ACPI: processor idle: Practically limit "Dummy wait" workaround to old Intel systems
[platform/kernel/linux-rpi.git] / drivers / android / binder_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34         BINDER_DEBUG_USER_ERROR             = 1U << 0,
35         BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36         BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37         BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42                    uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45         do { \
46                 if (binder_alloc_debug_mask & mask) \
47                         pr_info_ratelimited(x); \
48         } while (0)
49
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52         return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57         return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61                                        struct binder_buffer *buffer)
62 {
63         if (list_is_last(&buffer->entry, &alloc->buffers))
64                 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65         return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69                                       struct binder_buffer *new_buffer)
70 {
71         struct rb_node **p = &alloc->free_buffers.rb_node;
72         struct rb_node *parent = NULL;
73         struct binder_buffer *buffer;
74         size_t buffer_size;
75         size_t new_buffer_size;
76
77         BUG_ON(!new_buffer->free);
78
79         new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82                      "%d: add free buffer, size %zd, at %pK\n",
83                       alloc->pid, new_buffer_size, new_buffer);
84
85         while (*p) {
86                 parent = *p;
87                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88                 BUG_ON(!buffer->free);
89
90                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92                 if (new_buffer_size < buffer_size)
93                         p = &parent->rb_left;
94                 else
95                         p = &parent->rb_right;
96         }
97         rb_link_node(&new_buffer->rb_node, parent, p);
98         rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
101 static void binder_insert_allocated_buffer_locked(
102                 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104         struct rb_node **p = &alloc->allocated_buffers.rb_node;
105         struct rb_node *parent = NULL;
106         struct binder_buffer *buffer;
107
108         BUG_ON(new_buffer->free);
109
110         while (*p) {
111                 parent = *p;
112                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113                 BUG_ON(buffer->free);
114
115                 if (new_buffer->user_data < buffer->user_data)
116                         p = &parent->rb_left;
117                 else if (new_buffer->user_data > buffer->user_data)
118                         p = &parent->rb_right;
119                 else
120                         BUG();
121         }
122         rb_link_node(&new_buffer->rb_node, parent, p);
123         rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127                 struct binder_alloc *alloc,
128                 uintptr_t user_ptr)
129 {
130         struct rb_node *n = alloc->allocated_buffers.rb_node;
131         struct binder_buffer *buffer;
132         void __user *uptr;
133
134         uptr = (void __user *)user_ptr;
135
136         while (n) {
137                 buffer = rb_entry(n, struct binder_buffer, rb_node);
138                 BUG_ON(buffer->free);
139
140                 if (uptr < buffer->user_data)
141                         n = n->rb_left;
142                 else if (uptr > buffer->user_data)
143                         n = n->rb_right;
144                 else {
145                         /*
146                          * Guard against user threads attempting to
147                          * free the buffer when in use by kernel or
148                          * after it's already been freed.
149                          */
150                         if (!buffer->allow_user_free)
151                                 return ERR_PTR(-EPERM);
152                         buffer->allow_user_free = 0;
153                         return buffer;
154                 }
155         }
156         return NULL;
157 }
158
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:      binder_alloc for this proc
162  * @user_ptr:   User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:      Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171                                                    uintptr_t user_ptr)
172 {
173         struct binder_buffer *buffer;
174
175         mutex_lock(&alloc->mutex);
176         buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177         mutex_unlock(&alloc->mutex);
178         return buffer;
179 }
180
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182                                     void __user *start, void __user *end)
183 {
184         void __user *page_addr;
185         unsigned long user_page_addr;
186         struct binder_lru_page *page;
187         struct vm_area_struct *vma = NULL;
188         struct mm_struct *mm = NULL;
189         bool need_mm = false;
190
191         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192                      "%d: %s pages %pK-%pK\n", alloc->pid,
193                      allocate ? "allocate" : "free", start, end);
194
195         if (end <= start)
196                 return 0;
197
198         trace_binder_update_page_range(alloc, allocate, start, end);
199
200         if (allocate == 0)
201                 goto free_range;
202
203         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204                 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205                 if (!page->page_ptr) {
206                         need_mm = true;
207                         break;
208                 }
209         }
210
211         if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212                 mm = alloc->vma_vm_mm;
213
214         if (mm) {
215                 mmap_read_lock(mm);
216                 vma = vma_lookup(mm, alloc->vma_addr);
217         }
218
219         if (!vma && need_mm) {
220                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221                                    "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222                                    alloc->pid);
223                 goto err_no_vma;
224         }
225
226         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227                 int ret;
228                 bool on_lru;
229                 size_t index;
230
231                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232                 page = &alloc->pages[index];
233
