1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
38 #include "acpica/accommon.h"
39 #include "acpica/acnamesp.h"
42 /* Definitions for ACPI_DEBUG_PRINT() */
43 #define _COMPONENT ACPI_OS_SERVICES
44 ACPI_MODULE_NAME("osl");
47 acpi_osd_exec_callback function;
49 struct work_struct work;
52 #ifdef ENABLE_DEBUGGER
53 #include <linux/kdb.h>
55 /* stuff for debugger support */
57 EXPORT_SYMBOL(acpi_in_debugger);
58 #endif /*ENABLE_DEBUGGER */
60 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
62 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
65 static acpi_osd_handler acpi_irq_handler;
66 static void *acpi_irq_context;
67 static struct workqueue_struct *kacpid_wq;
68 static struct workqueue_struct *kacpi_notify_wq;
69 static struct workqueue_struct *kacpi_hotplug_wq;
70 static bool acpi_os_initialized;
71 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
72 bool acpi_permanent_mmap = false;
75 * This list of permanent mappings is for memory that may be accessed from
76 * interrupt context, where we can't do the ioremap().
79 struct list_head list;
81 acpi_physical_address phys;
84 unsigned long refcount;
85 struct rcu_work rwork;
89 static LIST_HEAD(acpi_ioremaps);
90 static DEFINE_MUTEX(acpi_ioremap_lock);
91 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
93 static void __init acpi_request_region (struct acpi_generic_address *gas,
94 unsigned int length, char *desc)
98 /* Handle possible alignment issues */
99 memcpy(&addr, &gas->address, sizeof(addr));
100 if (!addr || !length)
103 /* Resources are never freed */
104 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
105 request_region(addr, length, desc);
106 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
107 request_mem_region(addr, length, desc);
110 static int __init acpi_reserve_resources(void)
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1a_EVT_BLK");
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1b_EVT_BLK");
118 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1a_CNT_BLK");
121 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1b_CNT_BLK");
124 if (acpi_gbl_FADT.pm_timer_length == 4)
125 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
127 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130 /* Length of GPE blocks must be a non-negative multiple of 2 */
132 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
133 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
134 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
136 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
137 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
138 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142 fs_initcall_sync(acpi_reserve_resources);
144 void acpi_os_printf(const char *fmt, ...)
148 acpi_os_vprintf(fmt, args);
151 EXPORT_SYMBOL(acpi_os_printf);
153 void acpi_os_vprintf(const char *fmt, va_list args)
155 static char buffer[512];
157 vsprintf(buffer, fmt, args);
159 #ifdef ENABLE_DEBUGGER
160 if (acpi_in_debugger) {
161 kdb_printf("%s", buffer);
163 if (printk_get_level(buffer))
164 printk("%s", buffer);
166 printk(KERN_CONT "%s", buffer);
169 if (acpi_debugger_write_log(buffer) < 0) {
170 if (printk_get_level(buffer))
171 printk("%s", buffer);
173 printk(KERN_CONT "%s", buffer);
179 static unsigned long acpi_rsdp;
180 static int __init setup_acpi_rsdp(char *arg)
182 return kstrtoul(arg, 16, &acpi_rsdp);
184 early_param("acpi_rsdp", setup_acpi_rsdp);
187 acpi_physical_address __init acpi_os_get_root_pointer(void)
189 acpi_physical_address pa;
193 * We may have been provided with an RSDP on the command line,
194 * but if a malicious user has done so they may be pointing us
195 * at modified ACPI tables that could alter kernel behaviour -
196 * so, we check the lockdown status before making use of
197 * it. If we trust it then also stash it in an architecture
198 * specific location (if appropriate) so it can be carried
199 * over further kexec()s.
