1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * libata-sff.c - helper library for PCI IDE BMDMA
5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2006 Jeff Garzik
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21 #include <trace/events/libata.h>
24 static struct workqueue_struct *ata_sff_wq;
26 const struct ata_port_operations ata_sff_port_ops = {
27 .inherits = &ata_base_port_ops,
29 .qc_prep = ata_noop_qc_prep,
30 .qc_issue = ata_sff_qc_issue,
31 .qc_fill_rtf = ata_sff_qc_fill_rtf,
33 .freeze = ata_sff_freeze,
35 .prereset = ata_sff_prereset,
36 .softreset = ata_sff_softreset,
37 .hardreset = sata_sff_hardreset,
38 .postreset = ata_sff_postreset,
39 .error_handler = ata_sff_error_handler,
41 .sff_dev_select = ata_sff_dev_select,
42 .sff_check_status = ata_sff_check_status,
43 .sff_tf_load = ata_sff_tf_load,
44 .sff_tf_read = ata_sff_tf_read,
45 .sff_exec_command = ata_sff_exec_command,
46 .sff_data_xfer = ata_sff_data_xfer,
47 .sff_drain_fifo = ata_sff_drain_fifo,
49 .lost_interrupt = ata_sff_lost_interrupt,
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
54 * ata_sff_check_status - Read device status reg & clear interrupt
55 * @ap: port where the device is
57 * Reads ATA taskfile status register for currently-selected device
58 * and return its value. This also clears pending interrupts
62 * Inherited from caller.
64 u8 ata_sff_check_status(struct ata_port *ap)
66 return ioread8(ap->ioaddr.status_addr);
68 EXPORT_SYMBOL_GPL(ata_sff_check_status);
71 * ata_sff_altstatus - Read device alternate status reg
72 * @ap: port where the device is
73 * @status: pointer to a status value
75 * Reads ATA alternate status register for currently-selected device
76 * and return its value.
79 * true if the register exists, false if not.
82 * Inherited from caller.
84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
88 if (ap->ops->sff_check_altstatus) {
89 tmp = ap->ops->sff_check_altstatus(ap);
92 if (ap->ioaddr.altstatus_addr) {
93 tmp = ioread8(ap->ioaddr.altstatus_addr);
105 * ata_sff_irq_status - Check if the device is busy
106 * @ap: port where the device is
108 * Determine if the port is currently busy. Uses altstatus
109 * if available in order to avoid clearing shared IRQ status
110 * when finding an IRQ source. Non ctl capable devices don't
111 * share interrupt lines fortunately for us.
114 * Inherited from caller.
116 static u8 ata_sff_irq_status(struct ata_port *ap)
120 /* Not us: We are busy */
121 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
123 /* Clear INTRQ latch */
124 status = ap->ops->sff_check_status(ap);
129 * ata_sff_sync - Flush writes
130 * @ap: Port to wait for.
133 * If we have an mmio device with no ctl and no altstatus
134 * method this will fail. No such devices are known to exist.
137 * Inherited from caller.
140 static void ata_sff_sync(struct ata_port *ap)
142 ata_sff_altstatus(ap, NULL);
146 * ata_sff_pause - Flush writes and wait 400nS
147 * @ap: Port to pause for.
150 * If we have an mmio device with no ctl and no altstatus
151 * method this will fail. No such devices are known to exist.
154 * Inherited from caller.
157 void ata_sff_pause(struct ata_port *ap)
162 EXPORT_SYMBOL_GPL(ata_sff_pause);
165 * ata_sff_dma_pause - Pause before commencing DMA
166 * @ap: Port to pause for.
168 * Perform I/O fencing and ensure sufficient cycle delays occur
169 * for the HDMA1:0 transition
172 void ata_sff_dma_pause(struct ata_port *ap)
175 * An altstatus read will cause the needed delay without
176 * messing up the IRQ status
178 if (ata_sff_altstatus(ap, NULL))
180 /* There are no DMA controllers without ctl. BUG here to ensure
181 we never violate the HDMA1:0 transition timing and risk
185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
187 static int ata_sff_check_ready(struct ata_link *link)
189 u8 status = link->ap->ops->sff_check_status(link->ap);
191 return ata_check_ready(status);
195 * ata_sff_wait_ready - sleep until BSY clears, or timeout
196 * @link: SFF link to wait ready status for
197 * @deadline: deadline jiffies for the operation
199 * Sleep until ATA Status register bit BSY clears, or timeout
203 * Kernel thread context (may sleep).
206 * 0 on success, -errno otherwise.
208 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
210 return ata_wait_ready(link, deadline, ata_sff_check_ready);
212 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
215 * ata_sff_set_devctl - Write device control reg
216 * @ap: port where the device is
217 * @ctl: value to write
219 * Writes ATA device control register.
222 * true if the register exists, false if not.
225 * Inherited from caller.
227 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
229 if (ap->ops->sff_set_devctl) {
230 ap->ops->sff_set_devctl(ap, ctl);
233 if (ap->ioaddr.ctl_addr) {
234 iowrite8(ctl, ap->ioaddr.ctl_addr);
242 * ata_sff_dev_select - Select device 0/1 on ATA bus
243 * @ap: ATA channel to manipulate
244 * @device: ATA device (numbered from zero) to select
246 * Use the method defined in the ATA specification to
247 * make either device 0, or device 1, active on the
248 * ATA channel. Works with both PIO and MMIO.
250 * May be used as the dev_select() entry in ata_port_operations.
255 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
260 tmp = ATA_DEVICE_OBS;
262 tmp = ATA_DEVICE_OBS | ATA_DEV1;
264 iowrite8(tmp, ap->ioaddr.device_addr);
265 ata_sff_pause(ap); /* needed; also flushes, for mmio */
267 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
270 * ata_dev_select - Select device 0/1 on ATA bus
271 * @ap: ATA channel to manipulate
272 * @device: ATA device (numbered from zero) to select
273 * @wait: non-zero to wait for Status register BSY bit to clear
274 * @can_sleep: non-zero if context allows sleeping
276 * Use the method defined in the ATA specification to
277 * make either device 0, or device 1, active on the
280 * This is a high-level version of ata_sff_dev_select(), which
281 * additionally provides the services of inserting the proper
282 * pauses and status polling, where needed.
287 static void ata_dev_select(struct ata_port *ap, unsigned int device,
288 unsigned int wait, unsigned int can_sleep)
293 ap->ops->sff_dev_select(ap, device);
296 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
303 * ata_sff_irq_on - Enable interrupts on a port.
304 * @ap: Port on which interrupts are enabled.
306 * Enable interrupts on a legacy IDE device using MMIO or PIO,
307 * wait for idle, clear any pending interrupts.
309 * Note: may NOT be used as the sff_irq_on() entry in
310 * ata_port_operations.
313 * Inherited from caller.
315 void ata_sff_irq_on(struct ata_port *ap)
317 if (ap->ops->sff_irq_on) {
318 ap->ops->sff_irq_on(ap);
322 ap->ctl &= ~ATA_NIEN;
323 ap->last_ctl = ap->ctl;
325 ata_sff_set_devctl(ap, ap->ctl);
328 if (ap->ops->sff_irq_clear)
329 ap->ops->sff_irq_clear(ap);
331 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
334 * ata_sff_tf_load - send taskfile registers to host controller
335 * @ap: Port to which output is sent
336 * @tf: ATA taskfile register set
338 * Outputs ATA taskfile to standard ATA host controller.
341 * Inherited from caller.
343 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
345 struct ata_ioports *ioaddr = &ap->ioaddr;
346 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
348 if (tf->ctl != ap->last_ctl) {
349 if (ioaddr->ctl_addr)
350 iowrite8(tf->ctl, ioaddr->ctl_addr);
351 ap->last_ctl = tf->ctl;
355 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
356 WARN_ON_ONCE(!ioaddr->ctl_addr);
357 iowrite8(tf->hob_feature, ioaddr->feature_addr);
358 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
359 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
360 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
361 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
365 iowrite8(tf->feature, ioaddr->feature_addr);
366 iowrite8(tf->nsect, ioaddr->nsect_addr);
367 iowrite8(tf->lbal, ioaddr->lbal_addr);
368 iowrite8(tf->lbam, ioaddr->lbam_addr);
369 iowrite8(tf->lbah, ioaddr->lbah_addr);
372 if (tf->flags & ATA_TFLAG_DEVICE)
373 iowrite8(tf->device, ioaddr->device_addr);
377 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
380 * ata_sff_tf_read - input device's ATA taskfile shadow registers
381 * @ap: Port from which input is read
382 * @tf: ATA taskfile register set for storing input
384 * Reads ATA taskfile registers for currently-selected device
385 * into @tf. Assumes the device has a fully SFF compliant task file
386 * layout and behaviour. If you device does not (eg has a different
387 * status method) then you will need to provide a replacement tf_read
390 * Inherited from caller.
