PCI/ACPI: Guard ARM64-specific mcfg_quirks
[platform/kernel/linux-rpi.git] / drivers / acpi / scan.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22
23 #include "internal.h"
24
25 extern struct acpi_device *acpi_root;
26
27 #define ACPI_BUS_CLASS                  "system_bus"
28 #define ACPI_BUS_HID                    "LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME            "System Bus"
30
31 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
32
33 #define INVALID_ACPI_HANDLE     ((acpi_handle)empty_zero_page)
34
35 static const char *dummy_hid = "device";
36
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45
46 /*
47  * The UART device described by the SPCR table is the only object which needs
48  * special-casing. Everything else is covered by ACPI namespace paths in STAO
49  * table.
50  */
51 static u64 spcr_uart_addr;
52
53 void acpi_scan_lock_acquire(void)
54 {
55         mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
59 void acpi_scan_lock_release(void)
60 {
61         mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
65 void acpi_lock_hp_context(void)
66 {
67         mutex_lock(&acpi_hp_context_lock);
68 }
69
70 void acpi_unlock_hp_context(void)
71 {
72         mutex_unlock(&acpi_hp_context_lock);
73 }
74
75 void acpi_initialize_hp_context(struct acpi_device *adev,
76                                 struct acpi_hotplug_context *hp,
77                                 int (*notify)(struct acpi_device *, u32),
78                                 void (*uevent)(struct acpi_device *, u32))
79 {
80         acpi_lock_hp_context();
81         hp->notify = notify;
82         hp->uevent = uevent;
83         acpi_set_hp_context(adev, hp);
84         acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90         if (!handler)
91                 return -EINVAL;
92
93         list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94         return 0;
95 }
96
97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98                                        const char *hotplug_profile_name)
99 {
100         int error;
101
102         error = acpi_scan_add_handler(handler);
103         if (error)
104                 return error;
105
106         acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107         return 0;
108 }
109
110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112         struct acpi_device_physical_node *pn;
113         bool offline = true;
114         char *envp[] = { "EVENT=offline", NULL };
115
116         /*
117          * acpi_container_offline() calls this for all of the container's
118          * children under the container's physical_node_lock lock.
119          */
120         mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122         list_for_each_entry(pn, &adev->physical_node_list, node)
123                 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124                         if (uevent)
125                                 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127                         offline = false;
128                         break;
129                 }
130
131         mutex_unlock(&adev->physical_node_lock);
132         return offline;
133 }
134
135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136                                     void **ret_p)
137 {
138         struct acpi_device *device = NULL;
139         struct acpi_device_physical_node *pn;
140         bool second_pass = (bool)data;
141         acpi_status status = AE_OK;
142
143         if (acpi_bus_get_device(handle, &device))
144                 return AE_OK;
145
146         if (device->handler && !device->handler->hotplug.enabled) {
147                 *ret_p = &device->dev;
148                 return AE_SUPPORT;
149         }
150
151         mutex_lock(&device->physical_node_lock);
152
153         list_for_each_entry(pn, &device->physical_node_list, node) {
154                 int ret;
155
156                 if (second_pass) {
157                         /* Skip devices offlined by the first pass. */
158                         if (pn->put_online)
159                                 continue;
160                 } else {
161                         pn->put_online = false;
162                 }
163                 ret = device_offline(pn->dev);
164                 if (ret >= 0) {
165                         pn->put_online = !ret;
166                 } else {
167                         *ret_p = pn->dev;
168                         if (second_pass) {
169                                 status = AE_ERROR;
170                                 break;
171                         }
172                 }
173         }
174
175         mutex_unlock(&device->physical_node_lock);
176
177         return status;
178 }
179
180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181                                    void **ret_p)
182 {
183         struct acpi_device *device = NULL;
184         struct acpi_device_physical_node *pn;
185
186         if (acpi_bus_get_device(handle, &device))
187                 return AE_OK;
188
189         mutex_lock(&device->physical_node_lock);
190
191         list_for_each_entry(pn, &device->physical_node_list, node)
192                 if (pn->put_online) {
193                         device_online(pn->dev);
194                         pn->put_online = false;
195                 }
196
197         mutex_unlock(&device->physical_node_lock);
198
199         return AE_OK;
200 }
201
202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204         acpi_handle handle = device->handle;
205         struct device *errdev = NULL;
206         acpi_status status;
207
208         /*
209          * Carry out two passes here and ignore errors in the first pass,
210          * because if the devices in question are memory blocks and
211          * CONFIG_MEMCG is set, one of the blocks may hold data structures
212          * that the other blocks depend on, but it is not known in advance which
213          * block holds them.
214          *
215          * If the first pass is successful, the second one isn't needed, though.
216          */
217         status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218                                      NULL, acpi_bus_offline, (void *)false,
219                                      (void **)&errdev);
220         if (status == AE_SUPPORT) {
221                 dev_warn(errdev, "Offline disabled.\n");
222                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223                                     acpi_bus_online, NULL, NULL, NULL);
224                 return -EPERM;
225         }
226         acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227         if (errdev) {
228                 errdev = NULL;
229                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230                                     NULL, acpi_bus_offline, (void *)true,
231                                     (void **)&errdev);
232                 if (!errdev)
233                         acpi_bus_offline(handle, 0, (void *)true,
234                                          (void **)&errdev);
235
236                 if (errdev) {
237                         dev_warn(errdev, "Offline failed.\n");
238                         acpi_bus_online(handle, 0, NULL, NULL);
239                         acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240                                             ACPI_UINT32_MAX, acpi_bus_online,
241                                             NULL, NULL, NULL);
242                         return -EBUSY;
243                 }
244         }
245         return 0;
246 }
247
248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250         acpi_handle handle = device->handle;
251         unsigned long long sta;
252         acpi_status status;
253
254         if (device->handler && device->handler->hotplug.demand_offline) {
255                 if (!acpi_scan_is_offline(device, true))
256                         return -EBUSY;
257         } else {
258                 int error = acpi_scan_try_to_offline(device);
259                 if (error)
260                         return error;
261         }
262
263         acpi_handle_debug(handle, "Ejecting\n");
264
265         acpi_bus_trim(device);
266
267         acpi_evaluate_lck(handle, 0);
268         /*
269          * TBD: _EJD support.
270          */
271         status = acpi_evaluate_ej0(handle);
272         if (status == AE_NOT_FOUND)
273                 return -ENODEV;
274         else if (ACPI_FAILURE(status))
275                 return -EIO;
276
277         /*
278          * Verify if eject was indeed successful.  If not, log an error
279          * message.  No need to call _OST since _EJ0 call was made OK.
280          */
281         status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282         if (ACPI_FAILURE(status)) {
283                 acpi_handle_warn(handle,
284                         "Status check after eject failed (0x%x)\n", status);
285         } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286                 acpi_handle_warn(handle,
287                         "Eject incomplete - status 0x%llx\n", sta);
288         }
289
290         return 0;
291 }
292
293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295         if (!acpi_device_enumerated(adev)) {
296                 dev_warn(&adev->dev, "Still not present\n");
297                 return -EALREADY;
298         }
299         acpi_bus_trim(adev);
300         return 0;
301 }
302
303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305         int error;
306
307         acpi_bus_get_status(adev);
308         if (adev->status.present || adev->status.functional) {
309                 /*
310                  * This function is only called for device objects for which
311                  * matching scan handlers exist.  The only situation in which
312                  * the scan handler is not attached to this device object yet
313                  * is when the device has just appeared (either it wasn't
314                  * present at all before or it was removed and then added
315                  * again).
316                  */
317                 if (adev->handler) {
318                         dev_warn(&adev->dev, "Already enumerated\n");
319                         return -EALREADY;
320                 }
321                 error = acpi_bus_scan(adev->handle);
322                 if (error) {
323                         dev_warn(&adev->dev, "Namespace scan failure\n");
324                         return error;
325                 }
326                 if (!adev->handler) {
327                         dev_warn(&adev->dev, "Enumeration failure\n");
328                         error = -ENODEV;
329                 }
330         } else {
331                 error = acpi_scan_device_not_present(adev);
332         }
333         return error;
334 }
335
336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338         struct acpi_scan_handler *handler = adev->handler;
339         struct acpi_device *child;
340         int error;
341
342         acpi_bus_get_status(adev);
343         if (!(adev->status.present || adev->status.functional)) {
344                 acpi_scan_device_not_present(adev);
345                 return 0;
346         }
347         if (handler && handler->hotplug.scan_dependent)
348                 return handler->hotplug.scan_dependent(adev);
349
350         error = acpi_bus_scan(adev->handle);
351         if (error) {
352                 dev_warn(&adev->dev, "Namespace scan failure\n");
353                 return error;
354         }
355         list_for_each_entry(child, &adev->children, node) {
356                 error = acpi_scan_bus_check(child);
357                 if (error)
358                         return error;
359         }
360         return 0;
361 }
362
363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365         switch (type) {
366         case ACPI_NOTIFY_BUS_CHECK:
367                 return acpi_scan_bus_check(adev);
368         case ACPI_NOTIFY_DEVICE_CHECK:
369                 return acpi_scan_device_check(adev);
370         case ACPI_NOTIFY_EJECT_REQUEST:
371         case ACPI_OST_EC_OSPM_EJECT:
372                 if (adev->handler && !adev->handler->hotplug.enabled) {
373                         dev_info(&adev->dev, "Eject disabled\n");
374                         return -EPERM;
375                 }
376                 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377                                   ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378                 return acpi_scan_hot_remove(adev);
379         }
380         return -EINVAL;
381 }
382
383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385         u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386         int error = -ENODEV;
387
388         lock_device_hotplug();
389         mutex_lock(&acpi_scan_lock);
390
391         /*
392          * The device object's ACPI handle cannot become invalid as long as we
393          * are holding acpi_scan_lock, but it might have become invalid before
394          * that lock was acquired.