201 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
202 acpi_arch_set_root_pointer(acpi_rsdp);
206 pa = acpi_arch_get_root_pointer();
210 if (efi_enabled(EFI_CONFIG_TABLES)) {
211 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
213 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
215 pr_err("System description tables not found\n");
216 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
217 acpi_find_root_pointer(&pa);
223 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
224 static struct acpi_ioremap *
225 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
227 struct acpi_ioremap *map;
229 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
230 if (map->phys <= phys &&
231 phys + size <= map->phys + map->size)
237 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
238 static void __iomem *
239 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
241 struct acpi_ioremap *map;
243 map = acpi_map_lookup(phys, size);
245 return map->virt + (phys - map->phys);
250 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
252 struct acpi_ioremap *map;
253 void __iomem *virt = NULL;
255 mutex_lock(&acpi_ioremap_lock);
256 map = acpi_map_lookup(phys, size);
258 virt = map->virt + (phys - map->phys);
259 map->track.refcount++;
261 mutex_unlock(&acpi_ioremap_lock);
264 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
266 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
267 static struct acpi_ioremap *
268 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
270 struct acpi_ioremap *map;
272 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
273 if (map->virt <= virt &&
274 virt + size <= map->virt + map->size)
280 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
281 /* ioremap will take care of cache attributes */
282 #define should_use_kmap(pfn) 0
284 #define should_use_kmap(pfn) page_is_ram(pfn)
287 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
291 pfn = pg_off >> PAGE_SHIFT;
292 if (should_use_kmap(pfn)) {
293 if (pg_sz > PAGE_SIZE)
295 return (void __iomem __force *)kmap(pfn_to_page(pfn));
297 return acpi_os_ioremap(pg_off, pg_sz);
300 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
304 pfn = pg_off >> PAGE_SHIFT;
305 if (should_use_kmap(pfn))
306 kunmap(pfn_to_page(pfn));
312 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
313 * @phys: Start of the physical address range to map.
314 * @size: Size of the physical address range to map.
316 * Look up the given physical address range in the list of existing ACPI memory
317 * mappings. If found, get a reference to it and return a pointer to it (its
318 * virtual address). If not found, map it, add it to that list and return a
321 * During early init (when acpi_permanent_mmap has not been set yet) this
322 * routine simply calls __acpi_map_table() to get the job done.
325 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
327 struct acpi_ioremap *map;
329 acpi_physical_address pg_off;
332 if (phys > ULONG_MAX) {
333 pr_err("Cannot map memory that high: 0x%llx\n", phys);
337 if (!acpi_permanent_mmap)
338 return __acpi_map_table((unsigned long)phys, size);
340 mutex_lock(&acpi_ioremap_lock);
341 /* Check if there's a suitable mapping already. */
342 map = acpi_map_lookup(phys, size);
344 map->track.refcount++;
348 map = kzalloc(sizeof(*map), GFP_KERNEL);
350 mutex_unlock(&acpi_ioremap_lock);
354 pg_off = round_down(phys, PAGE_SIZE);
355 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
356 virt = acpi_map(phys, size);
358 mutex_unlock(&acpi_ioremap_lock);
363 INIT_LIST_HEAD(&map->list);
364 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
367 map->track.refcount = 1;
369 list_add_tail_rcu(&map->list, &acpi_ioremaps);
372 mutex_unlock(&acpi_ioremap_lock);
373 return map->virt + (phys - map->phys);
375 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
377 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
379 return (void *)acpi_os_map_iomem(phys, size);
381 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
383 static void acpi_os_map_remove(struct work_struct *work)
385 struct acpi_ioremap *map = container_of(to_rcu_work(work),
389 acpi_unmap(map->phys, map->virt);
393 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
394 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
396 if (--map->track.refcount)
399 list_del_rcu(&map->list);
401 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
402 queue_rcu_work(system_wq, &map->track.rwork);
406 * acpi_os_unmap_iomem - Drop a memory mapping reference.
407 * @virt: Start of the address range to drop a reference to.
408 * @size: Size of the address range to drop a reference to.
410 * Look up the given virtual address range in the list of existing ACPI memory
411 * mappings, drop a reference to it and if there are no more active references
412 * to it, queue it up for later removal.
414 * During early init (when acpi_permanent_mmap has not been set yet) this
415 * routine simply calls __acpi_unmap_table() to get the job done. Since
416 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
419 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
421 struct acpi_ioremap *map;
423 if (!acpi_permanent_mmap) {
424 __acpi_unmap_table(virt, size);
428 mutex_lock(&acpi_ioremap_lock);
430 map = acpi_map_lookup_virt(virt, size);
432 mutex_unlock(&acpi_ioremap_lock);
433 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
436 acpi_os_drop_map_ref(map);
438 mutex_unlock(&acpi_ioremap_lock);
440 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
443 * acpi_os_unmap_memory - Drop a memory mapping reference.