392 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
394 struct ata_ioports *ioaddr = &ap->ioaddr;
396 tf->status = ata_sff_check_status(ap);
397 tf->error = ioread8(ioaddr->error_addr);
398 tf->nsect = ioread8(ioaddr->nsect_addr);
399 tf->lbal = ioread8(ioaddr->lbal_addr);
400 tf->lbam = ioread8(ioaddr->lbam_addr);
401 tf->lbah = ioread8(ioaddr->lbah_addr);
402 tf->device = ioread8(ioaddr->device_addr);
404 if (tf->flags & ATA_TFLAG_LBA48) {
405 if (likely(ioaddr->ctl_addr)) {
406 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
407 tf->hob_feature = ioread8(ioaddr->error_addr);
408 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
409 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
410 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
411 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
412 iowrite8(tf->ctl, ioaddr->ctl_addr);
413 ap->last_ctl = tf->ctl;
418 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
421 * ata_sff_exec_command - issue ATA command to host controller
422 * @ap: port to which command is being issued
423 * @tf: ATA taskfile register set
425 * Issues ATA command, with proper synchronization with interrupt
426 * handler / other threads.
429 * spin_lock_irqsave(host lock)
431 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
433 iowrite8(tf->command, ap->ioaddr.command_addr);
436 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
439 * ata_tf_to_host - issue ATA taskfile to host controller
440 * @ap: port to which command is being issued
441 * @tf: ATA taskfile register set
442 * @tag: tag of the associated command
444 * Issues ATA taskfile register set to ATA host controller,
445 * with proper synchronization with interrupt handler and
449 * spin_lock_irqsave(host lock)
451 static inline void ata_tf_to_host(struct ata_port *ap,
452 const struct ata_taskfile *tf,
455 trace_ata_tf_load(ap, tf);
456 ap->ops->sff_tf_load(ap, tf);
457 trace_ata_exec_command(ap, tf, tag);
458 ap->ops->sff_exec_command(ap, tf);
462 * ata_sff_data_xfer - Transfer data by PIO
463 * @qc: queued command
465 * @buflen: buffer length
468 * Transfer data from/to the device data register by PIO.
471 * Inherited from caller.
476 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
477 unsigned int buflen, int rw)
479 struct ata_port *ap = qc->dev->link->ap;
480 void __iomem *data_addr = ap->ioaddr.data_addr;
481 unsigned int words = buflen >> 1;
483 /* Transfer multiple of 2 bytes */
485 ioread16_rep(data_addr, buf, words);
487 iowrite16_rep(data_addr, buf, words);
489 /* Transfer trailing byte, if any. */
490 if (unlikely(buflen & 0x01)) {
491 unsigned char pad[2] = { };
493 /* Point buf to the tail of buffer */
497 * Use io*16_rep() accessors here as well to avoid pointlessly
498 * swapping bytes to and from on the big endian machines...
501 ioread16_rep(data_addr, pad, 1);
505 iowrite16_rep(data_addr, pad, 1);
512 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
515 * ata_sff_data_xfer32 - Transfer data by PIO
516 * @qc: queued command
518 * @buflen: buffer length
521 * Transfer data from/to the device data register by PIO using 32bit
525 * Inherited from caller.
531 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
532 unsigned int buflen, int rw)
534 struct ata_device *dev = qc->dev;
535 struct ata_port *ap = dev->link->ap;
536 void __iomem *data_addr = ap->ioaddr.data_addr;
537 unsigned int words = buflen >> 2;
538 int slop = buflen & 3;
540 if (!(ap->pflags & ATA_PFLAG_PIO32))
541 return ata_sff_data_xfer(qc, buf, buflen, rw);
543 /* Transfer multiple of 4 bytes */
545 ioread32_rep(data_addr, buf, words);
547 iowrite32_rep(data_addr, buf, words);
549 /* Transfer trailing bytes, if any */
550 if (unlikely(slop)) {
551 unsigned char pad[4] = { };
553 /* Point buf to the tail of buffer */
554 buf += buflen - slop;
557 * Use io*_rep() accessors here as well to avoid pointlessly
558 * swapping bytes to and from on the big endian machines...
562 ioread16_rep(data_addr, pad, 1);
564 ioread32_rep(data_addr, pad, 1);
565 memcpy(buf, pad, slop);
567 memcpy(pad, buf, slop);
569 iowrite16_rep(data_addr, pad, 1);
571 iowrite32_rep(data_addr, pad, 1);
574 return (buflen + 1) & ~1;
576 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
578 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
579 unsigned int offset, size_t xfer_size)
581 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
584 buf = kmap_atomic(page);
585 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
588 if (!do_write && !PageSlab(page))
589 flush_dcache_page(page);
593 * ata_pio_sector - Transfer a sector of data.
594 * @qc: Command on going
596 * Transfer qc->sect_size bytes of data from/to the ATA device.
599 * Inherited from caller.
601 static void ata_pio_sector(struct ata_queued_cmd *qc)
603 struct ata_port *ap = qc->ap;
608 qc->curbytes = qc->nbytes;
611 if (qc->curbytes == qc->nbytes - qc->sect_size)
612 ap->hsm_task_state = HSM_ST_LAST;
614 page = sg_page(qc->cursg);
615 offset = qc->cursg->offset + qc->cursg_ofs;
617 /* get the current page and offset */
618 page = nth_page(page, (offset >> PAGE_SHIFT));
621 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
624 * Split the transfer when it splits a page boundary. Note that the
625 * split still has to be dword aligned like all ATA data transfers.
627 WARN_ON_ONCE(offset % 4);
628 if (offset + qc->sect_size > PAGE_SIZE) {
629 unsigned int split_len = PAGE_SIZE - offset;
631 ata_pio_xfer(qc, page, offset, split_len);
632 ata_pio_xfer(qc, nth_page(page, 1), 0,
633 qc->sect_size - split_len);
635 ata_pio_xfer(qc, page, offset, qc->sect_size);
638 qc->curbytes += qc->sect_size;
639 qc->cursg_ofs += qc->sect_size;
641 if (qc->cursg_ofs == qc->cursg->length) {
642 qc->cursg = sg_next(qc->cursg);
644 ap->hsm_task_state = HSM_ST_LAST;
650 * ata_pio_sectors - Transfer one or many sectors.
651 * @qc: Command on going
653 * Transfer one or many sectors of data from/to the
654 * ATA device for the DRQ request.
657 * Inherited from caller.
659 static void ata_pio_sectors(struct ata_queued_cmd *qc)
661 if (is_multi_taskfile(&qc->tf)) {
662 /* READ/WRITE MULTIPLE */
665 WARN_ON_ONCE(qc->dev->multi_count == 0);
667 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
668 qc->dev->multi_count);
674 ata_sff_sync(qc->ap); /* flush */
678 * atapi_send_cdb - Write CDB bytes to hardware
679 * @ap: Port to which ATAPI device is attached.
680 * @qc: Taskfile currently active
682 * When device has indicated its readiness to accept
683 * a CDB, this function is called. Send the CDB.
688 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
691 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
692 WARN_ON_ONCE(qc->dev->cdb_len < 12);
694 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
696 /* FIXME: If the CDB is for DMA do we need to do the transition delay
697 or is bmdma_start guaranteed to do it ? */
698 switch (qc->tf.protocol) {
700 ap->hsm_task_state = HSM_ST;
702 case ATAPI_PROT_NODATA:
703 ap->hsm_task_state = HSM_ST_LAST;
705 #ifdef CONFIG_ATA_BMDMA
707 ap->hsm_task_state = HSM_ST_LAST;
709 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
710 ap->ops->bmdma_start(qc);
712 #endif /* CONFIG_ATA_BMDMA */
719 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
720 * @qc: Command on going
721 * @bytes: number of bytes
723 * Transfer data from/to the ATAPI device.
726 * Inherited from caller.
729 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
731 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
732 struct ata_port *ap = qc->ap;
733 struct ata_device *dev = qc->dev;
734 struct ata_eh_info *ehi = &dev->link->eh_info;
735 struct scatterlist *sg;
738 unsigned int offset, count, consumed;
743 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
744 "buf=%u cur=%u bytes=%u",
745 qc->nbytes, qc->curbytes, bytes);
750 offset = sg->offset + qc->cursg_ofs;
752 /* get the current page and offset */
753 page = nth_page(page, (offset >> PAGE_SHIFT));
756 /* don't overrun current sg */
757 count = min(sg->length - qc->cursg_ofs, bytes);
759 /* don't cross page boundaries */
760 count = min(count, (unsigned int)PAGE_SIZE - offset);
762 trace_atapi_pio_transfer_data(qc, offset, count);
764 /* do the actual data transfer */
765 buf = kmap_atomic(page);
766 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
769 bytes -= min(bytes, consumed);
770 qc->curbytes += count;
771 qc->cursg_ofs += count;
773 if (qc->cursg_ofs == sg->length) {
774 qc->cursg = sg_next(qc->cursg);
779 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
780 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
781 * check correctly as it doesn't know if it is the last request being
782 * made. Somebody should implement a proper sanity check.
790 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
791 * @qc: Command on going
793 * Transfer Transfer data from/to the ATAPI device.
796 * Inherited from caller.
798 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
800 struct ata_port *ap = qc->ap;
801 struct ata_device *dev = qc->dev;
802 struct ata_eh_info *ehi = &dev->link->eh_info;
803 unsigned int ireason, bc_lo, bc_hi, bytes;
804 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
806 /* Abuse qc->result_tf for temp storage of intermediate TF
807 * here to save some kernel stack usage.