395          */
396         if (adev->handle == INVALID_ACPI_HANDLE)
397                 goto err_out;
398
399         if (adev->flags.is_dock_station) {
400                 error = dock_notify(adev, src);
401         } else if (adev->flags.hotplug_notify) {
402                 error = acpi_generic_hotplug_event(adev, src);
403         } else {
404                 int (*notify)(struct acpi_device *, u32);
405
406                 acpi_lock_hp_context();
407                 notify = adev->hp ? adev->hp->notify : NULL;
408                 acpi_unlock_hp_context();
409                 /*
410                  * There may be additional notify handlers for device objects
411                  * without the .event() callback, so ignore them here.
412                  */
413                 if (notify)
414                         error = notify(adev, src);
415                 else
416                         goto out;
417         }
418         switch (error) {
419         case 0:
420                 ost_code = ACPI_OST_SC_SUCCESS;
421                 break;
422         case -EPERM:
423                 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424                 break;
425         case -EBUSY:
426                 ost_code = ACPI_OST_SC_DEVICE_BUSY;
427                 break;
428         default:
429                 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430                 break;
431         }
432
433  err_out:
434         acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435
436  out:
437         acpi_bus_put_acpi_device(adev);
438         mutex_unlock(&acpi_scan_lock);
439         unlock_device_hotplug();
440 }
441
442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444         int i;
445
446         if (device->wakeup.flags.valid)
447                 acpi_power_resources_list_free(&device->wakeup.resources);
448
449         if (!device->power.flags.power_resources)
450                 return;
451
452         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453                 struct acpi_device_power_state *ps = &device->power.states[i];
454                 acpi_power_resources_list_free(&ps->resources);
455         }
456 }
457
458 static void acpi_device_release(struct device *dev)
459 {
460         struct acpi_device *acpi_dev = to_acpi_device(dev);
461
462         acpi_free_properties(acpi_dev);
463         acpi_free_pnp_ids(&acpi_dev->pnp);
464         acpi_free_power_resources_lists(acpi_dev);
465         kfree(acpi_dev);
466 }
467
468 static void acpi_device_del(struct acpi_device *device)
469 {
470         struct acpi_device_bus_id *acpi_device_bus_id;
471
472         mutex_lock(&acpi_device_lock);
473         if (device->parent)
474                 list_del(&device->node);
475
476         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477                 if (!strcmp(acpi_device_bus_id->bus_id,
478                             acpi_device_hid(device))) {
479                         ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480                         if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481                                 list_del(&acpi_device_bus_id->node);
482                                 kfree_const(acpi_device_bus_id->bus_id);
483                                 kfree(acpi_device_bus_id);
484                         }
485                         break;
486                 }
487
488         list_del(&device->wakeup_list);
489         mutex_unlock(&acpi_device_lock);
490
491         acpi_power_add_remove_device(device, false);
492         acpi_device_remove_files(device);
493         if (device->remove)
494                 device->remove(device);
495
496         device_del(&device->dev);
497 }
498
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503
504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506         for (;;) {
507                 struct acpi_device *adev;
508
509                 mutex_lock(&acpi_device_del_lock);
510
511                 if (list_empty(&acpi_device_del_list)) {
512                         mutex_unlock(&acpi_device_del_lock);
513                         break;
514                 }
515                 adev = list_first_entry(&acpi_device_del_list,
516                                         struct acpi_device, del_list);
517                 list_del(&adev->del_list);
518
519                 mutex_unlock(&acpi_device_del_lock);
520
521                 blocking_notifier_call_chain(&acpi_reconfig_chain,
522                                              ACPI_RECONFIG_DEVICE_REMOVE, adev);
523
524                 acpi_device_del(adev);
525                 /*
526                  * Drop references to all power resources that might have been
527                  * used by the device.
528                  */
529                 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530                 acpi_dev_put(adev);
531         }
532 }
533
534 /**
535  * acpi_scan_drop_device - Drop an ACPI device object.
536  * @handle: Handle of an ACPI namespace node, not used.
537  * @context: Address of the ACPI device object to drop.
538  *
539  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540  * namespace node the device object pointed to by @context is attached to.
541  *
542  * The unregistration is carried out asynchronously to avoid running
543  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544  * ensure the correct ordering (the device objects must be unregistered in the
545  * same order in which the corresponding namespace nodes are deleted).
546  */
547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549         static DECLARE_WORK(work, acpi_device_del_work_fn);
550         struct acpi_device *adev = context;
551
552         mutex_lock(&acpi_device_del_lock);
553
554         /*
555          * Use the ACPI hotplug workqueue which is ordered, so this work item
556          * won't run after any hotplug work items submitted subsequently.  That
557          * prevents attempts to register device objects identical to those being
558          * deleted from happening concurrently (such attempts result from
559          * hotplug events handled via the ACPI hotplug workqueue).  It also will
560          * run after all of the work items submitted previously, which helps
561          * those work items to ensure that they are not accessing stale device
562          * objects.
563          */
564         if (list_empty(&acpi_device_del_list))
565                 acpi_queue_hotplug_work(&work);
566
567         list_add_tail(&adev->del_list, &acpi_device_del_list);
568         /* Make acpi_ns_validate_handle() return NULL for this handle. */
569         adev->handle = INVALID_ACPI_HANDLE;
570
571         mutex_unlock(&acpi_device_del_lock);
572 }
573
574 static struct acpi_device *handle_to_device(acpi_handle handle,
575                                             void (*callback)(void *))
576 {
577         struct acpi_device *adev = NULL;
578         acpi_status status;
579
580         status = acpi_get_data_full(handle, acpi_scan_drop_device,
581                                     (void **)&adev, callback);
582         if (ACPI_FAILURE(status) || !adev) {
583                 acpi_handle_debug(handle, "No context!\n");
584                 return NULL;
585         }
586         return adev;
587 }
588
589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591         if (!device)
592                 return -EINVAL;
593
594         *device = handle_to_device(handle, NULL);
595         if (!*device)
596                 return -ENODEV;
597
598         return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601
602 static void get_acpi_device(void *dev)
603 {
604         acpi_dev_get(dev);
605 }
606
607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
608 {
609         return handle_to_device(handle, get_acpi_device);
610 }
611
612 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
613 {
614         struct acpi_device_bus_id *acpi_device_bus_id;
615
616         /* Find suitable bus_id and instance number in acpi_bus_id_list. */
617         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
618                 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
619                         return acpi_device_bus_id;
620         }
621         return NULL;
622 }
623
624 static int acpi_device_set_name(struct acpi_device *device,
625                                 struct acpi_device_bus_id *acpi_device_bus_id)
626 {
627         struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
628         int result;
629
630         result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
631         if (result < 0)
632                 return result;
633
634         device->pnp.instance_no = result;
635         dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
636         return 0;
637 }
638
639 static int acpi_tie_acpi_dev(struct acpi_device *adev)
640 {
641         acpi_handle handle = adev->handle;
642         acpi_status status;
643
644         if (!handle)
645                 return 0;
646
647         status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
648         if (ACPI_FAILURE(status)) {
649                 acpi_handle_err(handle, "Unable to attach device data\n");
650                 return -ENODEV;
651         }
652
653         return 0;
654 }
655
656 static int __acpi_device_add(struct acpi_device *device,
657                              void (*release)(struct device *))
658 {
659         struct acpi_device_bus_id *acpi_device_bus_id;
660         int result;
661
662         /*
663          * Linkage
664          * -------
665          * Link this device to its parent and siblings.
