ACPI: DPTF: Add battery participant for Intel SoCs
[platform/kernel/linux-starfive.git] / drivers / acpi / scan.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/kernel.h>
10 #include <linux/acpi.h>
11 #include <linux/acpi_iort.h>
12 #include <linux/signal.h>
13 #include <linux/kthread.h>
14 #include <linux/dmi.h>
15 #include <linux/nls.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/platform_data/x86/apple.h>
18 #include <linux/pgtable.h>
19
20 #include "internal.h"
21
22 extern struct acpi_device *acpi_root;
23
24 #define ACPI_BUS_CLASS                  "system_bus"
25 #define ACPI_BUS_HID                    "LNXSYBUS"
26 #define ACPI_BUS_DEVICE_NAME            "System Bus"
27
28 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
29
30 #define INVALID_ACPI_HANDLE     ((acpi_handle)empty_zero_page)
31
32 static const char *dummy_hid = "device";
33
34 static LIST_HEAD(acpi_dep_list);
35 static DEFINE_MUTEX(acpi_dep_list_lock);
36 LIST_HEAD(acpi_bus_id_list);
37 static DEFINE_MUTEX(acpi_scan_lock);
38 static LIST_HEAD(acpi_scan_handlers_list);
39 DEFINE_MUTEX(acpi_device_lock);
40 LIST_HEAD(acpi_wakeup_device_list);
41 static DEFINE_MUTEX(acpi_hp_context_lock);
42
43 /*
44  * The UART device described by the SPCR table is the only object which needs
45  * special-casing. Everything else is covered by ACPI namespace paths in STAO
46  * table.
47  */
48 static u64 spcr_uart_addr;
49
50 struct acpi_dep_data {
51         struct list_head node;
52         acpi_handle supplier;
53         acpi_handle consumer;
54 };
55
56 void acpi_scan_lock_acquire(void)
57 {
58         mutex_lock(&acpi_scan_lock);
59 }
60 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
61
62 void acpi_scan_lock_release(void)
63 {
64         mutex_unlock(&acpi_scan_lock);
65 }
66 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
67
68 void acpi_lock_hp_context(void)
69 {
70         mutex_lock(&acpi_hp_context_lock);
71 }
72
73 void acpi_unlock_hp_context(void)
74 {
75         mutex_unlock(&acpi_hp_context_lock);
76 }
77
78 void acpi_initialize_hp_context(struct acpi_device *adev,
79                                 struct acpi_hotplug_context *hp,
80                                 int (*notify)(struct acpi_device *, u32),
81                                 void (*uevent)(struct acpi_device *, u32))
82 {
83         acpi_lock_hp_context();
84         hp->notify = notify;
85         hp->uevent = uevent;
86         acpi_set_hp_context(adev, hp);
87         acpi_unlock_hp_context();
88 }
89 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
90
91 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
92 {
93         if (!handler)
94                 return -EINVAL;
95
96         list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
97         return 0;
98 }
99
100 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
101                                        const char *hotplug_profile_name)
102 {
103         int error;
104
105         error = acpi_scan_add_handler(handler);
106         if (error)
107                 return error;
108
109         acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
110         return 0;
111 }
112
113 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
114 {
115         struct acpi_device_physical_node *pn;
116         bool offline = true;
117         char *envp[] = { "EVENT=offline", NULL };
118
119         /*
120          * acpi_container_offline() calls this for all of the container's
121          * children under the container's physical_node_lock lock.
122          */
123         mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
124
125         list_for_each_entry(pn, &adev->physical_node_list, node)
126                 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
127                         if (uevent)
128                                 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
129
130                         offline = false;
131                         break;
132                 }
133
134         mutex_unlock(&adev->physical_node_lock);
135         return offline;
136 }
137
138 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
139                                     void **ret_p)
140 {
141         struct acpi_device *device = NULL;
142         struct acpi_device_physical_node *pn;
143         bool second_pass = (bool)data;
144         acpi_status status = AE_OK;
145
146         if (acpi_bus_get_device(handle, &device))
147                 return AE_OK;
148
149         if (device->handler && !device->handler->hotplug.enabled) {
150                 *ret_p = &device->dev;
151                 return AE_SUPPORT;
152         }
153
154         mutex_lock(&device->physical_node_lock);
155
156         list_for_each_entry(pn, &device->physical_node_list, node) {
157                 int ret;
158
159                 if (second_pass) {
160                         /* Skip devices offlined by the first pass. */
161                         if (pn->put_online)
162                                 continue;
163                 } else {
164                         pn->put_online = false;
165                 }
166                 ret = device_offline(pn->dev);
167                 if (ret >= 0) {
168                         pn->put_online = !ret;
169                 } else {
170                         *ret_p = pn->dev;
171                         if (second_pass) {
172                                 status = AE_ERROR;
173                                 break;
174                         }
175                 }
176         }
177
178         mutex_unlock(&device->physical_node_lock);
179
180         return status;
181 }
182
183 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
184                                    void **ret_p)
185 {
186         struct acpi_device *device = NULL;
187         struct acpi_device_physical_node *pn;
188
189         if (acpi_bus_get_device(handle, &device))
190                 return AE_OK;
191
192         mutex_lock(&device->physical_node_lock);
193
194         list_for_each_entry(pn, &device->physical_node_list, node)
195                 if (pn->put_online) {
196                         device_online(pn->dev);
197                         pn->put_online = false;
198                 }
199
200         mutex_unlock(&device->physical_node_lock);
201
202         return AE_OK;
203 }
204
205 static int acpi_scan_try_to_offline(struct acpi_device *device)
206 {
207         acpi_handle handle = device->handle;
208         struct device *errdev = NULL;
209         acpi_status status;
210
211         /*
212          * Carry out two passes here and ignore errors in the first pass,
213          * because if the devices in question are memory blocks and
214          * CONFIG_MEMCG is set, one of the blocks may hold data structures
215          * that the other blocks depend on, but it is not known in advance which
216          * block holds them.
217          *
218          * If the first pass is successful, the second one isn't needed, though.
219          */
220         status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
221                                      NULL, acpi_bus_offline, (void *)false,
222                                      (void **)&errdev);
223         if (status == AE_SUPPORT) {
224                 dev_warn(errdev, "Offline disabled.\n");
225                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
226                                     acpi_bus_online, NULL, NULL, NULL);
227                 return -EPERM;
228         }
229         acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
230         if (errdev) {
231                 errdev = NULL;
232                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
233                                     NULL, acpi_bus_offline, (void *)true,
234                                     (void **)&errdev);
235                 if (!errdev)
236                         acpi_bus_offline(handle, 0, (void *)true,
237                                          (void **)&errdev);
238
239                 if (errdev) {
240                         dev_warn(errdev, "Offline failed.\n");
241                         acpi_bus_online(handle, 0, NULL, NULL);
242                         acpi_walk_namespace(ACPI_TYPE_ANY, handle,
243                                             ACPI_UINT32_MAX, acpi_bus_online,
244                                             NULL, NULL, NULL);
245                         return -EBUSY;
246                 }
247         }
248         return 0;
249 }
250
251 static int acpi_scan_hot_remove(struct acpi_device *device)
252 {
253         acpi_handle handle = device->handle;
254         unsigned long long sta;
255         acpi_status status;
256
257         if (device->handler && device->handler->hotplug.demand_offline) {
258                 if (!acpi_scan_is_offline(device, true))
259                         return -EBUSY;
260         } else {
261                 int error = acpi_scan_try_to_offline(device);
262                 if (error)
263                         return error;
264         }
265
266         acpi_handle_debug(handle, "Ejecting\n");
267
268         acpi_bus_trim(device);
269
270         acpi_evaluate_lck(handle, 0);
271         /*
272          * TBD: _EJD support.
273          */
274         status = acpi_evaluate_ej0(handle);
275         if (status == AE_NOT_FOUND)
276                 return -ENODEV;
277         else if (ACPI_FAILURE(status))
278                 return -EIO;
279
280         /*
281          * Verify if eject was indeed successful.  If not, log an error
282          * message.  No need to call _OST since _EJ0 call was made OK.
283          */
284         status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
285         if (ACPI_FAILURE(status)) {
286                 acpi_handle_warn(handle,
287                         "Status check after eject failed (0x%x)\n", status);
288         } else if (sta & ACPI_STA_DEVICE_ENABLED) {
289                 acpi_handle_warn(handle,
290                         "Eject incomplete - status 0x%llx\n", sta);
291         }
292
293         return 0;
294 }
295
296 static int acpi_scan_device_not_present(struct acpi_device *adev)
297 {
298         if (!acpi_device_enumerated(adev)) {
299                 dev_warn(&adev->dev, "Still not present\n");
300                 return -EALREADY;
301         }
302         acpi_bus_trim(adev);
303         return 0;
304 }
305
306 static int acpi_scan_device_check(struct acpi_device *adev)
307 {
308         int error;
309
310         acpi_bus_get_status(adev);
311         if (adev->status.present || adev->status.functional) {
312                 /*
313                  * This function is only called for device objects for which
314                  * matching scan handlers exist.  The only situation in which
315                  * the scan handler is not attached to this device object yet
316                  * is when the device has just appeared (either it wasn't
317                  * present at all before or it was removed and then added
318                  * again).