808 * For normal completion, qc->result_tf is not relevant. For
809 * error, qc->result_tf is later overwritten by ata_qc_complete().
810 * So, the correctness of qc->result_tf is not affected.
812 ap->ops->sff_tf_read(ap, &qc->result_tf);
813 ireason = qc->result_tf.nsect;
814 bc_lo = qc->result_tf.lbam;
815 bc_hi = qc->result_tf.lbah;
816 bytes = (bc_hi << 8) | bc_lo;
818 /* shall be cleared to zero, indicating xfer of data */
819 if (unlikely(ireason & ATAPI_COD))
822 /* make sure transfer direction matches expected */
823 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
824 if (unlikely(do_write != i_write))
827 if (unlikely(!bytes))
830 if (unlikely(__atapi_pio_bytes(qc, bytes)))
832 ata_sff_sync(ap); /* flush */
837 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
840 qc->err_mask |= AC_ERR_HSM;
841 ap->hsm_task_state = HSM_ST_ERR;
845 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
846 * @ap: the target ata_port
850 * 1 if ok in workqueue, 0 otherwise.
852 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
853 struct ata_queued_cmd *qc)
855 if (qc->tf.flags & ATA_TFLAG_POLLING)
858 if (ap->hsm_task_state == HSM_ST_FIRST) {
859 if (qc->tf.protocol == ATA_PROT_PIO &&
860 (qc->tf.flags & ATA_TFLAG_WRITE))
863 if (ata_is_atapi(qc->tf.protocol) &&
864 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
872 * ata_hsm_qc_complete - finish a qc running on standard HSM
873 * @qc: Command to complete
874 * @in_wq: 1 if called from workqueue, 0 otherwise
876 * Finish @qc which is running on standard HSM.
879 * If @in_wq is zero, spin_lock_irqsave(host lock).
880 * Otherwise, none on entry and grabs host lock.
882 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
884 struct ata_port *ap = qc->ap;
886 if (ap->ops->error_handler) {
888 /* EH might have kicked in while host lock is
891 qc = ata_qc_from_tag(ap, qc->tag);
893 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
900 if (likely(!(qc->err_mask & AC_ERR_HSM)))
915 * ata_sff_hsm_move - move the HSM to the next state.
916 * @ap: the target ata_port
918 * @status: current device status
919 * @in_wq: 1 if called from workqueue, 0 otherwise
922 * 1 when poll next status needed, 0 otherwise.
924 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
925 u8 status, int in_wq)
927 struct ata_link *link = qc->dev->link;
928 struct ata_eh_info *ehi = &link->eh_info;
931 lockdep_assert_held(ap->lock);
933 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
935 /* Make sure ata_sff_qc_issue() does not throw things
936 * like DMA polling into the workqueue. Notice that
937 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
939 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
942 trace_ata_sff_hsm_state(qc, status);
944 switch (ap->hsm_task_state) {
946 /* Send first data block or PACKET CDB */
948 /* If polling, we will stay in the work queue after
949 * sending the data. Otherwise, interrupt handler
950 * takes over after sending the data.
952 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
954 /* check device status */
955 if (unlikely((status & ATA_DRQ) == 0)) {
956 /* handle BSY=0, DRQ=0 as error */
957 if (likely(status & (ATA_ERR | ATA_DF)))
958 /* device stops HSM for abort/error */
959 qc->err_mask |= AC_ERR_DEV;
961 /* HSM violation. Let EH handle this */
962 ata_ehi_push_desc(ehi,
963 "ST_FIRST: !(DRQ|ERR|DF)");
964 qc->err_mask |= AC_ERR_HSM;
967 ap->hsm_task_state = HSM_ST_ERR;
971 /* Device should not ask for data transfer (DRQ=1)
972 * when it finds something wrong.
973 * We ignore DRQ here and stop the HSM by
974 * changing hsm_task_state to HSM_ST_ERR and
975 * let the EH abort the command or reset the device.
977 if (unlikely(status & (ATA_ERR | ATA_DF))) {
978 /* Some ATAPI tape drives forget to clear the ERR bit
979 * when doing the next command (mostly request sense).
980 * We ignore ERR here to workaround and proceed sending
983 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
984 ata_ehi_push_desc(ehi, "ST_FIRST: "
985 "DRQ=1 with device error, "
986 "dev_stat 0x%X", status);
987 qc->err_mask |= AC_ERR_HSM;
988 ap->hsm_task_state = HSM_ST_ERR;
993 if (qc->tf.protocol == ATA_PROT_PIO) {
994 /* PIO data out protocol.
995 * send first data block.
998 /* ata_pio_sectors() might change the state
999 * to HSM_ST_LAST. so, the state is changed here
1000 * before ata_pio_sectors().
1002 ap->hsm_task_state = HSM_ST;
1003 ata_pio_sectors(qc);
1006 atapi_send_cdb(ap, qc);
1008 /* if polling, ata_sff_pio_task() handles the rest.
1009 * otherwise, interrupt handler takes over from here.
1014 /* complete command or read/write the data register */
1015 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1016 /* ATAPI PIO protocol */
1017 if ((status & ATA_DRQ) == 0) {
1018 /* No more data to transfer or device error.
1019 * Device error will be tagged in HSM_ST_LAST.
1021 ap->hsm_task_state = HSM_ST_LAST;
1025 /* Device should not ask for data transfer (DRQ=1)
1026 * when it finds something wrong.
1027 * We ignore DRQ here and stop the HSM by
1028 * changing hsm_task_state to HSM_ST_ERR and
1029 * let the EH abort the command or reset the device.
1031 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1032 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1033 "DRQ=1 with device error, "
1034 "dev_stat 0x%X", status);
1035 qc->err_mask |= AC_ERR_HSM;
1036 ap->hsm_task_state = HSM_ST_ERR;
1040 atapi_pio_bytes(qc);
1042 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1043 /* bad ireason reported by device */
1047 /* ATA PIO protocol */
1048 if (unlikely((status & ATA_DRQ) == 0)) {
1049 /* handle BSY=0, DRQ=0 as error */
1050 if (likely(status & (ATA_ERR | ATA_DF))) {
1051 /* device stops HSM for abort/error */
1052 qc->err_mask |= AC_ERR_DEV;
1054 /* If diagnostic failed and this is
1055 * IDENTIFY, it's likely a phantom
1056 * device. Mark hint.
1058 if (qc->dev->horkage &
1059 ATA_HORKAGE_DIAGNOSTIC)
1063 /* HSM violation. Let EH handle this.
1064 * Phantom devices also trigger this
1065 * condition. Mark hint.
1067 ata_ehi_push_desc(ehi, "ST-ATA: "
1068 "DRQ=0 without device error, "
1069 "dev_stat 0x%X", status);
1070 qc->err_mask |= AC_ERR_HSM |
1074 ap->hsm_task_state = HSM_ST_ERR;
1078 /* For PIO reads, some devices may ask for
1079 * data transfer (DRQ=1) alone with ERR=1.
1080 * We respect DRQ here and transfer one
1081 * block of junk data before changing the
1082 * hsm_task_state to HSM_ST_ERR.
1084 * For PIO writes, ERR=1 DRQ=1 doesn't make
1085 * sense since the data block has been
1086 * transferred to the device.
1088 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1089 /* data might be corrputed */
1090 qc->err_mask |= AC_ERR_DEV;
1092 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1093 ata_pio_sectors(qc);
1094 status = ata_wait_idle(ap);
1097 if (status & (ATA_BUSY | ATA_DRQ)) {
1098 ata_ehi_push_desc(ehi, "ST-ATA: "
1099 "BUSY|DRQ persists on ERR|DF, "
1100 "dev_stat 0x%X", status);
1101 qc->err_mask |= AC_ERR_HSM;
1104 /* There are oddball controllers with
1105 * status register stuck at 0x7f and
1106 * lbal/m/h at zero which makes it
1107 * pass all other presence detection
1108 * mechanisms we have. Set NODEV_HINT
1109 * for it. Kernel bz#7241.
1112 qc->err_mask |= AC_ERR_NODEV_HINT;
1114 /* ata_pio_sectors() might change the
1115 * state to HSM_ST_LAST. so, the state
1116 * is changed after ata_pio_sectors().
