Merge tag 'hardening-v6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[platform/kernel/linux-starfive.git] / drivers / android / binder_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34         BINDER_DEBUG_USER_ERROR             = 1U << 0,
35         BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36         BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37         BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42                    uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45         do { \
46                 if (binder_alloc_debug_mask & mask) \
47                         pr_info_ratelimited(x); \
48         } while (0)
49
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52         return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57         return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61                                        struct binder_buffer *buffer)
62 {
63         if (list_is_last(&buffer->entry, &alloc->buffers))
64                 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65         return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69                                       struct binder_buffer *new_buffer)
70 {
71         struct rb_node **p = &alloc->free_buffers.rb_node;
72         struct rb_node *parent = NULL;
73         struct binder_buffer *buffer;
74         size_t buffer_size;
75         size_t new_buffer_size;
76
77         BUG_ON(!new_buffer->free);
78
79         new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82                      "%d: add free buffer, size %zd, at %pK\n",
83                       alloc->pid, new_buffer_size, new_buffer);
84
85         while (*p) {
86                 parent = *p;
87                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88                 BUG_ON(!buffer->free);
89
90                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92                 if (new_buffer_size < buffer_size)
93                         p = &parent->rb_left;
94                 else
95                         p = &parent->rb_right;
96         }
97         rb_link_node(&new_buffer->rb_node, parent, p);
98         rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
101 static void binder_insert_allocated_buffer_locked(
102                 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104         struct rb_node **p = &alloc->allocated_buffers.rb_node;
105         struct rb_node *parent = NULL;
106         struct binder_buffer *buffer;
107
108         BUG_ON(new_buffer->free);
109
110         while (*p) {
111                 parent = *p;
112                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113                 BUG_ON(buffer->free);
114
115                 if (new_buffer->user_data < buffer->user_data)
116                         p = &parent->rb_left;
117                 else if (new_buffer->user_data > buffer->user_data)
118                         p = &parent->rb_right;
119                 else
120                         BUG();
121         }
122         rb_link_node(&new_buffer->rb_node, parent, p);
123         rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127                 struct binder_alloc *alloc,
128                 uintptr_t user_ptr)
129 {
130         struct rb_node *n = alloc->allocated_buffers.rb_node;
131         struct binder_buffer *buffer;
132         void __user *uptr;
133
134         uptr = (void __user *)user_ptr;
135
136         while (n) {
137                 buffer = rb_entry(n, struct binder_buffer, rb_node);
138                 BUG_ON(buffer->free);
139
140                 if (uptr < buffer->user_data)
141                         n = n->rb_left;
142                 else if (uptr > buffer->user_data)
143                         n = n->rb_right;
144                 else {
145                         /*
146                          * Guard against user threads attempting to
147                          * free the buffer when in use by kernel or
148                          * after it's already been freed.
149                          */
150                         if (!buffer->allow_user_free)
151                                 return ERR_PTR(-EPERM);
152                         buffer->allow_user_free = 0;
153                         return buffer;
154                 }
155         }
156         return NULL;
157 }
158
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:      binder_alloc for this proc
162  * @user_ptr:   User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:      Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171                                                    uintptr_t user_ptr)
172 {
173         struct binder_buffer *buffer;
174
175         mutex_lock(&alloc->mutex);
176         buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177         mutex_unlock(&alloc->mutex);
178         return buffer;
179 }
180
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182                                     void __user *start, void __user *end)
183 {
184         void __user *page_addr;
185         unsigned long user_page_addr;
186         struct binder_lru_page *page;
187         struct vm_area_struct *vma = NULL;
188         struct mm_struct *mm = NULL;
189         bool need_mm = false;
190
191         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192                      "%d: %s pages %pK-%pK\n", alloc->pid,
193                      allocate ? "allocate" : "free", start, end);
194
195         if (end <= start)
196                 return 0;
197
198         trace_binder_update_page_range(alloc, allocate, start, end);
199
200         if (allocate == 0)
201                 goto free_range;
202
203         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204                 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205                 if (!page->page_ptr) {
206                         need_mm = true;
207                         break;
208                 }
209         }
210
211         if (need_mm && mmget_not_zero(alloc->mm))
212                 mm = alloc->mm;
213
214         if (mm) {
215                 mmap_write_lock(mm);
216                 vma = alloc->vma;
217         }
218
219         if (!vma && need_mm) {
220                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221                                    "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222                                    alloc->pid);
223                 goto err_no_vma;
224         }
225
226         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227                 int ret;
228                 bool on_lru;
229                 size_t index;
230
231                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232                 page = &alloc->pages[index];
