spi: qup: add missing clk_disable_unprepare on error in spi_qup_resume()
[platform/kernel/linux-starfive.git] / drivers / android / binder_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34         BINDER_DEBUG_USER_ERROR             = 1U << 0,
35         BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36         BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37         BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42                    uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45         do { \
46                 if (binder_alloc_debug_mask & mask) \
47                         pr_info_ratelimited(x); \
48         } while (0)
49
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52         return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57         return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61                                        struct binder_buffer *buffer)
62 {
63         if (list_is_last(&buffer->entry, &alloc->buffers))
64                 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65         return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69                                       struct binder_buffer *new_buffer)
70 {
71         struct rb_node **p = &alloc->free_buffers.rb_node;
72         struct rb_node *parent = NULL;
73         struct binder_buffer *buffer;
74         size_t buffer_size;
75         size_t new_buffer_size;
76
77         BUG_ON(!new_buffer->free);
78
79         new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82                      "%d: add free buffer, size %zd, at %pK\n",
83                       alloc->pid, new_buffer_size, new_buffer);
84
85         while (*p) {
86                 parent = *p;
87                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88                 BUG_ON(!buffer->free);
89
90                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92                 if (new_buffer_size < buffer_size)
93                         p = &parent->rb_left;
94                 else
95                         p = &parent->rb_right;
96         }
97         rb_link_node(&new_buffer->rb_node, parent, p);
98         rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
101 static void binder_insert_allocated_buffer_locked(
102                 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104         struct rb_node **p = &alloc->allocated_buffers.rb_node;
105         struct rb_node *parent = NULL;
106         struct binder_buffer *buffer;
107
108         BUG_ON(new_buffer->free);
109
110         while (*p) {
111                 parent = *p;
112                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113                 BUG_ON(buffer->free);
114
115                 if (new_buffer->user_data < buffer->user_data)
116                         p = &parent->rb_left;
117                 else if (new_buffer->user_data > buffer->user_data)
118                         p = &parent->rb_right;
119                 else
120                         BUG();
121         }
122         rb_link_node(&new_buffer->rb_node, parent, p);
123         rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127                 struct binder_alloc *alloc,
128                 uintptr_t user_ptr)
129 {
130         struct rb_node *n = alloc->allocated_buffers.rb_node;
131         struct binder_buffer *buffer;
132         void __user *uptr;
133
134         uptr = (void __user *)user_ptr;
135
136         while (n) {
137                 buffer = rb_entry(n, struct binder_buffer, rb_node);
138                 BUG_ON(buffer->free);
139
140                 if (uptr < buffer->user_data)
141                         n = n->rb_left;
142                 else if (uptr > buffer->user_data)
143                         n = n->rb_right;
144                 else {
145                         /*
146                          * Guard against user threads attempting to
147                          * free the buffer when in use by kernel or
148                          * after it's already been freed.
149                          */
150                         if (!buffer->allow_user_free)
151                                 return ERR_PTR(-EPERM);
152                         buffer->allow_user_free = 0;
153                         return buffer;
154                 }
155         }
156         return NULL;
157 }
158
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:      binder_alloc for this proc
162  * @user_ptr:   User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:      Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171                                                    uintptr_t user_ptr)
172 {
173         struct binder_buffer *buffer;
174
175         mutex_lock(&alloc->mutex);
176         buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177         mutex_unlock(&alloc->mutex);
178         return buffer;
179 }
180
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182                                     void __user *start, void __user *end)
183 {
184         void __user *page_addr;
185         unsigned long user_page_addr;
186         struct binder_lru_page *page;
187         struct vm_area_struct *vma = NULL;
188         struct mm_struct *mm = NULL;
189         bool need_mm = false;
190
191         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192                      "%d: %s pages %pK-%pK\n", alloc->pid,
193                      allocate ? "allocate" : "free", start, end);
194
195         if (end <= start)
196                 return 0;
197
198         trace_binder_update_page_range(alloc, allocate, start, end);
199
200         if (allocate == 0)
201                 goto free_range;
202
203         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204                 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205                 if (!page->page_ptr) {
206                         need_mm = true;
207                         break;
208                 }
209         }
210
211         if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212                 mm = alloc->vma_vm_mm;