234                 if (page->page_ptr) {
235                         trace_binder_alloc_lru_start(alloc, index);
236
237                         on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238                         WARN_ON(!on_lru);
239
240                         trace_binder_alloc_lru_end(alloc, index);
241                         continue;
242                 }
243
244                 if (WARN_ON(!vma))
245                         goto err_page_ptr_cleared;
246
247                 trace_binder_alloc_page_start(alloc, index);
248                 page->page_ptr = alloc_page(GFP_KERNEL |
249                                             __GFP_HIGHMEM |
250                                             __GFP_ZERO);
251                 if (!page->page_ptr) {
252                         pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253                                 alloc->pid, page_addr);
254                         goto err_alloc_page_failed;
255                 }
256                 page->alloc = alloc;
257                 INIT_LIST_HEAD(&page->lru);
258
259                 user_page_addr = (uintptr_t)page_addr;
260                 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261                 if (ret) {
262                         pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263                                alloc->pid, user_page_addr);
264                         goto err_vm_insert_page_failed;
265                 }
266
267                 if (index + 1 > alloc->pages_high)
268                         alloc->pages_high = index + 1;
269
270                 trace_binder_alloc_page_end(alloc, index);
271         }
272         if (mm) {
273                 mmap_read_unlock(mm);
274                 mmput(mm);
275         }
276         return 0;
277
278 free_range:
279         for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280                 bool ret;
281                 size_t index;
282
283                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284                 page = &alloc->pages[index];
285
286                 trace_binder_free_lru_start(alloc, index);
287
288                 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289                 WARN_ON(!ret);
290
291                 trace_binder_free_lru_end(alloc, index);
292                 if (page_addr == start)
293                         break;
294                 continue;
295
296 err_vm_insert_page_failed:
297                 __free_page(page->page_ptr);
298                 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301                 if (page_addr == start)
302                         break;
303         }
304 err_no_vma:
305         if (mm) {
306                 mmap_read_unlock(mm);
307                 mmput(mm);
308         }
309         return vma ? -ENOMEM : -ESRCH;
310 }
311
312
313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314                 struct vm_area_struct *vma)
315 {
316         unsigned long vm_start = 0;
317
318         if (vma) {
319                 vm_start = vma->vm_start;
320                 mmap_assert_write_locked(alloc->vma_vm_mm);
321         }
322
323         alloc->vma_addr = vm_start;
324 }
325
326 static inline struct vm_area_struct *binder_alloc_get_vma(
327                 struct binder_alloc *alloc)
328 {
329         struct vm_area_struct *vma = NULL;
330
331         if (alloc->vma_addr)
332                 vma = vma_lookup(alloc->vma_vm_mm, alloc->vma_addr);
333
334         return vma;
335 }
336
337 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
338 {
339         /*
340          * Find the amount and size of buffers allocated by the current caller;
341          * The idea is that once we cross the threshold, whoever is responsible
342          * for the low async space is likely to try to send another async txn,
343          * and at some point we'll catch them in the act. This is more efficient
344          * than keeping a map per pid.
345          */
346         struct rb_node *n;
347         struct binder_buffer *buffer;
348         size_t total_alloc_size = 0;
349         size_t num_buffers = 0;
350
351         for (n = rb_first(&alloc->allocated_buffers); n != NULL;
352                  n = rb_next(n)) {
353                 buffer = rb_entry(n, struct binder_buffer, rb_node);
354                 if (buffer->pid != pid)
355                         continue;
356                 if (!buffer->async_transaction)
357                         continue;
358                 total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
359                         + sizeof(struct binder_buffer);
360                 num_buffers++;
361         }
362
363         /*
364          * Warn if this pid has more than 50 transactions, or more than 50% of
365          * async space (which is 25% of total buffer size). Oneway spam is only
366          * detected when the threshold is exceeded.
367          */
368         if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
369                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
370                              "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
371                               alloc->pid, pid, num_buffers, total_alloc_size);
372                 if (!alloc->oneway_spam_detected) {
373                         alloc->oneway_spam_detected = true;
374                         return true;
375                 }
376         }
377         return false;
378 }
379
380 static struct binder_buffer *binder_alloc_new_buf_locked(
381                                 struct binder_alloc *alloc,
382                                 size_t data_size,
383                                 size_t offsets_size,
384                                 size_t extra_buffers_size,
385                                 int is_async,
386                                 int pid)
387 {
388         struct rb_node *n = alloc->free_buffers.rb_node;
389         struct binder_buffer *buffer;
390         size_t buffer_size;
391         struct rb_node *best_fit = NULL;
392         void __user *has_page_addr;
393         void __user *end_page_addr;
394         size_t size, data_offsets_size;
395         int ret;
396
397         mmap_read_lock(alloc->vma_vm_mm);
398         if (!binder_alloc_get_vma(alloc)) {
399                 mmap_read_unlock(alloc->vma_vm_mm);
400                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
401                                    "%d: binder_alloc_buf, no vma\n",
402                                    alloc->pid);
403                 return ERR_PTR(-ESRCH);
404         }
405         mmap_read_unlock(alloc->vma_vm_mm);
406
407         data_offsets_size = ALIGN(data_size, sizeof(void *)) +
408                 ALIGN(offsets_size, sizeof(void *));
409
410         if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