233
234                 if (page->page_ptr) {
235                         trace_binder_alloc_lru_start(alloc, index);
236
237                         on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238                         WARN_ON(!on_lru);
239
240                         trace_binder_alloc_lru_end(alloc, index);
241                         continue;
242                 }
243
244                 if (WARN_ON(!vma))
245                         goto err_page_ptr_cleared;
246
247                 trace_binder_alloc_page_start(alloc, index);
248                 page->page_ptr = alloc_page(GFP_KERNEL |
249                                             __GFP_HIGHMEM |
250                                             __GFP_ZERO);
251                 if (!page->page_ptr) {
252                         pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253                                 alloc->pid, page_addr);
254                         goto err_alloc_page_failed;
255                 }
256                 page->alloc = alloc;
257                 INIT_LIST_HEAD(&page->lru);
258
259                 user_page_addr = (uintptr_t)page_addr;
260                 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261                 if (ret) {
262                         pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263                                alloc->pid, user_page_addr);
264                         goto err_vm_insert_page_failed;
265                 }
266
267                 if (index + 1 > alloc->pages_high)
268                         alloc->pages_high = index + 1;
269
270                 trace_binder_alloc_page_end(alloc, index);
271         }
272         if (mm) {
273                 mmap_write_unlock(mm);
274                 mmput(mm);
275         }
276         return 0;
277
278 free_range:
279         for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280                 bool ret;
281                 size_t index;
282
283                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284                 page = &alloc->pages[index];
285
286                 trace_binder_free_lru_start(alloc, index);
287
288                 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289                 WARN_ON(!ret);
290
291                 trace_binder_free_lru_end(alloc, index);
292                 if (page_addr == start)
293                         break;
294                 continue;
295
296 err_vm_insert_page_failed:
297                 __free_page(page->page_ptr);
298                 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301                 if (page_addr == start)
302                         break;
303         }
304 err_no_vma:
305         if (mm) {
306                 mmap_write_unlock(mm);
307                 mmput(mm);
308         }
309         return vma ? -ENOMEM : -ESRCH;
310 }
311
312 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
313                 struct vm_area_struct *vma)
314 {
315         /* pairs with smp_load_acquire in binder_alloc_get_vma() */
316         smp_store_release(&alloc->vma, vma);
317 }
318
319 static inline struct vm_area_struct *binder_alloc_get_vma(
320                 struct binder_alloc *alloc)
321 {
322         /* pairs with smp_store_release in binder_alloc_set_vma() */
323         return smp_load_acquire(&alloc->vma);
324 }
325
326 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
327 {
328         /*
329          * Find the amount and size of buffers allocated by the current caller;
330          * The idea is that once we cross the threshold, whoever is responsible
331          * for the low async space is likely to try to send another async txn,
332          * and at some point we'll catch them in the act. This is more efficient
333          * than keeping a map per pid.
334          */
335         struct rb_node *n;
336         struct binder_buffer *buffer;
337         size_t total_alloc_size = 0;
338         size_t num_buffers = 0;
339
340         for (n = rb_first(&alloc->allocated_buffers); n != NULL;
341                  n = rb_next(n)) {
342                 buffer = rb_entry(n, struct binder_buffer, rb_node);
343                 if (buffer->pid != pid)
344                         continue;
345                 if (!buffer->async_transaction)
346                         continue;
347                 total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
348                         + sizeof(struct binder_buffer);
349                 num_buffers++;
350         }
351
352         /*
353          * Warn if this pid has more than 50 transactions, or more than 50% of
354          * async space (which is 25% of total buffer size). Oneway spam is only
355          * detected when the threshold is exceeded.
356          */
357         if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
358                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
359                              "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
360                               alloc->pid, pid, num_buffers, total_alloc_size);
361                 if (!alloc->oneway_spam_detected) {
362                         alloc->oneway_spam_detected = true;
363                         return true;
364                 }
365         }
366         return false;
367 }
368
369 static struct binder_buffer *binder_alloc_new_buf_locked(
370                                 struct binder_alloc *alloc,
371                                 size_t data_size,
372                                 size_t offsets_size,
373                                 size_t extra_buffers_size,
374                                 int is_async,
375                                 int pid)
376 {
377         struct rb_node *n = alloc->free_buffers.rb_node;
378         struct binder_buffer *buffer;
379         size_t buffer_size;
380         struct rb_node *best_fit = NULL;
381         void __user *has_page_addr;
382         void __user *end_page_addr;
383         size_t size, data_offsets_size;
384         int ret;
385
386         /* Check binder_alloc is fully initialized */
387         if (!binder_alloc_get_vma(alloc)) {
388                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
389                                    "%d: binder_alloc_buf, no vma\n",
390                                    alloc->pid);
391                 return ERR_PTR(-ESRCH);
392         }
393
394         data_offsets_size = ALIGN(data_size, sizeof(void *)) +
395                 ALIGN(offsets_size, sizeof(void *));
396
397         if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
398                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
399                                 "%d: got transaction with invalid size %zd-%zd\n",