666          */
667         INIT_LIST_HEAD(&device->children);
668         INIT_LIST_HEAD(&device->node);
669         INIT_LIST_HEAD(&device->wakeup_list);
670         INIT_LIST_HEAD(&device->physical_node_list);
671         INIT_LIST_HEAD(&device->del_list);
672         mutex_init(&device->physical_node_lock);
673
674         mutex_lock(&acpi_device_lock);
675
676         acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
677         if (acpi_device_bus_id) {
678                 result = acpi_device_set_name(device, acpi_device_bus_id);
679                 if (result)
680                         goto err_unlock;
681         } else {
682                 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
683                                              GFP_KERNEL);
684                 if (!acpi_device_bus_id) {
685                         result = -ENOMEM;
686                         goto err_unlock;
687                 }
688                 acpi_device_bus_id->bus_id =
689                         kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
690                 if (!acpi_device_bus_id->bus_id) {
691                         kfree(acpi_device_bus_id);
692                         result = -ENOMEM;
693                         goto err_unlock;
694                 }
695
696                 ida_init(&acpi_device_bus_id->instance_ida);
697
698                 result = acpi_device_set_name(device, acpi_device_bus_id);
699                 if (result) {
700                         kfree_const(acpi_device_bus_id->bus_id);
701                         kfree(acpi_device_bus_id);
702                         goto err_unlock;
703                 }
704
705                 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
706         }
707
708         if (device->parent)
709                 list_add_tail(&device->node, &device->parent->children);
710
711         if (device->wakeup.flags.valid)
712                 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
713
714         mutex_unlock(&acpi_device_lock);
715
716         if (device->parent)
717                 device->dev.parent = &device->parent->dev;
718
719         device->dev.bus = &acpi_bus_type;
720         device->dev.release = release;
721         result = device_add(&device->dev);
722         if (result) {
723                 dev_err(&device->dev, "Error registering device\n");
724                 goto err;
725         }
726
727         result = acpi_device_setup_files(device);
728         if (result)
729                 pr_err("Error creating sysfs interface for device %s\n",
730                        dev_name(&device->dev));
731
732         return 0;
733
734 err:
735         mutex_lock(&acpi_device_lock);
736
737         if (device->parent)
738                 list_del(&device->node);
739
740         list_del(&device->wakeup_list);
741
742 err_unlock:
743         mutex_unlock(&acpi_device_lock);
744
745         acpi_detach_data(device->handle, acpi_scan_drop_device);
746
747         return result;
748 }
749
750 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
751 {
752         int ret;
753
754         ret = acpi_tie_acpi_dev(adev);
755         if (ret)
756                 return ret;
757
758         return __acpi_device_add(adev, release);
759 }
760
761 /* --------------------------------------------------------------------------
762                                  Device Enumeration
763    -------------------------------------------------------------------------- */
764 static bool acpi_info_matches_ids(struct acpi_device_info *info,
765                                   const char * const ids[])
766 {
767         struct acpi_pnp_device_id_list *cid_list = NULL;
768         int i, index;
769
770         if (!(info->valid & ACPI_VALID_HID))
771                 return false;
772
773         index = match_string(ids, -1, info->hardware_id.string);
774         if (index >= 0)
775                 return true;
776
777         if (info->valid & ACPI_VALID_CID)
778                 cid_list = &info->compatible_id_list;
779
780         if (!cid_list)
781                 return false;
782
783         for (i = 0; i < cid_list->count; i++) {
784                 index = match_string(ids, -1, cid_list->ids[i].string);
785                 if (index >= 0)
786                         return true;
787         }
788
789         return false;
790 }
791
792 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
793 static const char * const acpi_ignore_dep_ids[] = {
794         "PNP0D80", /* Windows-compatible System Power Management Controller */
795         "INT33BD", /* Intel Baytrail Mailbox Device */
796         NULL
797 };
798
799 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
800 {
801         struct acpi_device *device = NULL;
802         acpi_status status;
803
804         /*
805          * Fixed hardware devices do not appear in the namespace and do not
806          * have handles, but we fabricate acpi_devices for them, so we have
807          * to deal with them specially.
808          */
809         if (!handle)
810                 return acpi_root;
811
812         do {
813                 status = acpi_get_parent(handle, &handle);
814                 if (ACPI_FAILURE(status))
815                         return status == AE_NULL_ENTRY ? NULL : acpi_root;
816         } while (acpi_bus_get_device(handle, &device));
817         return device;
818 }
819
820 acpi_status
821 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
822 {
823         acpi_status status;
824         acpi_handle tmp;
825         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
826         union acpi_object *obj;
827
828         status = acpi_get_handle(handle, "_EJD", &tmp);
829         if (ACPI_FAILURE(status))
830                 return status;
831
832         status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
833         if (ACPI_SUCCESS(status)) {
834                 obj = buffer.pointer;
835                 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
836                                          ejd);
837                 kfree(buffer.pointer);
838         }
839         return status;
840 }
841 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
842
843 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
844 {
845         acpi_handle handle = dev->handle;
846         struct acpi_device_wakeup *wakeup = &dev->wakeup;
847         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
848         union acpi_object *package = NULL;
849         union acpi_object *element = NULL;
850         acpi_status status;
851         int err = -ENODATA;
852
853         INIT_LIST_HEAD(&wakeup->resources);
854
855         /* _PRW */
856         status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
857         if (ACPI_FAILURE(status)) {
858                 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
859                                  acpi_format_exception(status));
860                 return err;
861         }
862
863         package = (union acpi_object *)buffer.pointer;
864
865         if (!package || package->package.count < 2)
866                 goto out;
867
868         element = &(package->package.elements[0]);
869         if (!element)
870                 goto out;
871
872         if (element->type == ACPI_TYPE_PACKAGE) {
873                 if ((element->package.count < 2) ||
874                     (element->package.elements[0].type !=
875                      ACPI_TYPE_LOCAL_REFERENCE)
876                     || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
877                         goto out;
878
879                 wakeup->gpe_device =
880                     element->package.elements[0].reference.handle;
881                 wakeup->gpe_number =
882                     (u32) element->package.elements[1].integer.value;
883         } else if (element->type == ACPI_TYPE_INTEGER) {
884                 wakeup->gpe_device = NULL;
885                 wakeup->gpe_number = element->integer.value;
886         } else {
887                 goto out;
888         }
889
890         element = &(package->package.elements[1]);
891         if (element->type != ACPI_TYPE_INTEGER)
892                 goto out;
893
894         wakeup->sleep_state = element->integer.value;
895
896         err = acpi_extract_power_resources(package, 2, &wakeup->resources);
897         if (err)
898                 goto out;
899
900         if (!list_empty(&wakeup->resources)) {
901                 int sleep_state;
902
903                 err = acpi_power_wakeup_list_init(&wakeup->resources,
904                                                   &sleep_state);
905                 if (err) {
906                         acpi_handle_warn(handle, "Retrieving current states "
907                                          "of wakeup power resources failed\n");
908                         acpi_power_resources_list_free(&wakeup->resources);
909                         goto out;
910                 }
911                 if (sleep_state < wakeup->sleep_state) {
912                         acpi_handle_warn(handle, "Overriding _PRW sleep state "
913                                          "(S%d) by S%d from power resources\n",
914                                          (int)wakeup->sleep_state, sleep_state);
915                         wakeup->sleep_state = sleep_state;
916                 }
917         }
918
919  out:
920         kfree(buffer.pointer);
921         return err;
922 }
923
924 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
925 {
926         static const struct acpi_device_id button_device_ids[] = {
927                 {"PNP0C0C", 0},         /* Power button */
928                 {"PNP0C0D", 0},         /* Lid */
929                 {"PNP0C0E", 0},         /* Sleep button */
930                 {"", 0},
931         };
932         struct acpi_device_wakeup *wakeup = &device->wakeup;
933         acpi_status status;
934
935         wakeup->flags.notifier_present = 0;
936
937         /* Power button, Lid switch always enable wakeup */
938         if (!acpi_match_device_ids(device, button_device_ids)) {
939                 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
940                         /* Do not use Lid/sleep button for S5 wakeup */
941                         if (wakeup->sleep_state == ACPI_STATE_S5)
942                                 wakeup->sleep_state = ACPI_STATE_S4;
943                 }
944                 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
945                 device_set_wakeup_capable(&device->dev, true);
946                 return true;
947         }
948
949         status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
950                                          wakeup->gpe_number);
951         return ACPI_SUCCESS(status);
952 }
953
954 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
955 {
956         int err;
957
958         /* Presence of _PRW indicates wake capable */
959         if (!acpi_has_method(device->handle, "_PRW"))
960                 return;
961
962         err = acpi_bus_extract_wakeup_device_power_package(device);
963         if (err) {
964                 dev_err(&device->dev, "Unable to extract wakeup power resources");
965                 return;
966         }
967
968         device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
969         device->wakeup.prepare_count = 0;
970         /*
971          * Call _PSW/_DSW object to disable its ability to wake the sleeping
972          * system for the ACPI device with the _PRW object.
973          * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
974          * So it is necessary to call _DSW object first. Only when it is not
975          * present will the _PSW object used.
976          */
977         err = acpi_device_sleep_wake(device, 0, 0, 0);
978         if (err)
979                 pr_debug("error in _DSW or _PSW evaluation\n");
980 }
981
982 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
983 {
984         struct acpi_device_power_state *ps = &device->power.states[state];
985         char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
986         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
987         acpi_status status;
988
989         INIT_LIST_HEAD(&ps->resources);
990
991         /* Evaluate "_PRx" to get referenced power resources */
992         status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
993         if (ACPI_SUCCESS(status)) {
994                 union acpi_object *package = buffer.pointer;
995
996                 if (buffer.length && package
997                     && package->type == ACPI_TYPE_PACKAGE
998                     && package->package.count)
999                         acpi_extract_power_resources(package, 0, &ps->resources);
1000
1001                 ACPI_FREE(buffer.pointer);
1002         }
1003
1004         /* Evaluate "_PSx" to see if we can do explicit sets */
1005         pathname[2] = 'S';
1006         if (acpi_has_method(device->handle, pathname))
1007                 ps->flags.explicit_set = 1;
1008
1009         /* State is valid if there are means to put the device into it. */
1010         if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1011                 ps->flags.valid = 1;
1012
1013         ps->power = -1;         /* Unknown - driver assigned */
1014         ps->latency = -1;       /* Unknown - driver assigned */
1015 }
1016
1017 static void acpi_bus_get_power_flags(struct acpi_device *device)
1018 {
1019         u32 i;
1020
1021         /* Presence of _PS0|_PR0 indicates 'power manageable' */
1022         if (!acpi_has_method(device->handle, "_PS0") &&
1023             !acpi_has_method(device->handle, "_PR0"))
1024                 return;
1025
1026         device->flags.power_manageable = 1;
1027
1028         /*
1029          * Power Management Flags
1030          */
1031         if (acpi_has_method(device->handle, "_PSC"))
1032                 device->power.flags.explicit_get = 1;
1033
1034         if (acpi_has_method(device->handle, "_IRC"))
1035                 device->power.flags.inrush_current = 1;
1036
1037         if (acpi_has_method(device->handle, "_DSW"))
1038                 device->power.flags.dsw_present = 1;
1039
1040         /*
1041          * Enumerate supported power management states
1042          */
1043         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1044                 acpi_bus_init_power_state(device, i);
1045
1046         INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1047
1048         /* Set the defaults for D0 and D3hot (always supported). */
1049         device->power.states[ACPI_STATE_D0].flags.valid = 1;
1050         device->power.states[ACPI_STATE_D0].power = 100;
1051         device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1052
1053         /*
1054          * Use power resources only if the D0 list of them is populated, because
1055          * some platforms may provide _PR3 only to indicate D3cold support and
1056          * in those cases the power resources list returned by it may be bogus.