411                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
412                                 "%d: got transaction with invalid size %zd-%zd\n",
413                                 alloc->pid, data_size, offsets_size);
414                 return ERR_PTR(-EINVAL);
415         }
416         size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
417         if (size < data_offsets_size || size < extra_buffers_size) {
418                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
419                                 "%d: got transaction with invalid extra_buffers_size %zd\n",
420                                 alloc->pid, extra_buffers_size);
421                 return ERR_PTR(-EINVAL);
422         }
423         if (is_async &&
424             alloc->free_async_space < size + sizeof(struct binder_buffer)) {
425                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
426                              "%d: binder_alloc_buf size %zd failed, no async space left\n",
427                               alloc->pid, size);
428                 return ERR_PTR(-ENOSPC);
429         }
430
431         /* Pad 0-size buffers so they get assigned unique addresses */
432         size = max(size, sizeof(void *));
433
434         while (n) {
435                 buffer = rb_entry(n, struct binder_buffer, rb_node);
436                 BUG_ON(!buffer->free);
437                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
438
439                 if (size < buffer_size) {
440                         best_fit = n;
441                         n = n->rb_left;
442                 } else if (size > buffer_size)
443                         n = n->rb_right;
444                 else {
445                         best_fit = n;
446                         break;
447                 }
448         }
449         if (best_fit == NULL) {
450                 size_t allocated_buffers = 0;
451                 size_t largest_alloc_size = 0;
452                 size_t total_alloc_size = 0;
453                 size_t free_buffers = 0;
454                 size_t largest_free_size = 0;
455                 size_t total_free_size = 0;
456
457                 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
458                      n = rb_next(n)) {
459                         buffer = rb_entry(n, struct binder_buffer, rb_node);
460                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
461                         allocated_buffers++;
462                         total_alloc_size += buffer_size;
463                         if (buffer_size > largest_alloc_size)
464                                 largest_alloc_size = buffer_size;
465                 }
466                 for (n = rb_first(&alloc->free_buffers); n != NULL;
467                      n = rb_next(n)) {
468                         buffer = rb_entry(n, struct binder_buffer, rb_node);
469                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
470                         free_buffers++;
471                         total_free_size += buffer_size;
472                         if (buffer_size > largest_free_size)
473                                 largest_free_size = buffer_size;
474                 }
475                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
476                                    "%d: binder_alloc_buf size %zd failed, no address space\n",
477                                    alloc->pid, size);
478                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
479                                    "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
480                                    total_alloc_size, allocated_buffers,
481                                    largest_alloc_size, total_free_size,
482                                    free_buffers, largest_free_size);
483                 return ERR_PTR(-ENOSPC);
484         }
485         if (n == NULL) {
486                 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
487                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
488         }
489
490         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
491                      "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
492                       alloc->pid, size, buffer, buffer_size);
493
494         has_page_addr = (void __user *)
495                 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
496         WARN_ON(n && buffer_size != size);
497         end_page_addr =
498                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
499         if (end_page_addr > has_page_addr)
500                 end_page_addr = has_page_addr;
501         ret = binder_update_page_range(alloc, 1, (void __user *)
502                 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
503         if (ret)
504                 return ERR_PTR(ret);
505
506         if (buffer_size != size) {
507                 struct binder_buffer *new_buffer;
508
509                 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
510                 if (!new_buffer) {
511                         pr_err("%s: %d failed to alloc new buffer struct\n",
512                                __func__, alloc->pid);
513                         goto err_alloc_buf_struct_failed;
514                 }
515                 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
516                 list_add(&new_buffer->entry, &buffer->entry);
517                 new_buffer->free = 1;
518                 binder_insert_free_buffer(alloc, new_buffer);
519         }
520
521         rb_erase(best_fit, &alloc->free_buffers);
522         buffer->free = 0;
523         buffer->allow_user_free = 0;
524         binder_insert_allocated_buffer_locked(alloc, buffer);
525         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
526                      "%d: binder_alloc_buf size %zd got %pK\n",
527                       alloc->pid, size, buffer);
528         buffer->data_size = data_size;
529         buffer->offsets_size = offsets_size;
530         buffer->async_transaction = is_async;
531         buffer->extra_buffers_size = extra_buffers_size;
532         buffer->pid = pid;
533         buffer->oneway_spam_suspect = false;
534         if (is_async) {
535                 alloc->free_async_space -= size + sizeof(struct binder_buffer);
536                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
537                              "%d: binder_alloc_buf size %zd async free %zd\n",
538                               alloc->pid, size, alloc->free_async_space);
539                 if (alloc->free_async_space < alloc->buffer_size / 10) {
540                         /*
541                          * Start detecting spammers once we have less than 20%
542                          * of async space left (which is less than 10% of total
543                          * buffer size).