400                                 alloc->pid, data_size, offsets_size);
401                 return ERR_PTR(-EINVAL);
402         }
403         size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
404         if (size < data_offsets_size || size < extra_buffers_size) {
405                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
406                                 "%d: got transaction with invalid extra_buffers_size %zd\n",
407                                 alloc->pid, extra_buffers_size);
408                 return ERR_PTR(-EINVAL);
409         }
410         if (is_async &&
411             alloc->free_async_space < size + sizeof(struct binder_buffer)) {
412                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
413                              "%d: binder_alloc_buf size %zd failed, no async space left\n",
414                               alloc->pid, size);
415                 return ERR_PTR(-ENOSPC);
416         }
417
418         /* Pad 0-size buffers so they get assigned unique addresses */
419         size = max(size, sizeof(void *));
420
421         while (n) {
422                 buffer = rb_entry(n, struct binder_buffer, rb_node);
423                 BUG_ON(!buffer->free);
424                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
425
426                 if (size < buffer_size) {
427                         best_fit = n;
428                         n = n->rb_left;
429                 } else if (size > buffer_size)
430                         n = n->rb_right;
431                 else {
432                         best_fit = n;
433                         break;
434                 }
435         }
436         if (best_fit == NULL) {
437                 size_t allocated_buffers = 0;
438                 size_t largest_alloc_size = 0;
439                 size_t total_alloc_size = 0;
440                 size_t free_buffers = 0;
441                 size_t largest_free_size = 0;
442                 size_t total_free_size = 0;
443
444                 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
445                      n = rb_next(n)) {
446                         buffer = rb_entry(n, struct binder_buffer, rb_node);
447                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
448                         allocated_buffers++;
449                         total_alloc_size += buffer_size;
450                         if (buffer_size > largest_alloc_size)
451                                 largest_alloc_size = buffer_size;
452                 }
453                 for (n = rb_first(&alloc->free_buffers); n != NULL;
454                      n = rb_next(n)) {
455                         buffer = rb_entry(n, struct binder_buffer, rb_node);
456                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
457                         free_buffers++;
458                         total_free_size += buffer_size;
459                         if (buffer_size > largest_free_size)
460                                 largest_free_size = buffer_size;
461                 }
462                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
463                                    "%d: binder_alloc_buf size %zd failed, no address space\n",
464                                    alloc->pid, size);
465                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
466                                    "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
467                                    total_alloc_size, allocated_buffers,
468                                    largest_alloc_size, total_free_size,
469                                    free_buffers, largest_free_size);
470                 return ERR_PTR(-ENOSPC);
471         }
472         if (n == NULL) {
473                 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
474                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
475         }
476
477         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
478                      "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
479                       alloc->pid, size, buffer, buffer_size);
480
481         has_page_addr = (void __user *)
482                 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
483         WARN_ON(n && buffer_size != size);
484         end_page_addr =
485                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
486         if (end_page_addr > has_page_addr)
487                 end_page_addr = has_page_addr;
488         ret = binder_update_page_range(alloc, 1, (void __user *)
489                 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
490         if (ret)
491                 return ERR_PTR(ret);
492
493         if (buffer_size != size) {
494                 struct binder_buffer *new_buffer;
495
496                 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
497                 if (!new_buffer) {
498                         pr_err("%s: %d failed to alloc new buffer struct\n",
499                                __func__, alloc->pid);
500                         goto err_alloc_buf_struct_failed;
501                 }
502                 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
503                 list_add(&new_buffer->entry, &buffer->entry);
504                 new_buffer->free = 1;
505                 binder_insert_free_buffer(alloc, new_buffer);
506         }
507
508         rb_erase(best_fit, &alloc->free_buffers);
509         buffer->free = 0;
510         buffer->allow_user_free = 0;
511         binder_insert_allocated_buffer_locked(alloc, buffer);
512         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
513                      "%d: binder_alloc_buf size %zd got %pK\n",
514                       alloc->pid, size, buffer);
515         buffer->data_size = data_size;
516         buffer->offsets_size = offsets_size;
517         buffer->async_transaction = is_async;
518         buffer->extra_buffers_size = extra_buffers_size;
519         buffer->pid = pid;
520         buffer->oneway_spam_suspect = false;
521         if (is_async) {
522                 alloc->free_async_space -= size + sizeof(struct binder_buffer);
523                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
524                              "%d: binder_alloc_buf size %zd async free %zd\n",
525                               alloc->pid, size, alloc->free_async_space);
526                 if (alloc->free_async_space < alloc->buffer_size / 10) {
527                         /*
528                          * Start detecting spammers once we have less than 20%
529                          * of async space left (which is less than 10% of total
530                          * buffer size).
