2 * Driver for the Octeon bootbus compact flash.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 2005 - 2012 Cavium Inc.
9 * Copyright (C) 2008 Wind River Systems
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/hrtimer.h>
16 #include <linux/slab.h>
17 #include <linux/irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <scsi/scsi_host.h>
22 #include <trace/events/libata.h>
23 #include <asm/byteorder.h>
24 #include <asm/octeon/octeon.h>
27 * The Octeon bootbus compact flash interface is connected in at least
28 * 3 different configurations on various evaluation boards:
30 * -- 8 bits no irq, no DMA
31 * -- 16 bits no irq, no DMA
32 * -- 16 bits True IDE mode with DMA, but no irq.
34 * In the last case the DMA engine can generate an interrupt when the
35 * transfer is complete. For the first two cases only PIO is supported.
39 #define DRV_NAME "pata_octeon_cf"
40 #define DRV_VERSION "2.2"
42 /* Poll interval in nS. */
43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000
48 #define DMA_INT_EN 0x50
50 struct octeon_cf_port {
51 struct hrtimer delayed_finish;
61 static struct scsi_host_template octeon_cf_sht = {
62 ATA_PIO_SHT(DRV_NAME),
65 static int enable_dma;
66 module_param(enable_dma, int, 0444);
67 MODULE_PARM_DESC(enable_dma,
68 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
71 * Convert nanosecond based time to setting used in the
72 * boot bus timing register, based on timing multiple
74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
77 * Compute # of eclock periods to get desired duration in
80 return DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
84 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
86 union cvmx_mio_boot_reg_cfgx reg_cfg;
87 unsigned int tim_mult;
104 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
105 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
106 reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */
107 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
108 reg_cfg.s.sam = 0; /* Don't combine write and output enable */
109 reg_cfg.s.we_ext = 0; /* No write enable extension */
110 reg_cfg.s.oe_ext = 0; /* No read enable extension */
111 reg_cfg.s.en = 1; /* Enable this region */
112 reg_cfg.s.orbit = 0; /* Don't combine with previous region */
113 reg_cfg.s.ale = 0; /* Don't do address multiplexing */
114 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
118 * Called after libata determines the needed PIO mode. This
119 * function programs the Octeon bootbus regions to support the
120 * timing requirements of the PIO mode.
122 * @ap: ATA port information
125 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
127 struct octeon_cf_port *cf_port = ap->private_data;
128 union cvmx_mio_boot_reg_timx reg_tim;
130 struct ata_timing timing;
136 /* These names are timing parameters from the ATA spec */
140 * A divisor value of four will overflow the timing fields at
141 * clock rates greater than 800MHz
143 if (octeon_get_io_clock_rate() <= 800000000)
147 T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
149 BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
155 trh = ns_to_tim_reg(div, 20);
159 pause = (int)timing.cycle - (int)timing.active -
160 (int)timing.setup - trh;
166 octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
167 if (cf_port->is_true_ide)
168 /* True IDE mode, program both chip selects. */
169 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
172 use_iordy = ata_pio_need_iordy(dev);
174 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
175 /* Disable page mode */
177 /* Enable dynamic timing */
178 reg_tim.s.waitm = use_iordy;
179 /* Pages are disabled */
181 /* We don't use multiplexed address mode */
185 /* Time after IORDY to coninue to assert the data */
187 /* Time to wait to complete the cycle. */
188 reg_tim.s.pause = pause;
189 /* How long to hold after a write to de-assert CE. */
190 reg_tim.s.wr_hld = trh;
191 /* How long to wait after a read to de-assert CE. */
192 reg_tim.s.rd_hld = trh;
193 /* How long write enable is asserted */
195 /* How long read enable is asserted */
197 /* Time after CE that read/write starts */
198 reg_tim.s.ce = ns_to_tim_reg(div, 5);
199 /* Time before CE that address is valid */
202 /* Program the bootbus region timing for the data port chip select. */
203 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
204 if (cf_port->is_true_ide)
205 /* True IDE mode, program both chip selects. */
206 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
210 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
212 struct octeon_cf_port *cf_port = ap->private_data;
213 union cvmx_mio_boot_pin_defs pin_defs;
214 union cvmx_mio_boot_dma_timx dma_tim;
217 unsigned int dma_ackh;
218 unsigned int dma_arq;
220 unsigned int T0, Tkr, Td;
221 unsigned int tim_mult;
224 const struct ata_timing *timing;
226 timing = ata_timing_find_mode(dev->dma_mode);
229 Tkr = timing->recover;
230 dma_ackh = timing->dmack_hold;
233 /* dma_tim.s.tim_mult = 0 --> 4x */
236 /* not spec'ed, value in eclocks, not affected by tim_mult */
238 pause = 25 - dma_arq * 1000 /
239 (octeon_get_io_clock_rate() / 1000000); /* Tz */
242 /* Tkr from cf spec, lengthened to meet T0 */
243 oe_n = max(T0 - oe_a, Tkr);
245 pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
247 /* DMA channel number. */
248 c = (cf_port->dma_base & 8) >> 3;
250 /* Invert the polarity if the default is 0*/
251 dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
253 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
254 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
257 * This is tI, C.F. spec. says 0, but Sony CF card requires
258 * more, we use 20 nS.
