Merge branch 'CR_2650_PWM_hal.feng' into 'jh7110-5.15.y-devel'
[platform/kernel/linux-starfive.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <acpi/processor.h>
24
25 /*
26  * Include the apic definitions for x86 to have the APIC timer related defines
27  * available also for UP (on SMP it gets magically included via linux/smp.h).
28  * asm/acpi.h is not an option, as it would require more include magic. Also
29  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
30  */
31 #ifdef CONFIG_X86
32 #include <asm/apic.h>
33 #include <asm/cpu.h>
34 #endif
35
36 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
37
38 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
39 module_param(max_cstate, uint, 0000);
40 static unsigned int nocst __read_mostly;
41 module_param(nocst, uint, 0000);
42 static int bm_check_disable __read_mostly;
43 module_param(bm_check_disable, uint, 0000);
44
45 static unsigned int latency_factor __read_mostly = 2;
46 module_param(latency_factor, uint, 0644);
47
48 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
49
50 struct cpuidle_driver acpi_idle_driver = {
51         .name =         "acpi_idle",
52         .owner =        THIS_MODULE,
53 };
54
55 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
56 static
57 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
58
59 static int disabled_by_idle_boot_param(void)
60 {
61         return boot_option_idle_override == IDLE_POLL ||
62                 boot_option_idle_override == IDLE_HALT;
63 }
64
65 /*
66  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
67  * For now disable this. Probably a bug somewhere else.
68  *
69  * To skip this limit, boot/load with a large max_cstate limit.
70  */
71 static int set_max_cstate(const struct dmi_system_id *id)
72 {
73         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
74                 return 0;
75
76         pr_notice("%s detected - limiting to C%ld max_cstate."
77                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
78                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
79
80         max_cstate = (long)id->driver_data;
81
82         return 0;
83 }
84
85 static const struct dmi_system_id processor_power_dmi_table[] = {
86         { set_max_cstate, "Clevo 5600D", {
87           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
88           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
89          (void *)2},
90         { set_max_cstate, "Pavilion zv5000", {
91           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
92           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
93          (void *)1},
94         { set_max_cstate, "Asus L8400B", {
95           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
96           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
97          (void *)1},
98         {},
99 };
100
101
102 /*
103  * Callers should disable interrupts before the call and enable
104  * interrupts after return.
105  */
106 static void __cpuidle acpi_safe_halt(void)
107 {
108         if (!tif_need_resched()) {
109                 safe_halt();
110                 local_irq_disable();
111         }
112 }
113
114 #ifdef ARCH_APICTIMER_STOPS_ON_C3
115
116 /*
117  * Some BIOS implementations switch to C3 in the published C2 state.
118  * This seems to be a common problem on AMD boxen, but other vendors
119  * are affected too. We pick the most conservative approach: we assume
120  * that the local APIC stops in both C2 and C3.
121  */
122 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
123                                    struct acpi_processor_cx *cx)
124 {
125         struct acpi_processor_power *pwr = &pr->power;
126         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
127
128         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
129                 return;
130
131         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
132                 type = ACPI_STATE_C1;
133
134         /*
135          * Check, if one of the previous states already marked the lapic
136          * unstable
137          */
138         if (pwr->timer_broadcast_on_state < state)
139                 return;
140
141         if (cx->type >= type)
142                 pr->power.timer_broadcast_on_state = state;
143 }
144
145 static void __lapic_timer_propagate_broadcast(void *arg)
146 {
147         struct acpi_processor *pr = (struct acpi_processor *) arg;
148
149         if (pr->power.timer_broadcast_on_state < INT_MAX)
150                 tick_broadcast_enable();
151         else
152                 tick_broadcast_disable();
153 }
154
155 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
156 {
157         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
158                                  (void *)pr, 1);
159 }
160
161 /* Power(C) State timer broadcast control */
162 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
163                                         struct acpi_processor_cx *cx)
164 {
165         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
166 }
167
168 #else
169
170 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
171                                    struct acpi_processor_cx *cstate) { }
172 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
173
174 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
175                                         struct acpi_processor_cx *cx)
176 {
177         return false;
178 }
179
180 #endif
181
182 #if defined(CONFIG_X86)
183 static void tsc_check_state(int state)
184 {
185         switch (boot_cpu_data.x86_vendor) {
186         case X86_VENDOR_HYGON:
187         case X86_VENDOR_AMD:
188         case X86_VENDOR_INTEL:
189         case X86_VENDOR_CENTAUR:
190         case X86_VENDOR_ZHAOXIN:
191                 /*
192                  * AMD Fam10h TSC will tick in all
193                  * C/P/S0/S1 states when this bit is set.