1118 ap->hsm_task_state = HSM_ST_ERR;
1122 ata_pio_sectors(qc);
1124 if (ap->hsm_task_state == HSM_ST_LAST &&
1125 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1127 status = ata_wait_idle(ap);
1136 if (unlikely(!ata_ok(status))) {
1137 qc->err_mask |= __ac_err_mask(status);
1138 ap->hsm_task_state = HSM_ST_ERR;
1142 /* no more data to transfer */
1143 trace_ata_sff_hsm_command_complete(qc, status);
1145 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1147 ap->hsm_task_state = HSM_ST_IDLE;
1149 /* complete taskfile transaction */
1150 ata_hsm_qc_complete(qc, in_wq);
1156 ap->hsm_task_state = HSM_ST_IDLE;
1158 /* complete taskfile transaction */
1159 ata_hsm_qc_complete(qc, in_wq);
1165 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1166 ap->print_id, ap->hsm_task_state);
1171 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1173 void ata_sff_queue_work(struct work_struct *work)
1175 queue_work(ata_sff_wq, work);
1177 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1179 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1181 queue_delayed_work(ata_sff_wq, dwork, delay);
1183 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1185 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1187 struct ata_port *ap = link->ap;
1189 WARN_ON((ap->sff_pio_task_link != NULL) &&
1190 (ap->sff_pio_task_link != link));
1191 ap->sff_pio_task_link = link;
1193 /* may fail if ata_sff_flush_pio_task() in progress */
1194 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1196 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1198 void ata_sff_flush_pio_task(struct ata_port *ap)
1200 trace_ata_sff_flush_pio_task(ap);
1202 cancel_delayed_work_sync(&ap->sff_pio_task);
1205 * We wanna reset the HSM state to IDLE. If we do so without
1206 * grabbing the port lock, critical sections protected by it which
1207 * expect the HSM state to stay stable may get surprised. For
1208 * example, we may set IDLE in between the time
1209 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1210 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1212 spin_lock_irq(ap->lock);
1213 ap->hsm_task_state = HSM_ST_IDLE;
1214 spin_unlock_irq(ap->lock);
1216 ap->sff_pio_task_link = NULL;
1219 static void ata_sff_pio_task(struct work_struct *work)
1221 struct ata_port *ap =
1222 container_of(work, struct ata_port, sff_pio_task.work);
1223 struct ata_link *link = ap->sff_pio_task_link;
1224 struct ata_queued_cmd *qc;
1228 spin_lock_irq(ap->lock);
1230 BUG_ON(ap->sff_pio_task_link == NULL);
1231 /* qc can be NULL if timeout occurred */
1232 qc = ata_qc_from_tag(ap, link->active_tag);
1234 ap->sff_pio_task_link = NULL;
1239 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1242 * This is purely heuristic. This is a fast path.
1243 * Sometimes when we enter, BSY will be cleared in
1244 * a chk-status or two. If not, the drive is probably seeking
1245 * or something. Snooze for a couple msecs, then
1246 * chk-status again. If still busy, queue delayed work.
1248 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1249 if (status & ATA_BUSY) {
1250 spin_unlock_irq(ap->lock);
1252 spin_lock_irq(ap->lock);
1254 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1255 if (status & ATA_BUSY) {
1256 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1262 * hsm_move() may trigger another command to be processed.
1263 * clean the link beforehand.
1265 ap->sff_pio_task_link = NULL;
1267 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1269 /* another command or interrupt handler
1270 * may be running at this point.
1275 spin_unlock_irq(ap->lock);
1279 * ata_sff_qc_issue - issue taskfile to a SFF controller
1280 * @qc: command to issue to device
1282 * This function issues a PIO or NODATA command to a SFF
1286 * spin_lock_irqsave(host lock)
1289 * Zero on success, AC_ERR_* mask on failure
1291 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1293 struct ata_port *ap = qc->ap;
1294 struct ata_link *link = qc->dev->link;
1296 /* Use polling pio if the LLD doesn't handle
1297 * interrupt driven pio and atapi CDB interrupt.
1299 if (ap->flags & ATA_FLAG_PIO_POLLING)
1300 qc->tf.flags |= ATA_TFLAG_POLLING;
1302 /* select the device */
1303 ata_dev_select(ap, qc->dev->devno, 1, 0);
1305 /* start the command */
1306 switch (qc->tf.protocol) {
1307 case ATA_PROT_NODATA:
1308 if (qc->tf.flags & ATA_TFLAG_POLLING)
1309 ata_qc_set_polling(qc);
1311 ata_tf_to_host(ap, &qc->tf, qc->tag);
1312 ap->hsm_task_state = HSM_ST_LAST;
1314 if (qc->tf.flags & ATA_TFLAG_POLLING)
1315 ata_sff_queue_pio_task(link, 0);
1320 if (qc->tf.flags & ATA_TFLAG_POLLING)
1321 ata_qc_set_polling(qc);
1323 ata_tf_to_host(ap, &qc->tf, qc->tag);
1325 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1326 /* PIO data out protocol */
1327 ap->hsm_task_state = HSM_ST_FIRST;
1328 ata_sff_queue_pio_task(link, 0);
1330 /* always send first data block using the
1331 * ata_sff_pio_task() codepath.
1334 /* PIO data in protocol */
1335 ap->hsm_task_state = HSM_ST;
1337 if (qc->tf.flags & ATA_TFLAG_POLLING)
1338 ata_sff_queue_pio_task(link, 0);
1340 /* if polling, ata_sff_pio_task() handles the
1341 * rest. otherwise, interrupt handler takes
1348 case ATAPI_PROT_PIO:
1349 case ATAPI_PROT_NODATA:
1350 if (qc->tf.flags & ATA_TFLAG_POLLING)
1351 ata_qc_set_polling(qc);
1353 ata_tf_to_host(ap, &qc->tf, qc->tag);
1355 ap->hsm_task_state = HSM_ST_FIRST;
1357 /* send cdb by polling if no cdb interrupt */
1358 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1359 (qc->tf.flags & ATA_TFLAG_POLLING))
1360 ata_sff_queue_pio_task(link, 0);
1364 return AC_ERR_SYSTEM;
1369 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1372 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1373 * @qc: qc to fill result TF for
1375 * @qc is finished and result TF needs to be filled. Fill it
1376 * using ->sff_tf_read.
1379 * spin_lock_irqsave(host lock)
1381 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1383 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1385 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1387 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1389 ap->stats.idle_irq++;
1392 if ((ap->stats.idle_irq % 1000) == 0) {
1393 ap->ops->sff_check_status(ap);
1394 if (ap->ops->sff_irq_clear)
1395 ap->ops->sff_irq_clear(ap);
1396 ata_port_warn(ap, "irq trap\n");
1400 return 0; /* irq not handled */
1403 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1404 struct ata_queued_cmd *qc,
1409 trace_ata_sff_port_intr(qc, hsmv_on_idle);
1411 /* Check whether we are expecting interrupt in this state */
1412 switch (ap->hsm_task_state) {
1414 /* Some pre-ATAPI-4 devices assert INTRQ
1415 * at this state when ready to receive CDB.
1418 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1419 * The flag was turned on only for atapi devices. No
1420 * need to check ata_is_atapi(qc->tf.protocol) again.
1422 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1423 return ata_sff_idle_irq(ap);
1426 return ata_sff_idle_irq(ap);
1431 /* check main status, clearing INTRQ if needed */
1432 status = ata_sff_irq_status(ap);
1433 if (status & ATA_BUSY) {
1435 /* BMDMA engine is already stopped, we're screwed */
1436 qc->err_mask |= AC_ERR_HSM;
1437 ap->hsm_task_state = HSM_ST_ERR;
1439 return ata_sff_idle_irq(ap);
1442 /* clear irq events */
1443 if (ap->ops->sff_irq_clear)
1444 ap->ops->sff_irq_clear(ap);
1446 ata_sff_hsm_move(ap, qc, status, 0);
1448 return 1; /* irq handled */
1452 * ata_sff_port_intr - Handle SFF port interrupt
1453 * @ap: Port on which interrupt arrived (possibly...)
1454 * @qc: Taskfile currently active in engine
1456 * Handle port interrupt for given queued command.
1459 * spin_lock_irqsave(host lock)
1462 * One if interrupt was handled, zero if not (shared irq).
1464 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1466 return __ata_sff_port_intr(ap, qc, false);
1468 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1470 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1471 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1473 struct ata_host *host = dev_instance;
1474 bool retried = false;
1476 unsigned int handled, idle, polling;
1477 unsigned long flags;
1479 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1480 spin_lock_irqsave(&host->lock, flags);
1483 handled = idle = polling = 0;
1484 for (i = 0; i < host->n_ports; i++) {
1485 struct ata_port *ap = host->ports[i];
1486 struct ata_queued_cmd *qc;
1488 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1490 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1491 handled |= port_intr(ap, qc);
1499 * If no port was expecting IRQ but the controller is actually
1500 * asserting IRQ line, nobody cared will ensue. Check IRQ
1501 * pending status if available and clear spurious IRQ.
1503 if (!handled && !retried) {
1506 for (i = 0; i < host->n_ports; i++) {
1507 struct ata_port *ap = host->ports[i];
1509 if (polling & (1 << i))
1512 if (!ap->ops->sff_irq_check ||
1513 !ap->ops->sff_irq_check(ap))
1516 if (idle & (1 << i)) {
1517 ap->ops->sff_check_status(ap);
1518 if (ap->ops->sff_irq_clear)
1519 ap->ops->sff_irq_clear(ap);
1521 /* clear INTRQ and check if BUSY cleared */
1522 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1525 * With command in flight, we can't do
1526 * sff_irq_clear() w/o racing with completion.
1537 spin_unlock_irqrestore(&host->lock, flags);
1539 return IRQ_RETVAL(handled);
1543 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1544 * @irq: irq line (unused)
1545 * @dev_instance: pointer to our ata_host information structure
1547 * Default interrupt handler for PCI IDE devices. Calls
1548 * ata_sff_port_intr() for each port that is not disabled.
1551 * Obtains host lock during operation.
1554 * IRQ_NONE or IRQ_HANDLED.
1556 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1558 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1560 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1563 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1564 * @ap: port that appears to have timed out
1566 * Called from the libata error handlers when the core code suspects
1567 * an interrupt has been lost. If it has complete anything we can and
1568 * then return. Interface must support altstatus for this faster
1569 * recovery to occur.
