binder: fix async space check for 0-sized buffers
[platform/kernel/linux-rpi.git] / drivers / android / binder_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34         BINDER_DEBUG_USER_ERROR             = 1U << 0,
35         BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36         BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37         BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42                    uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45         do { \
46                 if (binder_alloc_debug_mask & mask) \
47                         pr_info_ratelimited(x); \
48         } while (0)
49
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52         return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57         return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61                                        struct binder_buffer *buffer)
62 {
63         if (list_is_last(&buffer->entry, &alloc->buffers))
64                 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65         return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69                                       struct binder_buffer *new_buffer)
70 {
71         struct rb_node **p = &alloc->free_buffers.rb_node;
72         struct rb_node *parent = NULL;
73         struct binder_buffer *buffer;
74         size_t buffer_size;
75         size_t new_buffer_size;
76
77         BUG_ON(!new_buffer->free);
78
79         new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82                      "%d: add free buffer, size %zd, at %pK\n",
83                       alloc->pid, new_buffer_size, new_buffer);
84
85         while (*p) {
86                 parent = *p;
87                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88                 BUG_ON(!buffer->free);
89
90                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92                 if (new_buffer_size < buffer_size)
93                         p = &parent->rb_left;
94                 else
95                         p = &parent->rb_right;
96         }
97         rb_link_node(&new_buffer->rb_node, parent, p);
98         rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
101 static void binder_insert_allocated_buffer_locked(
102                 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104         struct rb_node **p = &alloc->allocated_buffers.rb_node;
105         struct rb_node *parent = NULL;
106         struct binder_buffer *buffer;
107
108         BUG_ON(new_buffer->free);
109
110         while (*p) {
111                 parent = *p;
112                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113                 BUG_ON(buffer->free);
114
115                 if (new_buffer->user_data < buffer->user_data)
116                         p = &parent->rb_left;
117                 else if (new_buffer->user_data > buffer->user_data)
118                         p = &parent->rb_right;
119                 else
120                         BUG();
121         }
122         rb_link_node(&new_buffer->rb_node, parent, p);
123         rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127                 struct binder_alloc *alloc,
128                 uintptr_t user_ptr)
129 {
130         struct rb_node *n = alloc->allocated_buffers.rb_node;
131         struct binder_buffer *buffer;
132         void __user *uptr;
133
134         uptr = (void __user *)user_ptr;
135
136         while (n) {
137                 buffer = rb_entry(n, struct binder_buffer, rb_node);
138                 BUG_ON(buffer->free);
139
140                 if (uptr < buffer->user_data)
141                         n = n->rb_left;
142                 else if (uptr > buffer->user_data)
143                         n = n->rb_right;
144                 else {
145                         /*
146                          * Guard against user threads attempting to
147                          * free the buffer when in use by kernel or
148                          * after it's already been freed.
149                          */
150                         if (!buffer->allow_user_free)
151                                 return ERR_PTR(-EPERM);
152                         buffer->allow_user_free = 0;
153                         return buffer;
154                 }
155         }
156         return NULL;
157 }
158
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:      binder_alloc for this proc
162  * @user_ptr:   User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:      Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171                                                    uintptr_t user_ptr)
172 {
173         struct binder_buffer *buffer;
174
175         mutex_lock(&alloc->mutex);
176         buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177         mutex_unlock(&alloc->mutex);
178         return buffer;
179 }
180
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182                                     void __user *start, void __user *end)
183 {
184         void __user *page_addr;
185         unsigned long user_page_addr;
186         struct binder_lru_page *page;
187         struct vm_area_struct *vma = NULL;
188         struct mm_struct *mm = NULL;
189         bool need_mm = false;
190
191         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192                      "%d: %s pages %pK-%pK\n", alloc->pid,
193                      allocate ? "allocate" : "free", start, end);
194
195         if (end <= start)
196                 return 0;
197
198         trace_binder_update_page_range(alloc, allocate, start, end);
199
200         if (allocate == 0)
201                 goto free_range;
202
203         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204                 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205                 if (!page->page_ptr) {
206                         need_mm = true;
207                         break;
208                 }
209         }
210
211         if (need_mm && mmget_not_zero(alloc->mm))
212                 mm = alloc->mm;
213
214         if (mm) {
215                 mmap_write_lock(mm);
216                 vma = alloc->vma;
217         }
218
219         if (!vma && need_mm) {
220                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221                                    "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222                                    alloc->pid);
223                 goto err_no_vma;
224         }
225
226         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227                 int ret;
228                 bool on_lru;
229                 size_t index;
230
231                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232                 page = &alloc->pages[index];