213
214         if (mm) {
215                 mmap_read_lock(mm);
216                 vma = vma_lookup(mm, alloc->vma_addr);
217         }
218
219         if (!vma && need_mm) {
220                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221                                    "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222                                    alloc->pid);
223                 goto err_no_vma;
224         }
225
226         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227                 int ret;
228                 bool on_lru;
229                 size_t index;
230
231                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232                 page = &alloc->pages[index];
233
234                 if (page->page_ptr) {
235                         trace_binder_alloc_lru_start(alloc, index);
236
237                         on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238                         WARN_ON(!on_lru);
239
240                         trace_binder_alloc_lru_end(alloc, index);
241                         continue;
242                 }
243
244                 if (WARN_ON(!vma))
245                         goto err_page_ptr_cleared;
246
247                 trace_binder_alloc_page_start(alloc, index);
248                 page->page_ptr = alloc_page(GFP_KERNEL |
249                                             __GFP_HIGHMEM |
250                                             __GFP_ZERO);
251                 if (!page->page_ptr) {
252                         pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253                                 alloc->pid, page_addr);
254                         goto err_alloc_page_failed;
255                 }
256                 page->alloc = alloc;
257                 INIT_LIST_HEAD(&page->lru);
258
259                 user_page_addr = (uintptr_t)page_addr;
260                 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261                 if (ret) {
262                         pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263                                alloc->pid, user_page_addr);
264                         goto err_vm_insert_page_failed;
265                 }
266
267                 if (index + 1 > alloc->pages_high)
268                         alloc->pages_high = index + 1;
269
270                 trace_binder_alloc_page_end(alloc, index);
271         }
272         if (mm) {
273                 mmap_read_unlock(mm);
274                 mmput(mm);
275         }
276         return 0;
277
278 free_range:
279         for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280                 bool ret;
281                 size_t index;
282
283                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284                 page = &alloc->pages[index];
285
286                 trace_binder_free_lru_start(alloc, index);
287
288                 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289                 WARN_ON(!ret);
290
291                 trace_binder_free_lru_end(alloc, index);
292                 if (page_addr == start)
293                         break;
294                 continue;
295
296 err_vm_insert_page_failed:
297                 __free_page(page->page_ptr);
298                 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301                 if (page_addr == start)
302                         break;
303         }
304 err_no_vma:
305         if (mm) {
306                 mmap_read_unlock(mm);
307                 mmput(mm);
308         }
309         return vma ? -ENOMEM : -ESRCH;
310 }
311
312
313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314                 struct vm_area_struct *vma)
315 {
316         unsigned long vm_start = 0;
317
318         /*
319          * Allow clearing the vma with holding just the read lock to allow
320          * munmapping downgrade of the write lock before freeing and closing the
321          * file using binder_alloc_vma_close().
322          */
323         if (vma) {
324                 vm_start = vma->vm_start;
325                 alloc->vma_vm_mm = vma->vm_mm;
326                 mmap_assert_write_locked(alloc->vma_vm_mm);
327         } else {
328                 mmap_assert_locked(alloc->vma_vm_mm);
329         }
330
331         alloc->vma_addr = vm_start;
332 }
333
334 static inline struct vm_area_struct *binder_alloc_get_vma(
335                 struct binder_alloc *alloc)
336 {
337         struct vm_area_struct *vma = NULL;
338
339         if (alloc->vma_addr)
340                 vma = vma_lookup(alloc->vma_vm_mm, alloc->vma_addr);
341
342         return vma;
343 }
344
345 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
346 {
347         /*
348          * Find the amount and size of buffers allocated by the current caller;
349          * The idea is that once we cross the threshold, whoever is responsible
350          * for the low async space is likely to try to send another async txn,
351          * and at some point we'll catch them in the act. This is more efficient
352          * than keeping a map per pid.
353          */
354         struct rb_node *n;
355         struct binder_buffer *buffer;
356         size_t total_alloc_size = 0;
357         size_t num_buffers = 0;
358
359         for (n = rb_first(&alloc->allocated_buffers); n != NULL;
360                  n = rb_next(n)) {
361                 buffer = rb_entry(n, struct binder_buffer, rb_node);
362                 if (buffer->pid != pid)
363                         continue;
364                 if (!buffer->async_transaction)
365                         continue;
366                 total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
367                         + sizeof(struct binder_buffer);
368                 num_buffers++;
369         }
370
371         /*
372          * Warn if this pid has more than 50 transactions, or more than 50% of
373          * async space (which is 25% of total buffer size). Oneway spam is only
374          * detected when the threshold is exceeded.