544                          */
545                         buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
546                 } else {
547                         alloc->oneway_spam_detected = false;
548                 }
549         }
550         return buffer;
551
552 err_alloc_buf_struct_failed:
553         binder_update_page_range(alloc, 0, (void __user *)
554                                  PAGE_ALIGN((uintptr_t)buffer->user_data),
555                                  end_page_addr);
556         return ERR_PTR(-ENOMEM);
557 }
558
559 /**
560  * binder_alloc_new_buf() - Allocate a new binder buffer
561  * @alloc:              binder_alloc for this proc
562  * @data_size:          size of user data buffer
563  * @offsets_size:       user specified buffer offset
564  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
565  * @is_async:           buffer for async transaction
566  * @pid:                                pid to attribute allocation to (used for debugging)
567  *
568  * Allocate a new buffer given the requested sizes. Returns
569  * the kernel version of the buffer pointer. The size allocated
570  * is the sum of the three given sizes (each rounded up to
571  * pointer-sized boundary)
572  *
573  * Return:      The allocated buffer or %NULL if error
574  */
575 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
576                                            size_t data_size,
577                                            size_t offsets_size,
578                                            size_t extra_buffers_size,
579                                            int is_async,
580                                            int pid)
581 {
582         struct binder_buffer *buffer;
583
584         mutex_lock(&alloc->mutex);
585         buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
586                                              extra_buffers_size, is_async, pid);
587         mutex_unlock(&alloc->mutex);
588         return buffer;
589 }
590
591 static void __user *buffer_start_page(struct binder_buffer *buffer)
592 {
593         return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
594 }
595
596 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
597 {
598         return (void __user *)
599                 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
600 }
601
602 static void binder_delete_free_buffer(struct binder_alloc *alloc,
603                                       struct binder_buffer *buffer)
604 {
605         struct binder_buffer *prev, *next = NULL;
606         bool to_free = true;
607
608         BUG_ON(alloc->buffers.next == &buffer->entry);
609         prev = binder_buffer_prev(buffer);
610         BUG_ON(!prev->free);
611         if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
612                 to_free = false;
613                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
614                                    "%d: merge free, buffer %pK share page with %pK\n",
615                                    alloc->pid, buffer->user_data,
616                                    prev->user_data);
617         }
618
619         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
620                 next = binder_buffer_next(buffer);
621                 if (buffer_start_page(next) == buffer_start_page(buffer)) {
622                         to_free = false;
623                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
624                                            "%d: merge free, buffer %pK share page with %pK\n",
625                                            alloc->pid,
626                                            buffer->user_data,
627                                            next->user_data);
628                 }
629         }
630
631         if (PAGE_ALIGNED(buffer->user_data)) {
632                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
633                                    "%d: merge free, buffer start %pK is page aligned\n",
634                                    alloc->pid, buffer->user_data);
635                 to_free = false;
636         }
637
638         if (to_free) {
639                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
640                                    "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
641                                    alloc->pid, buffer->user_data,
642                                    prev->user_data,
643                                    next ? next->user_data : NULL);
644                 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
645                                          buffer_start_page(buffer) + PAGE_SIZE);
646         }
647         list_del(&buffer->entry);
648         kfree(buffer);
649 }
650
651 static void binder_free_buf_locked(struct binder_alloc *alloc,
652                                    struct binder_buffer *buffer)
653 {
654         size_t size, buffer_size;
655
656         buffer_size = binder_alloc_buffer_size(alloc, buffer);
657
658         size = ALIGN(buffer->data_size, sizeof(void *)) +
659                 ALIGN(buffer->offsets_size, sizeof(void *)) +
660                 ALIGN(buffer->extra_buffers_size, sizeof(void *));
661
662         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
663                      "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
664                       alloc->pid, buffer, size, buffer_size);
665
666         BUG_ON(buffer->free);
667         BUG_ON(size > buffer_size);
668         BUG_ON(buffer->transaction != NULL);
669         BUG_ON(buffer->user_data < alloc->buffer);
670         BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
671
672         if (buffer->async_transaction) {
673                 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
674
675                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
676                              "%d: binder_free_buf size %zd async free %zd\n",
677                               alloc->pid, size, alloc->free_async_space);
678         }
679
680         binder_update_page_range(alloc, 0,
681                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
682                 (void __user *)(((uintptr_t)
683                           buffer->user_data + buffer_size) & PAGE_MASK));
684
685         rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
686         buffer->free = 1;
687         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
688                 struct binder_buffer *next = binder_buffer_next(buffer);
689
690                 if (next->free) {
691                         rb_erase(&next->rb_node, &alloc->free_buffers);
692                         binder_delete_free_buffer(alloc, next);
693                 }
694         }
695         if (alloc->buffers.next != &buffer->entry) {
696                 struct binder_buffer *prev = binder_buffer_prev(buffer);
697
698                 if (prev->free) {
699                         binder_delete_free_buffer(alloc, buffer);
700                         rb_erase(&prev->rb_node, &alloc->free_buffers);
701                         buffer = prev;
702                 }
703         }
704         binder_insert_free_buffer(alloc, buffer);
705 }
706
707 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
708                                    struct binder_buffer *buffer);
709 /**
710  * binder_alloc_free_buf() - free a binder buffer
711  * @alloc:      binder_alloc for this proc
712  * @buffer:     kernel pointer to buffer
713  *
714  * Free the buffer allocated via binder_alloc_new_buf()
715  */
716 void binder_alloc_free_buf(struct binder_alloc *alloc,
717                             struct binder_buffer *buffer)
718 {
719         /*
720          * We could eliminate the call to binder_alloc_clear_buf()
721          * from binder_alloc_deferred_release() by moving this to
722          * binder_alloc_free_buf_locked(). However, that could
723          * increase contention for the alloc mutex if clear_on_free
724          * is used frequently for large buffers. The mutex is not
725          * needed for correctness here.