260 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
261 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
263 dma_tim.s.dmarq = dma_arq;
264 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
266 dma_tim.s.rd_dly = 0; /* Sample right on edge */
269 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
270 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
272 ata_dev_dbg(dev, "ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
273 ns_to_tim_reg(tim_mult, 60));
274 ata_dev_dbg(dev, "oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
275 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
276 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
278 cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
282 * Handle an 8 bit I/O request.
284 * @qc: Queued command
285 * @buffer: Data buffer
286 * @buflen: Length of the buffer.
287 * @rw: True to write.
289 static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
290 unsigned char *buffer,
294 struct ata_port *ap = qc->dev->link->ap;
295 void __iomem *data_addr = ap->ioaddr.data_addr;
303 iowrite8(*buffer, data_addr);
306 * Every 16 writes do a read so the bootbus
307 * FIFO doesn't fill up.
310 ioread8(ap->ioaddr.altstatus_addr);
315 ioread8_rep(data_addr, buffer, words);
321 * Handle a 16 bit I/O request.
323 * @qc: Queued command
324 * @buffer: Data buffer
325 * @buflen: Length of the buffer.
326 * @rw: True to write.
328 static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
329 unsigned char *buffer,
333 struct ata_port *ap = qc->dev->link->ap;
334 void __iomem *data_addr = ap->ioaddr.data_addr;
342 iowrite16(*(uint16_t *)buffer, data_addr);
343 buffer += sizeof(uint16_t);
345 * Every 16 writes do a read so the bootbus
346 * FIFO doesn't fill up.
349 ioread8(ap->ioaddr.altstatus_addr);
355 *(uint16_t *)buffer = ioread16(data_addr);
356 buffer += sizeof(uint16_t);
359 /* Transfer trailing 1 byte, if any. */
360 if (unlikely(buflen & 0x01)) {
361 __le16 align_buf[1] = { 0 };
364 align_buf[0] = cpu_to_le16(ioread16(data_addr));
365 memcpy(buffer, align_buf, 1);
367 memcpy(align_buf, buffer, 1);
368 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
376 * Read the taskfile for 16bit non-True IDE only.
378 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
381 /* The base of the registers is at ioaddr.data_addr. */
382 void __iomem *base = ap->ioaddr.data_addr;
384 blob = __raw_readw(base + 0xc);
385 tf->error = blob >> 8;
387 blob = __raw_readw(base + 2);
388 tf->nsect = blob & 0xff;
389 tf->lbal = blob >> 8;
391 blob = __raw_readw(base + 4);
392 tf->lbam = blob & 0xff;
393 tf->lbah = blob >> 8;
395 blob = __raw_readw(base + 6);
396 tf->device = blob & 0xff;
397 tf->status = blob >> 8;
399 if (tf->flags & ATA_TFLAG_LBA48) {
400 if (likely(ap->ioaddr.ctl_addr)) {
401 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
403 blob = __raw_readw(base + 0xc);
404 tf->hob_feature = blob >> 8;
406 blob = __raw_readw(base + 2);
407 tf->hob_nsect = blob & 0xff;
408 tf->hob_lbal = blob >> 8;
410 blob = __raw_readw(base + 4);
411 tf->hob_lbam = blob & 0xff;
412 tf->hob_lbah = blob >> 8;
414 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
415 ap->last_ctl = tf->ctl;
422 static u8 octeon_cf_check_status16(struct ata_port *ap)
425 void __iomem *base = ap->ioaddr.data_addr;
427 blob = __raw_readw(base + 6);
431 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
432 unsigned long deadline)
434 struct ata_port *ap = link->ap;
435 void __iomem *base = ap->ioaddr.data_addr;
439 __raw_writew(ap->ctl, base + 0xe);
441 __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
443 __raw_writew(ap->ctl, base + 0xe);
445 rc = ata_sff_wait_after_reset(link, 1, deadline);
447 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
451 /* determine by signature whether we have ATA or ATAPI devices */
452 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
457 * Load the taskfile for 16bit non-True IDE only. The device_addr is
458 * not loaded, we do this as part of octeon_cf_exec_command16.