233
234                 if (page->page_ptr) {
235                         trace_binder_alloc_lru_start(alloc, index);
236
237                         on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238                         WARN_ON(!on_lru);
239
240                         trace_binder_alloc_lru_end(alloc, index);
241                         continue;
242                 }
243
244                 if (WARN_ON(!vma))
245                         goto err_page_ptr_cleared;
246
247                 trace_binder_alloc_page_start(alloc, index);
248                 page->page_ptr = alloc_page(GFP_KERNEL |
249                                             __GFP_HIGHMEM |
250                                             __GFP_ZERO);
251                 if (!page->page_ptr) {
252                         pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253                                 alloc->pid, page_addr);
254                         goto err_alloc_page_failed;
255                 }
256                 page->alloc = alloc;
257                 INIT_LIST_HEAD(&page->lru);
258
259                 user_page_addr = (uintptr_t)page_addr;
260                 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261                 if (ret) {
262                         pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263                                alloc->pid, user_page_addr);
264                         goto err_vm_insert_page_failed;
265                 }
266
267                 if (index + 1 > alloc->pages_high)
268                         alloc->pages_high = index + 1;
269
270                 trace_binder_alloc_page_end(alloc, index);
271         }
272         if (mm) {
273                 mmap_write_unlock(mm);
274                 mmput(mm);
275         }
276         return 0;
277
278 free_range:
279         for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280                 bool ret;
281                 size_t index;
282
283                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284                 page = &alloc->pages[index];
285
286                 trace_binder_free_lru_start(alloc, index);
287
288                 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289                 WARN_ON(!ret);
290
291                 trace_binder_free_lru_end(alloc, index);
292                 if (page_addr == start)
293                         break;
294                 continue;
295
296 err_vm_insert_page_failed:
297                 __free_page(page->page_ptr);
298                 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301                 if (page_addr == start)
302                         break;
303         }
304 err_no_vma:
305         if (mm) {
306                 mmap_write_unlock(mm);
307                 mmput(mm);
308         }
309         return vma ? -ENOMEM : -ESRCH;
310 }
311
312 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
313                 struct vm_area_struct *vma)
314 {
315         /* pairs with smp_load_acquire in binder_alloc_get_vma() */
316         smp_store_release(&alloc->vma, vma);
317 }
318
319 static inline struct vm_area_struct *binder_alloc_get_vma(
320                 struct binder_alloc *alloc)
321 {
322         /* pairs with smp_store_release in binder_alloc_set_vma() */
323         return smp_load_acquire(&alloc->vma);
324 }
325
326 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
327 {
328         /*
329          * Find the amount and size of buffers allocated by the current caller;
330          * The idea is that once we cross the threshold, whoever is responsible
331          * for the low async space is likely to try to send another async txn,
332          * and at some point we'll catch them in the act. This is more efficient
333          * than keeping a map per pid.
334          */
335         struct rb_node *n;
336         struct binder_buffer *buffer;
337         size_t total_alloc_size = 0;
338         size_t num_buffers = 0;
339
340         for (n = rb_first(&alloc->allocated_buffers); n != NULL;
341                  n = rb_next(n)) {
342                 buffer = rb_entry(n, struct binder_buffer, rb_node);
343                 if (buffer->pid != pid)
344                         continue;
345                 if (!buffer->async_transaction)
346                         continue;
347                 total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
348                         + sizeof(struct binder_buffer);
349                 num_buffers++;
350         }
351
352         /*
353          * Warn if this pid has more than 50 transactions, or more than 50% of
354          * async space (which is 25% of total buffer size). Oneway spam is only
355          * detected when the threshold is exceeded.
356          */
357         if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
358                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
359                              "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
360                               alloc->pid, pid, num_buffers, total_alloc_size);
361                 if (!alloc->oneway_spam_detected) {
362                         alloc->oneway_spam_detected = true;
363                         return true;
364                 }
365         }
366         return false;
367 }
368
369 static struct binder_buffer *binder_alloc_new_buf_locked(
370                                 struct binder_alloc *alloc,
371                                 size_t data_size,
372                                 size_t offsets_size,
373                                 size_t extra_buffers_size,
374                                 int is_async,
375                                 int pid)
376 {
377         struct rb_node *n = alloc->free_buffers.rb_node;
378         struct binder_buffer *buffer;
379         size_t buffer_size;
380         struct rb_node *best_fit = NULL;
381         void __user *has_page_addr;
382         void __user *end_page_addr;
383         size_t size, data_offsets_size;
384         int ret;
385
386         /* Check binder_alloc is fully initialized */
387         if (!binder_alloc_get_vma(alloc)) {
388                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
389                                    "%d: binder_alloc_buf, no vma\n",
390                                    alloc->pid);
391                 return ERR_PTR(-ESRCH);
392         }
393
394         data_offsets_size = ALIGN(data_size, sizeof(void *)) +
395                 ALIGN(offsets_size, sizeof(void *));
396
397         if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
398                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
399                                 "%d: got transaction with invalid size %zd-%zd\n",