1057          */
1058         if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1059                 device->power.flags.power_resources = 1;
1060                 /*
1061                  * D3cold is supported if the D3hot list of power resources is
1062                  * not empty.
1063                  */
1064                 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1065                         device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1066         }
1067
1068         if (acpi_bus_init_power(device))
1069                 device->flags.power_manageable = 0;
1070 }
1071
1072 static void acpi_bus_get_flags(struct acpi_device *device)
1073 {
1074         /* Presence of _STA indicates 'dynamic_status' */
1075         if (acpi_has_method(device->handle, "_STA"))
1076                 device->flags.dynamic_status = 1;
1077
1078         /* Presence of _RMV indicates 'removable' */
1079         if (acpi_has_method(device->handle, "_RMV"))
1080                 device->flags.removable = 1;
1081
1082         /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1083         if (acpi_has_method(device->handle, "_EJD") ||
1084             acpi_has_method(device->handle, "_EJ0"))
1085                 device->flags.ejectable = 1;
1086 }
1087
1088 static void acpi_device_get_busid(struct acpi_device *device)
1089 {
1090         char bus_id[5] = { '?', 0 };
1091         struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1092         int i = 0;
1093
1094         /*
1095          * Bus ID
1096          * ------
1097          * The device's Bus ID is simply the object name.
1098          * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1099          */
1100         if (ACPI_IS_ROOT_DEVICE(device)) {
1101                 strcpy(device->pnp.bus_id, "ACPI");
1102                 return;
1103         }
1104
1105         switch (device->device_type) {
1106         case ACPI_BUS_TYPE_POWER_BUTTON:
1107                 strcpy(device->pnp.bus_id, "PWRF");
1108                 break;
1109         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1110                 strcpy(device->pnp.bus_id, "SLPF");
1111                 break;
1112         case ACPI_BUS_TYPE_ECDT_EC:
1113                 strcpy(device->pnp.bus_id, "ECDT");
1114                 break;
1115         default:
1116                 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1117                 /* Clean up trailing underscores (if any) */
1118                 for (i = 3; i > 1; i--) {
1119                         if (bus_id[i] == '_')
1120                                 bus_id[i] = '\0';
1121                         else
1122                                 break;
1123                 }
1124                 strcpy(device->pnp.bus_id, bus_id);
1125                 break;
1126         }
1127 }
1128
1129 /*
1130  * acpi_ata_match - see if an acpi object is an ATA device
1131  *
1132  * If an acpi object has one of the ACPI ATA methods defined,
1133  * then we can safely call it an ATA device.
1134  */
1135 bool acpi_ata_match(acpi_handle handle)
1136 {
1137         return acpi_has_method(handle, "_GTF") ||
1138                acpi_has_method(handle, "_GTM") ||
1139                acpi_has_method(handle, "_STM") ||
1140                acpi_has_method(handle, "_SDD");
1141 }
1142
1143 /*
1144  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1145  *
1146  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1147  * then we can safely call it an ejectable drive bay
1148  */
1149 bool acpi_bay_match(acpi_handle handle)
1150 {
1151         acpi_handle phandle;
1152
1153         if (!acpi_has_method(handle, "_EJ0"))
1154                 return false;
1155         if (acpi_ata_match(handle))
1156                 return true;
1157         if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1158                 return false;
1159
1160         return acpi_ata_match(phandle);
1161 }
1162
1163 bool acpi_device_is_battery(struct acpi_device *adev)
1164 {
1165         struct acpi_hardware_id *hwid;
1166
1167         list_for_each_entry(hwid, &adev->pnp.ids, list)
1168                 if (!strcmp("PNP0C0A", hwid->id))
1169                         return true;
1170
1171         return false;
1172 }
1173
1174 static bool is_ejectable_bay(struct acpi_device *adev)
1175 {
1176         acpi_handle handle = adev->handle;
1177
1178         if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1179                 return true;
1180
1181         return acpi_bay_match(handle);
1182 }
1183
1184 /*
1185  * acpi_dock_match - see if an acpi object has a _DCK method
1186  */
1187 bool acpi_dock_match(acpi_handle handle)
1188 {
1189         return acpi_has_method(handle, "_DCK");
1190 }
1191
1192 static acpi_status
1193 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1194                           void **return_value)
1195 {
1196         long *cap = context;
1197
1198         if (acpi_has_method(handle, "_BCM") &&
1199             acpi_has_method(handle, "_BCL")) {
1200                 acpi_handle_debug(handle, "Found generic backlight support\n");
1201                 *cap |= ACPI_VIDEO_BACKLIGHT;
1202                 /* We have backlight support, no need to scan further */
1203                 return AE_CTRL_TERMINATE;
1204         }
1205         return 0;
1206 }
1207
1208 /* Returns true if the ACPI object is a video device which can be
1209  * handled by video.ko.
1210  * The device will get a Linux specific CID added in scan.c to
1211  * identify the device as an ACPI graphics device
1212  * Be aware that the graphics device may not be physically present
1213  * Use acpi_video_get_capabilities() to detect general ACPI video
1214  * capabilities of present cards
1215  */
1216 long acpi_is_video_device(acpi_handle handle)
1217 {
1218         long video_caps = 0;
1219
1220         /* Is this device able to support video switching ? */
1221         if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1222                 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1223
1224         /* Is this device able to retrieve a video ROM ? */
1225         if (acpi_has_method(handle, "_ROM"))
1226                 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1227
1228         /* Is this device able to configure which video head to be POSTed ? */
1229         if (acpi_has_method(handle, "_VPO") &&
1230             acpi_has_method(handle, "_GPD") &&
1231             acpi_has_method(handle, "_SPD"))
1232                 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1233
1234         /* Only check for backlight functionality if one of the above hit. */
1235         if (video_caps)
1236                 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1237                                     ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1238                                     &video_caps, NULL);
1239
1240         return video_caps;
1241 }
1242 EXPORT_SYMBOL(acpi_is_video_device);
1243
1244 const char *acpi_device_hid(struct acpi_device *device)
1245 {
1246         struct acpi_hardware_id *hid;
1247
1248         if (list_empty(&device->pnp.ids))
1249                 return dummy_hid;
1250
1251         hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1252         return hid->id;
1253 }
1254 EXPORT_SYMBOL(acpi_device_hid);
1255
1256 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1257 {
1258         struct acpi_hardware_id *id;
1259
1260         id = kmalloc(sizeof(*id), GFP_KERNEL);
1261         if (!id)
1262                 return;
1263
1264         id->id = kstrdup_const(dev_id, GFP_KERNEL);
1265         if (!id->id) {
1266                 kfree(id);
1267                 return;
1268         }
1269
1270         list_add_tail(&id->list, &pnp->ids);
1271         pnp->type.hardware_id = 1;
1272 }
1273
1274 /*
1275  * Old IBM workstations have a DSDT bug wherein the SMBus object
1276  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1277  * prefix.  Work around this.
1278  */
1279 static bool acpi_ibm_smbus_match(acpi_handle handle)
1280 {
1281         char node_name[ACPI_PATH_SEGMENT_LENGTH];
1282         struct acpi_buffer path = { sizeof(node_name), node_name };
1283
1284         if (!dmi_name_in_vendors("IBM"))
1285                 return false;
1286
1287         /* Look for SMBS object */
1288         if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1289             strcmp("SMBS", path.pointer))
1290                 return false;
1291
1292         /* Does it have the necessary (but misnamed) methods? */
1293         if (acpi_has_method(handle, "SBI") &&
1294             acpi_has_method(handle, "SBR") &&
1295             acpi_has_method(handle, "SBW"))
1296                 return true;
1297
1298         return false;
1299 }
1300
1301 static bool acpi_object_is_system_bus(acpi_handle handle)
1302 {
1303         acpi_handle tmp;
1304
1305         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1306             tmp == handle)
1307                 return true;
1308         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1309             tmp == handle)
1310                 return true;
1311
1312         return false;
1313 }
1314
1315 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1316                              int device_type)
1317 {
1318         struct acpi_device_info *info = NULL;
1319         struct acpi_pnp_device_id_list *cid_list;
1320         int i;
1321
1322         switch (device_type) {
1323         case ACPI_BUS_TYPE_DEVICE:
1324                 if (handle == ACPI_ROOT_OBJECT) {
1325                         acpi_add_id(pnp, ACPI_SYSTEM_HID);
1326                         break;
1327                 }
1328
1329                 acpi_get_object_info(handle, &info);
1330                 if (!info) {
1331                         pr_err("%s: Error reading device info\n", __func__);
1332                         return;
1333                 }
1334
1335                 if (info->valid & ACPI_VALID_HID) {
1336                         acpi_add_id(pnp, info->hardware_id.string);
1337                         pnp->type.platform_id = 1;
1338                 }
1339                 if (info->valid & ACPI_VALID_CID) {
1340                         cid_list = &info->compatible_id_list;
1341                         for (i = 0; i < cid_list->count; i++)
1342                                 acpi_add_id(pnp, cid_list->ids[i].string);
1343                 }
1344                 if (info->valid & ACPI_VALID_ADR) {
1345                         pnp->bus_address = info->address;
1346                         pnp->type.bus_address = 1;
1347                 }
1348                 if (info->valid & ACPI_VALID_UID)
1349                         pnp->unique_id = kstrdup(info->unique_id.string,
1350                                                         GFP_KERNEL);
1351                 if (info->valid & ACPI_VALID_CLS)
1352                         acpi_add_id(pnp, info->class_code.string);
1353
1354                 kfree(info);
1355
1356                 /*
1357                  * Some devices don't reliably have _HIDs & _CIDs, so add
1358                  * synthetic HIDs to make sure drivers can find them.