319                  */
320                 if (adev->handler) {
321                         dev_warn(&adev->dev, "Already enumerated\n");
322                         return -EALREADY;
323                 }
324                 error = acpi_bus_scan(adev->handle);
325                 if (error) {
326                         dev_warn(&adev->dev, "Namespace scan failure\n");
327                         return error;
328                 }
329                 if (!adev->handler) {
330                         dev_warn(&adev->dev, "Enumeration failure\n");
331                         error = -ENODEV;
332                 }
333         } else {
334                 error = acpi_scan_device_not_present(adev);
335         }
336         return error;
337 }
338
339 static int acpi_scan_bus_check(struct acpi_device *adev)
340 {
341         struct acpi_scan_handler *handler = adev->handler;
342         struct acpi_device *child;
343         int error;
344
345         acpi_bus_get_status(adev);
346         if (!(adev->status.present || adev->status.functional)) {
347                 acpi_scan_device_not_present(adev);
348                 return 0;
349         }
350         if (handler && handler->hotplug.scan_dependent)
351                 return handler->hotplug.scan_dependent(adev);
352
353         error = acpi_bus_scan(adev->handle);
354         if (error) {
355                 dev_warn(&adev->dev, "Namespace scan failure\n");
356                 return error;
357         }
358         list_for_each_entry(child, &adev->children, node) {
359                 error = acpi_scan_bus_check(child);
360                 if (error)
361                         return error;
362         }
363         return 0;
364 }
365
366 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
367 {
368         switch (type) {
369         case ACPI_NOTIFY_BUS_CHECK:
370                 return acpi_scan_bus_check(adev);
371         case ACPI_NOTIFY_DEVICE_CHECK:
372                 return acpi_scan_device_check(adev);
373         case ACPI_NOTIFY_EJECT_REQUEST:
374         case ACPI_OST_EC_OSPM_EJECT:
375                 if (adev->handler && !adev->handler->hotplug.enabled) {
376                         dev_info(&adev->dev, "Eject disabled\n");
377                         return -EPERM;
378                 }
379                 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
380                                   ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
381                 return acpi_scan_hot_remove(adev);
382         }
383         return -EINVAL;
384 }
385
386 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
387 {
388         u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
389         int error = -ENODEV;
390
391         lock_device_hotplug();
392         mutex_lock(&acpi_scan_lock);
393
394         /*
395          * The device object's ACPI handle cannot become invalid as long as we
396          * are holding acpi_scan_lock, but it might have become invalid before
397          * that lock was acquired.
398          */
399         if (adev->handle == INVALID_ACPI_HANDLE)
400                 goto err_out;
401
402         if (adev->flags.is_dock_station) {
403                 error = dock_notify(adev, src);
404         } else if (adev->flags.hotplug_notify) {
405                 error = acpi_generic_hotplug_event(adev, src);
406         } else {
407                 int (*notify)(struct acpi_device *, u32);
408
409                 acpi_lock_hp_context();
410                 notify = adev->hp ? adev->hp->notify : NULL;
411                 acpi_unlock_hp_context();
412                 /*
413                  * There may be additional notify handlers for device objects
414                  * without the .event() callback, so ignore them here.
415                  */
416                 if (notify)
417                         error = notify(adev, src);
418                 else
419                         goto out;
420         }
421         switch (error) {
422         case 0:
423                 ost_code = ACPI_OST_SC_SUCCESS;
424                 break;
425         case -EPERM:
426                 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
427                 break;
428         case -EBUSY:
429                 ost_code = ACPI_OST_SC_DEVICE_BUSY;
430                 break;
431         default:
432                 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
433                 break;
434         }
435
436  err_out:
437         acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
438
439  out:
440         acpi_bus_put_acpi_device(adev);
441         mutex_unlock(&acpi_scan_lock);
442         unlock_device_hotplug();
443 }
444
445 static void acpi_free_power_resources_lists(struct acpi_device *device)
446 {
447         int i;
448
449         if (device->wakeup.flags.valid)
450                 acpi_power_resources_list_free(&device->wakeup.resources);
451
452         if (!device->power.flags.power_resources)
453                 return;
454
455         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
456                 struct acpi_device_power_state *ps = &device->power.states[i];
457                 acpi_power_resources_list_free(&ps->resources);
458         }
459 }
460
461 static void acpi_device_release(struct device *dev)
462 {
463         struct acpi_device *acpi_dev = to_acpi_device(dev);
464
465         acpi_free_properties(acpi_dev);
466         acpi_free_pnp_ids(&acpi_dev->pnp);
467         acpi_free_power_resources_lists(acpi_dev);
468         kfree(acpi_dev);
469 }
470
471 static void acpi_device_del(struct acpi_device *device)
472 {
473         struct acpi_device_bus_id *acpi_device_bus_id;
474
475         mutex_lock(&acpi_device_lock);
476         if (device->parent)
477                 list_del(&device->node);
478
479         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
480                 if (!strcmp(acpi_device_bus_id->bus_id,
481                             acpi_device_hid(device))) {
482                         ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
483                         if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
484                                 list_del(&acpi_device_bus_id->node);
485                                 kfree_const(acpi_device_bus_id->bus_id);
486                                 kfree(acpi_device_bus_id);
487                         }
488                         break;
489                 }
490
491         list_del(&device->wakeup_list);
492         mutex_unlock(&acpi_device_lock);
493
494         acpi_power_add_remove_device(device, false);
495         acpi_device_remove_files(device);
496         if (device->remove)
497                 device->remove(device);
498
499         device_del(&device->dev);
500 }
501
502 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
503
504 static LIST_HEAD(acpi_device_del_list);
505 static DEFINE_MUTEX(acpi_device_del_lock);
506
507 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
508 {
509         for (;;) {
510                 struct acpi_device *adev;
511
512                 mutex_lock(&acpi_device_del_lock);
513
514                 if (list_empty(&acpi_device_del_list)) {
515                         mutex_unlock(&acpi_device_del_lock);
516                         break;
517                 }
518                 adev = list_first_entry(&acpi_device_del_list,
519                                         struct acpi_device, del_list);
520                 list_del(&adev->del_list);
521
522                 mutex_unlock(&acpi_device_del_lock);
523
524                 blocking_notifier_call_chain(&acpi_reconfig_chain,
525                                              ACPI_RECONFIG_DEVICE_REMOVE, adev);
526
527                 acpi_device_del(adev);
528                 /*
529                  * Drop references to all power resources that might have been
530                  * used by the device.
531                  */
532                 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
533                 acpi_dev_put(adev);
534         }
535 }
536
537 /**
538  * acpi_scan_drop_device - Drop an ACPI device object.
539  * @handle: Handle of an ACPI namespace node, not used.
540  * @context: Address of the ACPI device object to drop.
541  *
542  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
543  * namespace node the device object pointed to by @context is attached to.
544  *
545  * The unregistration is carried out asynchronously to avoid running
546  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
547  * ensure the correct ordering (the device objects must be unregistered in the
548  * same order in which the corresponding namespace nodes are deleted).
549  */
550 static void acpi_scan_drop_device(acpi_handle handle, void *context)
551 {
552         static DECLARE_WORK(work, acpi_device_del_work_fn);
553         struct acpi_device *adev = context;
554
555         mutex_lock(&acpi_device_del_lock);
556
557         /*
558          * Use the ACPI hotplug workqueue which is ordered, so this work item
559          * won't run after any hotplug work items submitted subsequently.  That
560          * prevents attempts to register device objects identical to those being
561          * deleted from happening concurrently (such attempts result from
562          * hotplug events handled via the ACPI hotplug workqueue).  It also will
563          * run after all of the work items submitted previously, which helps
564          * those work items to ensure that they are not accessing stale device
565          * objects.
566          */
567         if (list_empty(&acpi_device_del_list))
568                 acpi_queue_hotplug_work(&work);
569
570         list_add_tail(&adev->del_list, &acpi_device_del_list);
571         /* Make acpi_ns_validate_handle() return NULL for this handle. */
572         adev->handle = INVALID_ACPI_HANDLE;
573
574         mutex_unlock(&acpi_device_del_lock);
575 }
576
577 static struct acpi_device *handle_to_device(acpi_handle handle,
578                                             void (*callback)(void *))
579 {
580         struct acpi_device *adev = NULL;
581         acpi_status status;
582
583         status = acpi_get_data_full(handle, acpi_scan_drop_device,
584                                     (void **)&adev, callback);
585         if (ACPI_FAILURE(status) || !adev) {
586                 acpi_handle_debug(handle, "No context!\n");
587                 return NULL;
588         }
589         return adev;
590 }
591
592 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
593 {
594         if (!device)
595                 return -EINVAL;
596
597         *device = handle_to_device(handle, NULL);
598         if (!*device)
599                 return -ENODEV;
600
601         return 0;
602 }
603 EXPORT_SYMBOL(acpi_bus_get_device);
604
605 static void get_acpi_device(void *dev)
606 {
607         acpi_dev_get(dev);
608 }
609
610 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
611 {
612         return handle_to_device(handle, get_acpi_device);
613 }
614
615 void acpi_bus_put_acpi_device(struct acpi_device *adev)
616 {
617         acpi_dev_put(adev);
618 }
619
620 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
621 {
622         struct acpi_device_bus_id *acpi_device_bus_id;
623
624         /* Find suitable bus_id and instance number in acpi_bus_id_list. */
625         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
626                 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
627                         return acpi_device_bus_id;
628         }
629         return NULL;
630 }
631
632 static int acpi_device_set_name(struct acpi_device *device,
633                                 struct acpi_device_bus_id *acpi_device_bus_id)
634 {
635         struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
636         int result;
637
638         result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
639         if (result < 0)
640                 return result;
641
642         device->pnp.instance_no = result;
643         dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
644         return 0;
645 }
646
647 int acpi_device_add(struct acpi_device *device,
648                     void (*release)(struct device *))
649 {
650         struct acpi_device_bus_id *acpi_device_bus_id;
651         int result;
652
653         if (device->handle) {
654                 acpi_status status;
655
656                 status = acpi_attach_data(device->handle, acpi_scan_drop_device,
657                                           device);
658                 if (ACPI_FAILURE(status)) {
659                         acpi_handle_err(device->handle,
660                                         "Unable to attach device data\n");
661                         return -ENODEV;
662                 }
663         }
664
665         /*
666          * Linkage
667          * -------
668          * Link this device to its parent and siblings.