444 * @virt: Start of the address range to drop a reference to.
445 * @size: Size of the address range to drop a reference to.
447 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
449 acpi_os_unmap_iomem((void __iomem *)virt, size);
451 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
453 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
457 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
460 /* Handle possible alignment issues */
461 memcpy(&addr, &gas->address, sizeof(addr));
462 if (!addr || !gas->bit_width)
465 return acpi_os_map_iomem(addr, gas->bit_width / 8);
467 EXPORT_SYMBOL(acpi_os_map_generic_address);
469 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
472 struct acpi_ioremap *map;
474 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
477 /* Handle possible alignment issues */
478 memcpy(&addr, &gas->address, sizeof(addr));
479 if (!addr || !gas->bit_width)
482 mutex_lock(&acpi_ioremap_lock);
484 map = acpi_map_lookup(addr, gas->bit_width / 8);
486 mutex_unlock(&acpi_ioremap_lock);
489 acpi_os_drop_map_ref(map);
491 mutex_unlock(&acpi_ioremap_lock);
493 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
495 #ifdef ACPI_FUTURE_USAGE
497 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
500 return AE_BAD_PARAMETER;
502 *phys = virt_to_phys(virt);
508 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
509 static bool acpi_rev_override;
511 int __init acpi_rev_override_setup(char *str)
513 acpi_rev_override = true;
516 __setup("acpi_rev_override", acpi_rev_override_setup);
518 #define acpi_rev_override false
521 #define ACPI_MAX_OVERRIDE_LEN 100
523 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
526 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
527 acpi_string *new_val)
529 if (!init_val || !new_val)
530 return AE_BAD_PARAMETER;
533 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
534 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
535 *new_val = acpi_os_name;
538 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
539 pr_info("Overriding _REV return value to 5\n");
540 *new_val = (char *)5;
546 static irqreturn_t acpi_irq(int irq, void *dev_id)
550 handled = (*acpi_irq_handler) (acpi_irq_context);
556 acpi_irq_not_handled++;
562 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
567 acpi_irq_stats_init();
570 * ACPI interrupts different from the SCI in our copy of the FADT are
573 if (gsi != acpi_gbl_FADT.sci_interrupt)
574 return AE_BAD_PARAMETER;
576 if (acpi_irq_handler)
577 return AE_ALREADY_ACQUIRED;
579 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
580 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
584 acpi_irq_handler = handler;
585 acpi_irq_context = context;
586 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
587 pr_err("SCI (IRQ%d) allocation failed\n", irq);
588 acpi_irq_handler = NULL;
589 return AE_NOT_ACQUIRED;
596 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
598 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
599 return AE_BAD_PARAMETER;
601 free_irq(acpi_sci_irq, acpi_irq);
602 acpi_irq_handler = NULL;
603 acpi_sci_irq = INVALID_ACPI_IRQ;
609 * Running in interpreter thread context, safe to sleep
612 void acpi_os_sleep(u64 ms)
617 void acpi_os_stall(u32 us)
625 touch_nmi_watchdog();
631 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
632 * monotonically increasing timer with 100ns granularity. Do not use
633 * ktime_get() to implement this function because this function may get
634 * called after timekeeping has been suspended. Note: calling this function
635 * after timekeeping has been suspended may lead to unexpected results
636 * because when timekeeping is suspended the jiffies counter is not
637 * incremented. See also timekeeping_suspend().