531                          */
532                         buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
533                 } else {
534                         alloc->oneway_spam_detected = false;
535                 }
536         }
537         return buffer;
538
539 err_alloc_buf_struct_failed:
540         binder_update_page_range(alloc, 0, (void __user *)
541                                  PAGE_ALIGN((uintptr_t)buffer->user_data),
542                                  end_page_addr);
543         return ERR_PTR(-ENOMEM);
544 }
545
546 /**
547  * binder_alloc_new_buf() - Allocate a new binder buffer
548  * @alloc:              binder_alloc for this proc
549  * @data_size:          size of user data buffer
550  * @offsets_size:       user specified buffer offset
551  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
552  * @is_async:           buffer for async transaction
553  * @pid:                                pid to attribute allocation to (used for debugging)
554  *
555  * Allocate a new buffer given the requested sizes. Returns
556  * the kernel version of the buffer pointer. The size allocated
557  * is the sum of the three given sizes (each rounded up to
558  * pointer-sized boundary)
559  *
560  * Return:      The allocated buffer or %NULL if error
561  */
562 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
563                                            size_t data_size,
564                                            size_t offsets_size,
565                                            size_t extra_buffers_size,
566                                            int is_async,
567                                            int pid)
568 {
569         struct binder_buffer *buffer;
570
571         mutex_lock(&alloc->mutex);
572         buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
573                                              extra_buffers_size, is_async, pid);
574         mutex_unlock(&alloc->mutex);
575         return buffer;
576 }
577
578 static void __user *buffer_start_page(struct binder_buffer *buffer)
579 {
580         return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
581 }
582
583 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
584 {
585         return (void __user *)
586                 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
587 }
588
589 static void binder_delete_free_buffer(struct binder_alloc *alloc,
590                                       struct binder_buffer *buffer)
591 {
592         struct binder_buffer *prev, *next = NULL;
593         bool to_free = true;
594
595         BUG_ON(alloc->buffers.next == &buffer->entry);
596         prev = binder_buffer_prev(buffer);
597         BUG_ON(!prev->free);
598         if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
599                 to_free = false;
600                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
601                                    "%d: merge free, buffer %pK share page with %pK\n",
602                                    alloc->pid, buffer->user_data,
603                                    prev->user_data);
604         }
605
606         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
607                 next = binder_buffer_next(buffer);
608                 if (buffer_start_page(next) == buffer_start_page(buffer)) {
609                         to_free = false;
610                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
611                                            "%d: merge free, buffer %pK share page with %pK\n",
612                                            alloc->pid,
613                                            buffer->user_data,
614                                            next->user_data);
615                 }
616         }
617
618         if (PAGE_ALIGNED(buffer->user_data)) {
619                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
620                                    "%d: merge free, buffer start %pK is page aligned\n",
621                                    alloc->pid, buffer->user_data);
622                 to_free = false;
623         }
624
625         if (to_free) {
626                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
627                                    "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
628                                    alloc->pid, buffer->user_data,
629                                    prev->user_data,
630                                    next ? next->user_data : NULL);
631                 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
632                                          buffer_start_page(buffer) + PAGE_SIZE);
633         }
634         list_del(&buffer->entry);
635         kfree(buffer);
636 }
637
638 static void binder_free_buf_locked(struct binder_alloc *alloc,
639                                    struct binder_buffer *buffer)
640 {
641         size_t size, buffer_size;
642
643         buffer_size = binder_alloc_buffer_size(alloc, buffer);
644
645         size = ALIGN(buffer->data_size, sizeof(void *)) +
646                 ALIGN(buffer->offsets_size, sizeof(void *)) +
647                 ALIGN(buffer->extra_buffers_size, sizeof(void *));
648
649         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
650                      "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
651                       alloc->pid, buffer, size, buffer_size);
652
653         BUG_ON(buffer->free);
654         BUG_ON(size > buffer_size);
655         BUG_ON(buffer->transaction != NULL);
656         BUG_ON(buffer->user_data < alloc->buffer);
657         BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
658
659         if (buffer->async_transaction) {
660                 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
661
662                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
663                              "%d: binder_free_buf size %zd async free %zd\n",
664                               alloc->pid, size, alloc->free_async_space);
665         }
666
667         binder_update_page_range(alloc, 0,
668                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
669                 (void __user *)(((uintptr_t)
670                           buffer->user_data + buffer_size) & PAGE_MASK));
671
672         rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
673         buffer->free = 1;
674         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
675                 struct binder_buffer *next = binder_buffer_next(buffer);
676
677                 if (next->free) {
678                         rb_erase(&next->rb_node, &alloc->free_buffers);
679                         binder_delete_free_buffer(alloc, next);
680                 }
681         }
682         if (alloc->buffers.next != &buffer->entry) {
683                 struct binder_buffer *prev = binder_buffer_prev(buffer);
684
685                 if (prev->free) {
686                         binder_delete_free_buffer(alloc, buffer);
687                         rb_erase(&prev->rb_node, &alloc->free_buffers);
688                         buffer = prev;
689                 }
690         }
691         binder_insert_free_buffer(alloc, buffer);
692 }
693
694 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
695                                    struct binder_buffer *buffer);
696 /**
697  * binder_alloc_free_buf() - free a binder buffer
698  * @alloc:      binder_alloc for this proc
699  * @buffer:     kernel pointer to buffer
700  *
701  * Free the buffer allocated via binder_alloc_new_buf()
702  */
703 void binder_alloc_free_buf(struct binder_alloc *alloc,
704                             struct binder_buffer *buffer)
705 {
706         /*
707          * We could eliminate the call to binder_alloc_clear_buf()
708          * from binder_alloc_deferred_release() by moving this to
709          * binder_alloc_free_buf_locked(). However, that could
710          * increase contention for the alloc mutex if clear_on_free
711          * is used frequently for large buffers. The mutex is not
712          * needed for correctness here.