669          */
670         INIT_LIST_HEAD(&device->children);
671         INIT_LIST_HEAD(&device->node);
672         INIT_LIST_HEAD(&device->wakeup_list);
673         INIT_LIST_HEAD(&device->physical_node_list);
674         INIT_LIST_HEAD(&device->del_list);
675         mutex_init(&device->physical_node_lock);
676
677         mutex_lock(&acpi_device_lock);
678
679         acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
680         if (acpi_device_bus_id) {
681                 result = acpi_device_set_name(device, acpi_device_bus_id);
682                 if (result)
683                         goto err_unlock;
684         } else {
685                 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
686                                              GFP_KERNEL);
687                 if (!acpi_device_bus_id) {
688                         result = -ENOMEM;
689                         goto err_unlock;
690                 }
691                 acpi_device_bus_id->bus_id =
692                         kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
693                 if (!acpi_device_bus_id->bus_id) {
694                         kfree(acpi_device_bus_id);
695                         result = -ENOMEM;
696                         goto err_unlock;
697                 }
698
699                 ida_init(&acpi_device_bus_id->instance_ida);
700
701                 result = acpi_device_set_name(device, acpi_device_bus_id);
702                 if (result) {
703                         kfree(acpi_device_bus_id);
704                         goto err_unlock;
705                 }
706
707                 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
708         }
709
710         if (device->parent)
711                 list_add_tail(&device->node, &device->parent->children);
712
713         if (device->wakeup.flags.valid)
714                 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
715
716         mutex_unlock(&acpi_device_lock);
717
718         if (device->parent)
719                 device->dev.parent = &device->parent->dev;
720
721         device->dev.bus = &acpi_bus_type;
722         device->dev.release = release;
723         result = device_add(&device->dev);
724         if (result) {
725                 dev_err(&device->dev, "Error registering device\n");
726                 goto err;
727         }
728
729         result = acpi_device_setup_files(device);
730         if (result)
731                 printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n",
732                        dev_name(&device->dev));
733
734         return 0;
735
736 err:
737         mutex_lock(&acpi_device_lock);
738
739         if (device->parent)
740                 list_del(&device->node);
741
742         list_del(&device->wakeup_list);
743
744 err_unlock:
745         mutex_unlock(&acpi_device_lock);
746
747         acpi_detach_data(device->handle, acpi_scan_drop_device);
748
749         return result;
750 }
751
752 /* --------------------------------------------------------------------------
753                                  Device Enumeration
754    -------------------------------------------------------------------------- */
755 static bool acpi_info_matches_ids(struct acpi_device_info *info,
756                                   const char * const ids[])
757 {
758         struct acpi_pnp_device_id_list *cid_list = NULL;
759         int i, index;
760
761         if (!(info->valid & ACPI_VALID_HID))
762                 return false;
763
764         index = match_string(ids, -1, info->hardware_id.string);
765         if (index >= 0)
766                 return true;
767
768         if (info->valid & ACPI_VALID_CID)
769                 cid_list = &info->compatible_id_list;
770
771         if (!cid_list)
772                 return false;
773
774         for (i = 0; i < cid_list->count; i++) {
775                 index = match_string(ids, -1, cid_list->ids[i].string);
776                 if (index >= 0)
777                         return true;
778         }
779
780         return false;
781 }
782
783 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
784 static const char * const acpi_ignore_dep_ids[] = {
785         "PNP0D80", /* Windows-compatible System Power Management Controller */
786         "INT33BD", /* Intel Baytrail Mailbox Device */
787         NULL
788 };
789
790 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
791 {
792         struct acpi_device *device = NULL;
793         acpi_status status;
794
795         /*
796          * Fixed hardware devices do not appear in the namespace and do not
797          * have handles, but we fabricate acpi_devices for them, so we have
798          * to deal with them specially.
799          */
800         if (!handle)
801                 return acpi_root;
802
803         do {
804                 status = acpi_get_parent(handle, &handle);
805                 if (ACPI_FAILURE(status))
806                         return status == AE_NULL_ENTRY ? NULL : acpi_root;
807         } while (acpi_bus_get_device(handle, &device));
808         return device;
809 }
810
811 acpi_status
812 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
813 {
814         acpi_status status;
815         acpi_handle tmp;
816         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
817         union acpi_object *obj;
818
819         status = acpi_get_handle(handle, "_EJD", &tmp);
820         if (ACPI_FAILURE(status))
821                 return status;
822
823         status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
824         if (ACPI_SUCCESS(status)) {
825                 obj = buffer.pointer;
826                 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
827                                          ejd);
828                 kfree(buffer.pointer);
829         }
830         return status;
831 }
832 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
833
834 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
835 {
836         acpi_handle handle = dev->handle;
837         struct acpi_device_wakeup *wakeup = &dev->wakeup;
838         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
839         union acpi_object *package = NULL;
840         union acpi_object *element = NULL;
841         acpi_status status;
842         int err = -ENODATA;
843
844         INIT_LIST_HEAD(&wakeup->resources);
845
846         /* _PRW */
847         status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
848         if (ACPI_FAILURE(status)) {
849                 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
850                                  acpi_format_exception(status));
851                 return err;
852         }
853
854         package = (union acpi_object *)buffer.pointer;
855
856         if (!package || package->package.count < 2)
857                 goto out;
858
859         element = &(package->package.elements[0]);
860         if (!element)
861                 goto out;
862
863         if (element->type == ACPI_TYPE_PACKAGE) {
864                 if ((element->package.count < 2) ||
865                     (element->package.elements[0].type !=
866                      ACPI_TYPE_LOCAL_REFERENCE)
867                     || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
868                         goto out;
869
870                 wakeup->gpe_device =
871                     element->package.elements[0].reference.handle;
872                 wakeup->gpe_number =
873                     (u32) element->package.elements[1].integer.value;
874         } else if (element->type == ACPI_TYPE_INTEGER) {
875                 wakeup->gpe_device = NULL;
876                 wakeup->gpe_number = element->integer.value;
877         } else {
878                 goto out;
879         }
880
881         element = &(package->package.elements[1]);
882         if (element->type != ACPI_TYPE_INTEGER)
883                 goto out;
884
885         wakeup->sleep_state = element->integer.value;
886
887         err = acpi_extract_power_resources(package, 2, &wakeup->resources);
888         if (err)
889                 goto out;
890
891         if (!list_empty(&wakeup->resources)) {
892                 int sleep_state;
893
894                 err = acpi_power_wakeup_list_init(&wakeup->resources,
895                                                   &sleep_state);
896                 if (err) {
897                         acpi_handle_warn(handle, "Retrieving current states "
898                                          "of wakeup power resources failed\n");
899                         acpi_power_resources_list_free(&wakeup->resources);
900                         goto out;
901                 }
902                 if (sleep_state < wakeup->sleep_state) {
903                         acpi_handle_warn(handle, "Overriding _PRW sleep state "
904                                          "(S%d) by S%d from power resources\n",
905                                          (int)wakeup->sleep_state, sleep_state);
906                         wakeup->sleep_state = sleep_state;
907                 }
908         }
909
910  out:
911         kfree(buffer.pointer);
912         return err;
913 }
914
915 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
916 {
917         static const struct acpi_device_id button_device_ids[] = {
918                 {"PNP0C0C", 0},         /* Power button */
919                 {"PNP0C0D", 0},         /* Lid */
920                 {"PNP0C0E", 0},         /* Sleep button */
921                 {"", 0},
922         };
923         struct acpi_device_wakeup *wakeup = &device->wakeup;
924         acpi_status status;
925
926         wakeup->flags.notifier_present = 0;
927
928         /* Power button, Lid switch always enable wakeup */
929         if (!acpi_match_device_ids(device, button_device_ids)) {
930                 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
931                         /* Do not use Lid/sleep button for S5 wakeup */
932                         if (wakeup->sleep_state == ACPI_STATE_S5)
933                                 wakeup->sleep_state = ACPI_STATE_S4;
934                 }
935                 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
936                 device_set_wakeup_capable(&device->dev, true);
937                 return true;
938         }
939
940         status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
941                                          wakeup->gpe_number);
942         return ACPI_SUCCESS(status);
943 }
944
945 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
946 {
947         int err;
948
949         /* Presence of _PRW indicates wake capable */
950         if (!acpi_has_method(device->handle, "_PRW"))
951                 return;
952
953         err = acpi_bus_extract_wakeup_device_power_package(device);
954         if (err) {
955                 dev_err(&device->dev, "Unable to extract wakeup power resources");
956                 return;
957         }
958
959         device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
960         device->wakeup.prepare_count = 0;
961         /*
962          * Call _PSW/_DSW object to disable its ability to wake the sleeping
963          * system for the ACPI device with the _PRW object.