1572 * Caller holds host lock
1575 void ata_sff_lost_interrupt(struct ata_port *ap)
1578 struct ata_queued_cmd *qc;
1580 /* Only one outstanding command per SFF channel */
1581 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1582 /* We cannot lose an interrupt on a non-existent or polled command */
1583 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1585 /* See if the controller thinks it is still busy - if so the command
1586 isn't a lost IRQ but is still in progress */
1587 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1589 if (status & ATA_BUSY)
1592 /* There was a command running, we are no longer busy and we have
1594 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1595 /* Run the host interrupt logic as if the interrupt had not been
1597 ata_sff_port_intr(ap, qc);
1599 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1602 * ata_sff_freeze - Freeze SFF controller port
1603 * @ap: port to freeze
1605 * Freeze SFF controller port.
1608 * Inherited from caller.
1610 void ata_sff_freeze(struct ata_port *ap)
1612 ap->ctl |= ATA_NIEN;
1613 ap->last_ctl = ap->ctl;
1615 ata_sff_set_devctl(ap, ap->ctl);
1617 /* Under certain circumstances, some controllers raise IRQ on
1618 * ATA_NIEN manipulation. Also, many controllers fail to mask
1619 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1621 ap->ops->sff_check_status(ap);
1623 if (ap->ops->sff_irq_clear)
1624 ap->ops->sff_irq_clear(ap);
1626 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1629 * ata_sff_thaw - Thaw SFF controller port
1632 * Thaw SFF controller port.
1635 * Inherited from caller.
1637 void ata_sff_thaw(struct ata_port *ap)
1639 /* clear & re-enable interrupts */
1640 ap->ops->sff_check_status(ap);
1641 if (ap->ops->sff_irq_clear)
1642 ap->ops->sff_irq_clear(ap);
1645 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1648 * ata_sff_prereset - prepare SFF link for reset
1649 * @link: SFF link to be reset
1650 * @deadline: deadline jiffies for the operation
1652 * SFF link @link is about to be reset. Initialize it. It first
1653 * calls ata_std_prereset() and wait for !BSY if the port is
1657 * Kernel thread context (may sleep)
1662 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1664 struct ata_eh_context *ehc = &link->eh_context;
1667 /* The standard prereset is best-effort and always returns 0 */
1668 ata_std_prereset(link, deadline);
1670 /* if we're about to do hardreset, nothing more to do */
1671 if (ehc->i.action & ATA_EH_HARDRESET)
1674 /* wait for !BSY if we don't know that no device is attached */
1675 if (!ata_link_offline(link)) {
1676 rc = ata_sff_wait_ready(link, deadline);
1677 if (rc && rc != -ENODEV) {
1679 "device not ready (errno=%d), forcing hardreset\n",
1681 ehc->i.action |= ATA_EH_HARDRESET;
1687 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1690 * ata_devchk - PATA device presence detection
1691 * @ap: ATA channel to examine
1692 * @device: Device to examine (starting at zero)
1694 * This technique was originally described in
1695 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1696 * later found its way into the ATA/ATAPI spec.
1698 * Write a pattern to the ATA shadow registers,
1699 * and if a device is present, it will respond by
1700 * correctly storing and echoing back the
1701 * ATA shadow register contents.
1704 * true if device is present, false if not.
1709 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1711 struct ata_ioports *ioaddr = &ap->ioaddr;
1714 ap->ops->sff_dev_select(ap, device);
1716 iowrite8(0x55, ioaddr->nsect_addr);
1717 iowrite8(0xaa, ioaddr->lbal_addr);
1719 iowrite8(0xaa, ioaddr->nsect_addr);
1720 iowrite8(0x55, ioaddr->lbal_addr);
1722 iowrite8(0x55, ioaddr->nsect_addr);
1723 iowrite8(0xaa, ioaddr->lbal_addr);
1725 nsect = ioread8(ioaddr->nsect_addr);
1726 lbal = ioread8(ioaddr->lbal_addr);
1728 if ((nsect == 0x55) && (lbal == 0xaa))
1729 return true; /* we found a device */
1731 return false; /* nothing found */
1735 * ata_sff_dev_classify - Parse returned ATA device signature
1736 * @dev: ATA device to classify (starting at zero)
1737 * @present: device seems present
1738 * @r_err: Value of error register on completion
1740 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1741 * an ATA/ATAPI-defined set of values is placed in the ATA
1742 * shadow registers, indicating the results of device detection
1745 * Select the ATA device, and read the values from the ATA shadow
1746 * registers. Then parse according to the Error register value,
1747 * and the spec-defined values examined by ata_dev_classify().
1753 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1755 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1758 struct ata_port *ap = dev->link->ap;
1759 struct ata_taskfile tf;
1763 ap->ops->sff_dev_select(ap, dev->devno);
1765 memset(&tf, 0, sizeof(tf));
1767 ap->ops->sff_tf_read(ap, &tf);
1772 /* see if device passed diags: continue and warn later */
1774 /* diagnostic fail : do nothing _YET_ */
1775 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1778 else if ((dev->devno == 0) && (err == 0x81))
1781 return ATA_DEV_NONE;
1783 /* determine if device is ATA or ATAPI */
1784 class = ata_port_classify(ap, &tf);
1786 case ATA_DEV_UNKNOWN:
1788 * If the device failed diagnostic, it's likely to
1789 * have reported incorrect device signature too.
1790 * Assume ATA device if the device seems present but
1791 * device signature is invalid with diagnostic
1794 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1795 class = ATA_DEV_ATA;
1797 class = ATA_DEV_NONE;
1800 if (ap->ops->sff_check_status(ap) == 0)
1801 class = ATA_DEV_NONE;
1806 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1809 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1810 * @link: SFF link which is just reset
1811 * @devmask: mask of present devices
1812 * @deadline: deadline jiffies for the operation
1814 * Wait devices attached to SFF @link to become ready after
1815 * reset. It contains preceding 150ms wait to avoid accessing TF
1816 * status register too early.
1819 * Kernel thread context (may sleep).
1822 * 0 on success, -ENODEV if some or all of devices in @devmask
1823 * don't seem to exist. -errno on other errors.
1825 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1826 unsigned long deadline)
1828 struct ata_port *ap = link->ap;
1829 struct ata_ioports *ioaddr = &ap->ioaddr;
1830 unsigned int dev0 = devmask & (1 << 0);
1831 unsigned int dev1 = devmask & (1 << 1);
1834 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1836 /* always check readiness of the master device */
1837 rc = ata_sff_wait_ready(link, deadline);
1838 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1839 * and TF status is 0xff, bail out on it too.
1844 /* if device 1 was found in ata_devchk, wait for register
1845 * access briefly, then wait for BSY to clear.
1850 ap->ops->sff_dev_select(ap, 1);
1852 /* Wait for register access. Some ATAPI devices fail
1853 * to set nsect/lbal after reset, so don't waste too
1854 * much time on it. We're gonna wait for !BSY anyway.
1856 for (i = 0; i < 2; i++) {
1859 nsect = ioread8(ioaddr->nsect_addr);
1860 lbal = ioread8(ioaddr->lbal_addr);
1861 if ((nsect == 1) && (lbal == 1))
1863 ata_msleep(ap, 50); /* give drive a breather */
1866 rc = ata_sff_wait_ready(link, deadline);
1874 /* is all this really necessary? */
1875 ap->ops->sff_dev_select(ap, 0);
1877 ap->ops->sff_dev_select(ap, 1);
1879 ap->ops->sff_dev_select(ap, 0);
1883 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1885 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1886 unsigned long deadline)
1888 struct ata_ioports *ioaddr = &ap->ioaddr;
1890 if (ap->ioaddr.ctl_addr) {
1891 /* software reset. causes dev0 to be selected */
1892 iowrite8(ap->ctl, ioaddr->ctl_addr);
1893 udelay(20); /* FIXME: flush */
1894 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1895 udelay(20); /* FIXME: flush */
1896 iowrite8(ap->ctl, ioaddr->ctl_addr);
1897 ap->last_ctl = ap->ctl;
1900 /* wait the port to become ready */
1901 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1905 * ata_sff_softreset - reset host port via ATA SRST
1906 * @link: ATA link to reset
1907 * @classes: resulting classes of attached devices
1908 * @deadline: deadline jiffies for the operation
1910 * Reset host port using ATA SRST.
1913 * Kernel thread context (may sleep)
1916 * 0 on success, -errno otherwise.
1918 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1919 unsigned long deadline)
1921 struct ata_port *ap = link->ap;
1922 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1923 unsigned int devmask = 0;
1927 /* determine if device 0/1 are present */
1928 if (ata_devchk(ap, 0))
1929 devmask |= (1 << 0);
1930 if (slave_possible && ata_devchk(ap, 1))
1931 devmask |= (1 << 1);
1933 /* select device 0 again */
1934 ap->ops->sff_dev_select(ap, 0);
1936 /* issue bus reset */
1937 rc = ata_bus_softreset(ap, devmask, deadline);
1938 /* if link is occupied, -ENODEV too is an error */
1939 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1940 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1944 /* determine by signature whether we have ATA or ATAPI devices */
1945 classes[0] = ata_sff_dev_classify(&link->device[0],
1946 devmask & (1 << 0), &err);
1947 if (slave_possible && err != 0x81)
1948 classes[1] = ata_sff_dev_classify(&link->device[1],
1949 devmask & (1 << 1), &err);
1953 EXPORT_SYMBOL_GPL(ata_sff_softreset);
1956 * sata_sff_hardreset - reset host port via SATA phy reset
1957 * @link: link to reset
1958 * @class: resulting class of attached device
1959 * @deadline: deadline jiffies for the operation
1961 * SATA phy-reset host port using DET bits of SControl register,
1962 * wait for !BSY and classify the attached device.