713          */
714         if (buffer->clear_on_free) {
715                 binder_alloc_clear_buf(alloc, buffer);
716                 buffer->clear_on_free = false;
717         }
718         mutex_lock(&alloc->mutex);
719         binder_free_buf_locked(alloc, buffer);
720         mutex_unlock(&alloc->mutex);
721 }
722
723 /**
724  * binder_alloc_mmap_handler() - map virtual address space for proc
725  * @alloc:      alloc structure for this proc
726  * @vma:        vma passed to mmap()
727  *
728  * Called by binder_mmap() to initialize the space specified in
729  * vma for allocating binder buffers
730  *
731  * Return:
732  *      0 = success
733  *      -EBUSY = address space already mapped
734  *      -ENOMEM = failed to map memory to given address space
735  */
736 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
737                               struct vm_area_struct *vma)
738 {
739         int ret;
740         const char *failure_string;
741         struct binder_buffer *buffer;
742
743         if (unlikely(vma->vm_mm != alloc->mm)) {
744                 ret = -EINVAL;
745                 failure_string = "invalid vma->vm_mm";
746                 goto err_invalid_mm;
747         }
748
749         mutex_lock(&binder_alloc_mmap_lock);
750         if (alloc->buffer_size) {
751                 ret = -EBUSY;
752                 failure_string = "already mapped";
753                 goto err_already_mapped;
754         }
755         alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
756                                    SZ_4M);
757         mutex_unlock(&binder_alloc_mmap_lock);
758
759         alloc->buffer = (void __user *)vma->vm_start;
760
761         alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
762                                sizeof(alloc->pages[0]),
763                                GFP_KERNEL);
764         if (alloc->pages == NULL) {
765                 ret = -ENOMEM;
766                 failure_string = "alloc page array";
767                 goto err_alloc_pages_failed;
768         }
769
770         buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
771         if (!buffer) {
772                 ret = -ENOMEM;
773                 failure_string = "alloc buffer struct";
774                 goto err_alloc_buf_struct_failed;
775         }
776
777         buffer->user_data = alloc->buffer;
778         list_add(&buffer->entry, &alloc->buffers);
779         buffer->free = 1;
780         binder_insert_free_buffer(alloc, buffer);
781         alloc->free_async_space = alloc->buffer_size / 2;
782
783         /* Signal binder_alloc is fully initialized */
784         binder_alloc_set_vma(alloc, vma);
785
786         return 0;
787
788 err_alloc_buf_struct_failed:
789         kfree(alloc->pages);
790         alloc->pages = NULL;
791 err_alloc_pages_failed:
792         alloc->buffer = NULL;
793         mutex_lock(&binder_alloc_mmap_lock);
794         alloc->buffer_size = 0;
795 err_already_mapped:
796         mutex_unlock(&binder_alloc_mmap_lock);
797 err_invalid_mm:
798         binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
799                            "%s: %d %lx-%lx %s failed %d\n", __func__,
800                            alloc->pid, vma->vm_start, vma->vm_end,
801                            failure_string, ret);
802         return ret;
803 }
804
805
806 void binder_alloc_deferred_release(struct binder_alloc *alloc)
807 {
808         struct rb_node *n;
809         int buffers, page_count;
810         struct binder_buffer *buffer;
811
812         buffers = 0;
813         mutex_lock(&alloc->mutex);
814         BUG_ON(alloc->vma);
815
816         while ((n = rb_first(&alloc->allocated_buffers))) {
817                 buffer = rb_entry(n, struct binder_buffer, rb_node);
818
819                 /* Transaction should already have been freed */
820                 BUG_ON(buffer->transaction);
821
822                 if (buffer->clear_on_free) {
823                         binder_alloc_clear_buf(alloc, buffer);
824                         buffer->clear_on_free = false;
825                 }
826                 binder_free_buf_locked(alloc, buffer);
827                 buffers++;
828         }
829
830         while (!list_empty(&alloc->buffers)) {
831                 buffer = list_first_entry(&alloc->buffers,
832                                           struct binder_buffer, entry);
833                 WARN_ON(!buffer->free);
834
835                 list_del(&buffer->entry);
836                 WARN_ON_ONCE(!list_empty(&alloc->buffers));
837                 kfree(buffer);
838         }
839
840         page_count = 0;
841         if (alloc->pages) {
842                 int i;
843
844                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
845                         void __user *page_addr;
846                         bool on_lru;
847