460 static void octeon_cf_tf_load16(struct ata_port *ap,
461 const struct ata_taskfile *tf)
463 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
464 /* The base of the registers is at ioaddr.data_addr. */
465 void __iomem *base = ap->ioaddr.data_addr;
467 if (tf->ctl != ap->last_ctl) {
468 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
469 ap->last_ctl = tf->ctl;
472 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
473 __raw_writew(tf->hob_feature << 8, base + 0xc);
474 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
475 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
478 __raw_writew(tf->feature << 8, base + 0xc);
479 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
480 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
486 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
488 /* There is only one device, do nothing. */
493 * Issue ATA command to host controller. The device_addr is also sent
494 * as it must be written in a combined write with the command.
496 static void octeon_cf_exec_command16(struct ata_port *ap,
497 const struct ata_taskfile *tf)
499 /* The base of the registers is at ioaddr.data_addr. */
500 void __iomem *base = ap->ioaddr.data_addr;
503 if (tf->flags & ATA_TFLAG_DEVICE)
506 blob |= (tf->command << 8);
507 __raw_writew(blob, base + 6);
512 static void octeon_cf_ata_port_noaction(struct ata_port *ap)
516 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
518 struct ata_port *ap = qc->ap;
519 struct octeon_cf_port *cf_port;
521 cf_port = ap->private_data;
522 /* issue r/w command */
524 cf_port->dma_finished = 0;
525 ap->ops->sff_exec_command(ap, &qc->tf);
529 * Start a DMA transfer that was already setup
531 * @qc: Information about the DMA
533 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
535 struct octeon_cf_port *cf_port = qc->ap->private_data;
536 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
537 union cvmx_mio_boot_dma_intx mio_boot_dma_int;
538 struct scatterlist *sg;
540 /* Get the scatter list entry we need to DMA into */
545 * Clear the DMA complete status.
547 mio_boot_dma_int.u64 = 0;
548 mio_boot_dma_int.s.done = 1;
549 cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
551 /* Enable the interrupt. */
552 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
554 /* Set the direction of the DMA */
555 mio_boot_dma_cfg.u64 = 0;
556 #ifdef __LITTLE_ENDIAN
557 mio_boot_dma_cfg.s.endian = 1;
559 mio_boot_dma_cfg.s.en = 1;
560 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
563 * Don't stop the DMA if the device deasserts DMARQ. Many
564 * compact flashes deassert DMARQ for a short time between
565 * sectors. Instead of stopping and restarting the DMA, we'll
566 * let the hardware do it. If the DMA is really stopped early
567 * due to an error condition, a later timeout will force us to
570 mio_boot_dma_cfg.s.clr = 0;
572 /* Size is specified in 16bit words and minus one notation */
573 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
575 /* We need to swap the high and low bytes of every 16 bits */
576 mio_boot_dma_cfg.s.swap8 = 1;
578 mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
580 cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
586 * spin_lock_irqsave(host lock)
589 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
590 struct ata_queued_cmd *qc)
592 struct ata_eh_info *ehi = &ap->link.eh_info;
593 struct octeon_cf_port *cf_port = ap->private_data;
594 union cvmx_mio_boot_dma_cfgx dma_cfg;
595 union cvmx_mio_boot_dma_intx dma_int;
598 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
600 if (ap->hsm_task_state != HSM_ST_LAST)
603 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
604 if (dma_cfg.s.size != 0xfffff) {
605 /* Error, the transfer was not complete. */
606 qc->err_mask |= AC_ERR_HOST_BUS;
607 ap->hsm_task_state = HSM_ST_ERR;
610 /* Stop and clear the dma engine. */
613 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
615 /* Disable the interrupt. */
617 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
619 /* Clear the DMA complete status */
621 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
623 status = ap->ops->sff_check_status(ap);
625 ata_sff_hsm_move(ap, qc, status, 0);
627 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
628 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
634 * Check if any queued commands have more DMAs, if so start the next
635 * transfer, else do end of transfer handling.