400                                 alloc->pid, data_size, offsets_size);
401                 return ERR_PTR(-EINVAL);
402         }
403         size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
404         if (size < data_offsets_size || size < extra_buffers_size) {
405                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
406                                 "%d: got transaction with invalid extra_buffers_size %zd\n",
407                                 alloc->pid, extra_buffers_size);
408                 return ERR_PTR(-EINVAL);
409         }
410
411         /* Pad 0-size buffers so they get assigned unique addresses */
412         size = max(size, sizeof(void *));
413
414         if (is_async &&
415             alloc->free_async_space < size + sizeof(struct binder_buffer)) {
416                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
417                              "%d: binder_alloc_buf size %zd failed, no async space left\n",
418                               alloc->pid, size);
419                 return ERR_PTR(-ENOSPC);
420         }
421
422         while (n) {
423                 buffer = rb_entry(n, struct binder_buffer, rb_node);
424                 BUG_ON(!buffer->free);
425                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
426
427                 if (size < buffer_size) {
428                         best_fit = n;
429                         n = n->rb_left;
430                 } else if (size > buffer_size)
431                         n = n->rb_right;
432                 else {
433                         best_fit = n;
434                         break;
435                 }
436         }
437         if (best_fit == NULL) {
438                 size_t allocated_buffers = 0;
439                 size_t largest_alloc_size = 0;
440                 size_t total_alloc_size = 0;
441                 size_t free_buffers = 0;
442                 size_t largest_free_size = 0;
443                 size_t total_free_size = 0;
444
445                 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
446                      n = rb_next(n)) {
447                         buffer = rb_entry(n, struct binder_buffer, rb_node);
448                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
449                         allocated_buffers++;
450                         total_alloc_size += buffer_size;
451                         if (buffer_size > largest_alloc_size)
452                                 largest_alloc_size = buffer_size;
453                 }
454                 for (n = rb_first(&alloc->free_buffers); n != NULL;
455                      n = rb_next(n)) {
456                         buffer = rb_entry(n, struct binder_buffer, rb_node);
457                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
458                         free_buffers++;
459                         total_free_size += buffer_size;
460                         if (buffer_size > largest_free_size)
461                                 largest_free_size = buffer_size;
462                 }
463                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
464                                    "%d: binder_alloc_buf size %zd failed, no address space\n",
465                                    alloc->pid, size);
466                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
467                                    "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
468                                    total_alloc_size, allocated_buffers,
469                                    largest_alloc_size, total_free_size,
470                                    free_buffers, largest_free_size);
471                 return ERR_PTR(-ENOSPC);
472         }
473         if (n == NULL) {
474                 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
475                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
476         }
477
478         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
479                      "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
480                       alloc->pid, size, buffer, buffer_size);
481
482         has_page_addr = (void __user *)
483                 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
484         WARN_ON(n && buffer_size != size);
485         end_page_addr =
486                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
487         if (end_page_addr > has_page_addr)
488                 end_page_addr = has_page_addr;
489         ret = binder_update_page_range(alloc, 1, (void __user *)
490                 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
491         if (ret)
492                 return ERR_PTR(ret);
493
494         if (buffer_size != size) {
495                 struct binder_buffer *new_buffer;
496
497                 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
498                 if (!new_buffer) {
499                         pr_err("%s: %d failed to alloc new buffer struct\n",
500                                __func__, alloc->pid);
501                         goto err_alloc_buf_struct_failed;
502                 }
503                 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
504                 list_add(&new_buffer->entry, &buffer->entry);
505                 new_buffer->free = 1;
506                 binder_insert_free_buffer(alloc, new_buffer);
507         }
508
509         rb_erase(best_fit, &alloc->free_buffers);
510         buffer->free = 0;
511         buffer->allow_user_free = 0;
512         binder_insert_allocated_buffer_locked(alloc, buffer);
513         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
514                      "%d: binder_alloc_buf size %zd got %pK\n",
515                       alloc->pid, size, buffer);
516         buffer->data_size = data_size;
517         buffer->offsets_size = offsets_size;
518         buffer->async_transaction = is_async;
519         buffer->extra_buffers_size = extra_buffers_size;
520         buffer->pid = pid;
521         buffer->oneway_spam_suspect = false;
522         if (is_async) {
523                 alloc->free_async_space -= size + sizeof(struct binder_buffer);
524                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
525                              "%d: binder_alloc_buf size %zd async free %zd\n",
526                               alloc->pid, size, alloc->free_async_space);
527                 if (alloc->free_async_space < alloc->buffer_size / 10) {
528                         /*
529                          * Start detecting spammers once we have less than 20%
530                          * of async space left (which is less than 10% of total
531                          * buffer size).