194                  */
195                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
196                         return;
197                 fallthrough;
198         default:
199                 /* TSC could halt in idle, so notify users */
200                 if (state > ACPI_STATE_C1)
201                         mark_tsc_unstable("TSC halts in idle");
202         }
203 }
204 #else
205 static void tsc_check_state(int state) { return; }
206 #endif
207
208 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
209 {
210
211         if (!pr->pblk)
212                 return -ENODEV;
213
214         /* if info is obtained from pblk/fadt, type equals state */
215         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
216         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
217
218 #ifndef CONFIG_HOTPLUG_CPU
219         /*
220          * Check for P_LVL2_UP flag before entering C2 and above on
221          * an SMP system.
222          */
223         if ((num_online_cpus() > 1) &&
224             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
225                 return -ENODEV;
226 #endif
227
228         /* determine C2 and C3 address from pblk */
229         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
230         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
231
232         /* determine latencies from FADT */
233         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
234         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
235
236         /*
237          * FADT specified C2 latency must be less than or equal to
238          * 100 microseconds.
239          */
240         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
241                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
242                                   acpi_gbl_FADT.c2_latency);
243                 /* invalidate C2 */
244                 pr->power.states[ACPI_STATE_C2].address = 0;
245         }
246
247         /*
248          * FADT supplied C3 latency must be less than or equal to
249          * 1000 microseconds.
250          */
251         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
252                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
253                                   acpi_gbl_FADT.c3_latency);
254                 /* invalidate C3 */
255                 pr->power.states[ACPI_STATE_C3].address = 0;
256         }
257
258         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
259                           pr->power.states[ACPI_STATE_C2].address,
260                           pr->power.states[ACPI_STATE_C3].address);
261
262         snprintf(pr->power.states[ACPI_STATE_C2].desc,
263                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
264                          pr->power.states[ACPI_STATE_C2].address);
265         snprintf(pr->power.states[ACPI_STATE_C3].desc,
266                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
267                          pr->power.states[ACPI_STATE_C3].address);
268
269         return 0;
270 }
271
272 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
273 {
274         if (!pr->power.states[ACPI_STATE_C1].valid) {
275                 /* set the first C-State to C1 */
276                 /* all processors need to support C1 */
277                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
278                 pr->power.states[ACPI_STATE_C1].valid = 1;
279                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
280
281                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
282                          ACPI_CX_DESC_LEN, "ACPI HLT");
283         }
284         /* the C0 state only exists as a filler in our array */
285         pr->power.states[ACPI_STATE_C0].valid = 1;
286         return 0;
287 }
288
289 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
290 {
291         int ret;
292
293         if (nocst)
294                 return -ENODEV;
295
296         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
297         if (ret)
298                 return ret;
299
300         if (!pr->power.count)
301                 return -EFAULT;
302
303         pr->flags.has_cst = 1;
304         return 0;
305 }
306
307 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
308                                            struct acpi_processor_cx *cx)
309 {
310         static int bm_check_flag = -1;
311         static int bm_control_flag = -1;
312
313
314         if (!cx->address)
315                 return;
316
317         /*
318          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
319          * DMA transfers are used by any ISA device to avoid livelock.
320          * Note that we could disable Type-F DMA (as recommended by
321          * the erratum), but this is known to disrupt certain ISA
322          * devices thus we take the conservative approach.
323          */
324         else if (errata.piix4.fdma) {
325                 acpi_handle_debug(pr->handle,
326                                   "C3 not supported on PIIX4 with Type-F DMA\n");
327                 return;
328         }
329
330         /* All the logic here assumes flags.bm_check is same across all CPUs */
331         if (bm_check_flag == -1) {
332                 /* Determine whether bm_check is needed based on CPU  */
333                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
334                 bm_check_flag = pr->flags.bm_check;
335                 bm_control_flag = pr->flags.bm_control;
336         } else {
337                 pr->flags.bm_check = bm_check_flag;
338                 pr->flags.bm_control = bm_control_flag;
339         }
340
341         if (pr->flags.bm_check) {
342                 if (!pr->flags.bm_control) {
343                         if (pr->flags.has_cst != 1) {
344                                 /* bus mastering control is necessary */
345                                 acpi_handle_debug(pr->handle,
346                                                   "C3 support requires BM control\n");
347                                 return;
348                         } else {
349                                 /* Here we enter C3 without bus mastering */
350                                 acpi_handle_debug(pr->handle,
351                                                   "C3 support without BM control\n");
352                         }
353                 }
354         } else {
355                 /*
356                  * WBINVD should be set in fadt, for C3 state to be
357                  * supported on when bm_check is not required.
358                  */
359                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
360                         acpi_handle_debug(pr->handle,
361                                           "Cache invalidation should work properly"
362                                           " for C3 to be enabled on SMP systems\n");
363                         return;
364                 }
365         }
366
367         /*
368          * Otherwise we've met all of our C3 requirements.
369          * Normalize the C3 latency to expidite policy.  Enable
370          * checking of bus mastering status (bm_check) so we can
371          * use this in our C3 policy
372          */
373         cx->valid = 1;
374
375         /*
376          * On older chipsets, BM_RLD needs to be set
377          * in order for Bus Master activity to wake the
378          * system from C3.  Newer chipsets handle DMA
379          * during C3 automatically and BM_RLD is a NOP.