375          */
376         if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
377                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
378                              "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
379                               alloc->pid, pid, num_buffers, total_alloc_size);
380                 if (!alloc->oneway_spam_detected) {
381                         alloc->oneway_spam_detected = true;
382                         return true;
383                 }
384         }
385         return false;
386 }
387
388 static struct binder_buffer *binder_alloc_new_buf_locked(
389                                 struct binder_alloc *alloc,
390                                 size_t data_size,
391                                 size_t offsets_size,
392                                 size_t extra_buffers_size,
393                                 int is_async,
394                                 int pid)
395 {
396         struct rb_node *n = alloc->free_buffers.rb_node;
397         struct binder_buffer *buffer;
398         size_t buffer_size;
399         struct rb_node *best_fit = NULL;
400         void __user *has_page_addr;
401         void __user *end_page_addr;
402         size_t size, data_offsets_size;
403         int ret;
404
405         mmap_read_lock(alloc->vma_vm_mm);
406         if (!binder_alloc_get_vma(alloc)) {
407                 mmap_read_unlock(alloc->vma_vm_mm);
408                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
409                                    "%d: binder_alloc_buf, no vma\n",
410                                    alloc->pid);
411                 return ERR_PTR(-ESRCH);
412         }
413         mmap_read_unlock(alloc->vma_vm_mm);
414
415         data_offsets_size = ALIGN(data_size, sizeof(void *)) +
416                 ALIGN(offsets_size, sizeof(void *));
417
418         if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
419                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
420                                 "%d: got transaction with invalid size %zd-%zd\n",
421                                 alloc->pid, data_size, offsets_size);
422                 return ERR_PTR(-EINVAL);
423         }
424         size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
425         if (size < data_offsets_size || size < extra_buffers_size) {
426                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
427                                 "%d: got transaction with invalid extra_buffers_size %zd\n",
428                                 alloc->pid, extra_buffers_size);
429                 return ERR_PTR(-EINVAL);
430         }
431         if (is_async &&
432             alloc->free_async_space < size + sizeof(struct binder_buffer)) {
433                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
434                              "%d: binder_alloc_buf size %zd failed, no async space left\n",
435                               alloc->pid, size);
436                 return ERR_PTR(-ENOSPC);
437         }
438
439         /* Pad 0-size buffers so they get assigned unique addresses */
440         size = max(size, sizeof(void *));
441
442         while (n) {
443                 buffer = rb_entry(n, struct binder_buffer, rb_node);
444                 BUG_ON(!buffer->free);
445                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
446
447                 if (size < buffer_size) {
448                         best_fit = n;
449                         n = n->rb_left;
450                 } else if (size > buffer_size)
451                         n = n->rb_right;
452                 else {
453                         best_fit = n;
454                         break;
455                 }
456         }
457         if (best_fit == NULL) {
458                 size_t allocated_buffers = 0;
459                 size_t largest_alloc_size = 0;
460                 size_t total_alloc_size = 0;
461                 size_t free_buffers = 0;
462                 size_t largest_free_size = 0;
463                 size_t total_free_size = 0;
464
465                 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
466                      n = rb_next(n)) {
467                         buffer = rb_entry(n, struct binder_buffer, rb_node);
468                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
469                         allocated_buffers++;
470                         total_alloc_size += buffer_size;
471                         if (buffer_size > largest_alloc_size)
472                                 largest_alloc_size = buffer_size;
473                 }
474                 for (n = rb_first(&alloc->free_buffers); n != NULL;
475                      n = rb_next(n)) {
476                         buffer = rb_entry(n, struct binder_buffer, rb_node);
477                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
478                         free_buffers++;
479                         total_free_size += buffer_size;
480                         if (buffer_size > largest_free_size)
481                                 largest_free_size = buffer_size;
482                 }
483                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
484                                    "%d: binder_alloc_buf size %zd failed, no address space\n",
485                                    alloc->pid, size);
486                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
487                                    "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
488                                    total_alloc_size, allocated_buffers,
489                                    largest_alloc_size, total_free_size,
490                                    free_buffers, largest_free_size);
491                 return ERR_PTR(-ENOSPC);
492         }
493         if (n == NULL) {
494                 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
495                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
496         }
497
498         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
499                      "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
500                       alloc->pid, size, buffer, buffer_size);
501
502         has_page_addr = (void __user *)
503                 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
504         WARN_ON(n && buffer_size != size);
505         end_page_addr =
506                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
507         if (end_page_addr > has_page_addr)
508                 end_page_addr = has_page_addr;
509         ret = binder_update_page_range(alloc, 1, (void __user *)
510                 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
511         if (ret)
512                 return ERR_PTR(ret);
513
514         if (buffer_size != size) {
515                 struct binder_buffer *new_buffer;
516
517                 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
518                 if (!new_buffer) {
519                         pr_err("%s: %d failed to alloc new buffer struct\n",
520                                __func__, alloc->pid);
521                         goto err_alloc_buf_struct_failed;
522                 }
523                 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
524                 list_add(&new_buffer->entry, &buffer->entry);
525                 new_buffer->free = 1;
526                 binder_insert_free_buffer(alloc, new_buffer);
527         }
528
529         rb_erase(best_fit, &alloc->free_buffers);
530         buffer->free = 0;
531         buffer->allow_user_free = 0;
532         binder_insert_allocated_buffer_locked(alloc, buffer);
533         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
534                      "%d: binder_alloc_buf size %zd got %pK\n",
535                       alloc->pid, size, buffer);
536         buffer->data_size = data_size;
537         buffer->offsets_size = offsets_size;
538         buffer->async_transaction = is_async;
539         buffer->extra_buffers_size = extra_buffers_size;
540         buffer->pid = pid;
541         buffer->oneway_spam_suspect = false;
542         if (is_async) {
543                 alloc->free_async_space -= size + sizeof(struct binder_buffer);
544                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
545                              "%d: binder_alloc_buf size %zd async free %zd\n",
546                               alloc->pid, size, alloc->free_async_space);
547                 if (alloc->free_async_space < alloc->buffer_size / 10) {
548                         /*
549                          * Start detecting spammers once we have less than 20%
550                          * of async space left (which is less than 10% of total
551                          * buffer size).