532                          */
533                         buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
534                 } else {
535                         alloc->oneway_spam_detected = false;
536                 }
537         }
538         return buffer;
539
540 err_alloc_buf_struct_failed:
541         binder_update_page_range(alloc, 0, (void __user *)
542                                  PAGE_ALIGN((uintptr_t)buffer->user_data),
543                                  end_page_addr);
544         return ERR_PTR(-ENOMEM);
545 }
546
547 /**
548  * binder_alloc_new_buf() - Allocate a new binder buffer
549  * @alloc:              binder_alloc for this proc
550  * @data_size:          size of user data buffer
551  * @offsets_size:       user specified buffer offset
552  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
553  * @is_async:           buffer for async transaction
554  * @pid:                                pid to attribute allocation to (used for debugging)
555  *
556  * Allocate a new buffer given the requested sizes. Returns
557  * the kernel version of the buffer pointer. The size allocated
558  * is the sum of the three given sizes (each rounded up to
559  * pointer-sized boundary)
560  *
561  * Return:      The allocated buffer or %ERR_PTR(-errno) if error
562  */
563 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
564                                            size_t data_size,
565                                            size_t offsets_size,
566                                            size_t extra_buffers_size,
567                                            int is_async,
568                                            int pid)
569 {
570         struct binder_buffer *buffer;
571
572         mutex_lock(&alloc->mutex);
573         buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
574                                              extra_buffers_size, is_async, pid);
575         mutex_unlock(&alloc->mutex);
576         return buffer;
577 }
578
579 static void __user *buffer_start_page(struct binder_buffer *buffer)
580 {
581         return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
582 }
583
584 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
585 {
586         return (void __user *)
587                 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
588 }
589
590 static void binder_delete_free_buffer(struct binder_alloc *alloc,
591                                       struct binder_buffer *buffer)
592 {
593         struct binder_buffer *prev, *next = NULL;
594         bool to_free = true;
595
596         BUG_ON(alloc->buffers.next == &buffer->entry);
597         prev = binder_buffer_prev(buffer);
598         BUG_ON(!prev->free);
599         if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
600                 to_free = false;
601                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
602                                    "%d: merge free, buffer %pK share page with %pK\n",
603                                    alloc->pid, buffer->user_data,
604                                    prev->user_data);
605         }
606
607         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
608                 next = binder_buffer_next(buffer);
609                 if (buffer_start_page(next) == buffer_start_page(buffer)) {
610                         to_free = false;
611                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
612                                            "%d: merge free, buffer %pK share page with %pK\n",
613                                            alloc->pid,
614                                            buffer->user_data,
615                                            next->user_data);
616                 }
617         }
618
619         if (PAGE_ALIGNED(buffer->user_data)) {
620                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
621                                    "%d: merge free, buffer start %pK is page aligned\n",
622                                    alloc->pid, buffer->user_data);
623                 to_free = false;
624         }
625
626         if (to_free) {
627                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
628                                    "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
629                                    alloc->pid, buffer->user_data,
630                                    prev->user_data,
631                                    next ? next->user_data : NULL);
632                 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
633                                          buffer_start_page(buffer) + PAGE_SIZE);
634         }
635         list_del(&buffer->entry);
636         kfree(buffer);
637 }
638
639 static void binder_free_buf_locked(struct binder_alloc *alloc,
640                                    struct binder_buffer *buffer)
641 {
642         size_t size, buffer_size;
643
644         buffer_size = binder_alloc_buffer_size(alloc, buffer);
645
646         size = ALIGN(buffer->data_size, sizeof(void *)) +
647                 ALIGN(buffer->offsets_size, sizeof(void *)) +
648                 ALIGN(buffer->extra_buffers_size, sizeof(void *));
649
650         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
651                      "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
652                       alloc->pid, buffer, size, buffer_size);
653
654         BUG_ON(buffer->free);
655         BUG_ON(size > buffer_size);
656         BUG_ON(buffer->transaction != NULL);
657         BUG_ON(buffer->user_data < alloc->buffer);
658         BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
659
660         if (buffer->async_transaction) {
661                 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
662
663                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
664                              "%d: binder_free_buf size %zd async free %zd\n",
665                               alloc->pid, size, alloc->free_async_space);
666         }
667
668         binder_update_page_range(alloc, 0,
669                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
670                 (void __user *)(((uintptr_t)
671                           buffer->user_data + buffer_size) & PAGE_MASK));
672
673         rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
674         buffer->free = 1;
675         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
676                 struct binder_buffer *next = binder_buffer_next(buffer);
677
678                 if (next->free) {
679                         rb_erase(&next->rb_node, &alloc->free_buffers);
680                         binder_delete_free_buffer(alloc, next);
681                 }
682         }
683         if (alloc->buffers.next != &buffer->entry) {
684                 struct binder_buffer *prev = binder_buffer_prev(buffer);
685
686                 if (prev->free) {
687                         binder_delete_free_buffer(alloc, buffer);
688                         rb_erase(&prev->rb_node, &alloc->free_buffers);
689                         buffer = prev;
690                 }
691         }
692         binder_insert_free_buffer(alloc, buffer);
693 }
694
695 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
696                                    struct binder_buffer *buffer);
697 /**
698  * binder_alloc_free_buf() - free a binder buffer
699  * @alloc:      binder_alloc for this proc
700  * @buffer:     kernel pointer to buffer
701  *
702  * Free the buffer allocated via binder_alloc_new_buf()
703  */
704 void binder_alloc_free_buf(struct binder_alloc *alloc,
705                             struct binder_buffer *buffer)
706 {
707         /*
708          * We could eliminate the call to binder_alloc_clear_buf()
709          * from binder_alloc_deferred_release() by moving this to
710          * binder_free_buf_locked(). However, that could
711          * increase contention for the alloc mutex if clear_on_free
712          * is used frequently for large buffers. The mutex is not
713          * needed for correctness here.
