USB: serial: option: add Quectel EM05CN modem
[platform/kernel/linux-starfive.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <linux/perf_event.h>
25 #include <acpi/processor.h>
26 #include <linux/context_tracking.h>
27
28 /*
29  * Include the apic definitions for x86 to have the APIC timer related defines
30  * available also for UP (on SMP it gets magically included via linux/smp.h).
31  * asm/acpi.h is not an option, as it would require more include magic. Also
32  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
33  */
34 #ifdef CONFIG_X86
35 #include <asm/apic.h>
36 #include <asm/cpu.h>
37 #endif
38
39 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40
41 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
42 module_param(max_cstate, uint, 0400);
43 static bool nocst __read_mostly;
44 module_param(nocst, bool, 0400);
45 static bool bm_check_disable __read_mostly;
46 module_param(bm_check_disable, bool, 0400);
47
48 static unsigned int latency_factor __read_mostly = 2;
49 module_param(latency_factor, uint, 0644);
50
51 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52
53 struct cpuidle_driver acpi_idle_driver = {
54         .name =         "acpi_idle",
55         .owner =        THIS_MODULE,
56 };
57
58 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
59 static
60 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61
62 static int disabled_by_idle_boot_param(void)
63 {
64         return boot_option_idle_override == IDLE_POLL ||
65                 boot_option_idle_override == IDLE_HALT;
66 }
67
68 /*
69  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
70  * For now disable this. Probably a bug somewhere else.
71  *
72  * To skip this limit, boot/load with a large max_cstate limit.
73  */
74 static int set_max_cstate(const struct dmi_system_id *id)
75 {
76         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
77                 return 0;
78
79         pr_notice("%s detected - limiting to C%ld max_cstate."
80                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
81                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82
83         max_cstate = (long)id->driver_data;
84
85         return 0;
86 }
87
88 static const struct dmi_system_id processor_power_dmi_table[] = {
89         { set_max_cstate, "Clevo 5600D", {
90           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
91           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
92          (void *)2},
93         { set_max_cstate, "Pavilion zv5000", {
94           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
95           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
96          (void *)1},
97         { set_max_cstate, "Asus L8400B", {
98           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
99           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
100          (void *)1},
101         {},
102 };
103
104
105 /*
106  * Callers should disable interrupts before the call and enable
107  * interrupts after return.
108  */
109 static void __cpuidle acpi_safe_halt(void)
110 {
111         if (!tif_need_resched()) {
112                 safe_halt();
113                 local_irq_disable();
114         }
115 }
116
117 #ifdef ARCH_APICTIMER_STOPS_ON_C3
118
119 /*
120  * Some BIOS implementations switch to C3 in the published C2 state.
121  * This seems to be a common problem on AMD boxen, but other vendors
122  * are affected too. We pick the most conservative approach: we assume
123  * that the local APIC stops in both C2 and C3.
124  */
125 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
126                                    struct acpi_processor_cx *cx)
127 {
128         struct acpi_processor_power *pwr = &pr->power;
129         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130
131         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
132                 return;
133
134         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
135                 type = ACPI_STATE_C1;
136
137         /*
138          * Check, if one of the previous states already marked the lapic
139          * unstable
140          */
141         if (pwr->timer_broadcast_on_state < state)
142                 return;
143
144         if (cx->type >= type)
145                 pr->power.timer_broadcast_on_state = state;
146 }
147
148 static void __lapic_timer_propagate_broadcast(void *arg)
149 {
150         struct acpi_processor *pr = (struct acpi_processor *) arg;
151
152         if (pr->power.timer_broadcast_on_state < INT_MAX)
153                 tick_broadcast_enable();
154         else
155                 tick_broadcast_disable();
156 }
157
158 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159 {
160         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
161                                  (void *)pr, 1);
162 }
163
164 /* Power(C) State timer broadcast control */
165 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
166                                         struct acpi_processor_cx *cx)
167 {
168         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
169 }
170
171 #else
172
173 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
174                                    struct acpi_processor_cx *cstate) { }
175 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
176
177 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
178                                         struct acpi_processor_cx *cx)
179 {
180         return false;
181 }
182
183 #endif
184
185 #if defined(CONFIG_X86)
186 static void tsc_check_state(int state)
187 {
188         switch (boot_cpu_data.x86_vendor) {
189         case X86_VENDOR_HYGON:
190         case X86_VENDOR_AMD:
191         case X86_VENDOR_INTEL:
192         case X86_VENDOR_CENTAUR:
193         case X86_VENDOR_ZHAOXIN:
194                 /*
195                  * AMD Fam10h TSC will tick in all
196                  * C/P/S0/S1 states when this bit is set.