1359                  */
1360                 if (acpi_is_video_device(handle))
1361                         acpi_add_id(pnp, ACPI_VIDEO_HID);
1362                 else if (acpi_bay_match(handle))
1363                         acpi_add_id(pnp, ACPI_BAY_HID);
1364                 else if (acpi_dock_match(handle))
1365                         acpi_add_id(pnp, ACPI_DOCK_HID);
1366                 else if (acpi_ibm_smbus_match(handle))
1367                         acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1368                 else if (list_empty(&pnp->ids) &&
1369                          acpi_object_is_system_bus(handle)) {
1370                         /* \_SB, \_TZ, LNXSYBUS */
1371                         acpi_add_id(pnp, ACPI_BUS_HID);
1372                         strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1373                         strcpy(pnp->device_class, ACPI_BUS_CLASS);
1374                 }
1375
1376                 break;
1377         case ACPI_BUS_TYPE_POWER:
1378                 acpi_add_id(pnp, ACPI_POWER_HID);
1379                 break;
1380         case ACPI_BUS_TYPE_PROCESSOR:
1381                 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1382                 break;
1383         case ACPI_BUS_TYPE_THERMAL:
1384                 acpi_add_id(pnp, ACPI_THERMAL_HID);
1385                 break;
1386         case ACPI_BUS_TYPE_POWER_BUTTON:
1387                 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1388                 break;
1389         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1390                 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1391                 break;
1392         case ACPI_BUS_TYPE_ECDT_EC:
1393                 acpi_add_id(pnp, ACPI_ECDT_HID);
1394                 break;
1395         }
1396 }
1397
1398 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1399 {
1400         struct acpi_hardware_id *id, *tmp;
1401
1402         list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1403                 kfree_const(id->id);
1404                 kfree(id);
1405         }
1406         kfree(pnp->unique_id);
1407 }
1408
1409 /**
1410  * acpi_dma_supported - Check DMA support for the specified device.
1411  * @adev: The pointer to acpi device
1412  *
1413  * Return false if DMA is not supported. Otherwise, return true
1414  */
1415 bool acpi_dma_supported(const struct acpi_device *adev)
1416 {
1417         if (!adev)
1418                 return false;
1419
1420         if (adev->flags.cca_seen)
1421                 return true;
1422
1423         /*
1424         * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1425         * DMA on "Intel platforms".  Presumably that includes all x86 and
1426         * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1427         */
1428         if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1429                 return true;
1430
1431         return false;
1432 }
1433
1434 /**
1435  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1436  * @adev: The pointer to acpi device
1437  *
1438  * Return enum dev_dma_attr.
1439  */
1440 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1441 {
1442         if (!acpi_dma_supported(adev))
1443                 return DEV_DMA_NOT_SUPPORTED;
1444
1445         if (adev->flags.coherent_dma)
1446                 return DEV_DMA_COHERENT;
1447         else
1448                 return DEV_DMA_NON_COHERENT;
1449 }
1450
1451 /**
1452  * acpi_dma_get_range() - Get device DMA parameters.
1453  *
1454  * @dev: device to configure
1455  * @dma_addr: pointer device DMA address result
1456  * @offset: pointer to the DMA offset result
1457  * @size: pointer to DMA range size result
1458  *
1459  * Evaluate DMA regions and return respectively DMA region start, offset
1460  * and size in dma_addr, offset and size on parsing success; it does not
1461  * update the passed in values on failure.
1462  *
1463  * Return 0 on success, < 0 on failure.
1464  */
1465 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1466                        u64 *size)
1467 {
1468         struct acpi_device *adev;
1469         LIST_HEAD(list);
1470         struct resource_entry *rentry;
1471         int ret;
1472         struct device *dma_dev = dev;
1473         u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1474
1475         /*
1476          * Walk the device tree chasing an ACPI companion with a _DMA
1477          * object while we go. Stop if we find a device with an ACPI
1478          * companion containing a _DMA method.
1479          */
1480         do {
1481                 adev = ACPI_COMPANION(dma_dev);
1482                 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1483                         break;
1484
1485                 dma_dev = dma_dev->parent;
1486         } while (dma_dev);
1487
1488         if (!dma_dev)
1489                 return -ENODEV;
1490
1491         if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1492                 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1493                 return -EINVAL;
1494         }
1495
1496         ret = acpi_dev_get_dma_resources(adev, &list);
1497         if (ret > 0) {
1498                 list_for_each_entry(rentry, &list, node) {
1499                         if (dma_offset && rentry->offset != dma_offset) {
1500                                 ret = -EINVAL;
1501                                 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1502                                 goto out;
1503                         }
1504                         dma_offset = rentry->offset;
1505
1506                         /* Take lower and upper limits */
1507                         if (rentry->res->start < dma_start)
1508                                 dma_start = rentry->res->start;
1509                         if (rentry->res->end > dma_end)
1510                                 dma_end = rentry->res->end;
1511                 }
1512
1513                 if (dma_start >= dma_end) {
1514                         ret = -EINVAL;
1515                         dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1516                         goto out;
1517                 }
1518
1519                 *dma_addr = dma_start - dma_offset;
1520                 len = dma_end - dma_start;
1521                 *size = max(len, len + 1);
1522                 *offset = dma_offset;
1523         }
1524  out:
1525         acpi_dev_free_resource_list(&list);
1526
1527         return ret >= 0 ? 0 : ret;
1528 }
1529
1530 #ifdef CONFIG_IOMMU_API
1531 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1532                            struct fwnode_handle *fwnode,
1533                            const struct iommu_ops *ops)
1534 {
1535         int ret = iommu_fwspec_init(dev, fwnode, ops);
1536
1537         if (!ret)
1538                 ret = iommu_fwspec_add_ids(dev, &id, 1);
1539
1540         return ret;
1541 }
1542
1543 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1544 {
1545         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1546
1547         return fwspec ? fwspec->ops : NULL;
1548 }
1549
1550 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1551                                                        const u32 *id_in)
1552 {
1553         int err;
1554         const struct iommu_ops *ops;
1555
1556         /*
1557          * If we already translated the fwspec there is nothing left to do,
1558          * return the iommu_ops.
1559          */
1560         ops = acpi_iommu_fwspec_ops(dev);
1561         if (ops)
1562                 return ops;
1563
1564         err = iort_iommu_configure_id(dev, id_in);
1565         if (err && err != -EPROBE_DEFER)
1566                 err = viot_iommu_configure(dev);
1567
1568         /*
1569          * If we have reason to believe the IOMMU driver missed the initial
1570          * iommu_probe_device() call for dev, replay it to get things in order.
1571          */
1572         if (!err && dev->bus && !device_iommu_mapped(dev))
1573                 err = iommu_probe_device(dev);
1574
1575         /* Ignore all other errors apart from EPROBE_DEFER */
1576         if (err == -EPROBE_DEFER) {
1577                 return ERR_PTR(err);
1578         } else if (err) {
1579                 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1580                 return NULL;
1581         }
1582         return acpi_iommu_fwspec_ops(dev);
1583 }
1584
1585 #else /* !CONFIG_IOMMU_API */
1586
1587 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1588                            struct fwnode_handle *fwnode,
1589                            const struct iommu_ops *ops)
1590 {
1591         return -ENODEV;
1592 }
1593
1594 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1595                                                        const u32 *id_in)
1596 {
1597         return NULL;
1598 }
1599
1600 #endif /* !CONFIG_IOMMU_API */
1601
1602 /**
1603  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1604  * @dev: The pointer to the device
1605  * @attr: device dma attributes
1606  * @input_id: input device id const value pointer
1607  */
1608 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1609                           const u32 *input_id)
1610 {
1611         const struct iommu_ops *iommu;
1612         u64 dma_addr = 0, size = 0;
1613
1614         if (attr == DEV_DMA_NOT_SUPPORTED) {
1615                 set_dma_ops(dev, &dma_dummy_ops);
1616                 return 0;
1617         }
1618
1619         acpi_arch_dma_setup(dev, &dma_addr, &size);
1620
1621         iommu = acpi_iommu_configure_id(dev, input_id);
1622         if (PTR_ERR(iommu) == -EPROBE_DEFER)
1623                 return -EPROBE_DEFER;
1624
1625         arch_setup_dma_ops(dev, dma_addr, size,
1626                                 iommu, attr == DEV_DMA_COHERENT);
1627
1628         return 0;
1629 }
1630 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1631
1632 static void acpi_init_coherency(struct acpi_device *adev)
1633 {
1634         unsigned long long cca = 0;
1635         acpi_status status;
1636         struct acpi_device *parent = adev->parent;
1637
1638         if (parent && parent->flags.cca_seen) {
1639                 /*
1640                  * From ACPI spec, OSPM will ignore _CCA if an ancestor
1641                  * already saw one.
1642                  */
1643                 adev->flags.cca_seen = 1;
1644                 cca = parent->flags.coherent_dma;
1645         } else {
1646                 status = acpi_evaluate_integer(adev->handle, "_CCA",
1647                                                NULL, &cca);
1648                 if (ACPI_SUCCESS(status))
1649                         adev->flags.cca_seen = 1;
1650                 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1651                         /*
1652                          * If architecture does not specify that _CCA is
1653                          * required for DMA-able devices (e.g. x86),
1654                          * we default to _CCA=1.