714          */
715         if (buffer->clear_on_free) {
716                 binder_alloc_clear_buf(alloc, buffer);
717                 buffer->clear_on_free = false;
718         }
719         mutex_lock(&alloc->mutex);
720         binder_free_buf_locked(alloc, buffer);
721         mutex_unlock(&alloc->mutex);
722 }
723
724 /**
725  * binder_alloc_mmap_handler() - map virtual address space for proc
726  * @alloc:      alloc structure for this proc
727  * @vma:        vma passed to mmap()
728  *
729  * Called by binder_mmap() to initialize the space specified in
730  * vma for allocating binder buffers
731  *
732  * Return:
733  *      0 = success
734  *      -EBUSY = address space already mapped
735  *      -ENOMEM = failed to map memory to given address space
736  */
737 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
738                               struct vm_area_struct *vma)
739 {
740         int ret;
741         const char *failure_string;
742         struct binder_buffer *buffer;
743
744         if (unlikely(vma->vm_mm != alloc->mm)) {
745                 ret = -EINVAL;
746                 failure_string = "invalid vma->vm_mm";
747                 goto err_invalid_mm;
748         }
749
750         mutex_lock(&binder_alloc_mmap_lock);
751         if (alloc->buffer_size) {
752                 ret = -EBUSY;
753                 failure_string = "already mapped";
754                 goto err_already_mapped;
755         }
756         alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
757                                    SZ_4M);
758         mutex_unlock(&binder_alloc_mmap_lock);
759
760         alloc->buffer = (void __user *)vma->vm_start;
761
762         alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
763                                sizeof(alloc->pages[0]),
764                                GFP_KERNEL);
765         if (alloc->pages == NULL) {
766                 ret = -ENOMEM;
767                 failure_string = "alloc page array";
768                 goto err_alloc_pages_failed;
769         }
770
771         buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
772         if (!buffer) {
773                 ret = -ENOMEM;
774                 failure_string = "alloc buffer struct";
775                 goto err_alloc_buf_struct_failed;
776         }
777
778         buffer->user_data = alloc->buffer;
779         list_add(&buffer->entry, &alloc->buffers);
780         buffer->free = 1;
781         binder_insert_free_buffer(alloc, buffer);
782         alloc->free_async_space = alloc->buffer_size / 2;
783
784         /* Signal binder_alloc is fully initialized */
785         binder_alloc_set_vma(alloc, vma);
786
787         return 0;
788
789 err_alloc_buf_struct_failed:
790         kfree(alloc->pages);
791         alloc->pages = NULL;
792 err_alloc_pages_failed:
793         alloc->buffer = NULL;
794         mutex_lock(&binder_alloc_mmap_lock);
795         alloc->buffer_size = 0;
796 err_already_mapped:
797         mutex_unlock(&binder_alloc_mmap_lock);
798 err_invalid_mm:
799         binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
800                            "%s: %d %lx-%lx %s failed %d\n", __func__,
801                            alloc->pid, vma->vm_start, vma->vm_end,
802                            failure_string, ret);
803         return ret;
804 }
805
806
807 void binder_alloc_deferred_release(struct binder_alloc *alloc)
808 {
809         struct rb_node *n;
810         int buffers, page_count;
811         struct binder_buffer *buffer;
812
813         buffers = 0;
814         mutex_lock(&alloc->mutex);
815         BUG_ON(alloc->vma);
816
817         while ((n = rb_first(&alloc->allocated_buffers))) {
818                 buffer = rb_entry(n, struct binder_buffer, rb_node);
819
820                 /* Transaction should already have been freed */
821                 BUG_ON(buffer->transaction);
822
823                 if (buffer->clear_on_free) {
824                         binder_alloc_clear_buf(alloc, buffer);
825                         buffer->clear_on_free = false;
826                 }
827                 binder_free_buf_locked(alloc, buffer);
828                 buffers++;
829         }
830
831         while (!list_empty(&alloc->buffers)) {
832                 buffer = list_first_entry(&alloc->buffers,
833                                           struct binder_buffer, entry);
834                 WARN_ON(!buffer->free);
835
836                 list_del(&buffer->entry);
837                 WARN_ON_ONCE(!list_empty(&alloc->buffers));
838                 kfree(buffer);
839         }
840
841         page_count = 0;
842         if (alloc->pages) {
843                 int i;
844
845                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
846                         void __user *page_addr;
847                         bool on_lru;
848