197                  */
198                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
199                         return;
200                 fallthrough;
201         default:
202                 /* TSC could halt in idle, so notify users */
203                 if (state > ACPI_STATE_C1)
204                         mark_tsc_unstable("TSC halts in idle");
205         }
206 }
207 #else
208 static void tsc_check_state(int state) { return; }
209 #endif
210
211 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
212 {
213
214         if (!pr->pblk)
215                 return -ENODEV;
216
217         /* if info is obtained from pblk/fadt, type equals state */
218         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
219         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
220
221 #ifndef CONFIG_HOTPLUG_CPU
222         /*
223          * Check for P_LVL2_UP flag before entering C2 and above on
224          * an SMP system.
225          */
226         if ((num_online_cpus() > 1) &&
227             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
228                 return -ENODEV;
229 #endif
230
231         /* determine C2 and C3 address from pblk */
232         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
233         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
234
235         /* determine latencies from FADT */
236         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
237         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
238
239         /*
240          * FADT specified C2 latency must be less than or equal to
241          * 100 microseconds.
242          */
243         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
244                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
245                                   acpi_gbl_FADT.c2_latency);
246                 /* invalidate C2 */
247                 pr->power.states[ACPI_STATE_C2].address = 0;
248         }
249
250         /*
251          * FADT supplied C3 latency must be less than or equal to
252          * 1000 microseconds.
253          */
254         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
255                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
256                                   acpi_gbl_FADT.c3_latency);
257                 /* invalidate C3 */
258                 pr->power.states[ACPI_STATE_C3].address = 0;
259         }
260
261         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
262                           pr->power.states[ACPI_STATE_C2].address,
263                           pr->power.states[ACPI_STATE_C3].address);
264
265         snprintf(pr->power.states[ACPI_STATE_C2].desc,
266                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267                          pr->power.states[ACPI_STATE_C2].address);
268         snprintf(pr->power.states[ACPI_STATE_C3].desc,
269                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270                          pr->power.states[ACPI_STATE_C3].address);
271
272         return 0;
273 }
274
275 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 {
277         if (!pr->power.states[ACPI_STATE_C1].valid) {
278                 /* set the first C-State to C1 */
279                 /* all processors need to support C1 */
280                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281                 pr->power.states[ACPI_STATE_C1].valid = 1;
282                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283
284                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
285                          ACPI_CX_DESC_LEN, "ACPI HLT");
286         }
287         /* the C0 state only exists as a filler in our array */
288         pr->power.states[ACPI_STATE_C0].valid = 1;
289         return 0;
290 }
291
292 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 {
294         int ret;
295
296         if (nocst)
297                 return -ENODEV;
298
299         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300         if (ret)
301                 return ret;
302
303         if (!pr->power.count)
304                 return -EFAULT;
305
306         pr->flags.has_cst = 1;
307         return 0;
308 }
309
310 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311                                            struct acpi_processor_cx *cx)
312 {
313         static int bm_check_flag = -1;
314         static int bm_control_flag = -1;
315
316
317         if (!cx->address)
318                 return;
319
320         /*
321          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322          * DMA transfers are used by any ISA device to avoid livelock.
323          * Note that we could disable Type-F DMA (as recommended by
324          * the erratum), but this is known to disrupt certain ISA
325          * devices thus we take the conservative approach.
326          */
327         else if (errata.piix4.fdma) {
328                 acpi_handle_debug(pr->handle,
329                                   "C3 not supported on PIIX4 with Type-F DMA\n");
330                 return;
331         }
332
333         /* All the logic here assumes flags.bm_check is same across all CPUs */
334         if (bm_check_flag == -1) {
335                 /* Determine whether bm_check is needed based on CPU  */
336                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337                 bm_check_flag = pr->flags.bm_check;
338                 bm_control_flag = pr->flags.bm_control;
339         } else {
340                 pr->flags.bm_check = bm_check_flag;
341                 pr->flags.bm_control = bm_control_flag;
342         }
343
344         if (pr->flags.bm_check) {
345                 if (!pr->flags.bm_control) {
346                         if (pr->flags.has_cst != 1) {
347                                 /* bus mastering control is necessary */
348                                 acpi_handle_debug(pr->handle,
349                                                   "C3 support requires BM control\n");
350                                 return;
351                         } else {
352                                 /* Here we enter C3 without bus mastering */
353                                 acpi_handle_debug(pr->handle,
354                                                   "C3 support without BM control\n");
355                         }
356                 }
357         } else {
358                 /*
359                  * WBINVD should be set in fadt, for C3 state to be
360                  * supported on when bm_check is not required.
361                  */
362                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363                         acpi_handle_debug(pr->handle,
364                                           "Cache invalidation should work properly"
365                                           " for C3 to be enabled on SMP systems\n");
366                         return;
367                 }
368         }
369
370         /*
371          * Otherwise we've met all of our C3 requirements.
372          * Normalize the C3 latency to expidite policy.  Enable
373          * checking of bus mastering status (bm_check) so we can
374          * use this in our C3 policy
375          */
376         cx->valid = 1;
377
378         /*
379          * On older chipsets, BM_RLD needs to be set
380          * in order for Bus Master activity to wake the
381          * system from C3.  Newer chipsets handle DMA
382          * during C3 automatically and BM_RLD is a NOP.