848                         if (!alloc->pages[i].page_ptr)
849                                 continue;
850
851                         on_lru = list_lru_del(&binder_alloc_lru,
852                                               &alloc->pages[i].lru);
853                         page_addr = alloc->buffer + i * PAGE_SIZE;
854                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
855                                      "%s: %d: page %d at %pK %s\n",
856                                      __func__, alloc->pid, i, page_addr,
857                                      on_lru ? "on lru" : "active");
858                         __free_page(alloc->pages[i].page_ptr);
859                         page_count++;
860                 }
861                 kfree(alloc->pages);
862         }
863         mutex_unlock(&alloc->mutex);
864         if (alloc->mm)
865                 mmdrop(alloc->mm);
866
867         binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
868                      "%s: %d buffers %d, pages %d\n",
869                      __func__, alloc->pid, buffers, page_count);
870 }
871
872 static void print_binder_buffer(struct seq_file *m, const char *prefix,
873                                 struct binder_buffer *buffer)
874 {
875         seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
876                    prefix, buffer->debug_id, buffer->user_data,
877                    buffer->data_size, buffer->offsets_size,
878                    buffer->extra_buffers_size,
879                    buffer->transaction ? "active" : "delivered");
880 }
881
882 /**
883  * binder_alloc_print_allocated() - print buffer info
884  * @m:     seq_file for output via seq_printf()
885  * @alloc: binder_alloc for this proc
886  *
887  * Prints information about every buffer associated with
888  * the binder_alloc state to the given seq_file
889  */
890 void binder_alloc_print_allocated(struct seq_file *m,
891                                   struct binder_alloc *alloc)
892 {
893         struct rb_node *n;
894
895         mutex_lock(&alloc->mutex);
896         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
897                 print_binder_buffer(m, "  buffer",
898                                     rb_entry(n, struct binder_buffer, rb_node));
899         mutex_unlock(&alloc->mutex);
900 }
901
902 /**
903  * binder_alloc_print_pages() - print page usage
904  * @m:     seq_file for output via seq_printf()
905  * @alloc: binder_alloc for this proc
906  */
907 void binder_alloc_print_pages(struct seq_file *m,
908                               struct binder_alloc *alloc)
909 {
910         struct binder_lru_page *page;
911         int i;
912         int active = 0;
913         int lru = 0;
914         int free = 0;
915
916         mutex_lock(&alloc->mutex);
917         /*
918          * Make sure the binder_alloc is fully initialized, otherwise we might
919          * read inconsistent state.
920          */
921         if (binder_alloc_get_vma(alloc) != NULL) {
922                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
923                         page = &alloc->pages[i];
924                         if (!page->page_ptr)
925                                 free++;
926                         else if (list_empty(&page->lru))
927                                 active++;
928                         else
929                                 lru++;
930                 }
931         }
932         mutex_unlock(&alloc->mutex);
933         seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
934         seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
935 }
936
937 /**
938  * binder_alloc_get_allocated_count() - return count of buffers
939  * @alloc: binder_alloc for this proc
940  *
941  * Return: count of allocated buffers
942  */
943 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
944 {
945         struct rb_node *n;
946         int count = 0;
947
948         mutex_lock(&alloc->mutex);
949         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
950                 count++;
951         mutex_unlock(&alloc->mutex);
952         return count;
953 }
954
955
956 /**
957  * binder_alloc_vma_close() - invalidate address space
958  * @alloc: binder_alloc for this proc
959  *
960  * Called from binder_vma_close() when releasing address space.
961  * Clears alloc->vma to prevent new incoming transactions from
962  * allocating more buffers.
963  */
964 void binder_alloc_vma_close(struct binder_alloc *alloc)
965 {
966         binder_alloc_set_vma(alloc, NULL);
967 }
968
969 /**
970  * binder_alloc_free_page() - shrinker callback to free pages
971  * @item:   item to free
972  * @lock:   lock protecting the item
973  * @cb_arg: callback argument
974  *
975  * Called from list_lru_walk() in binder_shrink_scan() to free
976  * up pages when the system is under memory pressure.