849                         if (!alloc->pages[i].page_ptr)
850                                 continue;
851
852                         on_lru = list_lru_del(&binder_alloc_lru,
853                                               &alloc->pages[i].lru);
854                         page_addr = alloc->buffer + i * PAGE_SIZE;
855                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
856                                      "%s: %d: page %d at %pK %s\n",
857                                      __func__, alloc->pid, i, page_addr,
858                                      on_lru ? "on lru" : "active");
859                         __free_page(alloc->pages[i].page_ptr);
860                         page_count++;
861                 }
862                 kfree(alloc->pages);
863         }
864         mutex_unlock(&alloc->mutex);
865         if (alloc->mm)
866                 mmdrop(alloc->mm);
867
868         binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
869                      "%s: %d buffers %d, pages %d\n",
870                      __func__, alloc->pid, buffers, page_count);
871 }
872
873 static void print_binder_buffer(struct seq_file *m, const char *prefix,
874                                 struct binder_buffer *buffer)
875 {
876         seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
877                    prefix, buffer->debug_id, buffer->user_data,
878                    buffer->data_size, buffer->offsets_size,
879                    buffer->extra_buffers_size,
880                    buffer->transaction ? "active" : "delivered");
881 }
882
883 /**
884  * binder_alloc_print_allocated() - print buffer info
885  * @m:     seq_file for output via seq_printf()
886  * @alloc: binder_alloc for this proc
887  *
888  * Prints information about every buffer associated with
889  * the binder_alloc state to the given seq_file
890  */
891 void binder_alloc_print_allocated(struct seq_file *m,
892                                   struct binder_alloc *alloc)
893 {
894         struct rb_node *n;
895
896         mutex_lock(&alloc->mutex);
897         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
898                 print_binder_buffer(m, "  buffer",
899                                     rb_entry(n, struct binder_buffer, rb_node));
900         mutex_unlock(&alloc->mutex);
901 }
902
903 /**
904  * binder_alloc_print_pages() - print page usage
905  * @m:     seq_file for output via seq_printf()
906  * @alloc: binder_alloc for this proc
907  */
908 void binder_alloc_print_pages(struct seq_file *m,
909                               struct binder_alloc *alloc)
910 {
911         struct binder_lru_page *page;
912         int i;
913         int active = 0;
914         int lru = 0;
915         int free = 0;
916
917         mutex_lock(&alloc->mutex);
918         /*
919          * Make sure the binder_alloc is fully initialized, otherwise we might
920          * read inconsistent state.
921          */
922         if (binder_alloc_get_vma(alloc) != NULL) {
923                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
924                         page = &alloc->pages[i];
925                         if (!page->page_ptr)
926                                 free++;
927                         else if (list_empty(&page->lru))
928                                 active++;
929                         else
930                                 lru++;
931                 }
932         }
933         mutex_unlock(&alloc->mutex);
934         seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
935         seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
936 }
937
938 /**
939  * binder_alloc_get_allocated_count() - return count of buffers
940  * @alloc: binder_alloc for this proc
941  *
942  * Return: count of allocated buffers
943  */
944 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
945 {
946         struct rb_node *n;
947         int count = 0;
948
949         mutex_lock(&alloc->mutex);
950         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
951                 count++;
952         mutex_unlock(&alloc->mutex);
953         return count;
954 }
955
956
957 /**
958  * binder_alloc_vma_close() - invalidate address space
959  * @alloc: binder_alloc for this proc
960  *
961  * Called from binder_vma_close() when releasing address space.
962  * Clears alloc->vma to prevent new incoming transactions from
963  * allocating more buffers.
964  */
965 void binder_alloc_vma_close(struct binder_alloc *alloc)
966 {
967         binder_alloc_set_vma(alloc, NULL);
968 }
969
970 /**
971  * binder_alloc_free_page() - shrinker callback to free pages
972  * @item:   item to free
973  * @lock:   lock protecting the item
974  * @cb_arg: callback argument
975  *
976  * Called from list_lru_walk() in binder_shrink_scan() to free
977  * up pages when the system is under memory pressure.