1965 * Kernel thread context (may sleep)
1968 * 0 on success, -errno otherwise.
1970 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1971 unsigned long deadline)
1973 struct ata_eh_context *ehc = &link->eh_context;
1974 const unsigned long *timing = sata_ehc_deb_timing(ehc);
1978 rc = sata_link_hardreset(link, timing, deadline, &online,
1979 ata_sff_check_ready);
1981 *class = ata_sff_dev_classify(link->device, 1, NULL);
1985 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1988 * ata_sff_postreset - SFF postreset callback
1989 * @link: the target SFF ata_link
1990 * @classes: classes of attached devices
1992 * This function is invoked after a successful reset. It first
1993 * calls ata_std_postreset() and performs SFF specific postreset
1997 * Kernel thread context (may sleep)
1999 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2001 struct ata_port *ap = link->ap;
2003 ata_std_postreset(link, classes);
2005 /* is double-select really necessary? */
2006 if (classes[0] != ATA_DEV_NONE)
2007 ap->ops->sff_dev_select(ap, 1);
2008 if (classes[1] != ATA_DEV_NONE)
2009 ap->ops->sff_dev_select(ap, 0);
2011 /* bail out if no device is present */
2012 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2015 /* set up device control */
2016 if (ata_sff_set_devctl(ap, ap->ctl))
2017 ap->last_ctl = ap->ctl;
2019 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2022 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2025 * Drain the FIFO and device of any stuck data following a command
2026 * failing to complete. In some cases this is necessary before a
2027 * reset will recover the device.
2031 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2034 struct ata_port *ap;
2036 /* We only need to flush incoming data when a command was running */
2037 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2041 /* Drain up to 64K of data before we give up this recovery method */
2042 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2043 && count < 65536; count += 2)
2044 ioread16(ap->ioaddr.data_addr);
2047 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2050 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2053 * ata_sff_error_handler - Stock error handler for SFF controller
2054 * @ap: port to handle error for
2056 * Stock error handler for SFF controller. It can handle both
2057 * PATA and SATA controllers. Many controllers should be able to
2058 * use this EH as-is or with some added handling before and
2062 * Kernel thread context (may sleep)
2064 void ata_sff_error_handler(struct ata_port *ap)
2066 ata_reset_fn_t softreset = ap->ops->softreset;
2067 ata_reset_fn_t hardreset = ap->ops->hardreset;
2068 struct ata_queued_cmd *qc;
2069 unsigned long flags;
2071 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2072 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2075 spin_lock_irqsave(ap->lock, flags);
2078 * We *MUST* do FIFO draining before we issue a reset as
2079 * several devices helpfully clear their internal state and
2080 * will lock solid if we touch the data port post reset. Pass
2081 * qc in case anyone wants to do different PIO/DMA recovery or
2082 * has per command fixups
2084 if (ap->ops->sff_drain_fifo)
2085 ap->ops->sff_drain_fifo(qc);
2087 spin_unlock_irqrestore(ap->lock, flags);
2089 /* ignore built-in hardresets if SCR access is not available */
2090 if ((hardreset == sata_std_hardreset ||
2091 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2094 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2095 ap->ops->postreset);
2097 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2100 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2101 * @ioaddr: IO address structure to be initialized
2103 * Utility function which initializes data_addr, error_addr,
2104 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2105 * device_addr, status_addr, and command_addr to standard offsets
2106 * relative to cmd_addr.
2108 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2110 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2112 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2113 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2114 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2115 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2116 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2117 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2118 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2119 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2120 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2121 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2123 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2127 static bool ata_resources_present(struct pci_dev *pdev, int port)
2131 /* Check the PCI resources for this channel are enabled */
2133 for (i = 0; i < 2; i++) {
2134 if (pci_resource_start(pdev, port + i) == 0 ||
2135 pci_resource_len(pdev, port + i) == 0)
2142 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2143 * @host: target ATA host
2145 * Acquire native PCI ATA resources for @host and initialize the
2146 * first two ports of @host accordingly. Ports marked dummy are
2147 * skipped and allocation failure makes the port dummy.
2149 * Note that native PCI resources are valid even for legacy hosts
2150 * as we fix up pdev resources array early in boot, so this
2151 * function can be used for both native and legacy SFF hosts.
2154 * Inherited from calling layer (may sleep).
2157 * 0 if at least one port is initialized, -ENODEV if no port is
2160 int ata_pci_sff_init_host(struct ata_host *host)
2162 struct device *gdev = host->dev;
2163 struct pci_dev *pdev = to_pci_dev(gdev);
2164 unsigned int mask = 0;
2167 /* request, iomap BARs and init port addresses accordingly */
2168 for (i = 0; i < 2; i++) {
2169 struct ata_port *ap = host->ports[i];
2171 void __iomem * const *iomap;
2173 if (ata_port_is_dummy(ap))
2176 /* Discard disabled ports. Some controllers show
2177 * their unused channels this way. Disabled ports are
2180 if (!ata_resources_present(pdev, i)) {
2181 ap->ops = &ata_dummy_port_ops;
2185 rc = pcim_iomap_regions(pdev, 0x3 << base,
2186 dev_driver_string(gdev));
2189 "failed to request/iomap BARs for port %d (errno=%d)\n",
2192 pcim_pin_device(pdev);
2193 ap->ops = &ata_dummy_port_ops;
2196 host->iomap = iomap = pcim_iomap_table(pdev);
2198 ap->ioaddr.cmd_addr = iomap[base];
2199 ap->ioaddr.altstatus_addr =
2200 ap->ioaddr.ctl_addr = (void __iomem *)
2201 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2202 ata_sff_std_ports(&ap->ioaddr);
2204 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2205 (unsigned long long)pci_resource_start(pdev, base),
2206 (unsigned long long)pci_resource_start(pdev, base + 1));
2212 dev_err(gdev, "no available native port\n");
2218 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2221 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2222 * @pdev: target PCI device
2223 * @ppi: array of port_info, must be enough for two ports
2224 * @r_host: out argument for the initialized ATA host
2226 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2227 * all PCI resources and initialize it accordingly in one go.
2230 * Inherited from calling layer (may sleep).
2233 * 0 on success, -errno otherwise.
2235 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2236 const struct ata_port_info * const *ppi,
2237 struct ata_host **r_host)
2239 struct ata_host *host;
2242 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2245 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2247 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2252 rc = ata_pci_sff_init_host(host);
2256 devres_remove_group(&pdev->dev, NULL);
2261 devres_release_group(&pdev->dev, NULL);
2264 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2267 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2268 * @host: target SFF ATA host
2269 * @irq_handler: irq_handler used when requesting IRQ(s)
2270 * @sht: scsi_host_template to use when registering the host
2272 * This is the counterpart of ata_host_activate() for SFF ATA
2273 * hosts. This separate helper is necessary because SFF hosts
2274 * use two separate interrupts in legacy mode.
2277 * Inherited from calling layer (may sleep).
2280 * 0 on success, -errno otherwise.