977  */
978 enum lru_status binder_alloc_free_page(struct list_head *item,
979                                        struct list_lru_one *lru,
980                                        spinlock_t *lock,
981                                        void *cb_arg)
982         __must_hold(lock)
983 {
984         struct mm_struct *mm = NULL;
985         struct binder_lru_page *page = container_of(item,
986                                                     struct binder_lru_page,
987                                                     lru);
988         struct binder_alloc *alloc;
989         uintptr_t page_addr;
990         size_t index;
991         struct vm_area_struct *vma;
992
993         alloc = page->alloc;
994         if (!mutex_trylock(&alloc->mutex))
995                 goto err_get_alloc_mutex_failed;
996
997         if (!page->page_ptr)
998                 goto err_page_already_freed;
999
1000         index = page - alloc->pages;
1001         page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1002
1003         mm = alloc->mm;
1004         if (!mmget_not_zero(mm))
1005                 goto err_mmget;
1006         if (!mmap_read_trylock(mm))
1007                 goto err_mmap_read_lock_failed;
1008         vma = binder_alloc_get_vma(alloc);
1009
1010         list_lru_isolate(lru, item);
1011         spin_unlock(lock);
1012
1013         if (vma) {
1014                 trace_binder_unmap_user_start(alloc, index);
1015
1016                 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL);
1017
1018                 trace_binder_unmap_user_end(alloc, index);
1019         }
1020         mmap_read_unlock(mm);
1021         mmput_async(mm);
1022
1023         trace_binder_unmap_kernel_start(alloc, index);
1024
1025         __free_page(page->page_ptr);
1026         page->page_ptr = NULL;
1027
1028         trace_binder_unmap_kernel_end(alloc, index);
1029
1030         spin_lock(lock);
1031         mutex_unlock(&alloc->mutex);
1032         return LRU_REMOVED_RETRY;
1033
1034 err_mmap_read_lock_failed:
1035         mmput_async(mm);
1036 err_mmget:
1037 err_page_already_freed:
1038         mutex_unlock(&alloc->mutex);
1039 err_get_alloc_mutex_failed:
1040         return LRU_SKIP;
1041 }
1042
1043 static unsigned long
1044 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1045 {
1046         return list_lru_count(&binder_alloc_lru);
1047 }
1048
1049 static unsigned long
1050 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1051 {
1052         return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1053                             NULL, sc->nr_to_scan);
1054 }
1055
1056 static struct shrinker binder_shrinker = {
1057         .count_objects = binder_shrink_count,
1058         .scan_objects = binder_shrink_scan,
1059         .seeks = DEFAULT_SEEKS,
1060 };
1061
1062 /**
1063  * binder_alloc_init() - called by binder_open() for per-proc initialization
1064  * @alloc: binder_alloc for this proc
1065  *
1066  * Called from binder_open() to initialize binder_alloc fields for
1067  * new binder proc
1068  */
1069 void binder_alloc_init(struct binder_alloc *alloc)
1070 {
1071         alloc->pid = current->group_leader->pid;
1072         alloc->mm = current->mm;
1073         mmgrab(alloc->mm);
1074         mutex_init(&alloc->mutex);
1075         INIT_LIST_HEAD(&alloc->buffers);
1076 }
1077
1078 int binder_alloc_shrinker_init(void)
1079 {
1080         int ret = list_lru_init(&binder_alloc_lru);
1081
1082         if (ret == 0) {
1083                 ret = register_shrinker(&binder_shrinker, "android-binder");
1084                 if (ret)
1085                         list_lru_destroy(&binder_alloc_lru);
1086         }
1087         return ret;
1088 }
1089
1090 void binder_alloc_shrinker_exit(void)
1091 {
1092         unregister_shrinker(&binder_shrinker);
1093         list_lru_destroy(&binder_alloc_lru);
1094 }
1095
1096 /**
1097  * check_buffer() - verify that buffer/offset is safe to access
1098  * @alloc: binder_alloc for this proc
1099  * @buffer: binder buffer to be accessed
1100  * @offset: offset into @buffer data
1101  * @bytes: bytes to access from offset
1102  *
1103  * Check that the @offset/@bytes are within the size of the given
1104  * @buffer and that the buffer is currently active and not freeable.
1105  * Offsets must also be multiples of sizeof(u32). The kernel is
1106  * allowed to touch the buffer in two cases:
1107  *
1108  * 1) when the buffer is being created:
1109  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1110  * 2) when the buffer is being torn down:
1111  *     (buffer->free == 0 && buffer->transaction == NULL).
1112  *
1113  * Return: true if the buffer is safe to access
1114  */
1115 static inline bool check_buffer(struct binder_alloc *alloc,
1116                                 struct binder_buffer *buffer,
1117                                 binder_size_t offset, size_t bytes)
1118 {
1119         size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1120
1121         return buffer_size >= bytes &&
1122                 offset <= buffer_size - bytes &&
1123                 IS_ALIGNED(offset, sizeof(u32)) &&
1124                 !buffer->free &&
1125                 (!buffer->allow_user_free || !buffer->transaction);
1126 }
1127
1128 /**
1129  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1130  * @alloc: binder_alloc for this proc
1131  * @buffer: binder buffer to be accessed
1132  * @buffer_offset: offset into @buffer data
1133  * @pgoffp: address to copy final page offset to
1134  *
1135  * Lookup the struct page corresponding to the address
1136  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1137  * NULL, the byte-offset into the page is written there.