383          * In either case, the proper way to
384          * handle BM_RLD is to set it and leave it set.
385          */
386         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387
388         return;
389 }
390
391 static int acpi_cst_latency_cmp(const void *a, const void *b)
392 {
393         const struct acpi_processor_cx *x = a, *y = b;
394
395         if (!(x->valid && y->valid))
396                 return 0;
397         if (x->latency > y->latency)
398                 return 1;
399         if (x->latency < y->latency)
400                 return -1;
401         return 0;
402 }
403 static void acpi_cst_latency_swap(void *a, void *b, int n)
404 {
405         struct acpi_processor_cx *x = a, *y = b;
406
407         if (!(x->valid && y->valid))
408                 return;
409         swap(x->latency, y->latency);
410 }
411
412 static int acpi_processor_power_verify(struct acpi_processor *pr)
413 {
414         unsigned int i;
415         unsigned int working = 0;
416         unsigned int last_latency = 0;
417         unsigned int last_type = 0;
418         bool buggy_latency = false;
419
420         pr->power.timer_broadcast_on_state = INT_MAX;
421
422         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423                 struct acpi_processor_cx *cx = &pr->power.states[i];
424
425                 switch (cx->type) {
426                 case ACPI_STATE_C1:
427                         cx->valid = 1;
428                         break;
429
430                 case ACPI_STATE_C2:
431                         if (!cx->address)
432                                 break;
433                         cx->valid = 1;
434                         break;
435
436                 case ACPI_STATE_C3:
437                         acpi_processor_power_verify_c3(pr, cx);
438                         break;
439                 }
440                 if (!cx->valid)
441                         continue;
442                 if (cx->type >= last_type && cx->latency < last_latency)
443                         buggy_latency = true;
444                 last_latency = cx->latency;
445                 last_type = cx->type;
446
447                 lapic_timer_check_state(i, pr, cx);
448                 tsc_check_state(cx->type);
449                 working++;
450         }
451
452         if (buggy_latency) {
453                 pr_notice("FW issue: working around C-state latencies out of order\n");
454                 sort(&pr->power.states[1], max_cstate,
455                      sizeof(struct acpi_processor_cx),
456                      acpi_cst_latency_cmp,
457                      acpi_cst_latency_swap);
458         }
459
460         lapic_timer_propagate_broadcast(pr);
461
462         return (working);
463 }
464
465 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
466 {
467         unsigned int i;
468         int result;
469
470
471         /* NOTE: the idle thread may not be running while calling
472          * this function */
473
474         /* Zero initialize all the C-states info. */
475         memset(pr->power.states, 0, sizeof(pr->power.states));
476
477         result = acpi_processor_get_power_info_cst(pr);
478         if (result == -ENODEV)
479                 result = acpi_processor_get_power_info_fadt(pr);
480
481         if (result)
482                 return result;
483
484         acpi_processor_get_power_info_default(pr);
485
486         pr->power.count = acpi_processor_power_verify(pr);
487
488         /*
489          * if one state of type C2 or C3 is available, mark this
490          * CPU as being "idle manageable"
491          */
492         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
493                 if (pr->power.states[i].valid) {
494                         pr->power.count = i;
495                         pr->flags.power = 1;
496                 }
497         }
498
499         return 0;
500 }
501
502 /**
503  * acpi_idle_bm_check - checks if bus master activity was detected
504  */
505 static int acpi_idle_bm_check(void)
506 {
507         u32 bm_status = 0;
508
509         if (bm_check_disable)
510                 return 0;
511
512         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
513         if (bm_status)
514                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
515         /*
516          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
517          * the true state of bus mastering activity; forcing us to
518          * manually check the BMIDEA bit of each IDE channel.
519          */
520         else if (errata.piix4.bmisx) {
521                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
522                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
523                         bm_status = 1;
524         }
525         return bm_status;
526 }
527
528 static void wait_for_freeze(void)
529 {
530 #ifdef  CONFIG_X86
531         /* No delay is needed if we are in guest */
532         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
533                 return;
534         /*
535          * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
536          * not this code.  Assume that any Intel systems using this
537          * are ancient and may need the dummy wait.  This also assumes
538          * that the motivating chipset issue was Intel-only.
539          */
540         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
541                 return;
542 #endif
543         /*
544          * Dummy wait op - must do something useless after P_LVL2 read
545          * because chipsets cannot guarantee that STPCLK# signal gets
546          * asserted in time to freeze execution properly
547          *
548          * This workaround has been in place since the original ACPI
549          * implementation was merged, circa 2002.
550          *
551          * If a profile is pointing to this instruction, please first
552          * consider moving your system to a more modern idle
553          * mechanism.
554          */
555         inl(acpi_gbl_FADT.xpm_timer_block.address);
556 }
557
558 /**
559  * acpi_idle_do_entry - enter idle state using the appropriate method
560  * @cx: cstate data
561  *
562  * Caller disables interrupt before call and enables interrupt after return.