1655                          */
1656                         cca = 1;
1657                 else
1658                         acpi_handle_debug(adev->handle,
1659                                           "ACPI device is missing _CCA.\n");
1660         }
1661
1662         adev->flags.coherent_dma = cca;
1663 }
1664
1665 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1666 {
1667         bool *is_serial_bus_slave_p = data;
1668
1669         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1670                 return 1;
1671
1672         *is_serial_bus_slave_p = true;
1673
1674          /* no need to do more checking */
1675         return -1;
1676 }
1677
1678 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1679 {
1680         struct acpi_device *parent = device->parent;
1681         static const struct acpi_device_id indirect_io_hosts[] = {
1682                 {"HISI0191", 0},
1683                 {}
1684         };
1685
1686         return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1687 }
1688
1689 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1690 {
1691         struct list_head resource_list;
1692         bool is_serial_bus_slave = false;
1693         static const struct acpi_device_id ignore_serial_bus_ids[] = {
1694         /*
1695          * These devices have multiple I2cSerialBus resources and an i2c-client
1696          * must be instantiated for each, each with its own i2c_device_id.
1697          * Normally we only instantiate an i2c-client for the first resource,
1698          * using the ACPI HID as id. These special cases are handled by the
1699          * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1700          * which i2c_device_id to use for each resource.
1701          */
1702                 {"BSG1160", },
1703                 {"BSG2150", },
1704                 {"INT33FE", },
1705                 {"INT3515", },
1706         /*
1707          * HIDs of device with an UartSerialBusV2 resource for which userspace
1708          * expects a regular tty cdev to be created (instead of the in kernel
1709          * serdev) and which have a kernel driver which expects a platform_dev
1710          * such as the rfkill-gpio driver.
1711          */
1712                 {"BCM4752", },
1713                 {"LNV4752", },
1714                 {}
1715         };
1716
1717         if (acpi_is_indirect_io_slave(device))
1718                 return true;
1719
1720         /* Macs use device properties in lieu of _CRS resources */
1721         if (x86_apple_machine &&
1722             (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1723              fwnode_property_present(&device->fwnode, "i2cAddress") ||
1724              fwnode_property_present(&device->fwnode, "baud")))
1725                 return true;
1726
1727         if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1728                 return false;
1729
1730         INIT_LIST_HEAD(&resource_list);
1731         acpi_dev_get_resources(device, &resource_list,
1732                                acpi_check_serial_bus_slave,
1733                                &is_serial_bus_slave);
1734         acpi_dev_free_resource_list(&resource_list);
1735
1736         return is_serial_bus_slave;
1737 }
1738
1739 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1740                              int type)
1741 {
1742         INIT_LIST_HEAD(&device->pnp.ids);
1743         device->device_type = type;
1744         device->handle = handle;
1745         device->parent = acpi_bus_get_parent(handle);
1746         fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1747         acpi_set_device_status(device, ACPI_STA_DEFAULT);
1748         acpi_device_get_busid(device);
1749         acpi_set_pnp_ids(handle, &device->pnp, type);
1750         acpi_init_properties(device);
1751         acpi_bus_get_flags(device);
1752         device->flags.match_driver = false;
1753         device->flags.initialized = true;
1754         device->flags.enumeration_by_parent =
1755                 acpi_device_enumeration_by_parent(device);
1756         acpi_device_clear_enumerated(device);
1757         device_initialize(&device->dev);
1758         dev_set_uevent_suppress(&device->dev, true);
1759         acpi_init_coherency(device);
1760 }
1761
1762 static void acpi_scan_dep_init(struct acpi_device *adev)
1763 {
1764         struct acpi_dep_data *dep;
1765
1766         list_for_each_entry(dep, &acpi_dep_list, node) {
1767                 if (dep->consumer == adev->handle)
1768                         adev->dep_unmet++;
1769         }
1770 }
1771
1772 void acpi_device_add_finalize(struct acpi_device *device)
1773 {
1774         dev_set_uevent_suppress(&device->dev, false);
1775         kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1776 }
1777
1778 static void acpi_scan_init_status(struct acpi_device *adev)
1779 {
1780         if (acpi_bus_get_status(adev))
1781                 acpi_set_device_status(adev, 0);
1782 }
1783
1784 static int acpi_add_single_object(struct acpi_device **child,
1785                                   acpi_handle handle, int type, bool dep_init)
1786 {
1787         struct acpi_device *device;
1788         bool release_dep_lock = false;
1789         int result;
1790
1791         device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1792         if (!device)
1793                 return -ENOMEM;
1794
1795         acpi_init_device_object(device, handle, type);
1796         /*
1797          * Getting the status is delayed till here so that we can call
1798          * acpi_bus_get_status() and use its quirk handling.  Note that
1799          * this must be done before the get power-/wakeup_dev-flags calls.
1800          */
1801         if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1802                 if (dep_init) {
1803                         mutex_lock(&acpi_dep_list_lock);
1804                         /*
1805                          * Hold the lock until the acpi_tie_acpi_dev() call
1806                          * below to prevent concurrent acpi_scan_clear_dep()
1807                          * from deleting a dependency list entry without
1808                          * updating dep_unmet for the device.
1809                          */
1810                         release_dep_lock = true;
1811                         acpi_scan_dep_init(device);
1812                 }
1813                 acpi_scan_init_status(device);
1814         }
1815
1816         acpi_bus_get_power_flags(device);
1817         acpi_bus_get_wakeup_device_flags(device);
1818
1819         result = acpi_tie_acpi_dev(device);
1820
1821         if (release_dep_lock)
1822                 mutex_unlock(&acpi_dep_list_lock);
1823
1824         if (!result)
1825                 result = __acpi_device_add(device, acpi_device_release);
1826
1827         if (result) {
1828                 acpi_device_release(&device->dev);
1829                 return result;
1830         }
1831
1832         acpi_power_add_remove_device(device, true);
1833         acpi_device_add_finalize(device);
1834
1835         acpi_handle_debug(handle, "Added as %s, parent %s\n",
1836                           dev_name(&device->dev), device->parent ?
1837                                 dev_name(&device->parent->dev) : "(null)");
1838
1839         *child = device;
1840         return 0;
1841 }
1842
1843 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1844                                             void *context)
1845 {
1846         struct resource *res = context;
1847
1848         if (acpi_dev_resource_memory(ares, res))
1849                 return AE_CTRL_TERMINATE;
1850
1851         return AE_OK;
1852 }
1853
1854 static bool acpi_device_should_be_hidden(acpi_handle handle)
1855 {
1856         acpi_status status;
1857         struct resource res;
1858
1859         /* Check if it should ignore the UART device */
1860         if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1861                 return false;
1862
1863         /*
1864          * The UART device described in SPCR table is assumed to have only one
1865          * memory resource present. So we only look for the first one here.
1866          */
1867         status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1868                                      acpi_get_resource_memory, &res);
1869         if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1870                 return false;
1871
1872         acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1873                          &res.start);
1874
1875         return true;
1876 }
1877
1878 bool acpi_device_is_present(const struct acpi_device *adev)
1879 {
1880         return adev->status.present || adev->status.functional;
1881 }
1882
1883 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1884                                        const char *idstr,
1885                                        const struct acpi_device_id **matchid)
1886 {
1887         const struct acpi_device_id *devid;
1888
1889         if (handler->match)
1890                 return handler->match(idstr, matchid);
1891
1892         for (devid = handler->ids; devid->id[0]; devid++)
1893                 if (!strcmp((char *)devid->id, idstr)) {
1894                         if (matchid)
1895                                 *matchid = devid;
1896
1897                         return true;
1898                 }
1899
1900         return false;
1901 }
1902
1903 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1904                                         const struct acpi_device_id **matchid)
1905 {
1906         struct acpi_scan_handler *handler;
1907
1908         list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1909                 if (acpi_scan_handler_matching(handler, idstr, matchid))
1910                         return handler;
1911
1912         return NULL;
1913 }
1914
1915 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1916 {
1917         if (!!hotplug->enabled == !!val)
1918                 return;
1919
1920         mutex_lock(&acpi_scan_lock);
1921
1922         hotplug->enabled = val;
1923
1924         mutex_unlock(&acpi_scan_lock);
1925 }
1926
1927 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1928 {
1929         struct acpi_hardware_id *hwid;
1930
1931         if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1932                 acpi_dock_add(adev);
1933                 return;
1934         }
1935         list_for_each_entry(hwid, &adev->pnp.ids, list) {
1936                 struct acpi_scan_handler *handler;
1937
1938                 handler = acpi_scan_match_handler(hwid->id, NULL);
1939                 if (handler) {
1940                         adev->flags.hotplug_notify = true;
1941                         break;
1942                 }
1943         }
1944 }
1945
1946 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1947 {
1948         struct acpi_handle_list dep_devices;
1949         acpi_status status;
1950         u32 count;
1951         int i;
1952
1953         /*
1954          * Check for _HID here to avoid deferring the enumeration of:
1955          * 1. PCI devices.
1956          * 2. ACPI nodes describing USB ports.
1957          * Still, checking for _HID catches more then just these cases ...