978  */
979 enum lru_status binder_alloc_free_page(struct list_head *item,
980                                        struct list_lru_one *lru,
981                                        spinlock_t *lock,
982                                        void *cb_arg)
983         __must_hold(lock)
984 {
985         struct mm_struct *mm = NULL;
986         struct binder_lru_page *page = container_of(item,
987                                                     struct binder_lru_page,
988                                                     lru);
989         struct binder_alloc *alloc;
990         uintptr_t page_addr;
991         size_t index;
992         struct vm_area_struct *vma;
993
994         alloc = page->alloc;
995         if (!mutex_trylock(&alloc->mutex))
996                 goto err_get_alloc_mutex_failed;
997
998         if (!page->page_ptr)
999                 goto err_page_already_freed;
1000
1001         index = page - alloc->pages;
1002         page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1003
1004         mm = alloc->mm;
1005         if (!mmget_not_zero(mm))
1006                 goto err_mmget;
1007         if (!mmap_read_trylock(mm))
1008                 goto err_mmap_read_lock_failed;
1009         vma = vma_lookup(mm, page_addr);
1010         if (vma && vma != binder_alloc_get_vma(alloc))
1011                 goto err_invalid_vma;
1012
1013         list_lru_isolate(lru, item);
1014         spin_unlock(lock);
1015
1016         if (vma) {
1017                 trace_binder_unmap_user_start(alloc, index);
1018
1019                 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL);
1020
1021                 trace_binder_unmap_user_end(alloc, index);
1022         }
1023         mmap_read_unlock(mm);
1024         mmput_async(mm);
1025
1026         trace_binder_unmap_kernel_start(alloc, index);
1027
1028         __free_page(page->page_ptr);
1029         page->page_ptr = NULL;
1030
1031         trace_binder_unmap_kernel_end(alloc, index);
1032
1033         spin_lock(lock);
1034         mutex_unlock(&alloc->mutex);
1035         return LRU_REMOVED_RETRY;
1036
1037 err_invalid_vma:
1038         mmap_read_unlock(mm);
1039 err_mmap_read_lock_failed:
1040         mmput_async(mm);
1041 err_mmget:
1042 err_page_already_freed:
1043         mutex_unlock(&alloc->mutex);
1044 err_get_alloc_mutex_failed:
1045         return LRU_SKIP;
1046 }
1047
1048 static unsigned long
1049 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1050 {
1051         return list_lru_count(&binder_alloc_lru);
1052 }
1053
1054 static unsigned long
1055 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1056 {
1057         return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1058                             NULL, sc->nr_to_scan);
1059 }
1060
1061 static struct shrinker binder_shrinker = {
1062         .count_objects = binder_shrink_count,
1063         .scan_objects = binder_shrink_scan,
1064         .seeks = DEFAULT_SEEKS,
1065 };
1066
1067 /**
1068  * binder_alloc_init() - called by binder_open() for per-proc initialization
1069  * @alloc: binder_alloc for this proc
1070  *
1071  * Called from binder_open() to initialize binder_alloc fields for
1072  * new binder proc
1073  */
1074 void binder_alloc_init(struct binder_alloc *alloc)
1075 {
1076         alloc->pid = current->group_leader->pid;
1077         alloc->mm = current->mm;
1078         mmgrab(alloc->mm);
1079         mutex_init(&alloc->mutex);
1080         INIT_LIST_HEAD(&alloc->buffers);
1081 }
1082
1083 int binder_alloc_shrinker_init(void)
1084 {
1085         int ret = list_lru_init(&binder_alloc_lru);
1086
1087         if (ret == 0) {
1088                 ret = register_shrinker(&binder_shrinker, "android-binder");
1089                 if (ret)
1090                         list_lru_destroy(&binder_alloc_lru);
1091         }
1092         return ret;
1093 }
1094
1095 void binder_alloc_shrinker_exit(void)
1096 {
1097         unregister_shrinker(&binder_shrinker);
1098         list_lru_destroy(&binder_alloc_lru);
1099 }
1100
1101 /**
1102  * check_buffer() - verify that buffer/offset is safe to access
1103  * @alloc: binder_alloc for this proc
1104  * @buffer: binder buffer to be accessed
1105  * @offset: offset into @buffer data
1106  * @bytes: bytes to access from offset
1107  *
1108  * Check that the @offset/@bytes are within the size of the given
1109  * @buffer and that the buffer is currently active and not freeable.
1110  * Offsets must also be multiples of sizeof(u32). The kernel is
1111  * allowed to touch the buffer in two cases:
1112  *
1113  * 1) when the buffer is being created:
1114  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1115  * 2) when the buffer is being torn down:
1116  *     (buffer->free == 0 && buffer->transaction == NULL).
1117  *
1118  * Return: true if the buffer is safe to access
1119  */
1120 static inline bool check_buffer(struct binder_alloc *alloc,
1121                                 struct binder_buffer *buffer,
1122                                 binder_size_t offset, size_t bytes)
1123 {
1124         size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1125
1126         return buffer_size >= bytes &&
1127                 offset <= buffer_size - bytes &&
1128                 IS_ALIGNED(offset, sizeof(u32)) &&
1129                 !buffer->free &&
1130                 (!buffer->allow_user_free || !buffer->transaction);
1131 }
1132
1133 /**
1134  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1135  * @alloc: binder_alloc for this proc
1136  * @buffer: binder buffer to be accessed
1137  * @buffer_offset: offset into @buffer data
1138  * @pgoffp: address to copy final page offset to
1139  *
1140  * Lookup the struct page corresponding to the address
1141  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1142  * NULL, the byte-offset into the page is written there.