563  */
564 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
565 {
566         perf_lopwr_cb(true);
567
568         if (cx->entry_method == ACPI_CSTATE_FFH) {
569                 /* Call into architectural FFH based C-state */
570                 acpi_processor_ffh_cstate_enter(cx);
571         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
572                 acpi_safe_halt();
573         } else {
574                 /* IO port based C-state */
575                 inb(cx->address);
576                 wait_for_freeze();
577         }
578
579         perf_lopwr_cb(false);
580 }
581
582 /**
583  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
584  * @dev: the target CPU
585  * @index: the index of suggested state
586  */
587 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
588 {
589         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
590
591         ACPI_FLUSH_CPU_CACHE();
592
593         while (1) {
594
595                 if (cx->entry_method == ACPI_CSTATE_HALT)
596                         safe_halt();
597                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
598                         inb(cx->address);
599                         wait_for_freeze();
600                 } else
601                         return -ENODEV;
602
603 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
604                 cond_wakeup_cpu0();
605 #endif
606         }
607
608         /* Never reached */
609         return 0;
610 }
611
612 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
613 {
614         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
615                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
616 }
617
618 static int c3_cpu_count;
619 static DEFINE_RAW_SPINLOCK(c3_lock);
620
621 /**
622  * acpi_idle_enter_bm - enters C3 with proper BM handling
623  * @drv: cpuidle driver
624  * @pr: Target processor
625  * @cx: Target state context
626  * @index: index of target state
627  */
628 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
629                                struct acpi_processor *pr,
630                                struct acpi_processor_cx *cx,
631                                int index)
632 {
633         static struct acpi_processor_cx safe_cx = {
634                 .entry_method = ACPI_CSTATE_HALT,
635         };
636
637         /*
638          * disable bus master
639          * bm_check implies we need ARB_DIS
640          * bm_control implies whether we can do ARB_DIS
641          *
642          * That leaves a case where bm_check is set and bm_control is not set.
643          * In that case we cannot do much, we enter C3 without doing anything.
644          */
645         bool dis_bm = pr->flags.bm_control;
646
647         /* If we can skip BM, demote to a safe state. */
648         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
649                 dis_bm = false;
650                 index = drv->safe_state_index;
651                 if (index >= 0) {
652                         cx = this_cpu_read(acpi_cstate[index]);
653                 } else {
654                         cx = &safe_cx;
655                         index = -EBUSY;
656                 }
657         }
658
659         if (dis_bm) {
660                 raw_spin_lock(&c3_lock);
661                 c3_cpu_count++;
662                 /* Disable bus master arbitration when all CPUs are in C3 */
663                 if (c3_cpu_count == num_online_cpus())
664                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
665                 raw_spin_unlock(&c3_lock);
666         }
667
668         ct_idle_enter();
669
670         acpi_idle_do_entry(cx);
671
672         ct_idle_exit();
673
674         /* Re-enable bus master arbitration */
675         if (dis_bm) {
676                 raw_spin_lock(&c3_lock);
677                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
678                 c3_cpu_count--;
679                 raw_spin_unlock(&c3_lock);
680         }
681
682         return index;
683 }
684
685 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
686                            struct cpuidle_driver *drv, int index)
687 {
688         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
689         struct acpi_processor *pr;
690
691         pr = __this_cpu_read(processors);
692         if (unlikely(!pr))
693                 return -EINVAL;
694
695         if (cx->type != ACPI_STATE_C1) {
696                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
697                         return acpi_idle_enter_bm(drv, pr, cx, index);
698
699                 /* C2 to C1 demotion. */
700                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
701                         index = ACPI_IDLE_STATE_START;
702                         cx = per_cpu(acpi_cstate[index], dev->cpu);
703                 }
704         }
705
706         if (cx->type == ACPI_STATE_C3)
707                 ACPI_FLUSH_CPU_CACHE();
708
709         acpi_idle_do_entry(cx);
710
711         return index;
712 }
713
714 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
715                                   struct cpuidle_driver *drv, int index)
716 {
717         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
718
719         if (cx->type == ACPI_STATE_C3) {
720                 struct acpi_processor *pr = __this_cpu_read(processors);
721
722                 if (unlikely(!pr))
723                         return 0;
724
725                 if (pr->flags.bm_check) {
726                         u8 bm_sts_skip = cx->bm_sts_skip;
727
728                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
729                         cx->bm_sts_skip = 1;
730                         acpi_idle_enter_bm(drv, pr, cx, index);
731                         cx->bm_sts_skip = bm_sts_skip;
732
733                         return 0;
734                 } else {
735                         ACPI_FLUSH_CPU_CACHE();
736                 }
737         }
738         acpi_idle_do_entry(cx);
739
740         return 0;
741 }
742
743 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
744                                            struct cpuidle_device *dev)
745 {
746         int i, count = ACPI_IDLE_STATE_START;
747         struct acpi_processor_cx *cx;
748         struct cpuidle_state *state;
749
750         if (max_cstate == 0)
751                 max_cstate = 1;
752
753         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
754                 state = &acpi_idle_driver.states[count];
755                 cx = &pr->power.states[i];
756
757                 if (!cx->valid)
758                         continue;
759
760                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
761
762                 if (lapic_timer_needs_broadcast(pr, cx))