552                          */
553                         buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
554                 } else {
555                         alloc->oneway_spam_detected = false;
556                 }
557         }
558         return buffer;
559
560 err_alloc_buf_struct_failed:
561         binder_update_page_range(alloc, 0, (void __user *)
562                                  PAGE_ALIGN((uintptr_t)buffer->user_data),
563                                  end_page_addr);
564         return ERR_PTR(-ENOMEM);
565 }
566
567 /**
568  * binder_alloc_new_buf() - Allocate a new binder buffer
569  * @alloc:              binder_alloc for this proc
570  * @data_size:          size of user data buffer
571  * @offsets_size:       user specified buffer offset
572  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
573  * @is_async:           buffer for async transaction
574  * @pid:                                pid to attribute allocation to (used for debugging)
575  *
576  * Allocate a new buffer given the requested sizes. Returns
577  * the kernel version of the buffer pointer. The size allocated
578  * is the sum of the three given sizes (each rounded up to
579  * pointer-sized boundary)
580  *
581  * Return:      The allocated buffer or %NULL if error
582  */
583 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
584                                            size_t data_size,
585                                            size_t offsets_size,
586                                            size_t extra_buffers_size,
587                                            int is_async,
588                                            int pid)
589 {
590         struct binder_buffer *buffer;
591
592         mutex_lock(&alloc->mutex);
593         buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
594                                              extra_buffers_size, is_async, pid);
595         mutex_unlock(&alloc->mutex);
596         return buffer;
597 }
598
599 static void __user *buffer_start_page(struct binder_buffer *buffer)
600 {
601         return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
602 }
603
604 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
605 {
606         return (void __user *)
607                 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
608 }
609
610 static void binder_delete_free_buffer(struct binder_alloc *alloc,
611                                       struct binder_buffer *buffer)
612 {
613         struct binder_buffer *prev, *next = NULL;
614         bool to_free = true;
615
616         BUG_ON(alloc->buffers.next == &buffer->entry);
617         prev = binder_buffer_prev(buffer);
618         BUG_ON(!prev->free);
619         if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
620                 to_free = false;
621                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
622                                    "%d: merge free, buffer %pK share page with %pK\n",
623                                    alloc->pid, buffer->user_data,
624                                    prev->user_data);
625         }
626
627         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
628                 next = binder_buffer_next(buffer);
629                 if (buffer_start_page(next) == buffer_start_page(buffer)) {
630                         to_free = false;
631                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
632                                            "%d: merge free, buffer %pK share page with %pK\n",
633                                            alloc->pid,
634                                            buffer->user_data,
635                                            next->user_data);
636                 }
637         }
638
639         if (PAGE_ALIGNED(buffer->user_data)) {
640                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
641                                    "%d: merge free, buffer start %pK is page aligned\n",
642                                    alloc->pid, buffer->user_data);
643                 to_free = false;
644         }
645
646         if (to_free) {
647                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
648                                    "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
649                                    alloc->pid, buffer->user_data,
650                                    prev->user_data,
651                                    next ? next->user_data : NULL);
652                 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
653                                          buffer_start_page(buffer) + PAGE_SIZE);
654         }
655         list_del(&buffer->entry);
656         kfree(buffer);
657 }
658
659 static void binder_free_buf_locked(struct binder_alloc *alloc,
660                                    struct binder_buffer *buffer)
661 {
662         size_t size, buffer_size;
663
664         buffer_size = binder_alloc_buffer_size(alloc, buffer);
665
666         size = ALIGN(buffer->data_size, sizeof(void *)) +
667                 ALIGN(buffer->offsets_size, sizeof(void *)) +
668                 ALIGN(buffer->extra_buffers_size, sizeof(void *));
669
670         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
671                      "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
672                       alloc->pid, buffer, size, buffer_size);
673
674         BUG_ON(buffer->free);
675         BUG_ON(size > buffer_size);
676         BUG_ON(buffer->transaction != NULL);
677         BUG_ON(buffer->user_data < alloc->buffer);
678         BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
679
680         if (buffer->async_transaction) {
681                 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
682
683                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
684                              "%d: binder_free_buf size %zd async free %zd\n",
685                               alloc->pid, size, alloc->free_async_space);
686         }
687
688         binder_update_page_range(alloc, 0,
689                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
690                 (void __user *)(((uintptr_t)
691                           buffer->user_data + buffer_size) & PAGE_MASK));
692
693         rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
694         buffer->free = 1;
695         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
696                 struct binder_buffer *next = binder_buffer_next(buffer);
697
698                 if (next->free) {
699                         rb_erase(&next->rb_node, &alloc->free_buffers);
700                         binder_delete_free_buffer(alloc, next);
701                 }
702         }
703         if (alloc->buffers.next != &buffer->entry) {
704                 struct binder_buffer *prev = binder_buffer_prev(buffer);
705
706                 if (prev->free) {
707                         binder_delete_free_buffer(alloc, buffer);
708                         rb_erase(&prev->rb_node, &alloc->free_buffers);
709                         buffer = prev;
710                 }
711         }
712         binder_insert_free_buffer(alloc, buffer);
713 }
714
715 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
716                                    struct binder_buffer *buffer);
717 /**
718  * binder_alloc_free_buf() - free a binder buffer
719  * @alloc:      binder_alloc for this proc
720  * @buffer:     kernel pointer to buffer
721  *
722  * Free the buffer allocated via binder_alloc_new_buf()
723  */
724 void binder_alloc_free_buf(struct binder_alloc *alloc,
725                             struct binder_buffer *buffer)
726 {
727         /*
728          * We could eliminate the call to binder_alloc_clear_buf()
729          * from binder_alloc_deferred_release() by moving this to
730          * binder_alloc_free_buf_locked(). However, that could
731          * increase contention for the alloc mutex if clear_on_free
732          * is used frequently for large buffers. The mutex is not
733          * needed for correctness here.