1958          */
1959         if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1960             !acpi_has_method(handle, "_HID"))
1961                 return 0;
1962
1963         status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1964         if (ACPI_FAILURE(status)) {
1965                 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1966                 return 0;
1967         }
1968
1969         for (count = 0, i = 0; i < dep_devices.count; i++) {
1970                 struct acpi_device_info *info;
1971                 struct acpi_dep_data *dep;
1972                 bool skip;
1973
1974                 status = acpi_get_object_info(dep_devices.handles[i], &info);
1975                 if (ACPI_FAILURE(status)) {
1976                         acpi_handle_debug(handle, "Error reading _DEP device info\n");
1977                         continue;
1978                 }
1979
1980                 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1981                 kfree(info);
1982
1983                 if (skip)
1984                         continue;
1985
1986                 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1987                 if (!dep)
1988                         continue;
1989
1990                 count++;
1991
1992                 dep->supplier = dep_devices.handles[i];
1993                 dep->consumer = handle;
1994
1995                 mutex_lock(&acpi_dep_list_lock);
1996                 list_add_tail(&dep->node , &acpi_dep_list);
1997                 mutex_unlock(&acpi_dep_list_lock);
1998         }
1999
2000         return count;
2001 }
2002
2003 static bool acpi_bus_scan_second_pass;
2004
2005 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2006                                       struct acpi_device **adev_p)
2007 {
2008         struct acpi_device *device = NULL;
2009         acpi_object_type acpi_type;
2010         int type;
2011
2012         acpi_bus_get_device(handle, &device);
2013         if (device)
2014                 goto out;
2015
2016         if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2017                 return AE_OK;
2018
2019         switch (acpi_type) {
2020         case ACPI_TYPE_DEVICE:
2021                 if (acpi_device_should_be_hidden(handle))
2022                         return AE_OK;
2023
2024                 /* Bail out if there are dependencies. */
2025                 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2026                         acpi_bus_scan_second_pass = true;
2027                         return AE_CTRL_DEPTH;
2028                 }
2029
2030                 fallthrough;
2031         case ACPI_TYPE_ANY:     /* for ACPI_ROOT_OBJECT */
2032                 type = ACPI_BUS_TYPE_DEVICE;
2033                 break;
2034
2035         case ACPI_TYPE_PROCESSOR:
2036                 type = ACPI_BUS_TYPE_PROCESSOR;
2037                 break;
2038
2039         case ACPI_TYPE_THERMAL:
2040                 type = ACPI_BUS_TYPE_THERMAL;
2041                 break;
2042
2043         case ACPI_TYPE_POWER:
2044                 acpi_add_power_resource(handle);
2045                 fallthrough;
2046         default:
2047                 return AE_OK;
2048         }
2049
2050         /*
2051          * If check_dep is true at this point, the device has no dependencies,
2052          * or the creation of the device object would have been postponed above.
2053          */
2054         acpi_add_single_object(&device, handle, type, !check_dep);
2055         if (!device)
2056                 return AE_CTRL_DEPTH;
2057
2058         acpi_scan_init_hotplug(device);
2059
2060 out:
2061         if (!*adev_p)
2062                 *adev_p = device;
2063
2064         return AE_OK;
2065 }
2066
2067 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2068                                         void *not_used, void **ret_p)
2069 {
2070         return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2071 }
2072
2073 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2074                                         void *not_used, void **ret_p)
2075 {
2076         return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2077 }
2078
2079 static void acpi_default_enumeration(struct acpi_device *device)
2080 {
2081         /*
2082          * Do not enumerate devices with enumeration_by_parent flag set as
2083          * they will be enumerated by their respective parents.
2084          */
2085         if (!device->flags.enumeration_by_parent) {
2086                 acpi_create_platform_device(device, NULL);
2087                 acpi_device_set_enumerated(device);
2088         } else {
2089                 blocking_notifier_call_chain(&acpi_reconfig_chain,
2090                                              ACPI_RECONFIG_DEVICE_ADD, device);
2091         }
2092 }
2093
2094 static const struct acpi_device_id generic_device_ids[] = {
2095         {ACPI_DT_NAMESPACE_HID, },
2096         {"", },
2097 };
2098
2099 static int acpi_generic_device_attach(struct acpi_device *adev,
2100                                       const struct acpi_device_id *not_used)
2101 {
2102         /*
2103          * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2104          * below can be unconditional.
2105          */
2106         if (adev->data.of_compatible)
2107                 acpi_default_enumeration(adev);
2108
2109         return 1;
2110 }
2111
2112 static struct acpi_scan_handler generic_device_handler = {
2113         .ids = generic_device_ids,
2114         .attach = acpi_generic_device_attach,
2115 };
2116
2117 static int acpi_scan_attach_handler(struct acpi_device *device)
2118 {
2119         struct acpi_hardware_id *hwid;
2120         int ret = 0;
2121
2122         list_for_each_entry(hwid, &device->pnp.ids, list) {
2123                 const struct acpi_device_id *devid;
2124                 struct acpi_scan_handler *handler;
2125
2126                 handler = acpi_scan_match_handler(hwid->id, &devid);
2127                 if (handler) {
2128                         if (!handler->attach) {
2129                                 device->pnp.type.platform_id = 0;
2130                                 continue;
2131                         }
2132                         device->handler = handler;
2133                         ret = handler->attach(device, devid);
2134                         if (ret > 0)
2135                                 break;
2136
2137                         device->handler = NULL;
2138                         if (ret < 0)
2139                                 break;
2140                 }
2141         }
2142
2143         return ret;
2144 }
2145
2146 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2147 {
2148         struct acpi_device *child;
2149         bool skip = !first_pass && device->flags.visited;
2150         acpi_handle ejd;
2151         int ret;
2152
2153         if (skip)
2154                 goto ok;
2155
2156         if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2157                 register_dock_dependent_device(device, ejd);
2158
2159         acpi_bus_get_status(device);
2160         /* Skip devices that are not present. */
2161         if (!acpi_device_is_present(device)) {
2162                 device->flags.initialized = false;
2163                 acpi_device_clear_enumerated(device);
2164                 device->flags.power_manageable = 0;
2165                 return;
2166         }
2167         if (device->handler)
2168                 goto ok;
2169
2170         if (!device->flags.initialized) {
2171                 device->flags.power_manageable =
2172                         device->power.states[ACPI_STATE_D0].flags.valid;
2173                 if (acpi_bus_init_power(device))
2174                         device->flags.power_manageable = 0;
2175
2176                 device->flags.initialized = true;
2177         } else if (device->flags.visited) {
2178                 goto ok;
2179         }
2180
2181         ret = acpi_scan_attach_handler(device);
2182         if (ret < 0)
2183                 return;
2184
2185         device->flags.match_driver = true;
2186         if (ret > 0 && !device->flags.enumeration_by_parent) {
2187                 acpi_device_set_enumerated(device);
2188                 goto ok;
2189         }
2190
2191         ret = device_attach(&device->dev);
2192         if (ret < 0)
2193                 return;
2194
2195         if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2196                 acpi_default_enumeration(device);
2197         else
2198                 acpi_device_set_enumerated(device);
2199
2200  ok:
2201         list_for_each_entry(child, &device->children, node)
2202                 acpi_bus_attach(child, first_pass);
2203
2204         if (!skip && device->handler && device->handler->hotplug.notify_online)
2205                 device->handler->hotplug.notify_online(device);
2206 }
2207
2208 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2209 {
2210         struct acpi_device *adev;
2211
2212         adev = acpi_bus_get_acpi_device(dep->consumer);
2213         if (adev) {
2214                 *(struct acpi_device **)data = adev;
2215                 return 1;
2216         }
2217         /* Continue parsing if the device object is not present. */
2218         return 0;
2219 }
2220
2221 struct acpi_scan_clear_dep_work {
2222         struct work_struct work;
2223         struct acpi_device *adev;
2224 };
2225
2226 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2227 {
2228         struct acpi_scan_clear_dep_work *cdw;
2229
2230         cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2231
2232         acpi_scan_lock_acquire();
2233         acpi_bus_attach(cdw->adev, true);
2234         acpi_scan_lock_release();
2235
2236         acpi_dev_put(cdw->adev);
2237         kfree(cdw);
2238 }
2239
2240 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2241 {
2242         struct acpi_scan_clear_dep_work *cdw;
2243
2244         if (adev->dep_unmet)
2245                 return false;
2246
2247         cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2248         if (!cdw)
2249                 return false;
2250
2251         cdw->adev = adev;
2252         INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2253         /*
2254          * Since the work function may block on the lock until the entire
2255          * initial enumeration of devices is complete, put it into the unbound
2256          * workqueue.
2257          */
2258         queue_work(system_unbound_wq, &cdw->work);
2259
2260         return true;
2261 }
2262
2263 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2264 {
2265         struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2266
2267         if (adev) {
2268                 adev->dep_unmet--;
2269                 if (!acpi_scan_clear_dep_queue(adev))
2270                         acpi_dev_put(adev);
2271         }
2272
2273         list_del(&dep->node);
2274         kfree(dep);
2275
2276         return 0;
2277 }
2278
2279 /**
2280  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2281  * @handle:     The ACPI handle of the supplier device
2282  * @callback:   Pointer to the callback function to apply
2283  * @data:       Pointer to some data to pass to the callback
2284  *
2285  * The return value of the callback determines this function's behaviour. If 0
2286  * is returned we continue to iterate over acpi_dep_list. If a positive value
2287  * is returned then the loop is broken but this function returns 0. If a
2288  * negative value is returned by the callback then the loop is broken and that
2289  * value is returned as the final error.
2290  */
2291 static int acpi_walk_dep_device_list(acpi_handle handle,
2292                                 int (*callback)(struct acpi_dep_data *, void *),
2293                                 void *data)
2294 {
2295         struct acpi_dep_data *dep, *tmp;
2296         int ret = 0;
2297
2298         mutex_lock(&acpi_dep_list_lock);
2299         list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2300                 if (dep->supplier == handle) {
2301                         ret = callback(dep, data);
2302                         if (ret)
2303                                 break;
2304                 }
2305         }
2306         mutex_unlock(&acpi_dep_list_lock);
2307
2308         return ret > 0 ? 0 : ret;
2309 }
2310
2311 /**
2312  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2313  * @supplier: Pointer to the supplier &struct acpi_device
2314  *
2315  * Clear dependencies on the given device.