639 u64 acpi_os_get_timer(void)
641 return (get_jiffies_64() - INITIAL_JIFFIES) *
642 (ACPI_100NSEC_PER_SEC / HZ);
645 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
654 *(u8 *) value = inb(port);
655 } else if (width <= 16) {
656 *(u16 *) value = inw(port);
657 } else if (width <= 32) {
658 *(u32 *) value = inl(port);
666 EXPORT_SYMBOL(acpi_os_read_port);
668 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
672 } else if (width <= 16) {
674 } else if (width <= 32) {
683 EXPORT_SYMBOL(acpi_os_write_port);
685 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
690 *(u8 *) value = readb(virt_addr);
693 *(u16 *) value = readw(virt_addr);
696 *(u32 *) value = readl(virt_addr);
699 *(u64 *) value = readq(virt_addr);
709 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
711 void __iomem *virt_addr;
712 unsigned int size = width / 8;
718 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
721 virt_addr = acpi_os_ioremap(phys_addr, size);
723 return AE_BAD_ADDRESS;
730 error = acpi_os_read_iomem(virt_addr, value, width);
742 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
744 void __iomem *virt_addr;
745 unsigned int size = width / 8;
749 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
752 virt_addr = acpi_os_ioremap(phys_addr, size);
754 return AE_BAD_ADDRESS;
760 writeb(value, virt_addr);
763 writew(value, virt_addr);
766 writel(value, virt_addr);
769 writeq(value, virt_addr);
785 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786 u64 *value, u32 width)
792 return AE_BAD_PARAMETER;
808 result = raw_pci_read(pci_id->segment, pci_id->bus,
809 PCI_DEVFN(pci_id->device, pci_id->function),
810 reg, size, &value32);
813 return (result ? AE_ERROR : AE_OK);
817 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
818 u64 value, u32 width)
836 result = raw_pci_write(pci_id->segment, pci_id->bus,
837 PCI_DEVFN(pci_id->device, pci_id->function),
840 return (result ? AE_ERROR : AE_OK);
844 static void acpi_os_execute_deferred(struct work_struct *work)
846 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
848 dpc->function(dpc->context);
852 #ifdef CONFIG_ACPI_DEBUGGER
853 static struct acpi_debugger acpi_debugger;
854 static bool acpi_debugger_initialized;
856 int acpi_register_debugger(struct module *owner,
857 const struct acpi_debugger_ops *ops)
861 mutex_lock(&acpi_debugger.lock);
862 if (acpi_debugger.ops) {
867 acpi_debugger.owner = owner;
868 acpi_debugger.ops = ops;
871 mutex_unlock(&acpi_debugger.lock);
874 EXPORT_SYMBOL(acpi_register_debugger);
876 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
878 mutex_lock(&acpi_debugger.lock);
879 if (ops == acpi_debugger.ops) {
880 acpi_debugger.ops = NULL;
881 acpi_debugger.owner = NULL;
883 mutex_unlock(&acpi_debugger.lock);
885 EXPORT_SYMBOL(acpi_unregister_debugger);
887 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
890 int (*func)(acpi_osd_exec_callback, void *);
891 struct module *owner;
893 if (!acpi_debugger_initialized)
895 mutex_lock(&acpi_debugger.lock);
896 if (!acpi_debugger.ops) {
900 if (!try_module_get(acpi_debugger.owner)) {
904 func = acpi_debugger.ops->create_thread;
905 owner = acpi_debugger.owner;
906 mutex_unlock(&acpi_debugger.lock);
908 ret = func(function, context);
910 mutex_lock(&acpi_debugger.lock);
913 mutex_unlock(&acpi_debugger.lock);
917 ssize_t acpi_debugger_write_log(const char *msg)
920 ssize_t (*func)(const char *);
921 struct module *owner;
923 if (!acpi_debugger_initialized)
925 mutex_lock(&acpi_debugger.lock);
926 if (!acpi_debugger.ops) {
930 if (!try_module_get(acpi_debugger.owner)) {
934 func = acpi_debugger.ops->write_log;
935 owner = acpi_debugger.owner;
936 mutex_unlock(&acpi_debugger.lock);
940 mutex_lock(&acpi_debugger.lock);
943 mutex_unlock(&acpi_debugger.lock);
947 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
950 ssize_t (*func)(char *, size_t);
951 struct module *owner;
953 if (!acpi_debugger_initialized)
955 mutex_lock(&acpi_debugger.lock);
956 if (!acpi_debugger.ops) {