763                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
764
765                 if (cx->type == ACPI_STATE_C3) {
766                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
767                         if (pr->flags.bm_check)
768                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
769                 }
770
771                 count++;
772                 if (count == CPUIDLE_STATE_MAX)
773                         break;
774         }
775
776         if (!count)
777                 return -EINVAL;
778
779         return 0;
780 }
781
782 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
783 {
784         int i, count;
785         struct acpi_processor_cx *cx;
786         struct cpuidle_state *state;
787         struct cpuidle_driver *drv = &acpi_idle_driver;
788
789         if (max_cstate == 0)
790                 max_cstate = 1;
791
792         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
793                 cpuidle_poll_state_init(drv);
794                 count = 1;
795         } else {
796                 count = 0;
797         }
798
799         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
800                 cx = &pr->power.states[i];
801
802                 if (!cx->valid)
803                         continue;
804
805                 state = &drv->states[count];
806                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
807                 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
808                 state->exit_latency = cx->latency;
809                 state->target_residency = cx->latency * latency_factor;
810                 state->enter = acpi_idle_enter;
811
812                 state->flags = 0;
813                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
814                     cx->type == ACPI_STATE_C3) {
815                         state->enter_dead = acpi_idle_play_dead;
816                         if (cx->type != ACPI_STATE_C3)
817                                 drv->safe_state_index = count;
818                 }
819                 /*
820                  * Halt-induced C1 is not good for ->enter_s2idle, because it
821                  * re-enables interrupts on exit.  Moreover, C1 is generally not
822                  * particularly interesting from the suspend-to-idle angle, so
823                  * avoid C1 and the situations in which we may need to fall back
824                  * to it altogether.
825                  */
826                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
827                         state->enter_s2idle = acpi_idle_enter_s2idle;
828
829                 count++;
830                 if (count == CPUIDLE_STATE_MAX)
831                         break;
832         }
833
834         drv->state_count = count;
835
836         if (!count)
837                 return -EINVAL;
838
839         return 0;
840 }
841
842 static inline void acpi_processor_cstate_first_run_checks(void)
843 {
844         static int first_run;
845
846         if (first_run)
847                 return;
848         dmi_check_system(processor_power_dmi_table);
849         max_cstate = acpi_processor_cstate_check(max_cstate);
850         if (max_cstate < ACPI_C_STATES_MAX)
851                 pr_notice("processor limited to max C-state %d\n", max_cstate);
852
853         first_run++;
854
855         if (nocst)
856                 return;
857
858         acpi_processor_claim_cst_control();
859 }
860 #else
861
862 static inline int disabled_by_idle_boot_param(void) { return 0; }
863 static inline void acpi_processor_cstate_first_run_checks(void) { }
864 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
865 {
866         return -ENODEV;
867 }
868
869 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
870                                            struct cpuidle_device *dev)
871 {
872         return -EINVAL;
873 }
874
875 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
876 {
877         return -EINVAL;
878 }
879
880 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
881
882 struct acpi_lpi_states_array {
883         unsigned int size;
884         unsigned int composite_states_size;
885         struct acpi_lpi_state *entries;
886         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
887 };
888
889 static int obj_get_integer(union acpi_object *obj, u32 *value)
890 {
891         if (obj->type != ACPI_TYPE_INTEGER)
892                 return -EINVAL;
893
894         *value = obj->integer.value;
895         return 0;
896 }
897
898 static int acpi_processor_evaluate_lpi(acpi_handle handle,
899                                        struct acpi_lpi_states_array *info)
900 {
901         acpi_status status;
902         int ret = 0;
903         int pkg_count, state_idx = 1, loop;
904         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
905         union acpi_object *lpi_data;
906         struct acpi_lpi_state *lpi_state;
907
908         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
909         if (ACPI_FAILURE(status)) {
910                 acpi_handle_debug(handle, "No _LPI, giving up\n");
911                 return -ENODEV;
912         }
913
914         lpi_data = buffer.pointer;
915
916         /* There must be at least 4 elements = 3 elements + 1 package */
917         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
918             lpi_data->package.count < 4) {
919                 pr_debug("not enough elements in _LPI\n");
920                 ret = -ENODATA;
921                 goto end;
922         }
923
924         pkg_count = lpi_data->package.elements[2].integer.value;
925
926         /* Validate number of power states. */
927         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
928                 pr_debug("count given by _LPI is not valid\n");
929                 ret = -ENODATA;
930                 goto end;
931         }
932
933         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
934         if (!lpi_state) {
935                 ret = -ENOMEM;
936                 goto end;
937         }
938
939         info->size = pkg_count;
940         info->entries = lpi_state;
941
942         /* LPI States start at index 3 */
943         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
944                 union acpi_object *element, *pkg_elem, *obj;
945
946                 element = &lpi_data->package.elements[loop];
947                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
948                         continue;
949
950                 pkg_elem = element->package.elements;
951
952                 obj = pkg_elem + 6;
953                 if (obj->type == ACPI_TYPE_BUFFER) {
954                         struct acpi_power_register *reg;
955
956                         reg = (struct acpi_power_register *)obj->buffer.pointer;