734          */
735         if (buffer->clear_on_free) {
736                 binder_alloc_clear_buf(alloc, buffer);
737                 buffer->clear_on_free = false;
738         }
739         mutex_lock(&alloc->mutex);
740         binder_free_buf_locked(alloc, buffer);
741         mutex_unlock(&alloc->mutex);
742 }
743
744 /**
745  * binder_alloc_mmap_handler() - map virtual address space for proc
746  * @alloc:      alloc structure for this proc
747  * @vma:        vma passed to mmap()
748  *
749  * Called by binder_mmap() to initialize the space specified in
750  * vma for allocating binder buffers
751  *
752  * Return:
753  *      0 = success
754  *      -EBUSY = address space already mapped
755  *      -ENOMEM = failed to map memory to given address space
756  */
757 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
758                               struct vm_area_struct *vma)
759 {
760         int ret;
761         const char *failure_string;
762         struct binder_buffer *buffer;
763
764         mutex_lock(&binder_alloc_mmap_lock);
765         if (alloc->buffer_size) {
766                 ret = -EBUSY;
767                 failure_string = "already mapped";
768                 goto err_already_mapped;
769         }
770         alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
771                                    SZ_4M);
772         mutex_unlock(&binder_alloc_mmap_lock);
773
774         alloc->buffer = (void __user *)vma->vm_start;
775
776         alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
777                                sizeof(alloc->pages[0]),
778                                GFP_KERNEL);
779         if (alloc->pages == NULL) {
780                 ret = -ENOMEM;
781                 failure_string = "alloc page array";
782                 goto err_alloc_pages_failed;
783         }
784
785         buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
786         if (!buffer) {
787                 ret = -ENOMEM;
788                 failure_string = "alloc buffer struct";
789                 goto err_alloc_buf_struct_failed;
790         }
791
792         buffer->user_data = alloc->buffer;
793         list_add(&buffer->entry, &alloc->buffers);
794         buffer->free = 1;
795         binder_insert_free_buffer(alloc, buffer);
796         alloc->free_async_space = alloc->buffer_size / 2;
797         binder_alloc_set_vma(alloc, vma);
798         mmgrab(alloc->vma_vm_mm);
799
800         return 0;
801
802 err_alloc_buf_struct_failed:
803         kfree(alloc->pages);
804         alloc->pages = NULL;
805 err_alloc_pages_failed:
806         alloc->buffer = NULL;
807         mutex_lock(&binder_alloc_mmap_lock);
808         alloc->buffer_size = 0;
809 err_already_mapped:
810         mutex_unlock(&binder_alloc_mmap_lock);
811         binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
812                            "%s: %d %lx-%lx %s failed %d\n", __func__,
813                            alloc->pid, vma->vm_start, vma->vm_end,
814                            failure_string, ret);
815         return ret;
816 }
817
818
819 void binder_alloc_deferred_release(struct binder_alloc *alloc)
820 {
821         struct rb_node *n;
822         int buffers, page_count;
823         struct binder_buffer *buffer;
824
825         buffers = 0;
826         mutex_lock(&alloc->mutex);
827         BUG_ON(alloc->vma_addr &&
828                vma_lookup(alloc->vma_vm_mm, alloc->vma_addr));
829
830         while ((n = rb_first(&alloc->allocated_buffers))) {
831                 buffer = rb_entry(n, struct binder_buffer, rb_node);
832
833                 /* Transaction should already have been freed */
834                 BUG_ON(buffer->transaction);
835
836                 if (buffer->clear_on_free) {
837                         binder_alloc_clear_buf(alloc, buffer);
838                         buffer->clear_on_free = false;
839                 }
840                 binder_free_buf_locked(alloc, buffer);
841                 buffers++;
842         }
843
844         while (!list_empty(&alloc->buffers)) {
845                 buffer = list_first_entry(&alloc->buffers,
846                                           struct binder_buffer, entry);
847                 WARN_ON(!buffer->free);
848
849                 list_del(&buffer->entry);
850                 WARN_ON_ONCE(!list_empty(&alloc->buffers));
851                 kfree(buffer);
852         }
853
854         page_count = 0;
855         if (alloc->pages) {
856                 int i;
857
858                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
859                         void __user *page_addr;
860                         bool on_lru;
861
862                         if (!alloc->pages[i].page_ptr)
863                                 continue;
864
865                         on_lru = list_lru_del(&binder_alloc_lru,