960 if (!try_module_get(acpi_debugger.owner)) {
964 func = acpi_debugger.ops->read_cmd;
965 owner = acpi_debugger.owner;
966 mutex_unlock(&acpi_debugger.lock);
968 ret = func(buffer, buffer_length);
970 mutex_lock(&acpi_debugger.lock);
973 mutex_unlock(&acpi_debugger.lock);
977 int acpi_debugger_wait_command_ready(void)
980 int (*func)(bool, char *, size_t);
981 struct module *owner;
983 if (!acpi_debugger_initialized)
985 mutex_lock(&acpi_debugger.lock);
986 if (!acpi_debugger.ops) {
990 if (!try_module_get(acpi_debugger.owner)) {
994 func = acpi_debugger.ops->wait_command_ready;
995 owner = acpi_debugger.owner;
996 mutex_unlock(&acpi_debugger.lock);
998 ret = func(acpi_gbl_method_executing,
999 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1001 mutex_lock(&acpi_debugger.lock);
1004 mutex_unlock(&acpi_debugger.lock);
1008 int acpi_debugger_notify_command_complete(void)
1012 struct module *owner;
1014 if (!acpi_debugger_initialized)
1016 mutex_lock(&acpi_debugger.lock);
1017 if (!acpi_debugger.ops) {
1021 if (!try_module_get(acpi_debugger.owner)) {
1025 func = acpi_debugger.ops->notify_command_complete;
1026 owner = acpi_debugger.owner;
1027 mutex_unlock(&acpi_debugger.lock);
1031 mutex_lock(&acpi_debugger.lock);
1034 mutex_unlock(&acpi_debugger.lock);
1038 int __init acpi_debugger_init(void)
1040 mutex_init(&acpi_debugger.lock);
1041 acpi_debugger_initialized = true;
1046 /*******************************************************************************
1048 * FUNCTION: acpi_os_execute
1050 * PARAMETERS: Type - Type of the callback
1051 * Function - Function to be executed
1052 * Context - Function parameters
1056 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1057 * immediately executes function on a separate thread.
1059 ******************************************************************************/
1061 acpi_status acpi_os_execute(acpi_execute_type type,
1062 acpi_osd_exec_callback function, void *context)
1064 acpi_status status = AE_OK;
1065 struct acpi_os_dpc *dpc;
1066 struct workqueue_struct *queue;
1068 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1069 "Scheduling function [%p(%p)] for deferred execution.\n",
1070 function, context));
1072 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1073 ret = acpi_debugger_create_thread(function, context);
1075 pr_err("Kernel thread creation failed\n");
1082 * Allocate/initialize DPC structure. Note that this memory will be
1083 * freed by the callee. The kernel handles the work_struct list in a
1084 * way that allows us to also free its memory inside the callee.
1085 * Because we may want to schedule several tasks with different
1086 * parameters we can't use the approach some kernel code uses of
1087 * having a static work_struct.
1090 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1092 return AE_NO_MEMORY;
1094 dpc->function = function;
1095 dpc->context = context;
1098 * To prevent lockdep from complaining unnecessarily, make sure that
1099 * there is a different static lockdep key for each workqueue by using
1100 * INIT_WORK() for each of them separately.
1102 if (type == OSL_NOTIFY_HANDLER) {
1103 queue = kacpi_notify_wq;
1104 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1105 } else if (type == OSL_GPE_HANDLER) {
1107 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109 pr_err("Unsupported os_execute type %d.\n", type);
1113 if (ACPI_FAILURE(status))
1117 * On some machines, a software-initiated SMI causes corruption unless
1118 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1119 * typically it's done in GPE-related methods that are run via
1120 * workqueues, so we can avoid the known corruption cases by always
1121 * queueing on CPU 0.
1123 ret = queue_work_on(0, queue, &dpc->work);
1125 pr_err("Unable to queue work\n");
1129 if (ACPI_FAILURE(status))
1134 EXPORT_SYMBOL(acpi_os_execute);
1136 void acpi_os_wait_events_complete(void)
1139 * Make sure the GPE handler or the fixed event handler is not used
1140 * on another CPU after removal.