2282 int ata_pci_sff_activate_host(struct ata_host *host,
2283 irq_handler_t irq_handler,
2284 const struct scsi_host_template *sht)
2286 struct device *dev = host->dev;
2287 struct pci_dev *pdev = to_pci_dev(dev);
2288 const char *drv_name = dev_driver_string(host->dev);
2289 int legacy_mode = 0, rc;
2291 rc = ata_host_start(host);
2295 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2299 * ATA spec says we should use legacy mode when one
2300 * port is in legacy mode, but disabled ports on some
2301 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2302 * on which the secondary port is not wired, so
2303 * ignore ports that are marked as 'dummy' during
2306 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2307 if (!ata_port_is_dummy(host->ports[0]))
2309 if (!ata_port_is_dummy(host->ports[1]))
2311 if ((tmp8 & mask) != mask)
2315 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2318 if (!legacy_mode && pdev->irq) {
2321 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2322 IRQF_SHARED, drv_name, host);
2326 for (i = 0; i < 2; i++) {
2327 if (ata_port_is_dummy(host->ports[i]))
2329 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2331 } else if (legacy_mode) {
2332 if (!ata_port_is_dummy(host->ports[0])) {
2333 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2334 irq_handler, IRQF_SHARED,
2339 ata_port_desc(host->ports[0], "irq %d",
2340 ATA_PRIMARY_IRQ(pdev));
2343 if (!ata_port_is_dummy(host->ports[1])) {
2344 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2345 irq_handler, IRQF_SHARED,
2350 ata_port_desc(host->ports[1], "irq %d",
2351 ATA_SECONDARY_IRQ(pdev));
2355 rc = ata_host_register(host, sht);
2358 devres_remove_group(dev, NULL);
2360 devres_release_group(dev, NULL);
2364 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2366 static const struct ata_port_info *ata_sff_find_valid_pi(
2367 const struct ata_port_info * const *ppi)
2371 /* look up the first valid port_info */
2372 for (i = 0; i < 2 && ppi[i]; i++)
2373 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2379 static int ata_pci_init_one(struct pci_dev *pdev,
2380 const struct ata_port_info * const *ppi,
2381 const struct scsi_host_template *sht, void *host_priv,
2382 int hflags, bool bmdma)
2384 struct device *dev = &pdev->dev;
2385 const struct ata_port_info *pi;
2386 struct ata_host *host = NULL;
2389 pi = ata_sff_find_valid_pi(ppi);
2391 dev_err(&pdev->dev, "no valid port_info specified\n");
2395 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2398 rc = pcim_enable_device(pdev);
2402 #ifdef CONFIG_ATA_BMDMA
2404 /* prepare and activate BMDMA host */
2405 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2408 /* prepare and activate SFF host */
2409 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2412 host->private_data = host_priv;
2413 host->flags |= hflags;
2415 #ifdef CONFIG_ATA_BMDMA
2417 pci_set_master(pdev);
2418 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2421 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2424 devres_remove_group(&pdev->dev, NULL);
2426 devres_release_group(&pdev->dev, NULL);
2432 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2433 * @pdev: Controller to be initialized
2434 * @ppi: array of port_info, must be enough for two ports
2435 * @sht: scsi_host_template to use when registering the host
2436 * @host_priv: host private_data
2437 * @hflag: host flags
2439 * This is a helper function which can be called from a driver's
2440 * xxx_init_one() probe function if the hardware uses traditional
2441 * IDE taskfile registers and is PIO only.
2444 * Nobody makes a single channel controller that appears solely as
2445 * the secondary legacy port on PCI.
2448 * Inherited from PCI layer (may sleep).
2451 * Zero on success, negative on errno-based value on error.
2453 int ata_pci_sff_init_one(struct pci_dev *pdev,
2454 const struct ata_port_info * const *ppi,
2455 const struct scsi_host_template *sht, void *host_priv, int hflag)
2457 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2459 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2461 #endif /* CONFIG_PCI */
2467 #ifdef CONFIG_ATA_BMDMA
2469 const struct ata_port_operations ata_bmdma_port_ops = {
2470 .inherits = &ata_sff_port_ops,
2472 .error_handler = ata_bmdma_error_handler,
2473 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2475 .qc_prep = ata_bmdma_qc_prep,
2476 .qc_issue = ata_bmdma_qc_issue,
2478 .sff_irq_clear = ata_bmdma_irq_clear,
2479 .bmdma_setup = ata_bmdma_setup,
2480 .bmdma_start = ata_bmdma_start,
2481 .bmdma_stop = ata_bmdma_stop,
2482 .bmdma_status = ata_bmdma_status,
2484 .port_start = ata_bmdma_port_start,
2486 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2488 const struct ata_port_operations ata_bmdma32_port_ops = {
2489 .inherits = &ata_bmdma_port_ops,
2491 .sff_data_xfer = ata_sff_data_xfer32,
2492 .port_start = ata_bmdma_port_start32,
2494 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2497 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2498 * @qc: Metadata associated with taskfile to be transferred
2500 * Fill PCI IDE PRD (scatter-gather) table with segments
2501 * associated with the current disk command.
2504 * spin_lock_irqsave(host lock)
2507 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2509 struct ata_port *ap = qc->ap;
2510 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2511 struct scatterlist *sg;
2512 unsigned int si, pi;
2515 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2519 /* determine if physical DMA addr spans 64K boundary.
2520 * Note h/w doesn't support 64-bit, so we unconditionally
2521 * truncate dma_addr_t to u32.
2523 addr = (u32) sg_dma_address(sg);
2524 sg_len = sg_dma_len(sg);
2527 offset = addr & 0xffff;
2529 if ((offset + sg_len) > 0x10000)
2530 len = 0x10000 - offset;
2532 prd[pi].addr = cpu_to_le32(addr);
2533 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2541 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2545 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2546 * @qc: Metadata associated with taskfile to be transferred
2548 * Fill PCI IDE PRD (scatter-gather) table with segments
2549 * associated with the current disk command. Perform the fill
2550 * so that we avoid writing any length 64K records for
2551 * controllers that don't follow the spec.
2554 * spin_lock_irqsave(host lock)
2557 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2559 struct ata_port *ap = qc->ap;
2560 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2561 struct scatterlist *sg;
2562 unsigned int si, pi;
2565 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2567 u32 sg_len, len, blen;
2569 /* determine if physical DMA addr spans 64K boundary.
2570 * Note h/w doesn't support 64-bit, so we unconditionally
2571 * truncate dma_addr_t to u32.
2573 addr = (u32) sg_dma_address(sg);
2574 sg_len = sg_dma_len(sg);
2577 offset = addr & 0xffff;
2579 if ((offset + sg_len) > 0x10000)
2580 len = 0x10000 - offset;
2582 blen = len & 0xffff;
2583 prd[pi].addr = cpu_to_le32(addr);
2585 /* Some PATA chipsets like the CS5530 can't
2586 cope with 0x0000 meaning 64K as the spec
2588 prd[pi].flags_len = cpu_to_le32(0x8000);
2590 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2592 prd[pi].flags_len = cpu_to_le32(blen);
2600 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2604 * ata_bmdma_qc_prep - Prepare taskfile for submission
2605 * @qc: Metadata associated with taskfile to be prepared
2607 * Prepare ATA taskfile for submission.
2610 * spin_lock_irqsave(host lock)
2612 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2614 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2617 ata_bmdma_fill_sg(qc);
2621 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2624 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2625 * @qc: Metadata associated with taskfile to be prepared
2627 * Prepare ATA taskfile for submission.
2630 * spin_lock_irqsave(host lock)
2632 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2634 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2637 ata_bmdma_fill_sg_dumb(qc);
2641 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2644 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2645 * @qc: command to issue to device
2647 * This function issues a PIO, NODATA or DMA command to a
2648 * SFF/BMDMA controller. PIO and NODATA are handled by
2649 * ata_sff_qc_issue().
2652 * spin_lock_irqsave(host lock)
2655 * Zero on success, AC_ERR_* mask on failure
2657 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2659 struct ata_port *ap = qc->ap;
2660 struct ata_link *link = qc->dev->link;
2662 /* defer PIO handling to sff_qc_issue */
2663 if (!ata_is_dma(qc->tf.protocol))
2664 return ata_sff_qc_issue(qc);
2666 /* select the device */
2667 ata_dev_select(ap, qc->dev->devno, 1, 0);
2669 /* start the command */
2670 switch (qc->tf.protocol) {
2672 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2674 trace_ata_tf_load(ap, &qc->tf);
2675 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2676 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2677 ap->ops->bmdma_setup(qc); /* set up bmdma */
2678 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2679 ap->ops->bmdma_start(qc); /* initiate bmdma */
2680 ap->hsm_task_state = HSM_ST_LAST;
2683 case ATAPI_PROT_DMA:
2684 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2686 trace_ata_tf_load(ap, &qc->tf);
2687 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2688 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2689 ap->ops->bmdma_setup(qc); /* set up bmdma */
2690 ap->hsm_task_state = HSM_ST_FIRST;
2692 /* send cdb by polling if no cdb interrupt */
2693 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2694 ata_sff_queue_pio_task(link, 0);
2699 return AC_ERR_SYSTEM;
2704 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2707 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2708 * @ap: Port on which interrupt arrived (possibly...)
2709 * @qc: Taskfile currently active in engine
2711 * Handle port interrupt for given queued command.
2714 * spin_lock_irqsave(host lock)
2717 * One if interrupt was handled, zero if not (shared irq).
2719 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2721 struct ata_eh_info *ehi = &ap->link.eh_info;
2723 bool bmdma_stopped = false;
2724 unsigned int handled;
2726 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2727 /* check status of DMA engine */
2728 host_stat = ap->ops->bmdma_status(ap);
2729 trace_ata_bmdma_status(ap, host_stat);
2731 /* if it's not our irq... */
2732 if (!(host_stat & ATA_DMA_INTR))
2733 return ata_sff_idle_irq(ap);
2735 /* before we do anything else, clear DMA-Start bit */
2736 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2737 ap->ops->bmdma_stop(qc);
2738 bmdma_stopped = true;
2740 if (unlikely(host_stat & ATA_DMA_ERR)) {
2741 /* error when transferring data to/from memory */
2742 qc->err_mask |= AC_ERR_HOST_BUS;
2743 ap->hsm_task_state = HSM_ST_ERR;
2747 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2749 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2750 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2754 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2757 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2758 * @irq: irq line (unused)
2759 * @dev_instance: pointer to our ata_host information structure
2761 * Default interrupt handler for PCI IDE devices. Calls
2762 * ata_bmdma_port_intr() for each port that is not disabled.
2765 * Obtains host lock during operation.
2768 * IRQ_NONE or IRQ_HANDLED.