964          * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
965          * So it is necessary to call _DSW object first. Only when it is not
966          * present will the _PSW object used.
967          */
968         err = acpi_device_sleep_wake(device, 0, 0, 0);
969         if (err)
970                 pr_debug("error in _DSW or _PSW evaluation\n");
971 }
972
973 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
974 {
975         struct acpi_device_power_state *ps = &device->power.states[state];
976         char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
977         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
978         acpi_status status;
979
980         INIT_LIST_HEAD(&ps->resources);
981
982         /* Evaluate "_PRx" to get referenced power resources */
983         status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
984         if (ACPI_SUCCESS(status)) {
985                 union acpi_object *package = buffer.pointer;
986
987                 if (buffer.length && package
988                     && package->type == ACPI_TYPE_PACKAGE
989                     && package->package.count)
990                         acpi_extract_power_resources(package, 0, &ps->resources);
991
992                 ACPI_FREE(buffer.pointer);
993         }
994
995         /* Evaluate "_PSx" to see if we can do explicit sets */
996         pathname[2] = 'S';
997         if (acpi_has_method(device->handle, pathname))
998                 ps->flags.explicit_set = 1;
999
1000         /* State is valid if there are means to put the device into it. */
1001         if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1002                 ps->flags.valid = 1;
1003
1004         ps->power = -1;         /* Unknown - driver assigned */
1005         ps->latency = -1;       /* Unknown - driver assigned */
1006 }
1007
1008 static void acpi_bus_get_power_flags(struct acpi_device *device)
1009 {
1010         u32 i;
1011
1012         /* Presence of _PS0|_PR0 indicates 'power manageable' */
1013         if (!acpi_has_method(device->handle, "_PS0") &&
1014             !acpi_has_method(device->handle, "_PR0"))
1015                 return;
1016
1017         device->flags.power_manageable = 1;
1018
1019         /*
1020          * Power Management Flags
1021          */
1022         if (acpi_has_method(device->handle, "_PSC"))
1023                 device->power.flags.explicit_get = 1;
1024
1025         if (acpi_has_method(device->handle, "_IRC"))
1026                 device->power.flags.inrush_current = 1;
1027
1028         if (acpi_has_method(device->handle, "_DSW"))
1029                 device->power.flags.dsw_present = 1;
1030
1031         /*
1032          * Enumerate supported power management states
1033          */
1034         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1035                 acpi_bus_init_power_state(device, i);
1036
1037         INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1038
1039         /* Set the defaults for D0 and D3hot (always supported). */
1040         device->power.states[ACPI_STATE_D0].flags.valid = 1;
1041         device->power.states[ACPI_STATE_D0].power = 100;
1042         device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1043
1044         /*
1045          * Use power resources only if the D0 list of them is populated, because
1046          * some platforms may provide _PR3 only to indicate D3cold support and
1047          * in those cases the power resources list returned by it may be bogus.
1048          */
1049         if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1050                 device->power.flags.power_resources = 1;
1051                 /*
1052                  * D3cold is supported if the D3hot list of power resources is
1053                  * not empty.
1054                  */
1055                 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1056                         device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1057         }
1058
1059         if (acpi_bus_init_power(device))
1060                 device->flags.power_manageable = 0;
1061 }
1062
1063 static void acpi_bus_get_flags(struct acpi_device *device)
1064 {
1065         /* Presence of _STA indicates 'dynamic_status' */
1066         if (acpi_has_method(device->handle, "_STA"))
1067                 device->flags.dynamic_status = 1;
1068
1069         /* Presence of _RMV indicates 'removable' */
1070         if (acpi_has_method(device->handle, "_RMV"))
1071                 device->flags.removable = 1;
1072
1073         /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1074         if (acpi_has_method(device->handle, "_EJD") ||
1075             acpi_has_method(device->handle, "_EJ0"))
1076                 device->flags.ejectable = 1;
1077 }
1078
1079 static void acpi_device_get_busid(struct acpi_device *device)
1080 {
1081         char bus_id[5] = { '?', 0 };
1082         struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1083         int i = 0;
1084
1085         /*
1086          * Bus ID
1087          * ------
1088          * The device's Bus ID is simply the object name.
1089          * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1090          */
1091         if (ACPI_IS_ROOT_DEVICE(device)) {
1092                 strcpy(device->pnp.bus_id, "ACPI");
1093                 return;
1094         }
1095
1096         switch (device->device_type) {
1097         case ACPI_BUS_TYPE_POWER_BUTTON:
1098                 strcpy(device->pnp.bus_id, "PWRF");
1099                 break;
1100         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1101                 strcpy(device->pnp.bus_id, "SLPF");
1102                 break;
1103         case ACPI_BUS_TYPE_ECDT_EC:
1104                 strcpy(device->pnp.bus_id, "ECDT");
1105                 break;
1106         default:
1107                 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1108                 /* Clean up trailing underscores (if any) */
1109                 for (i = 3; i > 1; i--) {
1110                         if (bus_id[i] == '_')
1111                                 bus_id[i] = '\0';
1112                         else
1113                                 break;
1114                 }
1115                 strcpy(device->pnp.bus_id, bus_id);
1116                 break;
1117         }
1118 }
1119
1120 /*
1121  * acpi_ata_match - see if an acpi object is an ATA device
1122  *
1123  * If an acpi object has one of the ACPI ATA methods defined,
1124  * then we can safely call it an ATA device.
1125  */
1126 bool acpi_ata_match(acpi_handle handle)
1127 {
1128         return acpi_has_method(handle, "_GTF") ||
1129                acpi_has_method(handle, "_GTM") ||
1130                acpi_has_method(handle, "_STM") ||
1131                acpi_has_method(handle, "_SDD");
1132 }
1133
1134 /*
1135  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1136  *
1137  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1138  * then we can safely call it an ejectable drive bay
1139  */
1140 bool acpi_bay_match(acpi_handle handle)
1141 {
1142         acpi_handle phandle;
1143
1144         if (!acpi_has_method(handle, "_EJ0"))
1145                 return false;
1146         if (acpi_ata_match(handle))
1147                 return true;
1148         if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1149                 return false;
1150
1151         return acpi_ata_match(phandle);
1152 }
1153
1154 bool acpi_device_is_battery(struct acpi_device *adev)
1155 {
1156         struct acpi_hardware_id *hwid;
1157
1158         list_for_each_entry(hwid, &adev->pnp.ids, list)
1159                 if (!strcmp("PNP0C0A", hwid->id))
1160                         return true;
1161
1162         return false;
1163 }
1164
1165 static bool is_ejectable_bay(struct acpi_device *adev)
1166 {
1167         acpi_handle handle = adev->handle;
1168
1169         if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1170                 return true;
1171
1172         return acpi_bay_match(handle);
1173 }
1174
1175 /*
1176  * acpi_dock_match - see if an acpi object has a _DCK method
1177  */
1178 bool acpi_dock_match(acpi_handle handle)
1179 {
1180         return acpi_has_method(handle, "_DCK");
1181 }
1182
1183 static acpi_status
1184 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1185                           void **return_value)
1186 {
1187         long *cap = context;
1188
1189         if (acpi_has_method(handle, "_BCM") &&
1190             acpi_has_method(handle, "_BCL")) {
1191                 acpi_handle_debug(handle, "Found generic backlight support\n");
1192                 *cap |= ACPI_VIDEO_BACKLIGHT;
1193                 /* We have backlight support, no need to scan further */
1194                 return AE_CTRL_TERMINATE;
1195         }
1196         return 0;
1197 }
1198
1199 /* Returns true if the ACPI object is a video device which can be
1200  * handled by video.ko.
1201  * The device will get a Linux specific CID added in scan.c to
1202  * identify the device as an ACPI graphics device
1203  * Be aware that the graphics device may not be physically present
1204  * Use acpi_video_get_capabilities() to detect general ACPI video
1205  * capabilities of present cards
1206  */
1207 long acpi_is_video_device(acpi_handle handle)
1208 {
1209         long video_caps = 0;
1210
1211         /* Is this device able to support video switching ? */
1212         if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1213                 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1214
1215         /* Is this device able to retrieve a video ROM ? */
1216         if (acpi_has_method(handle, "_ROM"))
1217                 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1218
1219         /* Is this device able to configure which video head to be POSTed ? */
1220         if (acpi_has_method(handle, "_VPO") &&
1221             acpi_has_method(handle, "_GPD") &&
1222             acpi_has_method(handle, "_SPD"))
1223                 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1224
1225         /* Only check for backlight functionality if one of the above hit. */
1226         if (video_caps)
1227                 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1228                                     ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1229                                     &video_caps, NULL);
1230
1231         return video_caps;
1232 }
1233 EXPORT_SYMBOL(acpi_is_video_device);
1234
1235 const char *acpi_device_hid(struct acpi_device *device)
1236 {
1237         struct acpi_hardware_id *hid;
1238
1239         if (list_empty(&device->pnp.ids))
1240                 return dummy_hid;
1241
1242         hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1243         return hid->id;
1244 }
1245 EXPORT_SYMBOL(acpi_device_hid);
1246
1247 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1248 {
1249         struct acpi_hardware_id *id;
1250
1251         id = kmalloc(sizeof(*id), GFP_KERNEL);
1252         if (!id)
1253                 return;
1254
1255         id->id = kstrdup_const(dev_id, GFP_KERNEL);
1256         if (!id->id) {
1257                 kfree(id);
1258                 return;
1259         }
1260
1261         list_add_tail(&id->list, &pnp->ids);
1262         pnp->type.hardware_id = 1;
1263 }
1264
1265 /*
1266  * Old IBM workstations have a DSDT bug wherein the SMBus object
1267  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1268  * prefix.  Work around this.