1142 if (acpi_sci_irq_valid())
1143 synchronize_hardirq(acpi_sci_irq);
1144 flush_workqueue(kacpid_wq);
1145 flush_workqueue(kacpi_notify_wq);
1147 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1149 struct acpi_hp_work {
1150 struct work_struct work;
1151 struct acpi_device *adev;
1155 static void acpi_hotplug_work_fn(struct work_struct *work)
1157 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1159 acpi_os_wait_events_complete();
1160 acpi_device_hotplug(hpw->adev, hpw->src);
1164 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1166 struct acpi_hp_work *hpw;
1168 acpi_handle_debug(adev->handle,
1169 "Scheduling hotplug event %u for deferred handling\n",
1172 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1174 return AE_NO_MEMORY;
1176 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1180 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181 * the hotplug code may call driver .remove() functions, which may
1182 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1185 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1192 bool acpi_queue_hotplug_work(struct work_struct *work)
1194 return queue_work(kacpi_hotplug_wq, work);
1198 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1200 struct semaphore *sem = NULL;
1202 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1204 return AE_NO_MEMORY;
1206 sema_init(sem, initial_units);
1208 *handle = (acpi_handle *) sem;
1210 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211 *handle, initial_units));
1217 * TODO: A better way to delete semaphores? Linux doesn't have a
1218 * 'delete_semaphore()' function -- may result in an invalid
1219 * pointer dereference for non-synchronized consumers. Should
1220 * we at least check for blocked threads and signal/cancel them?
1223 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1225 struct semaphore *sem = (struct semaphore *)handle;
1228 return AE_BAD_PARAMETER;
1230 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1232 BUG_ON(!list_empty(&sem->wait_list));
1240 * TODO: Support for units > 1?
1242 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1244 acpi_status status = AE_OK;
1245 struct semaphore *sem = (struct semaphore *)handle;
1249 if (!acpi_os_initialized)
1252 if (!sem || (units < 1))
1253 return AE_BAD_PARAMETER;
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259 handle, units, timeout));
1261 if (timeout == ACPI_WAIT_FOREVER)
1262 jiffies = MAX_SCHEDULE_TIMEOUT;
1264 jiffies = msecs_to_jiffies(timeout);
1266 ret = down_timeout(sem, jiffies);
1270 if (ACPI_FAILURE(status)) {
1271 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272 "Failed to acquire semaphore[%p|%d|%d], %s",
1273 handle, units, timeout,
1274 acpi_format_exception(status)));
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Acquired semaphore[%p|%d|%d]", handle,
1285 * TODO: Support for units > 1?
1287 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1289 struct semaphore *sem = (struct semaphore *)handle;
1291 if (!acpi_os_initialized)
1294 if (!sem || (units < 1))
1295 return AE_BAD_PARAMETER;
1300 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1308 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1310 #ifdef ENABLE_DEBUGGER
1311 if (acpi_in_debugger) {
1314 kdb_read(buffer, buffer_length);
1316 /* remove the CR kdb includes */
1317 chars = strlen(buffer) - 1;
1318 buffer[chars] = '\0';
1323 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1332 EXPORT_SYMBOL(acpi_os_get_line);
1334 acpi_status acpi_os_wait_command_ready(void)
1338 ret = acpi_debugger_wait_command_ready();
1344 acpi_status acpi_os_notify_command_complete(void)
1348 ret = acpi_debugger_notify_command_complete();
1354 acpi_status acpi_os_signal(u32 function, void *info)
1357 case ACPI_SIGNAL_FATAL:
1358 pr_err("Fatal opcode executed\n");
1360 case ACPI_SIGNAL_BREAKPOINT:
1363 * ACPI spec. says to treat it as a NOP unless
1364 * you are debugging. So if/when we integrate
1365 * AML debugger into the kernel debugger its
1366 * hook will go here. But until then it is
1367 * not useful to print anything on breakpoints.
1377 static int __init acpi_os_name_setup(char *str)
1379 char *p = acpi_os_name;
1380 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1385 for (; count-- && *str; str++) {
1386 if (isalnum(*str) || *str == ' ' || *str == ':')
1388 else if (*str == '\'' || *str == '"')
1399 __setup("acpi_os_name=", acpi_os_name_setup);
1402 * Disable the auto-serialization of named objects creation methods.
1404 * This feature is enabled by default. It marks the AML control methods
1405 * that contain the opcodes to create named objects as "Serialized".