866                                               &alloc->pages[i].lru);
867                         page_addr = alloc->buffer + i * PAGE_SIZE;
868                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
869                                      "%s: %d: page %d at %pK %s\n",
870                                      __func__, alloc->pid, i, page_addr,
871                                      on_lru ? "on lru" : "active");
872                         __free_page(alloc->pages[i].page_ptr);
873                         page_count++;
874                 }
875                 kfree(alloc->pages);
876         }
877         mutex_unlock(&alloc->mutex);
878         if (alloc->vma_vm_mm)
879                 mmdrop(alloc->vma_vm_mm);
880
881         binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
882                      "%s: %d buffers %d, pages %d\n",
883                      __func__, alloc->pid, buffers, page_count);
884 }
885
886 static void print_binder_buffer(struct seq_file *m, const char *prefix,
887                                 struct binder_buffer *buffer)
888 {
889         seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
890                    prefix, buffer->debug_id, buffer->user_data,
891                    buffer->data_size, buffer->offsets_size,
892                    buffer->extra_buffers_size,
893                    buffer->transaction ? "active" : "delivered");
894 }
895
896 /**
897  * binder_alloc_print_allocated() - print buffer info
898  * @m:     seq_file for output via seq_printf()
899  * @alloc: binder_alloc for this proc
900  *
901  * Prints information about every buffer associated with
902  * the binder_alloc state to the given seq_file
903  */
904 void binder_alloc_print_allocated(struct seq_file *m,
905                                   struct binder_alloc *alloc)
906 {
907         struct rb_node *n;
908
909         mutex_lock(&alloc->mutex);
910         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
911                 print_binder_buffer(m, "  buffer",
912                                     rb_entry(n, struct binder_buffer, rb_node));
913         mutex_unlock(&alloc->mutex);
914 }
915
916 /**
917  * binder_alloc_print_pages() - print page usage
918  * @m:     seq_file for output via seq_printf()
919  * @alloc: binder_alloc for this proc
920  */
921 void binder_alloc_print_pages(struct seq_file *m,
922                               struct binder_alloc *alloc)
923 {
924         struct binder_lru_page *page;
925         int i;
926         int active = 0;
927         int lru = 0;
928         int free = 0;
929
930         mutex_lock(&alloc->mutex);
931         /*
932          * Make sure the binder_alloc is fully initialized, otherwise we might
933          * read inconsistent state.
934          */
935
936         mmap_read_lock(alloc->vma_vm_mm);
937         if (binder_alloc_get_vma(alloc) == NULL) {
938                 mmap_read_unlock(alloc->vma_vm_mm);
939                 goto uninitialized;
940         }
941
942         mmap_read_unlock(alloc->vma_vm_mm);
943         for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
944                 page = &alloc->pages[i];
945                 if (!page->page_ptr)
946                         free++;
947                 else if (list_empty(&page->lru))
948                         active++;
949                 else
950                         lru++;
951         }
952
953 uninitialized:
954         mutex_unlock(&alloc->mutex);
955         seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
956         seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
957 }
958
959 /**
960  * binder_alloc_get_allocated_count() - return count of buffers
961  * @alloc: binder_alloc for this proc
962  *
963  * Return: count of allocated buffers
964  */
965 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
966 {
967         struct rb_node *n;
968         int count = 0;
969
970         mutex_lock(&alloc->mutex);
971         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
972                 count++;
973         mutex_unlock(&alloc->mutex);
974         return count;
975 }
976
977
978 /**
979  * binder_alloc_vma_close() - invalidate address space
980  * @alloc: binder_alloc for this proc
981  *
982  * Called from binder_vma_close() when releasing address space.
983  * Clears alloc->vma to prevent new incoming transactions from
984  * allocating more buffers.
985  */
986 void binder_alloc_vma_close(struct binder_alloc *alloc)
987 {
988         binder_alloc_set_vma(alloc, NULL);
989 }
990
991 /**
992  * binder_alloc_free_page() - shrinker callback to free pages
993  * @item:   item to free
994  * @lock:   lock protecting the item
995  * @cb_arg: callback argument
996  *
997  * Called from list_lru_walk() in binder_shrink_scan() to free
998  * up pages when the system is under memory pressure.