726          */
727         if (buffer->clear_on_free) {
728                 binder_alloc_clear_buf(alloc, buffer);
729                 buffer->clear_on_free = false;
730         }
731         mutex_lock(&alloc->mutex);
732         binder_free_buf_locked(alloc, buffer);
733         mutex_unlock(&alloc->mutex);
734 }
735
736 /**
737  * binder_alloc_mmap_handler() - map virtual address space for proc
738  * @alloc:      alloc structure for this proc
739  * @vma:        vma passed to mmap()
740  *
741  * Called by binder_mmap() to initialize the space specified in
742  * vma for allocating binder buffers
743  *
744  * Return:
745  *      0 = success
746  *      -EBUSY = address space already mapped
747  *      -ENOMEM = failed to map memory to given address space
748  */
749 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
750                               struct vm_area_struct *vma)
751 {
752         int ret;
753         const char *failure_string;
754         struct binder_buffer *buffer;
755
756         if (unlikely(vma->vm_mm != alloc->vma_vm_mm)) {
757                 ret = -EINVAL;
758                 failure_string = "invalid vma->vm_mm";
759                 goto err_invalid_mm;
760         }
761
762         mutex_lock(&binder_alloc_mmap_lock);
763         if (alloc->buffer_size) {
764                 ret = -EBUSY;
765                 failure_string = "already mapped";
766                 goto err_already_mapped;
767         }
768         alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
769                                    SZ_4M);
770         mutex_unlock(&binder_alloc_mmap_lock);
771
772         alloc->buffer = (void __user *)vma->vm_start;
773
774         alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
775                                sizeof(alloc->pages[0]),
776                                GFP_KERNEL);
777         if (alloc->pages == NULL) {
778                 ret = -ENOMEM;
779                 failure_string = "alloc page array";
780                 goto err_alloc_pages_failed;
781         }
782
783         buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
784         if (!buffer) {
785                 ret = -ENOMEM;
786                 failure_string = "alloc buffer struct";
787                 goto err_alloc_buf_struct_failed;
788         }
789
790         buffer->user_data = alloc->buffer;
791         list_add(&buffer->entry, &alloc->buffers);
792         buffer->free = 1;
793         binder_insert_free_buffer(alloc, buffer);
794         alloc->free_async_space = alloc->buffer_size / 2;
795         binder_alloc_set_vma(alloc, vma);
796
797         return 0;
798
799 err_alloc_buf_struct_failed:
800         kfree(alloc->pages);
801         alloc->pages = NULL;
802 err_alloc_pages_failed:
803         alloc->buffer = NULL;
804         mutex_lock(&binder_alloc_mmap_lock);
805         alloc->buffer_size = 0;
806 err_already_mapped:
807         mutex_unlock(&binder_alloc_mmap_lock);
808 err_invalid_mm:
809         binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
810                            "%s: %d %lx-%lx %s failed %d\n", __func__,
811                            alloc->pid, vma->vm_start, vma->vm_end,
812                            failure_string, ret);
813         return ret;
814 }
815
816
817 void binder_alloc_deferred_release(struct binder_alloc *alloc)
818 {
819         struct rb_node *n;
820         int buffers, page_count;
821         struct binder_buffer *buffer;
822
823         buffers = 0;
824         mutex_lock(&alloc->mutex);
825         BUG_ON(alloc->vma_addr &&
826                vma_lookup(alloc->vma_vm_mm, alloc->vma_addr));
827
828         while ((n = rb_first(&alloc->allocated_buffers))) {
829                 buffer = rb_entry(n, struct binder_buffer, rb_node);
830
831                 /* Transaction should already have been freed */
832                 BUG_ON(buffer->transaction);
833
834                 if (buffer->clear_on_free) {
835                         binder_alloc_clear_buf(alloc, buffer);
836                         buffer->clear_on_free = false;
837                 }
838                 binder_free_buf_locked(alloc, buffer);
839                 buffers++;
840         }
841
842         while (!list_empty(&alloc->buffers)) {
843                 buffer = list_first_entry(&alloc->buffers,
844                                           struct binder_buffer, entry);
845                 WARN_ON(!buffer->free);
846
847                 list_del(&buffer->entry);
848                 WARN_ON_ONCE(!list_empty(&alloc->buffers));
849                 kfree(buffer);
850         }
851
852         page_count = 0;
853         if (alloc->pages) {
854                 int i;
855
856                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
857                         void __user *page_addr;
858                         bool on_lru;
859
860                         if (!alloc->pages[i].page_ptr)
861                                 continue;