380          * In either case, the proper way to
381          * handle BM_RLD is to set it and leave it set.
382          */
383         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
384
385         return;
386 }
387
388 static int acpi_cst_latency_cmp(const void *a, const void *b)
389 {
390         const struct acpi_processor_cx *x = a, *y = b;
391
392         if (!(x->valid && y->valid))
393                 return 0;
394         if (x->latency > y->latency)
395                 return 1;
396         if (x->latency < y->latency)
397                 return -1;
398         return 0;
399 }
400 static void acpi_cst_latency_swap(void *a, void *b, int n)
401 {
402         struct acpi_processor_cx *x = a, *y = b;
403         u32 tmp;
404
405         if (!(x->valid && y->valid))
406                 return;
407         tmp = x->latency;
408         x->latency = y->latency;
409         y->latency = tmp;
410 }
411
412 static int acpi_processor_power_verify(struct acpi_processor *pr)
413 {
414         unsigned int i;
415         unsigned int working = 0;
416         unsigned int last_latency = 0;
417         unsigned int last_type = 0;
418         bool buggy_latency = false;
419
420         pr->power.timer_broadcast_on_state = INT_MAX;
421
422         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423                 struct acpi_processor_cx *cx = &pr->power.states[i];
424
425                 switch (cx->type) {
426                 case ACPI_STATE_C1:
427                         cx->valid = 1;
428                         break;
429
430                 case ACPI_STATE_C2:
431                         if (!cx->address)
432                                 break;
433                         cx->valid = 1;
434                         break;
435
436                 case ACPI_STATE_C3:
437                         acpi_processor_power_verify_c3(pr, cx);
438                         break;
439                 }
440                 if (!cx->valid)
441                         continue;
442                 if (cx->type >= last_type && cx->latency < last_latency)
443                         buggy_latency = true;
444                 last_latency = cx->latency;
445                 last_type = cx->type;
446
447                 lapic_timer_check_state(i, pr, cx);
448                 tsc_check_state(cx->type);
449                 working++;
450         }
451
452         if (buggy_latency) {
453                 pr_notice("FW issue: working around C-state latencies out of order\n");
454                 sort(&pr->power.states[1], max_cstate,
455                      sizeof(struct acpi_processor_cx),
456                      acpi_cst_latency_cmp,
457                      acpi_cst_latency_swap);
458         }
459
460         lapic_timer_propagate_broadcast(pr);
461
462         return (working);
463 }
464
465 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
466 {
467         unsigned int i;
468         int result;
469
470
471         /* NOTE: the idle thread may not be running while calling
472          * this function */
473
474         /* Zero initialize all the C-states info. */
475         memset(pr->power.states, 0, sizeof(pr->power.states));
476
477         result = acpi_processor_get_power_info_cst(pr);
478         if (result == -ENODEV)
479                 result = acpi_processor_get_power_info_fadt(pr);
480
481         if (result)
482                 return result;
483
484         acpi_processor_get_power_info_default(pr);
485
486         pr->power.count = acpi_processor_power_verify(pr);
487
488         /*
489          * if one state of type C2 or C3 is available, mark this
490          * CPU as being "idle manageable"
491          */
492         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
493                 if (pr->power.states[i].valid) {
494                         pr->power.count = i;
495                         pr->flags.power = 1;
496                 }
497         }
498
499         return 0;
500 }
501
502 /**
503  * acpi_idle_bm_check - checks if bus master activity was detected
504  */
505 static int acpi_idle_bm_check(void)
506 {
507         u32 bm_status = 0;
508
509         if (bm_check_disable)
510                 return 0;
511
512         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
513         if (bm_status)
514                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
515         /*
516          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
517          * the true state of bus mastering activity; forcing us to
518          * manually check the BMIDEA bit of each IDE channel.
519          */
520         else if (errata.piix4.bmisx) {
521                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
522                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
523                         bm_status = 1;
524         }
525         return bm_status;
526 }
527
528 static void wait_for_freeze(void)
529 {
530 #ifdef  CONFIG_X86
531         /* No delay is needed if we are in guest */
532         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
533                 return;
534 #endif
535         /* Dummy wait op - must do something useless after P_LVL2 read
536            because chipsets cannot guarantee that STPCLK# signal
537            gets asserted in time to freeze execution properly. */
538         inl(acpi_gbl_FADT.xpm_timer_block.address);
539 }
540
541 /**
542  * acpi_idle_do_entry - enter idle state using the appropriate method
543  * @cx: cstate data
544  *
545  * Caller disables interrupt before call and enables interrupt after return.