1138  *
1139  * The caller is responsible to ensure that the offset points
1140  * to a valid address within the @buffer and that @buffer is
1141  * not freeable by the user. Since it can't be freed, we are
1142  * guaranteed that the corresponding elements of @alloc->pages[]
1143  * cannot change.
1144  *
1145  * Return: struct page
1146  */
1147 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1148                                           struct binder_buffer *buffer,
1149                                           binder_size_t buffer_offset,
1150                                           pgoff_t *pgoffp)
1151 {
1152         binder_size_t buffer_space_offset = buffer_offset +
1153                 (buffer->user_data - alloc->buffer);
1154         pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1155         size_t index = buffer_space_offset >> PAGE_SHIFT;
1156         struct binder_lru_page *lru_page;
1157
1158         lru_page = &alloc->pages[index];
1159         *pgoffp = pgoff;
1160         return lru_page->page_ptr;
1161 }
1162
1163 /**
1164  * binder_alloc_clear_buf() - zero out buffer
1165  * @alloc: binder_alloc for this proc
1166  * @buffer: binder buffer to be cleared
1167  *
1168  * memset the given buffer to 0
1169  */
1170 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1171                                    struct binder_buffer *buffer)
1172 {
1173         size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1174         binder_size_t buffer_offset = 0;
1175
1176         while (bytes) {
1177                 unsigned long size;
1178                 struct page *page;
1179                 pgoff_t pgoff;
1180
1181                 page = binder_alloc_get_page(alloc, buffer,
1182                                              buffer_offset, &pgoff);
1183                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1184                 memset_page(page, pgoff, 0, size);
1185                 bytes -= size;
1186                 buffer_offset += size;
1187         }
1188 }
1189
1190 /**
1191  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1192  * @alloc: binder_alloc for this proc
1193  * @buffer: binder buffer to be accessed
1194  * @buffer_offset: offset into @buffer data
1195  * @from: userspace pointer to source buffer
1196  * @bytes: bytes to copy
1197  *
1198  * Copy bytes from source userspace to target buffer.
1199  *
1200  * Return: bytes remaining to be copied
1201  */
1202 unsigned long
1203 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1204                                  struct binder_buffer *buffer,
1205                                  binder_size_t buffer_offset,
1206                                  const void __user *from,
1207                                  size_t bytes)
1208 {
1209         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1210                 return bytes;
1211
1212         while (bytes) {
1213                 unsigned long size;
1214                 unsigned long ret;
1215                 struct page *page;
1216                 pgoff_t pgoff;
1217                 void *kptr;
1218
1219                 page = binder_alloc_get_page(alloc, buffer,
1220                                              buffer_offset, &pgoff);
1221                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1222                 kptr = kmap_local_page(page) + pgoff;
1223                 ret = copy_from_user(kptr, from, size);
1224                 kunmap_local(kptr);
1225                 if (ret)
1226                         return bytes - size + ret;
1227                 bytes -= size;
1228                 from += size;
1229                 buffer_offset += size;
1230         }
1231         return 0;
1232 }
1233
1234 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1235                                        bool to_buffer,
1236                                        struct binder_buffer *buffer,
1237                                        binder_size_t buffer_offset,
1238                                        void *ptr,
1239                                        size_t bytes)
1240 {
1241         /* All copies must be 32-bit aligned and 32-bit size */
1242         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1243                 return -EINVAL;
1244
1245         while (bytes) {
1246                 unsigned long size;
1247                 struct page *page;
1248                 pgoff_t pgoff;
1249
1250                 page = binder_alloc_get_page(alloc, buffer,
1251                                              buffer_offset, &pgoff);
1252                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1253                 if (to_buffer)
1254                         memcpy_to_page(page, pgoff, ptr, size);
1255                 else
1256                         memcpy_from_page(ptr, page, pgoff, size);
1257                 bytes -= size;
1258                 pgoff = 0;
1259                 ptr = ptr + size;
1260                 buffer_offset += size;
1261         }
1262         return 0;
1263 }
1264
1265 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1266                                 struct binder_buffer *buffer,
1267                                 binder_size_t buffer_offset,
1268                                 void *src,
1269                                 size_t bytes)
1270 {
1271         return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1272                                            src, bytes);
1273 }
1274
1275 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1276                                   void *dest,
1277                                   struct binder_buffer *buffer,
1278                                   binder_size_t buffer_offset,
1279                                   size_t bytes)
1280 {
1281         return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1282                                            dest, bytes);
1283 }
1284