1 // SPDX-License-Identifier: GPL-2.0-only
3 * Author: Erik Kaneda <erik.kaneda@intel.com>
4 * Copyright 2020 Intel Corporation
8 * Each PRM service is an executable that is run in a restricted environment
9 * that is invoked by writing to the PlatformRtMechanism OperationRegion from
12 * init_prmt initializes the Platform Runtime Mechanism (PRM) services by
13 * processing data in the PRMT as well as registering an ACPI OperationRegion
14 * handler for the PlatformRtMechanism subtype.
17 #include <linux/kernel.h>
18 #include <linux/efi.h>
19 #include <linux/acpi.h>
20 #include <linux/prmt.h>
24 struct prm_mmio_addr_range {
30 struct prm_mmio_info {
32 struct prm_mmio_addr_range addr_ranges[];
42 struct prm_context_buffer {
43 char signature[ACPI_NAMESEG_SIZE];
47 u64 static_data_buffer;
48 struct prm_mmio_info *mmio_ranges;
52 static LIST_HEAD(prm_module_list);
54 struct prm_handler_info {
56 efi_status_t (__efiapi *handler_addr)(u64, void *);
57 u64 static_data_buffer_addr;
58 u64 acpi_param_buffer_addr;
60 struct list_head handler_list;
63 struct prm_module_info {
68 struct prm_mmio_info *mmio_info;
71 struct list_head module_list;
72 struct prm_handler_info handlers[];
75 static u64 efi_pa_va_lookup(u64 pa)
77 efi_memory_desc_t *md;
78 u64 pa_offset = pa & ~PAGE_MASK;
79 u64 page = pa & PAGE_MASK;
81 for_each_efi_memory_desc(md) {
82 if (md->phys_addr < pa && pa < md->phys_addr + PAGE_SIZE * md->num_pages)
83 return pa_offset + md->virt_addr + page - md->phys_addr;
89 #define get_first_handler(a) ((struct acpi_prmt_handler_info *) ((char *) (a) + a->handler_info_offset))
90 #define get_next_handler(a) ((struct acpi_prmt_handler_info *) (sizeof(struct acpi_prmt_handler_info) + (char *) a))
93 acpi_parse_prmt(union acpi_subtable_headers *header, const unsigned long end)
95 struct acpi_prmt_module_info *module_info;
96 struct acpi_prmt_handler_info *handler_info;
97 struct prm_handler_info *th;
98 struct prm_module_info *tm;
101 u32 module_info_size = 0;
102 u64 mmio_range_size = 0;
105 module_info = (struct acpi_prmt_module_info *) header;
106 module_info_size = struct_size(tm, handlers, module_info->handler_info_count);
107 tm = kmalloc(module_info_size, GFP_KERNEL);
109 goto parse_prmt_out1;
111 guid_copy(&tm->guid, (guid_t *) module_info->module_guid);
112 tm->major_rev = module_info->major_rev;
113 tm->minor_rev = module_info->minor_rev;
114 tm->handler_count = module_info->handler_info_count;
115 tm->updatable = true;
117 if (module_info->mmio_list_pointer) {
119 * Each module is associated with a list of addr
120 * ranges that it can use during the service
122 mmio_count = (u64 *) memremap(module_info->mmio_list_pointer, 8, MEMREMAP_WB);
124 goto parse_prmt_out2;
126 mmio_range_size = struct_size(tm->mmio_info, addr_ranges, *mmio_count);
127 tm->mmio_info = kmalloc(mmio_range_size, GFP_KERNEL);
129 goto parse_prmt_out3;
131 temp_mmio = memremap(module_info->mmio_list_pointer, mmio_range_size, MEMREMAP_WB);
133 goto parse_prmt_out4;
134 memmove(tm->mmio_info, temp_mmio, mmio_range_size);
136 tm->mmio_info = kmalloc(sizeof(*tm->mmio_info), GFP_KERNEL);
138 goto parse_prmt_out2;
140 tm->mmio_info->mmio_count = 0;
143 INIT_LIST_HEAD(&tm->module_list);
144 list_add(&tm->module_list, &prm_module_list);
146 handler_info = get_first_handler(module_info);
148 th = &tm->handlers[cur_handler];
150 guid_copy(&th->guid, (guid_t *)handler_info->handler_guid);
151 th->handler_addr = (void *)efi_pa_va_lookup(handler_info->handler_address);
152 th->static_data_buffer_addr = efi_pa_va_lookup(handler_info->static_data_buffer_address);
153 th->acpi_param_buffer_addr = efi_pa_va_lookup(handler_info->acpi_param_buffer_address);
154 } while (++cur_handler < tm->handler_count && (handler_info = get_next_handler(handler_info)));
159 kfree(tm->mmio_info);
161 memunmap(mmio_count);
169 #define GET_HANDLER 1
171 static void *find_guid_info(const guid_t *guid, u8 mode)
173 struct prm_handler_info *cur_handler;
174 struct prm_module_info *cur_module;
177 list_for_each_entry(cur_module, &prm_module_list, module_list) {
178 for (i = 0; i < cur_module->handler_count; ++i) {
179 cur_handler = &cur_module->handlers[i];
180 if (guid_equal(guid, &cur_handler->guid)) {
181 if (mode == GET_MODULE)
182 return (void *)cur_module;
184 return (void *)cur_handler;
192 static struct prm_module_info *find_prm_module(const guid_t *guid)
194 return (struct prm_module_info *)find_guid_info(guid, GET_MODULE);
197 static struct prm_handler_info *find_prm_handler(const guid_t *guid)
199 return (struct prm_handler_info *) find_guid_info(guid, GET_HANDLER);
202 /* In-coming PRM commands */
204 #define PRM_CMD_RUN_SERVICE 0
205 #define PRM_CMD_START_TRANSACTION 1
206 #define PRM_CMD_END_TRANSACTION 2
208 /* statuses that can be passed back to ASL */
210 #define PRM_HANDLER_SUCCESS 0
211 #define PRM_HANDLER_ERROR 1
212 #define INVALID_PRM_COMMAND 2
213 #define PRM_HANDLER_GUID_NOT_FOUND 3
214 #define UPDATE_LOCK_ALREADY_HELD 4
215 #define UPDATE_UNLOCK_WITHOUT_LOCK 5
218 * This is the PlatformRtMechanism opregion space handler.