546  */
547 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
548 {
549         if (cx->entry_method == ACPI_CSTATE_FFH) {
550                 /* Call into architectural FFH based C-state */
551                 acpi_processor_ffh_cstate_enter(cx);
552         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
553                 acpi_safe_halt();
554         } else {
555                 /* IO port based C-state */
556                 inb(cx->address);
557                 wait_for_freeze();
558         }
559 }
560
561 /**
562  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
563  * @dev: the target CPU
564  * @index: the index of suggested state
565  */
566 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
567 {
568         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
569
570         ACPI_FLUSH_CPU_CACHE();
571
572         while (1) {
573
574                 if (cx->entry_method == ACPI_CSTATE_HALT)
575                         safe_halt();
576                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
577                         inb(cx->address);
578                         wait_for_freeze();
579                 } else
580                         return -ENODEV;
581
582 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
583                 cond_wakeup_cpu0();
584 #endif
585         }
586
587         /* Never reached */
588         return 0;
589 }
590
591 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
592 {
593         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
594                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
595 }
596
597 static int c3_cpu_count;
598 static DEFINE_RAW_SPINLOCK(c3_lock);
599
600 /**
601  * acpi_idle_enter_bm - enters C3 with proper BM handling
602  * @drv: cpuidle driver
603  * @pr: Target processor
604  * @cx: Target state context
605  * @index: index of target state
606  */
607 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
608                                struct acpi_processor *pr,
609                                struct acpi_processor_cx *cx,
610                                int index)
611 {
612         static struct acpi_processor_cx safe_cx = {
613                 .entry_method = ACPI_CSTATE_HALT,
614         };
615
616         /*
617          * disable bus master
618          * bm_check implies we need ARB_DIS
619          * bm_control implies whether we can do ARB_DIS
620          *
621          * That leaves a case where bm_check is set and bm_control is not set.
622          * In that case we cannot do much, we enter C3 without doing anything.
623          */
624         bool dis_bm = pr->flags.bm_control;
625
626         /* If we can skip BM, demote to a safe state. */
627         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
628                 dis_bm = false;
629                 index = drv->safe_state_index;
630                 if (index >= 0) {
631                         cx = this_cpu_read(acpi_cstate[index]);
632                 } else {
633                         cx = &safe_cx;
634                         index = -EBUSY;
635                 }
636         }
637
638         if (dis_bm) {
639                 raw_spin_lock(&c3_lock);
640                 c3_cpu_count++;
641                 /* Disable bus master arbitration when all CPUs are in C3 */
642                 if (c3_cpu_count == num_online_cpus())
643                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
644                 raw_spin_unlock(&c3_lock);
645         }
646
647         rcu_idle_enter();
648
649         acpi_idle_do_entry(cx);
650
651         rcu_idle_exit();
652
653         /* Re-enable bus master arbitration */
654         if (dis_bm) {
655                 raw_spin_lock(&c3_lock);
656                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
657                 c3_cpu_count--;
658                 raw_spin_unlock(&c3_lock);
659         }
660
661         return index;
662 }
663
664 static int acpi_idle_enter(struct cpuidle_device *dev,
665                            struct cpuidle_driver *drv, int index)
666 {
667         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
668         struct acpi_processor *pr;
669
670         pr = __this_cpu_read(processors);
671         if (unlikely(!pr))
672                 return -EINVAL;
673
674         if (cx->type != ACPI_STATE_C1) {
675                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
676                         return acpi_idle_enter_bm(drv, pr, cx, index);
677
678                 /* C2 to C1 demotion. */
679                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
680                         index = ACPI_IDLE_STATE_START;
681                         cx = per_cpu(acpi_cstate[index], dev->cpu);
682                 }
683         }
684
685         if (cx->type == ACPI_STATE_C3)
686                 ACPI_FLUSH_CPU_CACHE();
687
688         acpi_idle_do_entry(cx);
689
690         return index;
691 }
692
693 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
694                                   struct cpuidle_driver *drv, int index)
695 {
696         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
697
698         if (cx->type == ACPI_STATE_C3) {
699                 struct acpi_processor *pr = __this_cpu_read(processors);
700
701                 if (unlikely(!pr))
702                         return 0;
703
704                 if (pr->flags.bm_check) {
705                         u8 bm_sts_skip = cx->bm_sts_skip;
706
707                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
708                         cx->bm_sts_skip = 1;
709                         acpi_idle_enter_bm(drv, pr, cx, index);
710                         cx->bm_sts_skip = bm_sts_skip;
711
712                         return 0;
713                 } else {
714                         ACPI_FLUSH_CPU_CACHE();
715                 }
716         }
717         acpi_idle_do_entry(cx);
718
719         return 0;
720 }
721
722 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
723                                            struct cpuidle_device *dev)
724 {
725         int i, count = ACPI_IDLE_STATE_START;
726         struct acpi_processor_cx *cx;
727         struct cpuidle_state *state;
728
729         if (max_cstate == 0)
730                 max_cstate = 1;
731
732         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
733                 state = &acpi_idle_driver.states[count];
734                 cx = &pr->power.states[i];
735
736                 if (!cx->valid)
737                         continue;
738
739                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
740
741                 if (lapic_timer_needs_broadcast(pr, cx))