862
863                         on_lru = list_lru_del(&binder_alloc_lru,
864                                               &alloc->pages[i].lru);
865                         page_addr = alloc->buffer + i * PAGE_SIZE;
866                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
867                                      "%s: %d: page %d at %pK %s\n",
868                                      __func__, alloc->pid, i, page_addr,
869                                      on_lru ? "on lru" : "active");
870                         __free_page(alloc->pages[i].page_ptr);
871                         page_count++;
872                 }
873                 kfree(alloc->pages);
874         }
875         mutex_unlock(&alloc->mutex);
876         if (alloc->vma_vm_mm)
877                 mmdrop(alloc->vma_vm_mm);
878
879         binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
880                      "%s: %d buffers %d, pages %d\n",
881                      __func__, alloc->pid, buffers, page_count);
882 }
883
884 static void print_binder_buffer(struct seq_file *m, const char *prefix,
885                                 struct binder_buffer *buffer)
886 {
887         seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
888                    prefix, buffer->debug_id, buffer->user_data,
889                    buffer->data_size, buffer->offsets_size,
890                    buffer->extra_buffers_size,
891                    buffer->transaction ? "active" : "delivered");
892 }
893
894 /**
895  * binder_alloc_print_allocated() - print buffer info
896  * @m:     seq_file for output via seq_printf()
897  * @alloc: binder_alloc for this proc
898  *
899  * Prints information about every buffer associated with
900  * the binder_alloc state to the given seq_file
901  */
902 void binder_alloc_print_allocated(struct seq_file *m,
903                                   struct binder_alloc *alloc)
904 {
905         struct rb_node *n;
906
907         mutex_lock(&alloc->mutex);
908         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
909                 print_binder_buffer(m, "  buffer",
910                                     rb_entry(n, struct binder_buffer, rb_node));
911         mutex_unlock(&alloc->mutex);
912 }
913
914 /**
915  * binder_alloc_print_pages() - print page usage
916  * @m:     seq_file for output via seq_printf()
917  * @alloc: binder_alloc for this proc
918  */
919 void binder_alloc_print_pages(struct seq_file *m,
920                               struct binder_alloc *alloc)
921 {
922         struct binder_lru_page *page;
923         int i;
924         int active = 0;
925         int lru = 0;
926         int free = 0;
927
928         mutex_lock(&alloc->mutex);
929         /*
930          * Make sure the binder_alloc is fully initialized, otherwise we might
931          * read inconsistent state.
932          */
933
934         mmap_read_lock(alloc->vma_vm_mm);
935         if (binder_alloc_get_vma(alloc) == NULL) {
936                 mmap_read_unlock(alloc->vma_vm_mm);
937                 goto uninitialized;
938         }
939
940         mmap_read_unlock(alloc->vma_vm_mm);
941         for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
942                 page = &alloc->pages[i];
943                 if (!page->page_ptr)
944                         free++;
945                 else if (list_empty(&page->lru))
946                         active++;
947                 else
948                         lru++;
949         }
950
951 uninitialized:
952         mutex_unlock(&alloc->mutex);
953         seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
954         seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
955 }
956
957 /**
958  * binder_alloc_get_allocated_count() - return count of buffers
959  * @alloc: binder_alloc for this proc
960  *
961  * Return: count of allocated buffers
962  */
963 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
964 {
965         struct rb_node *n;
966         int count = 0;
967
968         mutex_lock(&alloc->mutex);
969         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
970                 count++;
971         mutex_unlock(&alloc->mutex);
972         return count;
973 }
974
975
976 /**
977  * binder_alloc_vma_close() - invalidate address space
978  * @alloc: binder_alloc for this proc
979  *
980  * Called from binder_vma_close() when releasing address space.
981  * Clears alloc->vma to prevent new incoming transactions from
982  * allocating more buffers.
983  */
984 void binder_alloc_vma_close(struct binder_alloc *alloc)
985 {
986         binder_alloc_set_vma(alloc, NULL);
987 }
988
989 /**
990  * binder_alloc_free_page() - shrinker callback to free pages
991  * @item:   item to free
992  * @lock:   lock protecting the item
993  * @cb_arg: callback argument
994  *
995  * Called from list_lru_walk() in binder_shrink_scan() to free
996  * up pages when the system is under memory pressure.