957                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
958                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
959                                 continue;
960
961                         lpi_state->address = reg->address;
962                         lpi_state->entry_method =
963                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
964                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
965                 } else if (obj->type == ACPI_TYPE_INTEGER) {
966                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
967                         lpi_state->address = obj->integer.value;
968                 } else {
969                         continue;
970                 }
971
972                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
973
974                 obj = pkg_elem + 9;
975                 if (obj->type == ACPI_TYPE_STRING)
976                         strscpy(lpi_state->desc, obj->string.pointer,
977                                 ACPI_CX_DESC_LEN);
978
979                 lpi_state->index = state_idx;
980                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
981                         pr_debug("No min. residency found, assuming 10 us\n");
982                         lpi_state->min_residency = 10;
983                 }
984
985                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
986                         pr_debug("No wakeup residency found, assuming 10 us\n");
987                         lpi_state->wake_latency = 10;
988                 }
989
990                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
991                         lpi_state->flags = 0;
992
993                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
994                         lpi_state->arch_flags = 0;
995
996                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
997                         lpi_state->res_cnt_freq = 1;
998
999                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1000                         lpi_state->enable_parent_state = 0;
1001         }
1002
1003         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1004 end:
1005         kfree(buffer.pointer);
1006         return ret;
1007 }
1008
1009 /*
1010  * flat_state_cnt - the number of composite LPI states after the process of flattening
1011  */
1012 static int flat_state_cnt;
1013
1014 /**
1015  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1016  *
1017  * @local: local LPI state
1018  * @parent: parent LPI state
1019  * @result: composite LPI state
1020  */
1021 static bool combine_lpi_states(struct acpi_lpi_state *local,
1022                                struct acpi_lpi_state *parent,
1023                                struct acpi_lpi_state *result)
1024 {
1025         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1026                 if (!parent->address) /* 0 means autopromotable */
1027                         return false;
1028                 result->address = local->address + parent->address;
1029         } else {
1030                 result->address = parent->address;
1031         }
1032
1033         result->min_residency = max(local->min_residency, parent->min_residency);
1034         result->wake_latency = local->wake_latency + parent->wake_latency;
1035         result->enable_parent_state = parent->enable_parent_state;
1036         result->entry_method = local->entry_method;
1037
1038         result->flags = parent->flags;
1039         result->arch_flags = parent->arch_flags;
1040         result->index = parent->index;
1041
1042         strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1043         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1044         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1045         return true;
1046 }
1047
1048 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1049
1050 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1051                                   struct acpi_lpi_state *t)
1052 {
1053         curr_level->composite_states[curr_level->composite_states_size++] = t;
1054 }
1055
1056 static int flatten_lpi_states(struct acpi_processor *pr,
1057                               struct acpi_lpi_states_array *curr_level,
1058                               struct acpi_lpi_states_array *prev_level)
1059 {
1060         int i, j, state_count = curr_level->size;
1061         struct acpi_lpi_state *p, *t = curr_level->entries;
1062
1063         curr_level->composite_states_size = 0;
1064         for (j = 0; j < state_count; j++, t++) {
1065                 struct acpi_lpi_state *flpi;
1066
1067                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1068                         continue;
1069
1070                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1071                         pr_warn("Limiting number of LPI states to max (%d)\n",
1072                                 ACPI_PROCESSOR_MAX_POWER);
1073                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1074                         break;
1075                 }
1076
1077                 flpi = &pr->power.lpi_states[flat_state_cnt];
1078
1079                 if (!prev_level) { /* leaf/processor node */
1080                         memcpy(flpi, t, sizeof(*t));
1081                         stash_composite_state(curr_level, flpi);
1082                         flat_state_cnt++;
1083                         continue;
1084                 }
1085
1086                 for (i = 0; i < prev_level->composite_states_size; i++) {
1087                         p = prev_level->composite_states[i];
1088                         if (t->index <= p->enable_parent_state &&
1089                             combine_lpi_states(p, t, flpi)) {
1090                                 stash_composite_state(curr_level, flpi);
1091                                 flat_state_cnt++;
1092                                 flpi++;
1093                         }
1094                 }
1095         }
1096
1097         kfree(curr_level->entries);
1098         return 0;
1099 }
1100
1101 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1102 {
1103         return -EOPNOTSUPP;
1104 }
1105
1106 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1107 {
1108         int ret, i;
1109         acpi_status status;
1110         acpi_handle handle = pr->handle, pr_ahandle;
1111         struct acpi_device *d = NULL;
1112         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1113
1114         /* make sure our architecture has support */
1115         ret = acpi_processor_ffh_lpi_probe(pr->id);
1116         if (ret == -EOPNOTSUPP)
1117                 return ret;
1118
1119         if (!osc_pc_lpi_support_confirmed)
1120                 return -EOPNOTSUPP;
1121