742                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
743
744                 if (cx->type == ACPI_STATE_C3) {
745                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
746                         if (pr->flags.bm_check)
747                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
748                 }
749
750                 count++;
751                 if (count == CPUIDLE_STATE_MAX)
752                         break;
753         }
754
755         if (!count)
756                 return -EINVAL;
757
758         return 0;
759 }
760
761 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
762 {
763         int i, count;
764         struct acpi_processor_cx *cx;
765         struct cpuidle_state *state;
766         struct cpuidle_driver *drv = &acpi_idle_driver;
767
768         if (max_cstate == 0)
769                 max_cstate = 1;
770
771         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
772                 cpuidle_poll_state_init(drv);
773                 count = 1;
774         } else {
775                 count = 0;
776         }
777
778         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
779                 cx = &pr->power.states[i];
780
781                 if (!cx->valid)
782                         continue;
783
784                 state = &drv->states[count];
785                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
786                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
787                 state->exit_latency = cx->latency;
788                 state->target_residency = cx->latency * latency_factor;
789                 state->enter = acpi_idle_enter;
790
791                 state->flags = 0;
792                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
793                         state->enter_dead = acpi_idle_play_dead;
794                         drv->safe_state_index = count;
795                 }
796                 /*
797                  * Halt-induced C1 is not good for ->enter_s2idle, because it
798                  * re-enables interrupts on exit.  Moreover, C1 is generally not
799                  * particularly interesting from the suspend-to-idle angle, so
800                  * avoid C1 and the situations in which we may need to fall back
801                  * to it altogether.
802                  */
803                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
804                         state->enter_s2idle = acpi_idle_enter_s2idle;
805
806                 count++;
807                 if (count == CPUIDLE_STATE_MAX)
808                         break;
809         }
810
811         drv->state_count = count;
812
813         if (!count)
814                 return -EINVAL;
815
816         return 0;
817 }
818
819 static inline void acpi_processor_cstate_first_run_checks(void)
820 {
821         static int first_run;
822
823         if (first_run)
824                 return;
825         dmi_check_system(processor_power_dmi_table);
826         max_cstate = acpi_processor_cstate_check(max_cstate);
827         if (max_cstate < ACPI_C_STATES_MAX)
828                 pr_notice("processor limited to max C-state %d\n", max_cstate);
829
830         first_run++;
831
832         if (nocst)
833                 return;
834
835         acpi_processor_claim_cst_control();
836 }
837 #else
838
839 static inline int disabled_by_idle_boot_param(void) { return 0; }
840 static inline void acpi_processor_cstate_first_run_checks(void) { }
841 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
842 {
843         return -ENODEV;
844 }
845
846 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
847                                            struct cpuidle_device *dev)
848 {
849         return -EINVAL;
850 }
851
852 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
853 {
854         return -EINVAL;
855 }
856
857 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
858
859 struct acpi_lpi_states_array {
860         unsigned int size;
861         unsigned int composite_states_size;
862         struct acpi_lpi_state *entries;
863         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
864 };
865
866 static int obj_get_integer(union acpi_object *obj, u32 *value)
867 {
868         if (obj->type != ACPI_TYPE_INTEGER)
869                 return -EINVAL;
870
871         *value = obj->integer.value;
872         return 0;
873 }
874
875 static int acpi_processor_evaluate_lpi(acpi_handle handle,
876                                        struct acpi_lpi_states_array *info)
877 {
878         acpi_status status;
879         int ret = 0;
880         int pkg_count, state_idx = 1, loop;
881         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
882         union acpi_object *lpi_data;
883         struct acpi_lpi_state *lpi_state;
884
885         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
886         if (ACPI_FAILURE(status)) {
887                 acpi_handle_debug(handle, "No _LPI, giving up\n");
888                 return -ENODEV;
889         }
890
891         lpi_data = buffer.pointer;
892
893         /* There must be at least 4 elements = 3 elements + 1 package */
894         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
895             lpi_data->package.count < 4) {
896                 pr_debug("not enough elements in _LPI\n");
897                 ret = -ENODATA;
898                 goto end;
899         }
900
901         pkg_count = lpi_data->package.elements[2].integer.value;
902
903         /* Validate number of power states. */
904         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
905                 pr_debug("count given by _LPI is not valid\n");
906                 ret = -ENODATA;
907                 goto end;
908         }
909
910         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
911         if (!lpi_state) {
912                 ret = -ENOMEM;
913                 goto end;
914         }
915
916         info->size = pkg_count;
917         info->entries = lpi_state;
918
919         /* LPI States start at index 3 */
920         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
921                 union acpi_object *element, *pkg_elem, *obj;
922
923                 element = &lpi_data->package.elements[loop];
924                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
925                         continue;
926
927                 pkg_elem = element->package.elements;
928
929                 obj = pkg_elem + 6;
930                 if (obj->type == ACPI_TYPE_BUFFER) {
931                         struct acpi_power_register *reg;
932
933                         reg = (struct acpi_power_register *)obj->buffer.pointer;