1269  */
1270 static bool acpi_ibm_smbus_match(acpi_handle handle)
1271 {
1272         char node_name[ACPI_PATH_SEGMENT_LENGTH];
1273         struct acpi_buffer path = { sizeof(node_name), node_name };
1274
1275         if (!dmi_name_in_vendors("IBM"))
1276                 return false;
1277
1278         /* Look for SMBS object */
1279         if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1280             strcmp("SMBS", path.pointer))
1281                 return false;
1282
1283         /* Does it have the necessary (but misnamed) methods? */
1284         if (acpi_has_method(handle, "SBI") &&
1285             acpi_has_method(handle, "SBR") &&
1286             acpi_has_method(handle, "SBW"))
1287                 return true;
1288
1289         return false;
1290 }
1291
1292 static bool acpi_object_is_system_bus(acpi_handle handle)
1293 {
1294         acpi_handle tmp;
1295
1296         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1297             tmp == handle)
1298                 return true;
1299         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1300             tmp == handle)
1301                 return true;
1302
1303         return false;
1304 }
1305
1306 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1307                              int device_type)
1308 {
1309         struct acpi_device_info *info = NULL;
1310         struct acpi_pnp_device_id_list *cid_list;
1311         int i;
1312
1313         switch (device_type) {
1314         case ACPI_BUS_TYPE_DEVICE:
1315                 if (handle == ACPI_ROOT_OBJECT) {
1316                         acpi_add_id(pnp, ACPI_SYSTEM_HID);
1317                         break;
1318                 }
1319
1320                 acpi_get_object_info(handle, &info);
1321                 if (!info) {
1322                         pr_err(PREFIX "%s: Error reading device info\n",
1323                                         __func__);
1324                         return;
1325                 }
1326
1327                 if (info->valid & ACPI_VALID_HID) {
1328                         acpi_add_id(pnp, info->hardware_id.string);
1329                         pnp->type.platform_id = 1;
1330                 }
1331                 if (info->valid & ACPI_VALID_CID) {
1332                         cid_list = &info->compatible_id_list;
1333                         for (i = 0; i < cid_list->count; i++)
1334                                 acpi_add_id(pnp, cid_list->ids[i].string);
1335                 }
1336                 if (info->valid & ACPI_VALID_ADR) {
1337                         pnp->bus_address = info->address;
1338                         pnp->type.bus_address = 1;
1339                 }
1340                 if (info->valid & ACPI_VALID_UID)
1341                         pnp->unique_id = kstrdup(info->unique_id.string,
1342                                                         GFP_KERNEL);
1343                 if (info->valid & ACPI_VALID_CLS)
1344                         acpi_add_id(pnp, info->class_code.string);
1345
1346                 kfree(info);
1347
1348                 /*
1349                  * Some devices don't reliably have _HIDs & _CIDs, so add
1350                  * synthetic HIDs to make sure drivers can find them.
1351                  */
1352                 if (acpi_is_video_device(handle))
1353                         acpi_add_id(pnp, ACPI_VIDEO_HID);
1354                 else if (acpi_bay_match(handle))
1355                         acpi_add_id(pnp, ACPI_BAY_HID);
1356                 else if (acpi_dock_match(handle))
1357                         acpi_add_id(pnp, ACPI_DOCK_HID);
1358                 else if (acpi_ibm_smbus_match(handle))
1359                         acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1360                 else if (list_empty(&pnp->ids) &&
1361                          acpi_object_is_system_bus(handle)) {
1362                         /* \_SB, \_TZ, LNXSYBUS */
1363                         acpi_add_id(pnp, ACPI_BUS_HID);
1364                         strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1365                         strcpy(pnp->device_class, ACPI_BUS_CLASS);
1366                 }
1367
1368                 break;
1369         case ACPI_BUS_TYPE_POWER:
1370                 acpi_add_id(pnp, ACPI_POWER_HID);
1371                 break;
1372         case ACPI_BUS_TYPE_PROCESSOR:
1373                 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1374                 break;
1375         case ACPI_BUS_TYPE_THERMAL:
1376                 acpi_add_id(pnp, ACPI_THERMAL_HID);
1377                 break;
1378         case ACPI_BUS_TYPE_POWER_BUTTON:
1379                 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1380                 break;
1381         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1382                 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1383                 break;
1384         case ACPI_BUS_TYPE_ECDT_EC:
1385                 acpi_add_id(pnp, ACPI_ECDT_HID);
1386                 break;
1387         }
1388 }
1389
1390 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1391 {
1392         struct acpi_hardware_id *id, *tmp;
1393
1394         list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1395                 kfree_const(id->id);
1396                 kfree(id);
1397         }
1398         kfree(pnp->unique_id);
1399 }
1400
1401 /**
1402  * acpi_dma_supported - Check DMA support for the specified device.
1403  * @adev: The pointer to acpi device
1404  *
1405  * Return false if DMA is not supported. Otherwise, return true
1406  */
1407 bool acpi_dma_supported(struct acpi_device *adev)
1408 {
1409         if (!adev)
1410                 return false;
1411
1412         if (adev->flags.cca_seen)
1413                 return true;
1414
1415         /*
1416         * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1417         * DMA on "Intel platforms".  Presumably that includes all x86 and
1418         * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1419         */
1420         if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1421                 return true;
1422
1423         return false;
1424 }
1425
1426 /**
1427  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1428  * @adev: The pointer to acpi device
1429  *
1430  * Return enum dev_dma_attr.
1431  */
1432 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1433 {
1434         if (!acpi_dma_supported(adev))
1435                 return DEV_DMA_NOT_SUPPORTED;
1436
1437         if (adev->flags.coherent_dma)
1438                 return DEV_DMA_COHERENT;
1439         else
1440                 return DEV_DMA_NON_COHERENT;
1441 }
1442
1443 /**
1444  * acpi_dma_get_range() - Get device DMA parameters.
1445  *
1446  * @dev: device to configure
1447  * @dma_addr: pointer device DMA address result
1448  * @offset: pointer to the DMA offset result
1449  * @size: pointer to DMA range size result
1450  *
1451  * Evaluate DMA regions and return respectively DMA region start, offset
1452  * and size in dma_addr, offset and size on parsing success; it does not
1453  * update the passed in values on failure.
1454  *
1455  * Return 0 on success, < 0 on failure.
1456  */
1457 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1458                        u64 *size)
1459 {
1460         struct acpi_device *adev;
1461         LIST_HEAD(list);
1462         struct resource_entry *rentry;
1463         int ret;
1464         struct device *dma_dev = dev;
1465         u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1466
1467         /*
1468          * Walk the device tree chasing an ACPI companion with a _DMA
1469          * object while we go. Stop if we find a device with an ACPI
1470          * companion containing a _DMA method.
1471          */
1472         do {
1473                 adev = ACPI_COMPANION(dma_dev);
1474                 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1475                         break;
1476
1477                 dma_dev = dma_dev->parent;
1478         } while (dma_dev);
1479
1480         if (!dma_dev)
1481                 return -ENODEV;
1482
1483         if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1484                 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1485                 return -EINVAL;
1486         }
1487
1488         ret = acpi_dev_get_dma_resources(adev, &list);
1489         if (ret > 0) {
1490                 list_for_each_entry(rentry, &list, node) {
1491                         if (dma_offset && rentry->offset != dma_offset) {
1492                                 ret = -EINVAL;
1493                                 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1494                                 goto out;
1495                         }
1496                         dma_offset = rentry->offset;
1497
1498                         /* Take lower and upper limits */
1499                         if (rentry->res->start < dma_start)
1500                                 dma_start = rentry->res->start;
1501                         if (rentry->res->end > dma_end)
1502                                 dma_end = rentry->res->end;
1503                 }
1504
1505                 if (dma_start >= dma_end) {
1506                         ret = -EINVAL;
1507                         dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1508                         goto out;
1509                 }
1510
1511                 *dma_addr = dma_start - dma_offset;
1512                 len = dma_end - dma_start;
1513                 *size = max(len, len + 1);
1514                 *offset = dma_offset;
1515         }
1516  out:
1517         acpi_dev_free_resource_list(&list);
1518
1519         return ret >= 0 ? 0 : ret;
1520 }
1521
1522 /**
1523  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1524  * @dev: The pointer to the device
1525  * @attr: device dma attributes
1526  * @input_id: input device id const value pointer
1527  */
1528 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1529                           const u32 *input_id)
1530 {
1531         const struct iommu_ops *iommu;
1532         u64 dma_addr = 0, size = 0;
1533
1534         if (attr == DEV_DMA_NOT_SUPPORTED) {
1535                 set_dma_ops(dev, &dma_dummy_ops);
1536                 return 0;
1537         }
1538
1539         iort_dma_setup(dev, &dma_addr, &size);
1540
1541         iommu = iort_iommu_configure_id(dev, input_id);
1542         if (PTR_ERR(iommu) == -EPROBE_DEFER)
1543                 return -EPROBE_DEFER;
1544
1545         arch_setup_dma_ops(dev, dma_addr, size,
1546                                 iommu, attr == DEV_DMA_COHERENT);
1547
1548         return 0;
1549 }
1550 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1551
1552 static void acpi_init_coherency(struct acpi_device *adev)
1553 {
1554         unsigned long long cca = 0;
1555         acpi_status status;
1556         struct acpi_device *parent = adev->parent;
1557
1558         if (parent && parent->flags.cca_seen) {
1559                 /*
1560                  * From ACPI spec, OSPM will ignore _CCA if an ancestor
1561                  * already saw one.