219 * @function: indicates the read/write. In fact as the PlatformRtMechanism
220 * message is driven by command, only write is meaningful.
224 * @value : it is an in/out parameter. It points to the PRM message buffer.
225 * @handler_context: not used
227 static acpi_status acpi_platformrt_space_handler(u32 function,
228 acpi_physical_address addr,
229 u32 bits, acpi_integer *value,
230 void *handler_context,
231 void *region_context)
233 struct prm_buffer *buffer = ACPI_CAST_PTR(struct prm_buffer, value);
234 struct prm_handler_info *handler;
235 struct prm_module_info *module;
237 struct prm_context_buffer context;
239 if (!efi_enabled(EFI_RUNTIME_SERVICES)) {
240 pr_err_ratelimited("PRM: EFI runtime services no longer available\n");
241 return AE_NO_HANDLER;
245 * The returned acpi_status will always be AE_OK. Error values will be
246 * saved in the first byte of the PRM message buffer to be used by ASL.
248 switch (buffer->prm_cmd) {
249 case PRM_CMD_RUN_SERVICE:
251 handler = find_prm_handler(&buffer->handler_guid);
252 module = find_prm_module(&buffer->handler_guid);
253 if (!handler || !module)
256 ACPI_COPY_NAMESEG(context.signature, "PRMC");
257 context.revision = 0x0;
258 context.reserved = 0x0;
259 context.identifier = handler->guid;
260 context.static_data_buffer = handler->static_data_buffer_addr;
261 context.mmio_ranges = module->mmio_info;
263 status = efi_call_acpi_prm_handler(handler->handler_addr,
264 handler->acpi_param_buffer_addr,
266 if (status == EFI_SUCCESS) {
267 buffer->prm_status = PRM_HANDLER_SUCCESS;
269 buffer->prm_status = PRM_HANDLER_ERROR;
270 buffer->efi_status = status;
274 case PRM_CMD_START_TRANSACTION:
276 module = find_prm_module(&buffer->handler_guid);
280 if (module->updatable)
281 module->updatable = false;
283 buffer->prm_status = UPDATE_LOCK_ALREADY_HELD;
286 case PRM_CMD_END_TRANSACTION:
288 module = find_prm_module(&buffer->handler_guid);
292 if (module->updatable)
293 buffer->prm_status = UPDATE_UNLOCK_WITHOUT_LOCK;
295 module->updatable = true;
300 buffer->prm_status = INVALID_PRM_COMMAND;
307 buffer->prm_status = PRM_HANDLER_GUID_NOT_FOUND;
311 void __init init_prmt(void)
313 struct acpi_table_header *tbl;
317 status = acpi_get_table(ACPI_SIG_PRMT, 0, &tbl);
318 if (ACPI_FAILURE(status))
321 mc = acpi_table_parse_entries(ACPI_SIG_PRMT, sizeof(struct acpi_table_prmt) +
322 sizeof (struct acpi_table_prmt_header),
323 0, acpi_parse_prmt, 0);
326 * Return immediately if PRMT table is not present or no PRM module found.
331 pr_info("PRM: found %u modules\n", mc);
333 if (!efi_enabled(EFI_RUNTIME_SERVICES)) {
334 pr_err("PRM: EFI runtime services unavailable\n");
338 status = acpi_install_address_space_handler(ACPI_ROOT_OBJECT,
339 ACPI_ADR_SPACE_PLATFORM_RT,
340 &acpi_platformrt_space_handler,
342 if (ACPI_FAILURE(status))
343 pr_alert("PRM: OperationRegion handler could not be installed\n");