934                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
935                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
936                                 continue;
937
938                         lpi_state->address = reg->address;
939                         lpi_state->entry_method =
940                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
941                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
942                 } else if (obj->type == ACPI_TYPE_INTEGER) {
943                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
944                         lpi_state->address = obj->integer.value;
945                 } else {
946                         continue;
947                 }
948
949                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
950
951                 obj = pkg_elem + 9;
952                 if (obj->type == ACPI_TYPE_STRING)
953                         strlcpy(lpi_state->desc, obj->string.pointer,
954                                 ACPI_CX_DESC_LEN);
955
956                 lpi_state->index = state_idx;
957                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
958                         pr_debug("No min. residency found, assuming 10 us\n");
959                         lpi_state->min_residency = 10;
960                 }
961
962                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
963                         pr_debug("No wakeup residency found, assuming 10 us\n");
964                         lpi_state->wake_latency = 10;
965                 }
966
967                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
968                         lpi_state->flags = 0;
969
970                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
971                         lpi_state->arch_flags = 0;
972
973                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
974                         lpi_state->res_cnt_freq = 1;
975
976                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
977                         lpi_state->enable_parent_state = 0;
978         }
979
980         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
981 end:
982         kfree(buffer.pointer);
983         return ret;
984 }
985
986 /*
987  * flat_state_cnt - the number of composite LPI states after the process of flattening
988  */
989 static int flat_state_cnt;
990
991 /**
992  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
993  *
994  * @local: local LPI state
995  * @parent: parent LPI state
996  * @result: composite LPI state
997  */
998 static bool combine_lpi_states(struct acpi_lpi_state *local,
999                                struct acpi_lpi_state *parent,
1000                                struct acpi_lpi_state *result)
1001 {
1002         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1003                 if (!parent->address) /* 0 means autopromotable */
1004                         return false;
1005                 result->address = local->address + parent->address;
1006         } else {
1007                 result->address = parent->address;
1008         }
1009
1010         result->min_residency = max(local->min_residency, parent->min_residency);
1011         result->wake_latency = local->wake_latency + parent->wake_latency;
1012         result->enable_parent_state = parent->enable_parent_state;
1013         result->entry_method = local->entry_method;
1014
1015         result->flags = parent->flags;
1016         result->arch_flags = parent->arch_flags;
1017         result->index = parent->index;
1018
1019         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1020         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1021         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1022         return true;
1023 }
1024
1025 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1026
1027 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1028                                   struct acpi_lpi_state *t)
1029 {
1030         curr_level->composite_states[curr_level->composite_states_size++] = t;
1031 }
1032
1033 static int flatten_lpi_states(struct acpi_processor *pr,
1034                               struct acpi_lpi_states_array *curr_level,
1035                               struct acpi_lpi_states_array *prev_level)
1036 {
1037         int i, j, state_count = curr_level->size;
1038         struct acpi_lpi_state *p, *t = curr_level->entries;
1039
1040         curr_level->composite_states_size = 0;
1041         for (j = 0; j < state_count; j++, t++) {
1042                 struct acpi_lpi_state *flpi;
1043
1044                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1045                         continue;
1046
1047                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1048                         pr_warn("Limiting number of LPI states to max (%d)\n",
1049                                 ACPI_PROCESSOR_MAX_POWER);
1050                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1051                         break;
1052                 }
1053
1054                 flpi = &pr->power.lpi_states[flat_state_cnt];
1055
1056                 if (!prev_level) { /* leaf/processor node */
1057                         memcpy(flpi, t, sizeof(*t));
1058                         stash_composite_state(curr_level, flpi);
1059                         flat_state_cnt++;
1060                         continue;
1061                 }
1062
1063                 for (i = 0; i < prev_level->composite_states_size; i++) {
1064                         p = prev_level->composite_states[i];
1065                         if (t->index <= p->enable_parent_state &&
1066                             combine_lpi_states(p, t, flpi)) {
1067                                 stash_composite_state(curr_level, flpi);
1068                                 flat_state_cnt++;
1069                                 flpi++;
1070                         }
1071                 }
1072         }
1073
1074         kfree(curr_level->entries);
1075         return 0;
1076 }
1077
1078 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1079 {
1080         int ret, i;
1081         acpi_status status;
1082         acpi_handle handle = pr->handle, pr_ahandle;
1083         struct acpi_device *d = NULL;
1084         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1085
1086         if (!osc_pc_lpi_support_confirmed)
1087                 return -EOPNOTSUPP;
1088
1089         if (!acpi_has_method(handle, "_LPI"))
1090                 return -EINVAL;
1091
1092         flat_state_cnt = 0;
1093         prev = &info[0];