1122         if (!acpi_has_method(handle, "_LPI"))
1123                 return -EINVAL;
1124
1125         flat_state_cnt = 0;
1126         prev = &info[0];
1127         curr = &info[1];
1128         handle = pr->handle;
1129         ret = acpi_processor_evaluate_lpi(handle, prev);
1130         if (ret)
1131                 return ret;
1132         flatten_lpi_states(pr, prev, NULL);
1133
1134         status = acpi_get_parent(handle, &pr_ahandle);
1135         while (ACPI_SUCCESS(status)) {
1136                 d = acpi_fetch_acpi_dev(pr_ahandle);
1137                 if (!d)
1138                         break;
1139
1140                 handle = pr_ahandle;
1141
1142                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1143                         break;
1144
1145                 /* can be optional ? */
1146                 if (!acpi_has_method(handle, "_LPI"))
1147                         break;
1148
1149                 ret = acpi_processor_evaluate_lpi(handle, curr);
1150                 if (ret)
1151                         break;
1152
1153                 /* flatten all the LPI states in this level of hierarchy */
1154                 flatten_lpi_states(pr, curr, prev);
1155
1156                 tmp = prev, prev = curr, curr = tmp;
1157
1158                 status = acpi_get_parent(handle, &pr_ahandle);
1159         }
1160
1161         pr->power.count = flat_state_cnt;
1162         /* reset the index after flattening */
1163         for (i = 0; i < pr->power.count; i++)
1164                 pr->power.lpi_states[i].index = i;
1165
1166         /* Tell driver that _LPI is supported. */
1167         pr->flags.has_lpi = 1;
1168         pr->flags.power = 1;
1169
1170         return 0;
1171 }
1172
1173 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1174 {
1175         return -ENODEV;
1176 }
1177
1178 /**
1179  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1180  * @dev: the target CPU
1181  * @drv: cpuidle driver containing cpuidle state info
1182  * @index: index of target state
1183  *
1184  * Return: 0 for success or negative value for error
1185  */
1186 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1187                                struct cpuidle_driver *drv, int index)
1188 {
1189         struct acpi_processor *pr;
1190         struct acpi_lpi_state *lpi;
1191
1192         pr = __this_cpu_read(processors);
1193
1194         if (unlikely(!pr))
1195                 return -EINVAL;
1196
1197         lpi = &pr->power.lpi_states[index];
1198         if (lpi->entry_method == ACPI_CSTATE_FFH)
1199                 return acpi_processor_ffh_lpi_enter(lpi);
1200
1201         return -EINVAL;
1202 }
1203
1204 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1205 {
1206         int i;
1207         struct acpi_lpi_state *lpi;
1208         struct cpuidle_state *state;
1209         struct cpuidle_driver *drv = &acpi_idle_driver;
1210
1211         if (!pr->flags.has_lpi)
1212                 return -EOPNOTSUPP;
1213
1214         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1215                 lpi = &pr->power.lpi_states[i];
1216
1217                 state = &drv->states[i];
1218                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1219                 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1220                 state->exit_latency = lpi->wake_latency;
1221                 state->target_residency = lpi->min_residency;
1222                 if (lpi->arch_flags)
1223                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1224                 state->enter = acpi_idle_lpi_enter;
1225                 drv->safe_state_index = i;
1226         }
1227
1228         drv->state_count = i;
1229
1230         return 0;
1231 }
1232
1233 /**
1234  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1235  * global state data i.e. idle routines
1236  *
1237  * @pr: the ACPI processor
1238  */
1239 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1240 {
1241         int i;
1242         struct cpuidle_driver *drv = &acpi_idle_driver;
1243
1244         if (!pr->flags.power_setup_done || !pr->flags.power)
1245                 return -EINVAL;
1246
1247         drv->safe_state_index = -1;
1248         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1249                 drv->states[i].name[0] = '\0';
1250                 drv->states[i].desc[0] = '\0';
1251         }
1252
1253         if (pr->flags.has_lpi)
1254                 return acpi_processor_setup_lpi_states(pr);
1255
1256         return acpi_processor_setup_cstates(pr);
1257 }
1258
1259 /**
1260  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1261  * device i.e. per-cpu data
1262  *
1263  * @pr: the ACPI processor
1264  * @dev : the cpuidle device
1265  */
1266 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1267                                             struct cpuidle_device *dev)
1268 {
1269         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1270                 return -EINVAL;
1271
1272         dev->cpu = pr->id;
1273         if (pr->flags.has_lpi)
1274                 return acpi_processor_ffh_lpi_probe(pr->id);
1275
1276         return acpi_processor_setup_cpuidle_cx(pr, dev);
1277 }
1278
1279 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1280 {
1281         int ret;
1282
1283         ret = acpi_processor_get_lpi_info(pr);
1284         if (ret)
1285                 ret = acpi_processor_get_cstate_info(pr);
1286
1287         return ret;
1288 }
1289
1290 int acpi_processor_hotplug(struct acpi_processor *pr)
1291 {
1292         int ret = 0;
1293         struct cpuidle_device *dev;
1294
1295         if (disabled_by_idle_boot_param())
1296                 return 0;
1297
1298         if (!pr->flags.power_setup_done)
1299                 return -ENODEV;
1300
1301         dev = per_cpu(acpi_cpuidle_device, pr->id);
1302         cpuidle_pause_and_lock();
1303         cpuidle_disable_device(dev);
1304         ret = acpi_processor_get_power_info(pr);
1305         if (!ret && pr->flags.power) {
1306                 acpi_processor_setup_cpuidle_dev(pr, dev);
1307                 ret = cpuidle_enable_device(dev);
1308         }
1309         cpuidle_resume_and_unlock();
1310
1311         return ret;
1312 }
1313
1314 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1315 {
1316         int cpu;
1317         struct acpi_processor *_pr;
1318         struct cpuidle_device *dev;
1319
1320         if (disabled_by_idle_boot_param())
1321                 return 0;
1322
1323         if (!pr->flags.power_setup_done)
1324                 return -ENODEV;
1325
1326         /*
1327          * FIXME:  Design the ACPI notification to make it once per
1328          * system instead of once per-cpu.  This condition is a hack
1329          * to make the code that updates C-States be called once.