2316  */
2317 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2318 {
2319         acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2320 }
2321 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2322
2323 /**
2324  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2325  * @supplier: Pointer to the dependee device
2326  *
2327  * Returns the first &struct acpi_device which declares itself dependent on
2328  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2329  *
2330  * The caller is responsible for putting the reference to adev when it is no
2331  * longer needed.
2332  */
2333 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2334 {
2335         struct acpi_device *adev = NULL;
2336
2337         acpi_walk_dep_device_list(supplier->handle,
2338                                   acpi_dev_get_first_consumer_dev_cb, &adev);
2339
2340         return adev;
2341 }
2342 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2343
2344 /**
2345  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2346  * @handle: Root of the namespace scope to scan.
2347  *
2348  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2349  * found devices.
2350  *
2351  * If no devices were found, -ENODEV is returned, but it does not mean that
2352  * there has been a real error.  There just have been no suitable ACPI objects
2353  * in the table trunk from which the kernel could create a device and add an
2354  * appropriate driver.
2355  *
2356  * Must be called under acpi_scan_lock.
2357  */
2358 int acpi_bus_scan(acpi_handle handle)
2359 {
2360         struct acpi_device *device = NULL;
2361
2362         acpi_bus_scan_second_pass = false;
2363
2364         /* Pass 1: Avoid enumerating devices with missing dependencies. */
2365
2366         if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2367                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2368                                     acpi_bus_check_add_1, NULL, NULL,
2369                                     (void **)&device);
2370
2371         if (!device)
2372                 return -ENODEV;
2373
2374         acpi_bus_attach(device, true);
2375
2376         if (!acpi_bus_scan_second_pass)
2377                 return 0;
2378
2379         /* Pass 2: Enumerate all of the remaining devices. */
2380
2381         device = NULL;
2382
2383         if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2384                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2385                                     acpi_bus_check_add_2, NULL, NULL,
2386                                     (void **)&device);
2387
2388         acpi_bus_attach(device, false);
2389
2390         return 0;
2391 }
2392 EXPORT_SYMBOL(acpi_bus_scan);
2393
2394 /**
2395  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2396  * @adev: Root of the ACPI namespace scope to walk.
2397  *
2398  * Must be called under acpi_scan_lock.
2399  */
2400 void acpi_bus_trim(struct acpi_device *adev)
2401 {
2402         struct acpi_scan_handler *handler = adev->handler;
2403         struct acpi_device *child;
2404
2405         list_for_each_entry_reverse(child, &adev->children, node)
2406                 acpi_bus_trim(child);
2407
2408         adev->flags.match_driver = false;
2409         if (handler) {
2410                 if (handler->detach)
2411                         handler->detach(adev);
2412
2413                 adev->handler = NULL;
2414         } else {
2415                 device_release_driver(&adev->dev);
2416         }
2417         /*
2418          * Most likely, the device is going away, so put it into D3cold before
2419          * that.
2420          */
2421         acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2422         adev->flags.initialized = false;
2423         acpi_device_clear_enumerated(adev);
2424 }
2425 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2426
2427 int acpi_bus_register_early_device(int type)
2428 {
2429         struct acpi_device *device = NULL;
2430         int result;
2431
2432         result = acpi_add_single_object(&device, NULL, type, false);
2433         if (result)
2434                 return result;
2435
2436         device->flags.match_driver = true;
2437         return device_attach(&device->dev);
2438 }
2439 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2440
2441 static int acpi_bus_scan_fixed(void)
2442 {
2443         int result = 0;
2444
2445         /*
2446          * Enumerate all fixed-feature devices.
2447          */
2448         if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2449                 struct acpi_device *device = NULL;
2450
2451                 result = acpi_add_single_object(&device, NULL,
2452                                                 ACPI_BUS_TYPE_POWER_BUTTON, false);
2453                 if (result)
2454                         return result;
2455
2456                 device->flags.match_driver = true;
2457                 result = device_attach(&device->dev);
2458                 if (result < 0)
2459                         return result;
2460
2461                 device_init_wakeup(&device->dev, true);
2462         }
2463
2464         if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2465                 struct acpi_device *device = NULL;
2466
2467                 result = acpi_add_single_object(&device, NULL,
2468                                                 ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2469                 if (result)
2470                         return result;
2471
2472                 device->flags.match_driver = true;
2473                 result = device_attach(&device->dev);
2474         }
2475
2476         return result < 0 ? result : 0;
2477 }
2478
2479 static void __init acpi_get_spcr_uart_addr(void)
2480 {
2481         acpi_status status;
2482         struct acpi_table_spcr *spcr_ptr;
2483
2484         status = acpi_get_table(ACPI_SIG_SPCR, 0,
2485                                 (struct acpi_table_header **)&spcr_ptr);
2486         if (ACPI_FAILURE(status)) {
2487                 pr_warn("STAO table present, but SPCR is missing\n");
2488                 return;
2489         }
2490
2491         spcr_uart_addr = spcr_ptr->serial_port.address;
2492         acpi_put_table((struct acpi_table_header *)spcr_ptr);
2493 }
2494
2495 static bool acpi_scan_initialized;
2496
2497 int __init acpi_scan_init(void)
2498 {
2499         int result;
2500         acpi_status status;
2501         struct acpi_table_stao *stao_ptr;
2502
2503         acpi_pci_root_init();
2504         acpi_pci_link_init();
2505         acpi_processor_init();
2506         acpi_platform_init();
2507         acpi_lpss_init();
2508         acpi_apd_init();
2509         acpi_cmos_rtc_init();
2510         acpi_container_init();
2511         acpi_memory_hotplug_init();
2512         acpi_watchdog_init();
2513         acpi_pnp_init();
2514         acpi_int340x_thermal_init();
2515         acpi_amba_init();
2516         acpi_init_lpit();
2517
2518         acpi_scan_add_handler(&generic_device_handler);
2519
2520         /*
2521          * If there is STAO table, check whether it needs to ignore the UART
2522          * device in SPCR table.
2523          */
2524         status = acpi_get_table(ACPI_SIG_STAO, 0,
2525                                 (struct acpi_table_header **)&stao_ptr);
2526         if (ACPI_SUCCESS(status)) {
2527                 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2528                         pr_info("STAO Name List not yet supported.\n");
2529
2530                 if (stao_ptr->ignore_uart)
2531                         acpi_get_spcr_uart_addr();
2532
2533                 acpi_put_table((struct acpi_table_header *)stao_ptr);
2534         }
2535
2536         acpi_gpe_apply_masked_gpes();
2537         acpi_update_all_gpes();
2538
2539         /*
2540          * Although we call __add_memory() that is documented to require the
2541          * device_hotplug_lock, it is not necessary here because this is an
2542          * early code when userspace or any other code path cannot trigger
2543          * hotplug/hotunplug operations.
2544          */
2545         mutex_lock(&acpi_scan_lock);
2546         /*
2547          * Enumerate devices in the ACPI namespace.
2548          */
2549         result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2550         if (result)
2551                 goto out;
2552
2553         result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2554         if (result)
2555                 goto out;
2556
2557         /* Fixed feature devices do not exist on HW-reduced platform */
2558         if (!acpi_gbl_reduced_hardware) {
2559                 result = acpi_bus_scan_fixed();
2560                 if (result) {
2561                         acpi_detach_data(acpi_root->handle,
2562                                          acpi_scan_drop_device);
2563                         acpi_device_del(acpi_root);
2564                         acpi_bus_put_acpi_device(acpi_root);
2565                         goto out;
2566                 }
2567         }
2568
2569         acpi_turn_off_unused_power_resources();
2570
2571         acpi_scan_initialized = true;
2572
2573  out:
2574         mutex_unlock(&acpi_scan_lock);
2575         return result;
2576 }
2577
2578 static struct acpi_probe_entry *ape;
2579 static int acpi_probe_count;
2580 static DEFINE_MUTEX(acpi_probe_mutex);
2581
2582 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2583                                   const unsigned long end)
2584 {
2585         if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2586                 if (!ape->probe_subtbl(header, end))
2587                         acpi_probe_count++;
2588
2589         return 0;
2590 }
2591
2592 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2593 {
2594         int count = 0;
2595
2596         if (acpi_disabled)
2597                 return 0;
2598
2599         mutex_lock(&acpi_probe_mutex);
2600         for (ape = ap_head; nr; ape++, nr--) {
2601                 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2602                         acpi_probe_count = 0;
2603                         acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2604                         count += acpi_probe_count;
2605                 } else {
2606                         int res;
2607                         res = acpi_table_parse(ape->id, ape->probe_table);
2608                         if (!res)
2609                                 count++;
2610                 }
2611         }
2612         mutex_unlock(&acpi_probe_mutex);
2613
2614         return count;
2615 }
2616
2617 static void acpi_table_events_fn(struct work_struct *work)
2618 {
2619         acpi_scan_lock_acquire();
2620         acpi_bus_scan(ACPI_ROOT_OBJECT);
2621         acpi_scan_lock_release();
2622
2623         kfree(work);
2624 }
2625
2626 void acpi_scan_table_notify(void)
2627 {
2628         struct work_struct *work;
2629
2630         if (!acpi_scan_initialized)
2631                 return;
2632
2633         work = kmalloc(sizeof(*work), GFP_KERNEL);
2634         if (!work)
2635                 return;
2636
2637         INIT_WORK(work, acpi_table_events_fn);
2638         schedule_work(work);
2639 }
2640
2641 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2642 {
2643         return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2644 }
2645 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2646
2647 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2648 {
2649         return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2650 }
2651 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);