637 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
639 struct ata_host *host = dev_instance;
640 struct octeon_cf_port *cf_port;
642 unsigned int handled = 0;
645 spin_lock_irqsave(&host->lock, flags);
647 for (i = 0; i < host->n_ports; i++) {
650 struct ata_queued_cmd *qc;
651 union cvmx_mio_boot_dma_intx dma_int;
652 union cvmx_mio_boot_dma_cfgx dma_cfg;
655 cf_port = ap->private_data;
657 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
658 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
660 qc = ata_qc_from_tag(ap, ap->link.active_tag);
662 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
665 if (dma_int.s.done && !dma_cfg.s.en) {
666 if (!sg_is_last(qc->cursg)) {
667 qc->cursg = sg_next(qc->cursg);
669 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
670 octeon_cf_dma_start(qc);
673 cf_port->dma_finished = 1;
676 if (!cf_port->dma_finished)
678 status = ioread8(ap->ioaddr.altstatus_addr);
679 if (status & (ATA_BUSY | ATA_DRQ)) {
681 * We are busy, try to handle it later. This
682 * is the DMA finished interrupt, and it could
683 * take a little while for the card to be
684 * ready for more commands.
689 cvmx_write_csr(cf_port->dma_base + DMA_INT,
691 hrtimer_start_range_ns(&cf_port->delayed_finish,
692 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
693 OCTEON_CF_BUSY_POLL_INTERVAL / 5,
697 handled |= octeon_cf_dma_finished(ap, qc);
700 spin_unlock_irqrestore(&host->lock, flags);
701 return IRQ_RETVAL(handled);
704 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
706 struct octeon_cf_port *cf_port = container_of(hrt,
707 struct octeon_cf_port,
709 struct ata_port *ap = cf_port->ap;
710 struct ata_host *host = ap->host;
711 struct ata_queued_cmd *qc;
714 enum hrtimer_restart rv = HRTIMER_NORESTART;
716 spin_lock_irqsave(&host->lock, flags);
719 * If the port is not waiting for completion, it must have
720 * handled it previously. The hsm_task_state is
721 * protected by host->lock.
723 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
726 status = ioread8(ap->ioaddr.altstatus_addr);
727 if (status & (ATA_BUSY | ATA_DRQ)) {
728 /* Still busy, try again. */
729 hrtimer_forward_now(hrt,
730 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
731 rv = HRTIMER_RESTART;
734 qc = ata_qc_from_tag(ap, ap->link.active_tag);
735 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
736 octeon_cf_dma_finished(ap, qc);
738 spin_unlock_irqrestore(&host->lock, flags);
742 static void octeon_cf_dev_config(struct ata_device *dev)
745 * A maximum of 2^20 - 1 16 bit transfers are possible with
746 * the bootbus DMA. So we need to throttle max_sectors to
747 * (2^12 - 1 == 4095) to assure that this can never happen.
749 dev->max_sectors = min(dev->max_sectors, 4095U);
753 * We don't do ATAPI DMA so return 0.
755 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
760 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
762 struct ata_port *ap = qc->ap;
764 switch (qc->tf.protocol) {
766 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
768 trace_ata_tf_load(ap, &qc->tf);
769 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
770 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
771 octeon_cf_dma_setup(qc); /* set up dma */
772 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
773 octeon_cf_dma_start(qc); /* initiate dma */
774 ap->hsm_task_state = HSM_ST_LAST;
778 dev_err(ap->dev, "Error, ATAPI not supported\n");
782 return ata_sff_qc_issue(qc);
788 static struct ata_port_operations octeon_cf_ops = {
789 .inherits = &ata_sff_port_ops,
790 .check_atapi_dma = octeon_cf_check_atapi_dma,
791 .qc_prep = ata_noop_qc_prep,
792 .qc_issue = octeon_cf_qc_issue,
793 .sff_dev_select = octeon_cf_dev_select,
794 .sff_irq_on = octeon_cf_ata_port_noaction,
795 .sff_irq_clear = octeon_cf_ata_port_noaction,
796 .cable_detect = ata_cable_40wire,
797 .set_piomode = octeon_cf_set_piomode,
798 .set_dmamode = octeon_cf_set_dmamode,
799 .dev_config = octeon_cf_dev_config,
802 static int octeon_cf_probe(struct platform_device *pdev)
804 struct resource *res_cs0, *res_cs1;
807 const __be32 *cs_num;
808 struct property *reg_prop;
809 int n_addr, n_size, reg_len;
810 struct device_node *node;
812 void __iomem *cs1 = NULL;
813 struct ata_host *host;
816 irq_handler_t irq_handler = NULL;
818 struct octeon_cf_port *cf_port;
822 node = pdev->dev.of_node;
826 cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
830 cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
832 if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
833 is_16bit = (bus_width == 16);
837 n_addr = of_n_addr_cells(node);
838 n_size = of_n_size_cells(node);
840 reg_prop = of_find_property(node, "reg", ®_len);
841 if (!reg_prop || reg_len < sizeof(__be32))
844 cs_num = reg_prop->value;
845 cf_port->cs0 = be32_to_cpup(cs_num);
847 if (cf_port->is_true_ide) {
848 struct device_node *dma_node;