1562                  */
1563                 adev->flags.cca_seen = 1;
1564                 cca = parent->flags.coherent_dma;
1565         } else {
1566                 status = acpi_evaluate_integer(adev->handle, "_CCA",
1567                                                NULL, &cca);
1568                 if (ACPI_SUCCESS(status))
1569                         adev->flags.cca_seen = 1;
1570                 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1571                         /*
1572                          * If architecture does not specify that _CCA is
1573                          * required for DMA-able devices (e.g. x86),
1574                          * we default to _CCA=1.
1575                          */
1576                         cca = 1;
1577                 else
1578                         acpi_handle_debug(adev->handle,
1579                                           "ACPI device is missing _CCA.\n");
1580         }
1581
1582         adev->flags.coherent_dma = cca;
1583 }
1584
1585 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1586 {
1587         bool *is_serial_bus_slave_p = data;
1588
1589         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1590                 return 1;
1591
1592         *is_serial_bus_slave_p = true;
1593
1594          /* no need to do more checking */
1595         return -1;
1596 }
1597
1598 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1599 {
1600         struct acpi_device *parent = device->parent;
1601         static const struct acpi_device_id indirect_io_hosts[] = {
1602                 {"HISI0191", 0},
1603                 {}
1604         };
1605
1606         return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1607 }
1608
1609 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1610 {
1611         struct list_head resource_list;
1612         bool is_serial_bus_slave = false;
1613         /*
1614          * These devices have multiple I2cSerialBus resources and an i2c-client
1615          * must be instantiated for each, each with its own i2c_device_id.
1616          * Normally we only instantiate an i2c-client for the first resource,
1617          * using the ACPI HID as id. These special cases are handled by the
1618          * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1619          * which i2c_device_id to use for each resource.
1620          */
1621         static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1622                 {"BSG1160", },
1623                 {"BSG2150", },
1624                 {"INT33FE", },
1625                 {"INT3515", },
1626                 {}
1627         };
1628
1629         if (acpi_is_indirect_io_slave(device))
1630                 return true;
1631
1632         /* Macs use device properties in lieu of _CRS resources */
1633         if (x86_apple_machine &&
1634             (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1635              fwnode_property_present(&device->fwnode, "i2cAddress") ||
1636              fwnode_property_present(&device->fwnode, "baud")))
1637                 return true;
1638
1639         /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1640         if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1641                 return false;
1642
1643         INIT_LIST_HEAD(&resource_list);
1644         acpi_dev_get_resources(device, &resource_list,
1645                                acpi_check_serial_bus_slave,
1646                                &is_serial_bus_slave);
1647         acpi_dev_free_resource_list(&resource_list);
1648
1649         return is_serial_bus_slave;
1650 }
1651
1652 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1653                              int type)
1654 {
1655         INIT_LIST_HEAD(&device->pnp.ids);
1656         device->device_type = type;
1657         device->handle = handle;
1658         device->parent = acpi_bus_get_parent(handle);
1659         fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1660         acpi_set_device_status(device, ACPI_STA_DEFAULT);
1661         acpi_device_get_busid(device);
1662         acpi_set_pnp_ids(handle, &device->pnp, type);
1663         acpi_init_properties(device);
1664         acpi_bus_get_flags(device);
1665         device->flags.match_driver = false;
1666         device->flags.initialized = true;
1667         device->flags.enumeration_by_parent =
1668                 acpi_device_enumeration_by_parent(device);
1669         acpi_device_clear_enumerated(device);
1670         device_initialize(&device->dev);
1671         dev_set_uevent_suppress(&device->dev, true);
1672         acpi_init_coherency(device);
1673         /* Assume there are unmet deps to start with. */
1674         device->dep_unmet = 1;
1675 }
1676
1677 void acpi_device_add_finalize(struct acpi_device *device)
1678 {
1679         dev_set_uevent_suppress(&device->dev, false);
1680         kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1681 }
1682
1683 static void acpi_scan_init_status(struct acpi_device *adev)
1684 {
1685         if (acpi_bus_get_status(adev))
1686                 acpi_set_device_status(adev, 0);
1687 }
1688
1689 static int acpi_add_single_object(struct acpi_device **child,
1690                                   acpi_handle handle, int type)
1691 {
1692         struct acpi_device *device;
1693         int result;
1694
1695         device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1696         if (!device)
1697                 return -ENOMEM;
1698
1699         acpi_init_device_object(device, handle, type);
1700         /*
1701          * Getting the status is delayed till here so that we can call
1702          * acpi_bus_get_status() and use its quirk handling.  Note that
1703          * this must be done before the get power-/wakeup_dev-flags calls.
1704          */
1705         if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR)
1706                 acpi_scan_init_status(device);
1707
1708         acpi_bus_get_power_flags(device);
1709         acpi_bus_get_wakeup_device_flags(device);
1710
1711         result = acpi_device_add(device, acpi_device_release);
1712         if (result) {
1713                 acpi_device_release(&device->dev);
1714                 return result;
1715         }
1716
1717         acpi_power_add_remove_device(device, true);
1718         acpi_device_add_finalize(device);
1719
1720         acpi_handle_debug(handle, "Added as %s, parent %s\n",
1721                           dev_name(&device->dev), device->parent ?
1722                                 dev_name(&device->parent->dev) : "(null)");
1723
1724         *child = device;
1725         return 0;
1726 }
1727
1728 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1729                                             void *context)
1730 {
1731         struct resource *res = context;
1732
1733         if (acpi_dev_resource_memory(ares, res))
1734                 return AE_CTRL_TERMINATE;
1735
1736         return AE_OK;
1737 }
1738
1739 static bool acpi_device_should_be_hidden(acpi_handle handle)
1740 {
1741         acpi_status status;
1742         struct resource res;
1743
1744         /* Check if it should ignore the UART device */
1745         if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1746                 return false;
1747
1748         /*
1749          * The UART device described in SPCR table is assumed to have only one
1750          * memory resource present. So we only look for the first one here.
1751          */
1752         status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1753                                      acpi_get_resource_memory, &res);
1754         if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1755                 return false;
1756
1757         acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1758                          &res.start);
1759
1760         return true;
1761 }
1762
1763 bool acpi_device_is_present(const struct acpi_device *adev)
1764 {
1765         return adev->status.present || adev->status.functional;
1766 }
1767
1768 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1769                                        const char *idstr,
1770                                        const struct acpi_device_id **matchid)
1771 {
1772         const struct acpi_device_id *devid;
1773
1774         if (handler->match)
1775                 return handler->match(idstr, matchid);
1776
1777         for (devid = handler->ids; devid->id[0]; devid++)
1778                 if (!strcmp((char *)devid->id, idstr)) {
1779                         if (matchid)
1780                                 *matchid = devid;
1781
1782                         return true;
1783                 }
1784
1785         return false;
1786 }
1787
1788 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1789                                         const struct acpi_device_id **matchid)
1790 {
1791         struct acpi_scan_handler *handler;
1792
1793         list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1794                 if (acpi_scan_handler_matching(handler, idstr, matchid))
1795                         return handler;
1796
1797         return NULL;
1798 }
1799
1800 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1801 {
1802         if (!!hotplug->enabled == !!val)
1803                 return;
1804
1805         mutex_lock(&acpi_scan_lock);
1806
1807         hotplug->enabled = val;
1808
1809         mutex_unlock(&acpi_scan_lock);
1810 }
1811
1812 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1813 {
1814         struct acpi_hardware_id *hwid;
1815
1816         if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1817                 acpi_dock_add(adev);
1818                 return;
1819         }
1820         list_for_each_entry(hwid, &adev->pnp.ids, list) {
1821                 struct acpi_scan_handler *handler;
1822
1823                 handler = acpi_scan_match_handler(hwid->id, NULL);
1824                 if (handler) {
1825                         adev->flags.hotplug_notify = true;
1826                         break;
1827                 }
1828         }
1829 }
1830
1831 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1832 {
1833         struct acpi_handle_list dep_devices;
1834         acpi_status status;
1835         u32 count;
1836         int i;
1837
1838         /*
1839          * Check for _HID here to avoid deferring the enumeration of:
1840          * 1. PCI devices.
