_sff_std_ports(&ap->ioaddr);
952 ap->ioaddr.altstatus_addr = base + 0xe;
953 ap->ioaddr.ctl_addr = base + 0xe;
954 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
955 } else if (cf_port->is_true_ide) {
957 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
958 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
959 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
960 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
961 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
962 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
963 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
964 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
965 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
966 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
967 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
968 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
969 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
970 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
972 ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0;
974 /* True IDE mode needs a timer to poll for not-busy. */
975 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
977 cf_port->delayed_finish.function = octeon_cf_delayed_finish;
979 /* 16 bit but not True IDE */
981 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
982 octeon_cf_ops.softreset = octeon_cf_softreset16;
983 octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
984 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
985 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
986 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
988 ap->ioaddr.data_addr = base + ATA_REG_DATA;
989 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
990 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
991 ap->ioaddr.ctl_addr = base + 0xe;
992 ap->ioaddr.altstatus_addr = base + 0xe;
994 cf_port->c0 = ap->ioaddr.ctl_addr;
996 rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1000 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
1002 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
1004 cf_port->is_true_ide ? ", True IDE" : "");
1006 return ata_host_activate(host, irq, irq_handler,
1007 IRQF_SHARED, &octeon_cf_sht);
1010 static void octeon_cf_shutdown(struct device *dev)
1012 union cvmx_mio_boot_dma_cfgx dma_cfg;
1013 union cvmx_mio_boot_dma_intx dma_int;
1015 struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1017 if (cf_port->dma_base) {
1018 /* Stop and clear the dma engine. */
1020 dma_cfg.s.size = -1;
1021 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
1023 /* Disable the interrupt. */
1025 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
1027 /* Clear the DMA complete status */
1029 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1031 __raw_writeb(0, cf_port->c0);
1033 __raw_writeb(ATA_SRST, cf_port->c0);
1035 __raw_writeb(0, cf_port->c0);
1040 static const struct of_device_id octeon_cf_match[] = {
1042 .compatible = "cavium,ebt3000-compact-flash",
1046 MODULE_DEVICE_TABLE(of, octeon_cf_match);
1048 static struct platform_driver octeon_cf_driver = {
1049 .probe = octeon_cf_probe,
1052 .of_match_table = octeon_cf_match,
1053 .shutdown = octeon_cf_shutdown
1057 static int __init octeon_cf_init(void)
1059 return platform_driver_register(&octeon_cf_driver);
1063 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1064 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1065 MODULE_LICENSE("GPL");
1066 MODULE_VERSION(DRV_VERSION);
1067 MODULE_ALIAS("platform:" DRV_NAME);
1069 module_init(octeon_cf_init);