1094         curr = &info[1];
1095         handle = pr->handle;
1096         ret = acpi_processor_evaluate_lpi(handle, prev);
1097         if (ret)
1098                 return ret;
1099         flatten_lpi_states(pr, prev, NULL);
1100
1101         status = acpi_get_parent(handle, &pr_ahandle);
1102         while (ACPI_SUCCESS(status)) {
1103                 acpi_bus_get_device(pr_ahandle, &d);
1104                 handle = pr_ahandle;
1105
1106                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1107                         break;
1108
1109                 /* can be optional ? */
1110                 if (!acpi_has_method(handle, "_LPI"))
1111                         break;
1112
1113                 ret = acpi_processor_evaluate_lpi(handle, curr);
1114                 if (ret)
1115                         break;
1116
1117                 /* flatten all the LPI states in this level of hierarchy */
1118                 flatten_lpi_states(pr, curr, prev);
1119
1120                 tmp = prev, prev = curr, curr = tmp;
1121
1122                 status = acpi_get_parent(handle, &pr_ahandle);
1123         }
1124
1125         pr->power.count = flat_state_cnt;
1126         /* reset the index after flattening */
1127         for (i = 0; i < pr->power.count; i++)
1128                 pr->power.lpi_states[i].index = i;
1129
1130         /* Tell driver that _LPI is supported. */
1131         pr->flags.has_lpi = 1;
1132         pr->flags.power = 1;
1133
1134         return 0;
1135 }
1136
1137 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1138 {
1139         return -ENODEV;
1140 }
1141
1142 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1143 {
1144         return -ENODEV;
1145 }
1146
1147 /**
1148  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1149  * @dev: the target CPU
1150  * @drv: cpuidle driver containing cpuidle state info
1151  * @index: index of target state
1152  *
1153  * Return: 0 for success or negative value for error
1154  */
1155 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1156                                struct cpuidle_driver *drv, int index)
1157 {
1158         struct acpi_processor *pr;
1159         struct acpi_lpi_state *lpi;
1160
1161         pr = __this_cpu_read(processors);
1162
1163         if (unlikely(!pr))
1164                 return -EINVAL;
1165
1166         lpi = &pr->power.lpi_states[index];
1167         if (lpi->entry_method == ACPI_CSTATE_FFH)
1168                 return acpi_processor_ffh_lpi_enter(lpi);
1169
1170         return -EINVAL;
1171 }
1172
1173 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1174 {
1175         int i;
1176         struct acpi_lpi_state *lpi;
1177         struct cpuidle_state *state;
1178         struct cpuidle_driver *drv = &acpi_idle_driver;
1179
1180         if (!pr->flags.has_lpi)
1181                 return -EOPNOTSUPP;
1182
1183         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1184                 lpi = &pr->power.lpi_states[i];
1185
1186                 state = &drv->states[i];
1187                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1188                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1189                 state->exit_latency = lpi->wake_latency;
1190                 state->target_residency = lpi->min_residency;
1191                 if (lpi->arch_flags)
1192                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1193                 state->enter = acpi_idle_lpi_enter;
1194                 drv->safe_state_index = i;
1195         }
1196
1197         drv->state_count = i;
1198
1199         return 0;
1200 }
1201
1202 /**
1203  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1204  * global state data i.e. idle routines
1205  *
1206  * @pr: the ACPI processor
1207  */
1208 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1209 {
1210         int i;
1211         struct cpuidle_driver *drv = &acpi_idle_driver;
1212
1213         if (!pr->flags.power_setup_done || !pr->flags.power)
1214                 return -EINVAL;
1215
1216         drv->safe_state_index = -1;
1217         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1218                 drv->states[i].name[0] = '\0';
1219                 drv->states[i].desc[0] = '\0';
1220         }
1221
1222         if (pr->flags.has_lpi)
1223                 return acpi_processor_setup_lpi_states(pr);
1224
1225         return acpi_processor_setup_cstates(pr);
1226 }
1227
1228 /**
1229  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1230  * device i.e. per-cpu data
1231  *
1232  * @pr: the ACPI processor
1233  * @dev : the cpuidle device
1234  */
1235 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1236                                             struct cpuidle_device *dev)
1237 {
1238         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1239                 return -EINVAL;
1240
1241         dev->cpu = pr->id;
1242         if (pr->flags.has_lpi)
1243                 return acpi_processor_ffh_lpi_probe(pr->id);
1244
1245         return acpi_processor_setup_cpuidle_cx(pr, dev);
1246 }
1247
1248 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1249 {
1250         int ret;
1251
1252         ret = acpi_processor_get_lpi_info(pr);
1253         if (ret)
1254                 ret = acpi_processor_get_cstate_info(pr);
1255
1256         return ret;
1257 }
1258
1259 int acpi_processor_hotplug(struct acpi_processor *pr)
1260 {
1261         int ret = 0;
1262         struct cpuidle_device *dev;
1263
1264         if (disabled_by_idle_boot_param())
1265                 return 0;
1266
1267         if (!pr->flags.power_setup_done)
1268                 return -ENODEV;
1269
1270         dev = per_cpu(acpi_cpuidle_device, pr->id);
1271         cpuidle_pause_and_lock();
1272         cpuidle_disable_device(dev);
1273         ret = acpi_processor_get_power_info(pr);
1274         if (!ret && pr->flags.power) {
1275                 acpi_processor_setup_cpuidle_dev(pr, dev);
1276                 ret = cpuidle_enable_device(dev);
1277         }
1278         cpuidle_resume_and_unlock();
1279
1280         return ret;
1281 }
1282
1283 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1284 {
1285         int cpu;
1286         struct acpi_processor *_pr;
1287         struct cpuidle_device *dev;
1288
1289         if (disabled_by_idle_boot_param())
1290                 return 0;
1291
1292         if (!pr->flags.power_setup_done)
1293                 return -ENODEV;
1294
1295         /*
1296          * FIXME:  Design the ACPI notification to make it once per
1297          * system instead of once per-cpu.  This condition is a hack
1298          * to make the code that updates C-States be called once.