1841          * 2. ACPI nodes describing USB ports.
1842          * Still, checking for _HID catches more then just these cases ...
1843          */
1844         if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1845             !acpi_has_method(handle, "_HID"))
1846                 return 0;
1847
1848         status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1849         if (ACPI_FAILURE(status)) {
1850                 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1851                 return 0;
1852         }
1853
1854         for (count = 0, i = 0; i < dep_devices.count; i++) {
1855                 struct acpi_device_info *info;
1856                 struct acpi_dep_data *dep;
1857                 bool skip;
1858
1859                 status = acpi_get_object_info(dep_devices.handles[i], &info);
1860                 if (ACPI_FAILURE(status)) {
1861                         acpi_handle_debug(handle, "Error reading _DEP device info\n");
1862                         continue;
1863                 }
1864
1865                 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1866                 kfree(info);
1867
1868                 if (skip)
1869                         continue;
1870
1871                 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1872                 if (!dep)
1873                         continue;
1874
1875                 count++;
1876
1877                 dep->supplier = dep_devices.handles[i];
1878                 dep->consumer = handle;
1879
1880                 mutex_lock(&acpi_dep_list_lock);
1881                 list_add_tail(&dep->node , &acpi_dep_list);
1882                 mutex_unlock(&acpi_dep_list_lock);
1883         }
1884
1885         return count;
1886 }
1887
1888 static void acpi_scan_dep_init(struct acpi_device *adev)
1889 {
1890         struct acpi_dep_data *dep;
1891
1892         adev->dep_unmet = 0;
1893
1894         mutex_lock(&acpi_dep_list_lock);
1895
1896         list_for_each_entry(dep, &acpi_dep_list, node) {
1897                 if (dep->consumer == adev->handle)
1898                         adev->dep_unmet++;
1899         }
1900
1901         mutex_unlock(&acpi_dep_list_lock);
1902 }
1903
1904 static bool acpi_bus_scan_second_pass;
1905
1906 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
1907                                       struct acpi_device **adev_p)
1908 {
1909         struct acpi_device *device = NULL;
1910         acpi_object_type acpi_type;
1911         int type;
1912
1913         acpi_bus_get_device(handle, &device);
1914         if (device)
1915                 goto out;
1916
1917         if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
1918                 return AE_OK;
1919
1920         switch (acpi_type) {
1921         case ACPI_TYPE_DEVICE:
1922                 if (acpi_device_should_be_hidden(handle))
1923                         return AE_OK;
1924
1925                 /* Bail out if there are dependencies. */
1926                 if (acpi_scan_check_dep(handle, check_dep) > 0) {
1927                         acpi_bus_scan_second_pass = true;
1928                         return AE_CTRL_DEPTH;
1929                 }
1930
1931                 fallthrough;
1932         case ACPI_TYPE_ANY:     /* for ACPI_ROOT_OBJECT */
1933                 type = ACPI_BUS_TYPE_DEVICE;
1934                 break;
1935
1936         case ACPI_TYPE_PROCESSOR:
1937                 type = ACPI_BUS_TYPE_PROCESSOR;
1938                 break;
1939
1940         case ACPI_TYPE_THERMAL:
1941                 type = ACPI_BUS_TYPE_THERMAL;
1942                 break;
1943
1944         case ACPI_TYPE_POWER:
1945                 acpi_add_power_resource(handle);
1946                 fallthrough;
1947         default:
1948                 return AE_OK;
1949         }
1950
1951         acpi_add_single_object(&device, handle, type);
1952         if (!device)
1953                 return AE_CTRL_DEPTH;
1954
1955         acpi_scan_init_hotplug(device);
1956         /*
1957          * If check_dep is true at this point, the device has no dependencies,
1958          * or the creation of the device object would have been postponed above.
1959          */
1960         if (check_dep)
1961                 device->dep_unmet = 0;
1962         else
1963                 acpi_scan_dep_init(device);
1964
1965 out:
1966         if (!*adev_p)
1967                 *adev_p = device;
1968
1969         return AE_OK;
1970 }
1971
1972 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
1973                                         void *not_used, void **ret_p)
1974 {
1975         return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
1976 }
1977
1978 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
1979                                         void *not_used, void **ret_p)
1980 {
1981         return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
1982 }
1983
1984 static void acpi_default_enumeration(struct acpi_device *device)
1985 {
1986         /*
1987          * Do not enumerate devices with enumeration_by_parent flag set as
1988          * they will be enumerated by their respective parents.
1989          */
1990         if (!device->flags.enumeration_by_parent) {
1991                 acpi_create_platform_device(device, NULL);
1992                 acpi_device_set_enumerated(device);
1993         } else {
1994                 blocking_notifier_call_chain(&acpi_reconfig_chain,
1995                                              ACPI_RECONFIG_DEVICE_ADD, device);
1996         }
1997 }
1998
1999 static const struct acpi_device_id generic_device_ids[] = {
2000         {ACPI_DT_NAMESPACE_HID, },
2001         {"", },
2002 };
2003
2004 static int acpi_generic_device_attach(struct acpi_device *adev,
2005                                       const struct acpi_device_id *not_used)
2006 {
2007         /*
2008          * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2009          * below can be unconditional.
2010          */
2011         if (adev->data.of_compatible)
2012                 acpi_default_enumeration(adev);
2013
2014         return 1;
2015 }
2016
2017 static struct acpi_scan_handler generic_device_handler = {
2018         .ids = generic_device_ids,
2019         .attach = acpi_generic_device_attach,
2020 };
2021
2022 static int acpi_scan_attach_handler(struct acpi_device *device)
2023 {
2024         struct acpi_hardware_id *hwid;
2025         int ret = 0;
2026
2027         list_for_each_entry(hwid, &device->pnp.ids, list) {
2028                 const struct acpi_device_id *devid;
2029                 struct acpi_scan_handler *handler;
2030
2031                 handler = acpi_scan_match_handler(hwid->id, &devid);
2032                 if (handler) {
2033                         if (!handler->attach) {
2034                                 device->pnp.type.platform_id = 0;
2035                                 continue;
2036                         }
2037                         device->handler = handler;
2038                         ret = handler->attach(device, devid);
2039                         if (ret > 0)
2040                                 break;
2041
2042                         device->handler = NULL;
2043                         if (ret < 0)
2044                                 break;
2045                 }
2046         }
2047
2048         return ret;
2049 }
2050
2051 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2052 {
2053         struct acpi_device *child;
2054         bool skip = !first_pass && device->flags.visited;
2055         acpi_handle ejd;
2056         int ret;
2057
2058         if (skip)
2059                 goto ok;
2060
2061         if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2062                 register_dock_dependent_device(device, ejd);
2063
2064         acpi_bus_get_status(device);
2065         /* Skip devices that are not present. */
2066         if (!acpi_device_is_present(device)) {
2067                 device->flags.initialized = false;
2068                 acpi_device_clear_enumerated(device);
2069                 device->flags.power_manageable = 0;
2070                 return;
2071         }
2072         if (device->handler)
2073                 goto ok;
2074
2075         if (!device->flags.initialized) {
2076                 device->flags.power_manageable =
2077                         device->power.states[ACPI_STATE_D0].flags.valid;
2078                 if (acpi_bus_init_power(device))
2079                         device->flags.power_manageable = 0;
2080
2081                 device->flags.initialized = true;
2082         } else if (device->flags.visited) {
2083                 goto ok;
2084         }
2085
2086         ret = acpi_scan_attach_handler(device);
2087         if (ret < 0)
2088                 return;
2089
2090         device->flags.match_driver = true;
2091         if (ret > 0 && !device->flags.enumeration_by_parent) {
2092                 acpi_device_set_enumerated(device);
2093                 goto ok;
2094         }
2095
2096         ret = device_attach(&device->dev);
2097         if (ret < 0)
2098                 return;
2099
2100         if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2101                 acpi_default_enumeration(device);
2102         else
2103                 acpi_device_set_enumerated(device);
2104
2105  ok:
2106         list_for_each_entry(child, &device->children, node)
2107                 acpi_bus_attach(child, first_pass);
2108
2109         if (!skip && device->handler && device->handler->hotplug.notify_online)
2110                 device->handler->hotplug.notify_online(device);
2111 }
2112
2113 void acpi_walk_dep_device_list(acpi_handle handle)
2114 {
2115         struct acpi_dep_data *dep, *tmp;
2116         struct acpi_device *adev;
2117
2118         mutex_lock(&acpi_dep_list_lock);
2119         list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2120                 if (dep->supplier == handle) {
2121                         acpi_bus_get_device(dep->consumer, &adev);
2122
2123                         if (adev) {
2124                                 adev->dep_unmet--;
2125                                 if (!adev->dep_unmet)
2126                                         acpi_bus_attach(adev, true);
2127                         }
2128
2129                         list_del(&dep->node);
2130                         kfree(dep);
2131                 }
2132         }
2133         mutex_unlock(&acpi_dep_list_lock);
2134 }
2135 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list);
2136
2137 /**
2138  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2139  * @handle: Root of the namespace scope to scan.
2140  *
2141  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2142  * found devices.
2143  *
2144  * If no devices were found, -ENODEV is returned, but it does not mean that
2145  * there has been a real error.  There just have been no suitable ACPI objects
2146  * in the table trunk from which the kernel could create a device and add an
2147  * appropriate driver.