999  */
1000 enum lru_status binder_alloc_free_page(struct list_head *item,
1001                                        struct list_lru_one *lru,
1002                                        spinlock_t *lock,
1003                                        void *cb_arg)
1004         __must_hold(lock)
1005 {
1006         struct mm_struct *mm = NULL;
1007         struct binder_lru_page *page = container_of(item,
1008                                                     struct binder_lru_page,
1009                                                     lru);
1010         struct binder_alloc *alloc;
1011         uintptr_t page_addr;
1012         size_t index;
1013         struct vm_area_struct *vma;
1014
1015         alloc = page->alloc;
1016         if (!mutex_trylock(&alloc->mutex))
1017                 goto err_get_alloc_mutex_failed;
1018
1019         if (!page->page_ptr)
1020                 goto err_page_already_freed;
1021
1022         index = page - alloc->pages;
1023         page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1024
1025         mm = alloc->vma_vm_mm;
1026         if (!mmget_not_zero(mm))
1027                 goto err_mmget;
1028         if (!mmap_read_trylock(mm))
1029                 goto err_mmap_read_lock_failed;
1030         vma = binder_alloc_get_vma(alloc);
1031
1032         list_lru_isolate(lru, item);
1033         spin_unlock(lock);
1034
1035         if (vma) {
1036                 trace_binder_unmap_user_start(alloc, index);
1037
1038                 zap_page_range(vma, page_addr, PAGE_SIZE);
1039
1040                 trace_binder_unmap_user_end(alloc, index);
1041         }
1042         mmap_read_unlock(mm);
1043         mmput_async(mm);
1044
1045         trace_binder_unmap_kernel_start(alloc, index);
1046
1047         __free_page(page->page_ptr);
1048         page->page_ptr = NULL;
1049
1050         trace_binder_unmap_kernel_end(alloc, index);
1051
1052         spin_lock(lock);
1053         mutex_unlock(&alloc->mutex);
1054         return LRU_REMOVED_RETRY;
1055
1056 err_mmap_read_lock_failed:
1057         mmput_async(mm);
1058 err_mmget:
1059 err_page_already_freed:
1060         mutex_unlock(&alloc->mutex);
1061 err_get_alloc_mutex_failed:
1062         return LRU_SKIP;
1063 }
1064
1065 static unsigned long
1066 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1067 {
1068         return list_lru_count(&binder_alloc_lru);
1069 }
1070
1071 static unsigned long
1072 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1073 {
1074         return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1075                             NULL, sc->nr_to_scan);
1076 }
1077
1078 static struct shrinker binder_shrinker = {
1079         .count_objects = binder_shrink_count,
1080         .scan_objects = binder_shrink_scan,
1081         .seeks = DEFAULT_SEEKS,
1082 };
1083
1084 /**
1085  * binder_alloc_init() - called by binder_open() for per-proc initialization
1086  * @alloc: binder_alloc for this proc
1087  *
1088  * Called from binder_open() to initialize binder_alloc fields for
1089  * new binder proc
1090  */
1091 void binder_alloc_init(struct binder_alloc *alloc)
1092 {
1093         alloc->pid = current->group_leader->pid;
1094         mutex_init(&alloc->mutex);
1095         INIT_LIST_HEAD(&alloc->buffers);
1096 }
1097
1098 int binder_alloc_shrinker_init(void)
1099 {
1100         int ret = list_lru_init(&binder_alloc_lru);
1101
1102         if (ret == 0) {
1103                 ret = register_shrinker(&binder_shrinker, "android-binder");
1104                 if (ret)
1105                         list_lru_destroy(&binder_alloc_lru);
1106         }
1107         return ret;
1108 }
1109
1110 /**
1111  * check_buffer() - verify that buffer/offset is safe to access
1112  * @alloc: binder_alloc for this proc
1113  * @buffer: binder buffer to be accessed
1114  * @offset: offset into @buffer data
1115  * @bytes: bytes to access from offset
1116  *
1117  * Check that the @offset/@bytes are within the size of the given
1118  * @buffer and that the buffer is currently active and not freeable.
1119  * Offsets must also be multiples of sizeof(u32). The kernel is
1120  * allowed to touch the buffer in two cases:
1121  *
1122  * 1) when the buffer is being created:
1123  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1124  * 2) when the buffer is being torn down:
1125  *     (buffer->free == 0 && buffer->transaction == NULL).
1126  *
1127  * Return: true if the buffer is safe to access
1128  */
1129 static inline bool check_buffer(struct binder_alloc *alloc,
1130                                 struct binder_buffer *buffer,
1131                                 binder_size_t offset, size_t bytes)
1132 {
1133         size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1134
1135         return buffer_size >= bytes &&
1136                 offset <= buffer_size - bytes &&
1137                 IS_ALIGNED(offset, sizeof(u32)) &&
1138                 !buffer->free &&
1139                 (!buffer->allow_user_free || !buffer->transaction);
1140 }
1141
1142 /**
1143  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1144  * @alloc: binder_alloc for this proc
1145  * @buffer: binder buffer to be accessed
1146  * @buffer_offset: offset into @buffer data
1147  * @pgoffp: address to copy final page offset to
1148  *
1149  * Lookup the struct page corresponding to the address
1150  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1151  * NULL, the byte-offset into the page is written there.