1299          */
1300
1301         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1302
1303                 /* Protect against cpu-hotplug */
1304                 cpus_read_lock();
1305                 cpuidle_pause_and_lock();
1306
1307                 /* Disable all cpuidle devices */
1308                 for_each_online_cpu(cpu) {
1309                         _pr = per_cpu(processors, cpu);
1310                         if (!_pr || !_pr->flags.power_setup_done)
1311                                 continue;
1312                         dev = per_cpu(acpi_cpuidle_device, cpu);
1313                         cpuidle_disable_device(dev);
1314                 }
1315
1316                 /* Populate Updated C-state information */
1317                 acpi_processor_get_power_info(pr);
1318                 acpi_processor_setup_cpuidle_states(pr);
1319
1320                 /* Enable all cpuidle devices */
1321                 for_each_online_cpu(cpu) {
1322                         _pr = per_cpu(processors, cpu);
1323                         if (!_pr || !_pr->flags.power_setup_done)
1324                                 continue;
1325                         acpi_processor_get_power_info(_pr);
1326                         if (_pr->flags.power) {
1327                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1328                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1329                                 cpuidle_enable_device(dev);
1330                         }
1331                 }
1332                 cpuidle_resume_and_unlock();
1333                 cpus_read_unlock();
1334         }
1335
1336         return 0;
1337 }
1338
1339 static int acpi_processor_registered;
1340
1341 int acpi_processor_power_init(struct acpi_processor *pr)
1342 {
1343         int retval;
1344         struct cpuidle_device *dev;
1345
1346         if (disabled_by_idle_boot_param())
1347                 return 0;
1348
1349         acpi_processor_cstate_first_run_checks();
1350
1351         if (!acpi_processor_get_power_info(pr))
1352                 pr->flags.power_setup_done = 1;
1353
1354         /*
1355          * Install the idle handler if processor power management is supported.
1356          * Note that we use previously set idle handler will be used on
1357          * platforms that only support C1.
1358          */
1359         if (pr->flags.power) {
1360                 /* Register acpi_idle_driver if not already registered */
1361                 if (!acpi_processor_registered) {
1362                         acpi_processor_setup_cpuidle_states(pr);
1363                         retval = cpuidle_register_driver(&acpi_idle_driver);
1364                         if (retval)
1365                                 return retval;
1366                         pr_debug("%s registered with cpuidle\n",
1367                                  acpi_idle_driver.name);
1368                 }
1369
1370                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1371                 if (!dev)
1372                         return -ENOMEM;
1373                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1374
1375                 acpi_processor_setup_cpuidle_dev(pr, dev);
1376
1377                 /* Register per-cpu cpuidle_device. Cpuidle driver
1378                  * must already be registered before registering device
1379                  */
1380                 retval = cpuidle_register_device(dev);
1381                 if (retval) {
1382                         if (acpi_processor_registered == 0)
1383                                 cpuidle_unregister_driver(&acpi_idle_driver);
1384                         return retval;
1385                 }
1386                 acpi_processor_registered++;
1387         }
1388         return 0;
1389 }
1390
1391 int acpi_processor_power_exit(struct acpi_processor *pr)
1392 {
1393         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1394
1395         if (disabled_by_idle_boot_param())
1396                 return 0;
1397
1398         if (pr->flags.power) {
1399                 cpuidle_unregister_device(dev);
1400                 acpi_processor_registered--;
1401                 if (acpi_processor_registered == 0)
1402                         cpuidle_unregister_driver(&acpi_idle_driver);
1403         }
1404
1405         pr->flags.power_setup_done = 0;
1406         return 0;
1407 }