1330          */
1331
1332         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1333
1334                 /* Protect against cpu-hotplug */
1335                 cpus_read_lock();
1336                 cpuidle_pause_and_lock();
1337
1338                 /* Disable all cpuidle devices */
1339                 for_each_online_cpu(cpu) {
1340                         _pr = per_cpu(processors, cpu);
1341                         if (!_pr || !_pr->flags.power_setup_done)
1342                                 continue;
1343                         dev = per_cpu(acpi_cpuidle_device, cpu);
1344                         cpuidle_disable_device(dev);
1345                 }
1346
1347                 /* Populate Updated C-state information */
1348                 acpi_processor_get_power_info(pr);
1349                 acpi_processor_setup_cpuidle_states(pr);
1350
1351                 /* Enable all cpuidle devices */
1352                 for_each_online_cpu(cpu) {
1353                         _pr = per_cpu(processors, cpu);
1354                         if (!_pr || !_pr->flags.power_setup_done)
1355                                 continue;
1356                         acpi_processor_get_power_info(_pr);
1357                         if (_pr->flags.power) {
1358                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1359                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1360                                 cpuidle_enable_device(dev);
1361                         }
1362                 }
1363                 cpuidle_resume_and_unlock();
1364                 cpus_read_unlock();
1365         }
1366
1367         return 0;
1368 }
1369
1370 static int acpi_processor_registered;
1371
1372 int acpi_processor_power_init(struct acpi_processor *pr)
1373 {
1374         int retval;
1375         struct cpuidle_device *dev;
1376
1377         if (disabled_by_idle_boot_param())
1378                 return 0;
1379
1380         acpi_processor_cstate_first_run_checks();
1381
1382         if (!acpi_processor_get_power_info(pr))
1383                 pr->flags.power_setup_done = 1;
1384
1385         /*
1386          * Install the idle handler if processor power management is supported.
1387          * Note that we use previously set idle handler will be used on
1388          * platforms that only support C1.
1389          */
1390         if (pr->flags.power) {
1391                 /* Register acpi_idle_driver if not already registered */
1392                 if (!acpi_processor_registered) {
1393                         acpi_processor_setup_cpuidle_states(pr);
1394                         retval = cpuidle_register_driver(&acpi_idle_driver);
1395                         if (retval)
1396                                 return retval;
1397                         pr_debug("%s registered with cpuidle\n",
1398                                  acpi_idle_driver.name);
1399                 }
1400
1401                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1402                 if (!dev)
1403                         return -ENOMEM;
1404                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1405
1406                 acpi_processor_setup_cpuidle_dev(pr, dev);
1407
1408                 /* Register per-cpu cpuidle_device. Cpuidle driver
1409                  * must already be registered before registering device
1410                  */
1411                 retval = cpuidle_register_device(dev);
1412                 if (retval) {
1413                         if (acpi_processor_registered == 0)
1414                                 cpuidle_unregister_driver(&acpi_idle_driver);
1415                         return retval;
1416                 }
1417                 acpi_processor_registered++;
1418         }
1419         return 0;
1420 }
1421
1422 int acpi_processor_power_exit(struct acpi_processor *pr)
1423 {
1424         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1425
1426         if (disabled_by_idle_boot_param())
1427                 return 0;
1428
1429         if (pr->flags.power) {
1430                 cpuidle_unregister_device(dev);
1431                 acpi_processor_registered--;
1432                 if (acpi_processor_registered == 0)
1433                         cpuidle_unregister_driver(&acpi_idle_driver);
1434         }
1435
1436         pr->flags.power_setup_done = 0;
1437         return 0;
1438 }