1152  *
1153  * The caller is responsible to ensure that the offset points
1154  * to a valid address within the @buffer and that @buffer is
1155  * not freeable by the user. Since it can't be freed, we are
1156  * guaranteed that the corresponding elements of @alloc->pages[]
1157  * cannot change.
1158  *
1159  * Return: struct page
1160  */
1161 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1162                                           struct binder_buffer *buffer,
1163                                           binder_size_t buffer_offset,
1164                                           pgoff_t *pgoffp)
1165 {
1166         binder_size_t buffer_space_offset = buffer_offset +
1167                 (buffer->user_data - alloc->buffer);
1168         pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1169         size_t index = buffer_space_offset >> PAGE_SHIFT;
1170         struct binder_lru_page *lru_page;
1171
1172         lru_page = &alloc->pages[index];
1173         *pgoffp = pgoff;
1174         return lru_page->page_ptr;
1175 }
1176
1177 /**
1178  * binder_alloc_clear_buf() - zero out buffer
1179  * @alloc: binder_alloc for this proc
1180  * @buffer: binder buffer to be cleared
1181  *
1182  * memset the given buffer to 0
1183  */
1184 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1185                                    struct binder_buffer *buffer)
1186 {
1187         size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1188         binder_size_t buffer_offset = 0;
1189
1190         while (bytes) {
1191                 unsigned long size;
1192                 struct page *page;
1193                 pgoff_t pgoff;
1194
1195                 page = binder_alloc_get_page(alloc, buffer,
1196                                              buffer_offset, &pgoff);
1197                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1198                 memset_page(page, pgoff, 0, size);
1199                 bytes -= size;
1200                 buffer_offset += size;
1201         }
1202 }
1203
1204 /**
1205  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1206  * @alloc: binder_alloc for this proc
1207  * @buffer: binder buffer to be accessed
1208  * @buffer_offset: offset into @buffer data
1209  * @from: userspace pointer to source buffer
1210  * @bytes: bytes to copy
1211  *
1212  * Copy bytes from source userspace to target buffer.
1213  *
1214  * Return: bytes remaining to be copied
1215  */
1216 unsigned long
1217 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1218                                  struct binder_buffer *buffer,
1219                                  binder_size_t buffer_offset,
1220                                  const void __user *from,
1221                                  size_t bytes)
1222 {
1223         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1224                 return bytes;
1225
1226         while (bytes) {
1227                 unsigned long size;
1228                 unsigned long ret;
1229                 struct page *page;
1230                 pgoff_t pgoff;
1231                 void *kptr;
1232
1233                 page = binder_alloc_get_page(alloc, buffer,
1234                                              buffer_offset, &pgoff);
1235                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1236                 kptr = kmap_local_page(page) + pgoff;
1237                 ret = copy_from_user(kptr, from, size);
1238                 kunmap_local(kptr);
1239                 if (ret)
1240                         return bytes - size + ret;
1241                 bytes -= size;
1242                 from += size;
1243                 buffer_offset += size;
1244         }
1245         return 0;
1246 }
1247
1248 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1249                                        bool to_buffer,
1250                                        struct binder_buffer *buffer,
1251                                        binder_size_t buffer_offset,
1252                                        void *ptr,
1253                                        size_t bytes)
1254 {
1255         /* All copies must be 32-bit aligned and 32-bit size */
1256         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1257                 return -EINVAL;
1258
1259         while (bytes) {
1260                 unsigned long size;
1261                 struct page *page;
1262                 pgoff_t pgoff;
1263
1264                 page = binder_alloc_get_page(alloc, buffer,
1265                                              buffer_offset, &pgoff);
1266                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1267                 if (to_buffer)
1268                         memcpy_to_page(page, pgoff, ptr, size);
1269                 else
1270                         memcpy_from_page(ptr, page, pgoff, size);
1271                 bytes -= size;
1272                 pgoff = 0;
1273                 ptr = ptr + size;
1274                 buffer_offset += size;
1275         }
1276         return 0;
1277 }
1278
1279 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1280                                 struct binder_buffer *buffer,
1281                                 binder_size_t buffer_offset,
1282                                 void *src,
1283                                 size_t bytes)
1284 {
1285         return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1286                                            src, bytes);
1287 }
1288
1289 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1290                                   void *dest,
1291                                   struct binder_buffer *buffer,
1292                                   binder_size_t buffer_offset,
1293                                   size_t bytes)
1294 {
1295         return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1296                                            dest, bytes);
1297 }
1298