1143  *
1144  * The caller is responsible to ensure that the offset points
1145  * to a valid address within the @buffer and that @buffer is
1146  * not freeable by the user. Since it can't be freed, we are
1147  * guaranteed that the corresponding elements of @alloc->pages[]
1148  * cannot change.
1149  *
1150  * Return: struct page
1151  */
1152 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1153                                           struct binder_buffer *buffer,
1154                                           binder_size_t buffer_offset,
1155                                           pgoff_t *pgoffp)
1156 {
1157         binder_size_t buffer_space_offset = buffer_offset +
1158                 (buffer->user_data - alloc->buffer);
1159         pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1160         size_t index = buffer_space_offset >> PAGE_SHIFT;
1161         struct binder_lru_page *lru_page;
1162
1163         lru_page = &alloc->pages[index];
1164         *pgoffp = pgoff;
1165         return lru_page->page_ptr;
1166 }
1167
1168 /**
1169  * binder_alloc_clear_buf() - zero out buffer
1170  * @alloc: binder_alloc for this proc
1171  * @buffer: binder buffer to be cleared
1172  *
1173  * memset the given buffer to 0
1174  */
1175 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1176                                    struct binder_buffer *buffer)
1177 {
1178         size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1179         binder_size_t buffer_offset = 0;
1180
1181         while (bytes) {
1182                 unsigned long size;
1183                 struct page *page;
1184                 pgoff_t pgoff;
1185
1186                 page = binder_alloc_get_page(alloc, buffer,
1187                                              buffer_offset, &pgoff);
1188                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1189                 memset_page(page, pgoff, 0, size);
1190                 bytes -= size;
1191                 buffer_offset += size;
1192         }
1193 }
1194
1195 /**
1196  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1197  * @alloc: binder_alloc for this proc
1198  * @buffer: binder buffer to be accessed
1199  * @buffer_offset: offset into @buffer data
1200  * @from: userspace pointer to source buffer
1201  * @bytes: bytes to copy
1202  *
1203  * Copy bytes from source userspace to target buffer.
1204  *
1205  * Return: bytes remaining to be copied
1206  */
1207 unsigned long
1208 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1209                                  struct binder_buffer *buffer,
1210                                  binder_size_t buffer_offset,
1211                                  const void __user *from,
1212                                  size_t bytes)
1213 {
1214         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1215                 return bytes;
1216
1217         while (bytes) {
1218                 unsigned long size;
1219                 unsigned long ret;
1220                 struct page *page;
1221                 pgoff_t pgoff;
1222                 void *kptr;
1223
1224                 page = binder_alloc_get_page(alloc, buffer,
1225                                              buffer_offset, &pgoff);
1226                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1227                 kptr = kmap_local_page(page) + pgoff;
1228                 ret = copy_from_user(kptr, from, size);
1229                 kunmap_local(kptr);
1230                 if (ret)
1231                         return bytes - size + ret;
1232                 bytes -= size;
1233                 from += size;
1234                 buffer_offset += size;
1235         }
1236         return 0;
1237 }
1238
1239 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1240                                        bool to_buffer,
1241                                        struct binder_buffer *buffer,
1242                                        binder_size_t buffer_offset,
1243                                        void *ptr,
1244                                        size_t bytes)
1245 {
1246         /* All copies must be 32-bit aligned and 32-bit size */
1247         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1248                 return -EINVAL;
1249
1250         while (bytes) {
1251                 unsigned long size;
1252                 struct page *page;
1253                 pgoff_t pgoff;
1254
1255                 page = binder_alloc_get_page(alloc, buffer,
1256                                              buffer_offset, &pgoff);
1257                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1258                 if (to_buffer)
1259                         memcpy_to_page(page, pgoff, ptr, size);
1260                 else
1261                         memcpy_from_page(ptr, page, pgoff, size);
1262                 bytes -= size;
1263                 pgoff = 0;
1264                 ptr = ptr + size;
1265                 buffer_offset += size;
1266         }
1267         return 0;
1268 }
1269
1270 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1271                                 struct binder_buffer *buffer,
1272                                 binder_size_t buffer_offset,
1273                                 void *src,
1274                                 size_t bytes)
1275 {
1276         return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1277                                            src, bytes);
1278 }
1279
1280 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1281                                   void *dest,
1282                                   struct binder_buffer *buffer,
1283                                   binder_size_t buffer_offset,
1284                                   size_t bytes)
1285 {
1286         return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1287                                            dest, bytes);
1288 }
1289