997  */
998 enum lru_status binder_alloc_free_page(struct list_head *item,
999                                        struct list_lru_one *lru,
1000                                        spinlock_t *lock,
1001                                        void *cb_arg)
1002         __must_hold(lock)
1003 {
1004         struct mm_struct *mm = NULL;
1005         struct binder_lru_page *page = container_of(item,
1006                                                     struct binder_lru_page,
1007                                                     lru);
1008         struct binder_alloc *alloc;
1009         uintptr_t page_addr;
1010         size_t index;
1011         struct vm_area_struct *vma;
1012
1013         alloc = page->alloc;
1014         if (!mutex_trylock(&alloc->mutex))
1015                 goto err_get_alloc_mutex_failed;
1016
1017         if (!page->page_ptr)
1018                 goto err_page_already_freed;
1019
1020         index = page - alloc->pages;
1021         page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1022
1023         mm = alloc->vma_vm_mm;
1024         if (!mmget_not_zero(mm))
1025                 goto err_mmget;
1026         if (!mmap_read_trylock(mm))
1027                 goto err_mmap_read_lock_failed;
1028         vma = binder_alloc_get_vma(alloc);
1029
1030         list_lru_isolate(lru, item);
1031         spin_unlock(lock);
1032
1033         if (vma) {
1034                 trace_binder_unmap_user_start(alloc, index);
1035
1036                 zap_page_range(vma, page_addr, PAGE_SIZE);
1037
1038                 trace_binder_unmap_user_end(alloc, index);
1039         }
1040         mmap_read_unlock(mm);
1041         mmput_async(mm);
1042
1043         trace_binder_unmap_kernel_start(alloc, index);
1044
1045         __free_page(page->page_ptr);
1046         page->page_ptr = NULL;
1047
1048         trace_binder_unmap_kernel_end(alloc, index);
1049
1050         spin_lock(lock);
1051         mutex_unlock(&alloc->mutex);
1052         return LRU_REMOVED_RETRY;
1053
1054 err_mmap_read_lock_failed:
1055         mmput_async(mm);
1056 err_mmget:
1057 err_page_already_freed:
1058         mutex_unlock(&alloc->mutex);
1059 err_get_alloc_mutex_failed:
1060         return LRU_SKIP;
1061 }
1062
1063 static unsigned long
1064 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1065 {
1066         unsigned long ret = list_lru_count(&binder_alloc_lru);
1067         return ret;
1068 }
1069
1070 static unsigned long
1071 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1072 {
1073         unsigned long ret;
1074
1075         ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1076                             NULL, sc->nr_to_scan);
1077         return ret;
1078 }
1079
1080 static struct shrinker binder_shrinker = {
1081         .count_objects = binder_shrink_count,
1082         .scan_objects = binder_shrink_scan,
1083         .seeks = DEFAULT_SEEKS,
1084 };
1085
1086 /**
1087  * binder_alloc_init() - called by binder_open() for per-proc initialization
1088  * @alloc: binder_alloc for this proc
1089  *
1090  * Called from binder_open() to initialize binder_alloc fields for
1091  * new binder proc
1092  */
1093 void binder_alloc_init(struct binder_alloc *alloc)
1094 {
1095         alloc->pid = current->group_leader->pid;
1096         alloc->vma_vm_mm = current->mm;
1097         mmgrab(alloc->vma_vm_mm);
1098         mutex_init(&alloc->mutex);
1099         INIT_LIST_HEAD(&alloc->buffers);
1100 }
1101
1102 int binder_alloc_shrinker_init(void)
1103 {
1104         int ret = list_lru_init(&binder_alloc_lru);
1105
1106         if (ret == 0) {
1107                 ret = register_shrinker(&binder_shrinker);
1108                 if (ret)
1109                         list_lru_destroy(&binder_alloc_lru);
1110         }
1111         return ret;
1112 }
1113
1114 /**
1115  * check_buffer() - verify that buffer/offset is safe to access
1116  * @alloc: binder_alloc for this proc
1117  * @buffer: binder buffer to be accessed
1118  * @offset: offset into @buffer data
1119  * @bytes: bytes to access from offset
1120  *
1121  * Check that the @offset/@bytes are within the size of the given
1122  * @buffer and that the buffer is currently active and not freeable.
1123  * Offsets must also be multiples of sizeof(u32). The kernel is
1124  * allowed to touch the buffer in two cases:
1125  *
1126  * 1) when the buffer is being created:
1127  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1128  * 2) when the buffer is being torn down:
1129  *     (buffer->free == 0 && buffer->transaction == NULL).
1130  *
1131  * Return: true if the buffer is safe to access
1132  */
1133 static inline bool check_buffer(struct binder_alloc *alloc,
1134                                 struct binder_buffer *buffer,
1135                                 binder_size_t offset, size_t bytes)
1136 {
1137         size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1138
1139         return buffer_size >= bytes &&
1140                 offset <= buffer_size - bytes &&
1141                 IS_ALIGNED(offset, sizeof(u32)) &&
1142                 !buffer->free &&
1143                 (!buffer->allow_user_free || !buffer->transaction);
1144 }
1145
1146 /**
1147  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1148  * @alloc: binder_alloc for this proc
1149  * @buffer: binder buffer to be accessed
1150  * @buffer_offset: offset into @buffer data
1151  * @pgoffp: address to copy final page offset to
1152  *
1153  * Lookup the struct page corresponding to the address
1154  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1155  * NULL, the byte-offset into the page is written there.