849 dma_node = of_parse_phandle(node,
850 "cavium,dma-engine-handle", 0);
852 struct platform_device *dma_dev;
853 dma_dev = of_find_device_by_node(dma_node);
855 struct resource *res_dma;
857 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
859 put_device(&dma_dev->dev);
860 of_node_put(dma_node);
863 cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start,
864 resource_size(res_dma));
865 if (!cf_port->dma_base) {
866 put_device(&dma_dev->dev);
867 of_node_put(dma_node);
871 i = platform_get_irq(dma_dev, 0);
874 irq_handler = octeon_cf_interrupt;
876 put_device(&dma_dev->dev);
878 of_node_put(dma_node);
880 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
884 cs1 = devm_ioremap(&pdev->dev, res_cs1->start,
885 resource_size(res_cs1));
889 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
892 cs_num += n_addr + n_size;
893 cf_port->cs1 = be32_to_cpup(cs_num);
896 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
900 cs0 = devm_ioremap(&pdev->dev, res_cs0->start,
901 resource_size(res_cs0));
906 host = ata_host_alloc(&pdev->dev, 1);
911 ap->private_data = cf_port;
912 pdev->dev.platform_data = cf_port;
914 ap->ops = &octeon_cf_ops;
915 ap->pio_mask = ATA_PIO6;
916 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
920 ap->ioaddr.cmd_addr = base;
921 ata_sff_std_ports(&ap->ioaddr);
923 ap->ioaddr.altstatus_addr = base + 0xe;
924 ap->ioaddr.ctl_addr = base + 0xe;
925 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
926 } else if (cf_port->is_true_ide) {
928 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
929 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
930 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
931 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
932 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
933 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
934 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
935 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
936 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
937 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
938 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
939 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
940 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
941 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
943 ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0;
945 /* True IDE mode needs a timer to poll for not-busy. */
946 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
948 cf_port->delayed_finish.function = octeon_cf_delayed_finish;
950 /* 16 bit but not True IDE */
952 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
953 octeon_cf_ops.softreset = octeon_cf_softreset16;
954 octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
955 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
956 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
957 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
959 ap->ioaddr.data_addr = base + ATA_REG_DATA;
960 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
961 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
962 ap->ioaddr.ctl_addr = base + 0xe;
963 ap->ioaddr.altstatus_addr = base + 0xe;
965 cf_port->c0 = ap->ioaddr.ctl_addr;
967 rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
971 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
973 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
975 cf_port->is_true_ide ? ", True IDE" : "");
977 return ata_host_activate(host, irq, irq_handler,
978 IRQF_SHARED, &octeon_cf_sht);
981 static void octeon_cf_shutdown(struct device *dev)
983 union cvmx_mio_boot_dma_cfgx dma_cfg;
984 union cvmx_mio_boot_dma_intx dma_int;
986 struct octeon_cf_port *cf_port = dev_get_platdata(dev);
988 if (cf_port->dma_base) {
989 /* Stop and clear the dma engine. */
992 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
994 /* Disable the interrupt. */
996 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
998 /* Clear the DMA complete status */
1000 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1002 __raw_writeb(0, cf_port->c0);
1004 __raw_writeb(ATA_SRST, cf_port->c0);
1006 __raw_writeb(0, cf_port->c0);
1011 static const struct of_device_id octeon_cf_match[] = {
1012 { .compatible = "cavium,ebt3000-compact-flash", },
1015 MODULE_DEVICE_TABLE(of, octeon_cf_match);
1017 static struct platform_driver octeon_cf_driver = {
1018 .probe = octeon_cf_probe,
1021 .of_match_table = octeon_cf_match,
1022 .shutdown = octeon_cf_shutdown
1026 static int __init octeon_cf_init(void)
1028 return platform_driver_register(&octeon_cf_driver);
1032 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1033 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1034 MODULE_LICENSE("GPL");
1035 MODULE_VERSION(DRV_VERSION);
1036 MODULE_ALIAS("platform:" DRV_NAME);
1038 module_init(octeon_cf_init);