2770 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2772 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2774 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2777 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2778 * @ap: port to handle error for
2780 * Stock error handler for BMDMA controller. It can handle both
2781 * PATA and SATA controllers. Most BMDMA controllers should be
2782 * able to use this EH as-is or with some added handling before
2786 * Kernel thread context (may sleep)
2788 void ata_bmdma_error_handler(struct ata_port *ap)
2790 struct ata_queued_cmd *qc;
2791 unsigned long flags;
2794 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2795 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2798 /* reset PIO HSM and stop DMA engine */
2799 spin_lock_irqsave(ap->lock, flags);
2801 if (qc && ata_is_dma(qc->tf.protocol)) {
2804 host_stat = ap->ops->bmdma_status(ap);
2805 trace_ata_bmdma_status(ap, host_stat);
2807 /* BMDMA controllers indicate host bus error by
2808 * setting DMA_ERR bit and timing out. As it wasn't
2809 * really a timeout event, adjust error mask and
2810 * cancel frozen state.
2812 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2813 qc->err_mask = AC_ERR_HOST_BUS;
2817 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2818 ap->ops->bmdma_stop(qc);
2820 /* if we're gonna thaw, make sure IRQ is clear */
2822 ap->ops->sff_check_status(ap);
2823 if (ap->ops->sff_irq_clear)
2824 ap->ops->sff_irq_clear(ap);
2828 spin_unlock_irqrestore(ap->lock, flags);
2831 ata_eh_thaw_port(ap);
2833 ata_sff_error_handler(ap);
2835 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2838 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2839 * @qc: internal command to clean up
2842 * Kernel thread context (may sleep)
2844 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2846 struct ata_port *ap = qc->ap;
2847 unsigned long flags;
2849 if (ata_is_dma(qc->tf.protocol)) {
2850 spin_lock_irqsave(ap->lock, flags);
2851 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2852 ap->ops->bmdma_stop(qc);
2853 spin_unlock_irqrestore(ap->lock, flags);
2856 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2859 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2860 * @ap: Port associated with this ATA transaction.
2862 * Clear interrupt and error flags in DMA status register.
2864 * May be used as the irq_clear() entry in ata_port_operations.
2867 * spin_lock_irqsave(host lock)
2869 void ata_bmdma_irq_clear(struct ata_port *ap)
2871 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2876 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2878 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2881 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2882 * @qc: Info associated with this ATA transaction.
2885 * spin_lock_irqsave(host lock)
2887 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2889 struct ata_port *ap = qc->ap;
2890 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2893 /* load PRD table addr. */
2894 mb(); /* make sure PRD table writes are visible to controller */
2895 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2897 /* specify data direction, triple-check start bit is clear */
2898 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2899 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2901 dmactl |= ATA_DMA_WR;
2902 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2904 /* issue r/w command */
2905 ap->ops->sff_exec_command(ap, &qc->tf);
2907 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2910 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2911 * @qc: Info associated with this ATA transaction.
2914 * spin_lock_irqsave(host lock)
2916 void ata_bmdma_start(struct ata_queued_cmd *qc)
2918 struct ata_port *ap = qc->ap;
2921 /* start host DMA transaction */
2922 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2923 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2925 /* Strictly, one may wish to issue an ioread8() here, to
2926 * flush the mmio write. However, control also passes
2927 * to the hardware at this point, and it will interrupt
2928 * us when we are to resume control. So, in effect,
2929 * we don't care when the mmio write flushes.
2930 * Further, a read of the DMA status register _immediately_
2931 * following the write may not be what certain flaky hardware
2932 * is expected, so I think it is best to not add a readb()
2933 * without first all the MMIO ATA cards/mobos.
2934 * Or maybe I'm just being paranoid.
2936 * FIXME: The posting of this write means I/O starts are
2937 * unnecessarily delayed for MMIO
2940 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2943 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2944 * @qc: Command we are ending DMA for
2946 * Clears the ATA_DMA_START flag in the dma control register
2948 * May be used as the bmdma_stop() entry in ata_port_operations.
2951 * spin_lock_irqsave(host lock)
2953 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2955 struct ata_port *ap = qc->ap;
2956 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2958 /* clear start/stop bit */
2959 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2960 mmio + ATA_DMA_CMD);
2962 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2963 ata_sff_dma_pause(ap);
2965 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2968 * ata_bmdma_status - Read PCI IDE BMDMA status
2969 * @ap: Port associated with this ATA transaction.
2971 * Read and return BMDMA status register.
2973 * May be used as the bmdma_status() entry in ata_port_operations.
2976 * spin_lock_irqsave(host lock)
2978 u8 ata_bmdma_status(struct ata_port *ap)
2980 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2982 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2986 * ata_bmdma_port_start - Set port up for bmdma.
2987 * @ap: Port to initialize
2989 * Called just after data structures for each port are
2990 * initialized. Allocates space for PRD table.
2992 * May be used as the port_start() entry in ata_port_operations.
2995 * Inherited from caller.
2997 int ata_bmdma_port_start(struct ata_port *ap)
2999 if (ap->mwdma_mask || ap->udma_mask) {
3001 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3002 &ap->bmdma_prd_dma, GFP_KERNEL);
3009 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3012 * ata_bmdma_port_start32 - Set port up for dma.
3013 * @ap: Port to initialize
3015 * Called just after data structures for each port are
3016 * initialized. Enables 32bit PIO and allocates space for PRD
3019 * May be used as the port_start() entry in ata_port_operations for
3020 * devices that are capable of 32bit PIO.
3023 * Inherited from caller.
3025 int ata_bmdma_port_start32(struct ata_port *ap)
3027 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3028 return ata_bmdma_port_start(ap);
3030 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3035 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3038 * Some PCI ATA devices report simplex mode but in fact can be told to
3039 * enter non simplex mode. This implements the necessary logic to
3040 * perform the task on such devices. Calling it on other devices will
3041 * have -undefined- behaviour.
3043 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3045 unsigned long bmdma = pci_resource_start(pdev, 4);
3051 simplex = inb(bmdma + 0x02);
3052 outb(simplex & 0x60, bmdma + 0x02);
3053 simplex = inb(bmdma + 0x02);
3058 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3060 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3064 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3066 for (i = 0; i < 2; i++) {
3067 host->ports[i]->mwdma_mask = 0;
3068 host->ports[i]->udma_mask = 0;
3073 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3074 * @host: target ATA host
3076 * Acquire PCI BMDMA resources and initialize @host accordingly.
3079 * Inherited from calling layer (may sleep).
3081 void ata_pci_bmdma_init(struct ata_host *host)
3083 struct device *gdev = host->dev;
3084 struct pci_dev *pdev = to_pci_dev(gdev);
3087 /* No BAR4 allocation: No DMA */
3088 if (pci_resource_start(pdev, 4) == 0) {
3089 ata_bmdma_nodma(host, "BAR4 is zero");
3094 * Some controllers require BMDMA region to be initialized
3095 * even if DMA is not in use to clear IRQ status via
3096 * ->sff_irq_clear method. Try to initialize bmdma_addr
3097 * regardless of dma masks.
3099 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3101 ata_bmdma_nodma(host, "failed to set dma mask");
3103 /* request and iomap DMA region */
3104 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3106 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3109 host->iomap = pcim_iomap_table(pdev);
3111 for (i = 0; i < 2; i++) {
3112 struct ata_port *ap = host->ports[i];
3113 void __iomem *bmdma = host->iomap[4] + 8 * i;
3115 if (ata_port_is_dummy(ap))
3118 ap->ioaddr.bmdma_addr = bmdma;
3119 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3120 (ioread8(bmdma + 2) & 0x80))
3121 host->flags |= ATA_HOST_SIMPLEX;
3123 ata_port_desc(ap, "bmdma 0x%llx",
3124 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3127 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3130 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3131 * @pdev: target PCI device
3132 * @ppi: array of port_info, must be enough for two ports
3133 * @r_host: out argument for the initialized ATA host
3135 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3136 * resources and initialize it accordingly in one go.
3139 * Inherited from calling layer (may sleep).
3142 * 0 on success, -errno otherwise.
3144 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3145 const struct ata_port_info * const * ppi,
3146 struct ata_host **r_host)
3150 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3154 ata_pci_bmdma_init(*r_host);
3157 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3160 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3161 * @pdev: Controller to be initialized
3162 * @ppi: array of port_info, must be enough for two ports
3163 * @sht: scsi_host_template to use when registering the host
3164 * @host_priv: host private_data
3165 * @hflags: host flags
3167 * This function is similar to ata_pci_sff_init_one() but also
3168 * takes care of BMDMA initialization.
3171 * Inherited from PCI layer (may sleep).
3174 * Zero on success, negative on errno-based value on error.
3176 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3177 const struct ata_port_info * const * ppi,
3178 const struct scsi_host_template *sht, void *host_priv,
3181 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3183 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3185 #endif /* CONFIG_PCI */
3186 #endif /* CONFIG_ATA_BMDMA */
3189 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3190 * @ap: Port to initialize
3192 * Called on port allocation to initialize SFF/BMDMA specific
3198 void ata_sff_port_init(struct ata_port *ap)
3200 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3201 ap->ctl = ATA_DEVCTL_OBS;
3202 ap->last_ctl = 0xFF;
3205 int __init ata_sff_init(void)
3207 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3214 void ata_sff_exit(void)
3216 destroy_workqueue(ata_sff_wq);