2148  *
2149  * Must be called under acpi_scan_lock.
2150  */
2151 int acpi_bus_scan(acpi_handle handle)
2152 {
2153         struct acpi_device *device = NULL;
2154
2155         acpi_bus_scan_second_pass = false;
2156
2157         /* Pass 1: Avoid enumerating devices with missing dependencies. */
2158
2159         if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2160                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2161                                     acpi_bus_check_add_1, NULL, NULL,
2162                                     (void **)&device);
2163
2164         if (!device)
2165                 return -ENODEV;
2166
2167         acpi_bus_attach(device, true);
2168
2169         if (!acpi_bus_scan_second_pass)
2170                 return 0;
2171
2172         /* Pass 2: Enumerate all of the remaining devices. */
2173
2174         device = NULL;
2175
2176         if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2177                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2178                                     acpi_bus_check_add_2, NULL, NULL,
2179                                     (void **)&device);
2180
2181         acpi_bus_attach(device, false);
2182
2183         return 0;
2184 }
2185 EXPORT_SYMBOL(acpi_bus_scan);
2186
2187 /**
2188  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2189  * @adev: Root of the ACPI namespace scope to walk.
2190  *
2191  * Must be called under acpi_scan_lock.
2192  */
2193 void acpi_bus_trim(struct acpi_device *adev)
2194 {
2195         struct acpi_scan_handler *handler = adev->handler;
2196         struct acpi_device *child;
2197
2198         list_for_each_entry_reverse(child, &adev->children, node)
2199                 acpi_bus_trim(child);
2200
2201         adev->flags.match_driver = false;
2202         if (handler) {
2203                 if (handler->detach)
2204                         handler->detach(adev);
2205
2206                 adev->handler = NULL;
2207         } else {
2208                 device_release_driver(&adev->dev);
2209         }
2210         /*
2211          * Most likely, the device is going away, so put it into D3cold before
2212          * that.
2213          */
2214         acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2215         adev->flags.initialized = false;
2216         acpi_device_clear_enumerated(adev);
2217 }
2218 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2219
2220 int acpi_bus_register_early_device(int type)
2221 {
2222         struct acpi_device *device = NULL;
2223         int result;
2224
2225         result = acpi_add_single_object(&device, NULL, type);
2226         if (result)
2227                 return result;
2228
2229         device->flags.match_driver = true;
2230         return device_attach(&device->dev);
2231 }
2232 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2233
2234 static int acpi_bus_scan_fixed(void)
2235 {
2236         int result = 0;
2237
2238         /*
2239          * Enumerate all fixed-feature devices.
2240          */
2241         if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2242                 struct acpi_device *device = NULL;
2243
2244                 result = acpi_add_single_object(&device, NULL,
2245                                                 ACPI_BUS_TYPE_POWER_BUTTON);
2246                 if (result)
2247                         return result;
2248
2249                 device->flags.match_driver = true;
2250                 result = device_attach(&device->dev);
2251                 if (result < 0)
2252                         return result;
2253
2254                 device_init_wakeup(&device->dev, true);
2255         }
2256
2257         if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2258                 struct acpi_device *device = NULL;
2259
2260                 result = acpi_add_single_object(&device, NULL,
2261                                                 ACPI_BUS_TYPE_SLEEP_BUTTON);
2262                 if (result)
2263                         return result;
2264
2265                 device->flags.match_driver = true;
2266                 result = device_attach(&device->dev);
2267         }
2268
2269         return result < 0 ? result : 0;
2270 }
2271
2272 static void __init acpi_get_spcr_uart_addr(void)
2273 {
2274         acpi_status status;
2275         struct acpi_table_spcr *spcr_ptr;
2276
2277         status = acpi_get_table(ACPI_SIG_SPCR, 0,
2278                                 (struct acpi_table_header **)&spcr_ptr);
2279         if (ACPI_FAILURE(status)) {
2280                 pr_warn(PREFIX "STAO table present, but SPCR is missing\n");
2281                 return;
2282         }
2283
2284         spcr_uart_addr = spcr_ptr->serial_port.address;
2285         acpi_put_table((struct acpi_table_header *)spcr_ptr);
2286 }
2287
2288 static bool acpi_scan_initialized;
2289
2290 int __init acpi_scan_init(void)
2291 {
2292         int result;
2293         acpi_status status;
2294         struct acpi_table_stao *stao_ptr;
2295
2296         acpi_pci_root_init();
2297         acpi_pci_link_init();
2298         acpi_processor_init();
2299         acpi_platform_init();
2300         acpi_lpss_init();
2301         acpi_apd_init();
2302         acpi_cmos_rtc_init();
2303         acpi_container_init();
2304         acpi_memory_hotplug_init();
2305         acpi_watchdog_init();
2306         acpi_pnp_init();
2307         acpi_int340x_thermal_init();
2308         acpi_amba_init();
2309         acpi_init_lpit();
2310
2311         acpi_scan_add_handler(&generic_device_handler);
2312
2313         /*
2314          * If there is STAO table, check whether it needs to ignore the UART
2315          * device in SPCR table.
2316          */
2317         status = acpi_get_table(ACPI_SIG_STAO, 0,
2318                                 (struct acpi_table_header **)&stao_ptr);
2319         if (ACPI_SUCCESS(status)) {
2320                 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2321                         pr_info(PREFIX "STAO Name List not yet supported.\n");
2322
2323                 if (stao_ptr->ignore_uart)
2324                         acpi_get_spcr_uart_addr();
2325
2326                 acpi_put_table((struct acpi_table_header *)stao_ptr);
2327         }
2328
2329         acpi_gpe_apply_masked_gpes();
2330         acpi_update_all_gpes();
2331
2332         /*
2333          * Although we call __add_memory() that is documented to require the
2334          * device_hotplug_lock, it is not necessary here because this is an
2335          * early code when userspace or any other code path cannot trigger
2336          * hotplug/hotunplug operations.
2337          */
2338         mutex_lock(&acpi_scan_lock);
2339         /*
2340          * Enumerate devices in the ACPI namespace.
2341          */
2342         result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2343         if (result)
2344                 goto out;
2345
2346         result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2347         if (result)
2348                 goto out;
2349
2350         /* Fixed feature devices do not exist on HW-reduced platform */
2351         if (!acpi_gbl_reduced_hardware) {
2352                 result = acpi_bus_scan_fixed();
2353                 if (result) {
2354                         acpi_detach_data(acpi_root->handle,
2355                                          acpi_scan_drop_device);
2356                         acpi_device_del(acpi_root);
2357                         acpi_bus_put_acpi_device(acpi_root);
2358                         goto out;
2359                 }
2360         }
2361
2362         acpi_scan_initialized = true;
2363
2364  out:
2365         mutex_unlock(&acpi_scan_lock);
2366         return result;
2367 }
2368
2369 static struct acpi_probe_entry *ape;
2370 static int acpi_probe_count;
2371 static DEFINE_MUTEX(acpi_probe_mutex);
2372
2373 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2374                                   const unsigned long end)
2375 {
2376         if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2377                 if (!ape->probe_subtbl(header, end))
2378                         acpi_probe_count++;
2379
2380         return 0;
2381 }
2382
2383 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2384 {
2385         int count = 0;
2386
2387         if (acpi_disabled)
2388                 return 0;
2389
2390         mutex_lock(&acpi_probe_mutex);
2391         for (ape = ap_head; nr; ape++, nr--) {
2392                 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2393                         acpi_probe_count = 0;
2394                         acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2395                         count += acpi_probe_count;
2396                 } else {
2397                         int res;
2398                         res = acpi_table_parse(ape->id, ape->probe_table);
2399                         if (!res)
2400                                 count++;
2401                 }
2402         }
2403         mutex_unlock(&acpi_probe_mutex);
2404
2405         return count;
2406 }
2407
2408 struct acpi_table_events_work {
2409         struct work_struct work;
2410         void *table;
2411         u32 event;
2412 };
2413
2414 static void acpi_table_events_fn(struct work_struct *work)
2415 {
2416         struct acpi_table_events_work *tew;
2417
2418         tew = container_of(work, struct acpi_table_events_work, work);
2419
2420         if (tew->event == ACPI_TABLE_EVENT_LOAD) {
2421                 acpi_scan_lock_acquire();
2422                 acpi_bus_scan(ACPI_ROOT_OBJECT);
2423                 acpi_scan_lock_release();
2424         }
2425
2426         kfree(tew);
2427 }
2428
2429 void acpi_scan_table_handler(u32 event, void *table, void *context)
2430 {
2431         struct acpi_table_events_work *tew;
2432
2433         if (!acpi_scan_initialized)
2434                 return;
2435
2436         if (event != ACPI_TABLE_EVENT_LOAD)
2437                 return;
2438
2439         tew = kmalloc(sizeof(*tew), GFP_KERNEL);
2440         if (!tew)
2441                 return;
2442
2443         INIT_WORK(&tew->work, acpi_table_events_fn);
2444         tew->table = table;
2445         tew->event = event;
2446
2447         schedule_work(&tew->work);
2448 }
2449
2450 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2451 {
2452         return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2453 }
2454 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2455
2456 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2457 {
2458         return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2459 }
2460 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);