1156  *
1157  * The caller is responsible to ensure that the offset points
1158  * to a valid address within the @buffer and that @buffer is
1159  * not freeable by the user. Since it can't be freed, we are
1160  * guaranteed that the corresponding elements of @alloc->pages[]
1161  * cannot change.
1162  *
1163  * Return: struct page
1164  */
1165 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1166                                           struct binder_buffer *buffer,
1167                                           binder_size_t buffer_offset,
1168                                           pgoff_t *pgoffp)
1169 {
1170         binder_size_t buffer_space_offset = buffer_offset +
1171                 (buffer->user_data - alloc->buffer);
1172         pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1173         size_t index = buffer_space_offset >> PAGE_SHIFT;
1174         struct binder_lru_page *lru_page;
1175
1176         lru_page = &alloc->pages[index];
1177         *pgoffp = pgoff;
1178         return lru_page->page_ptr;
1179 }
1180
1181 /**
1182  * binder_alloc_clear_buf() - zero out buffer
1183  * @alloc: binder_alloc for this proc
1184  * @buffer: binder buffer to be cleared
1185  *
1186  * memset the given buffer to 0
1187  */
1188 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1189                                    struct binder_buffer *buffer)
1190 {
1191         size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1192         binder_size_t buffer_offset = 0;
1193
1194         while (bytes) {
1195                 unsigned long size;
1196                 struct page *page;
1197                 pgoff_t pgoff;
1198                 void *kptr;
1199
1200                 page = binder_alloc_get_page(alloc, buffer,
1201                                              buffer_offset, &pgoff);
1202                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1203                 kptr = kmap(page) + pgoff;
1204                 memset(kptr, 0, size);
1205                 kunmap(page);
1206                 bytes -= size;
1207                 buffer_offset += size;
1208         }
1209 }
1210
1211 /**
1212  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1213  * @alloc: binder_alloc for this proc
1214  * @buffer: binder buffer to be accessed
1215  * @buffer_offset: offset into @buffer data
1216  * @from: userspace pointer to source buffer
1217  * @bytes: bytes to copy
1218  *
1219  * Copy bytes from source userspace to target buffer.
1220  *
1221  * Return: bytes remaining to be copied
1222  */
1223 unsigned long
1224 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1225                                  struct binder_buffer *buffer,
1226                                  binder_size_t buffer_offset,
1227                                  const void __user *from,
1228                                  size_t bytes)
1229 {
1230         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1231                 return bytes;
1232
1233         while (bytes) {
1234                 unsigned long size;
1235                 unsigned long ret;
1236                 struct page *page;
1237                 pgoff_t pgoff;
1238                 void *kptr;
1239
1240                 page = binder_alloc_get_page(alloc, buffer,
1241                                              buffer_offset, &pgoff);
1242                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1243                 kptr = kmap(page) + pgoff;
1244                 ret = copy_from_user(kptr, from, size);
1245                 kunmap(page);
1246                 if (ret)
1247                         return bytes - size + ret;
1248                 bytes -= size;
1249                 from += size;
1250                 buffer_offset += size;
1251         }
1252         return 0;
1253 }
1254
1255 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1256                                        bool to_buffer,
1257                                        struct binder_buffer *buffer,
1258                                        binder_size_t buffer_offset,
1259                                        void *ptr,
1260                                        size_t bytes)
1261 {
1262         /* All copies must be 32-bit aligned and 32-bit size */
1263         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1264                 return -EINVAL;
1265
1266         while (bytes) {
1267                 unsigned long size;
1268                 struct page *page;
1269                 pgoff_t pgoff;
1270                 void *tmpptr;
1271                 void *base_ptr;
1272
1273                 page = binder_alloc_get_page(alloc, buffer,
1274                                              buffer_offset, &pgoff);
1275                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1276                 base_ptr = kmap_atomic(page);
1277                 tmpptr = base_ptr + pgoff;
1278                 if (to_buffer)
1279                         memcpy(tmpptr, ptr, size);
1280                 else
1281                         memcpy(ptr, tmpptr, size);
1282                 /*
1283                  * kunmap_atomic() takes care of flushing the cache
1284                  * if this device has VIVT cache arch
1285                  */
1286                 kunmap_atomic(base_ptr);
1287                 bytes -= size;
1288                 pgoff = 0;
1289                 ptr = ptr + size;
1290                 buffer_offset += size;
1291         }
1292         return 0;
1293 }
1294
1295 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1296                                 struct binder_buffer *buffer,
1297                                 binder_size_t buffer_offset,
1298                                 void *src,
1299                                 size_t bytes)
1300 {
1301         return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1302                                            src, bytes);
1303 }
1304
1305 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1306                                   void *dest,
1307                                   struct binder_buffer *buffer,
1308                                   binder_size_t buffer_offset,
1309                                   size_t bytes)
1310 {
1311         return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1312                                            dest, bytes);
1313 }
1314