1407 static int __init acpi_no_auto_serialize_setup(char *str)
1409 acpi_gbl_auto_serialize_methods = FALSE;
1410 pr_info("Auto-serialization disabled\n");
1415 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1417 /* Check of resource interference between native drivers and ACPI
1418 * OperationRegions (SystemIO and System Memory only).
1419 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420 * in arbitrary AML code and can interfere with legacy drivers.
1421 * acpi_enforce_resources= can be set to:
1423 * - strict (default) (2)
1424 * -> further driver trying to access the resources will not load
1426 * -> further driver trying to access the resources will load, but you
1427 * get a system message that something might go wrong...
1430 * -> ACPI Operation Region resources will not be registered
1433 #define ENFORCE_RESOURCES_STRICT 2
1434 #define ENFORCE_RESOURCES_LAX 1
1435 #define ENFORCE_RESOURCES_NO 0
1437 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1439 static int __init acpi_enforce_resources_setup(char *str)
1441 if (str == NULL || *str == '\0')
1444 if (!strcmp("strict", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446 else if (!strcmp("lax", str))
1447 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448 else if (!strcmp("no", str))
1449 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1454 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1456 /* Check for resource conflicts between ACPI OperationRegions and native
1458 int acpi_check_resource_conflict(const struct resource *res)
1460 acpi_adr_space_type space_id;
1462 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1465 if (res->flags & IORESOURCE_IO)
1466 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1467 else if (res->flags & IORESOURCE_MEM)
1468 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1472 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1475 pr_info("Resource conflict; ACPI support missing from driver?\n");
1477 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1481 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1485 EXPORT_SYMBOL(acpi_check_resource_conflict);
1487 int acpi_check_region(resource_size_t start, resource_size_t n,
1490 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1492 return acpi_check_resource_conflict(&res);
1494 EXPORT_SYMBOL(acpi_check_region);
1496 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1497 void *_res, void **return_value)
1499 struct acpi_mem_space_context **mem_ctx;
1500 union acpi_operand_object *handler_obj;
1501 union acpi_operand_object *region_obj2;
1502 union acpi_operand_object *region_obj;
1503 struct resource *res = _res;
1506 region_obj = acpi_ns_get_attached_object(handle);
1510 handler_obj = region_obj->region.handler;
1514 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1517 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1520 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1524 mem_ctx = (void *)®ion_obj2->extra.region_context;
1526 if (!(mem_ctx[0]->address >= res->start &&
1527 mem_ctx[0]->address < res->end))
1530 status = handler_obj->address_space.setup(region_obj,
1531 ACPI_REGION_DEACTIVATE,
1532 NULL, (void **)mem_ctx);
1533 if (ACPI_SUCCESS(status))
1534 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540 * acpi_release_memory - Release any mappings done to a memory region
1541 * @handle: Handle to namespace node
1542 * @res: Memory resource
1543 * @level: A level that terminates the search
1545 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1546 * overlap with @res and that have already been activated (mapped).
1548 * This is a helper that allows drivers to place special requirements on memory
1549 * region that may overlap with operation regions, primarily allowing them to
1550 * safely map the region as non-cached memory.
1552 * The unmapped Operation Regions will be automatically remapped next time they
1553 * are called, so the drivers do not need to do anything else.
1555 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1560 if (!(res->flags & IORESOURCE_MEM))
1563 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1564 acpi_deactivate_mem_region, NULL,
1566 if (ACPI_FAILURE(status))
1570 * Wait for all of the mappings queued up for removal by
1571 * acpi_deactivate_mem_region() to actually go away.
1575 flush_scheduled_work();
1579 EXPORT_SYMBOL_GPL(acpi_release_memory);
1582 * Let drivers know whether the resource checks are effective
1584 int acpi_resources_are_enforced(void)
1586 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1588 EXPORT_SYMBOL(acpi_resources_are_enforced);
1591 * Deallocate the memory for a spinlock.
1593 void acpi_os_delete_lock(acpi_spinlock handle)
1599 * Acquire a spinlock.
1601 * handle is a pointer to the spinlock_t.
1604 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1607 acpi_cpu_flags flags;
1608 spin_lock_irqsave(lockp, flags);
1613 * Release a spinlock. See above.
1616 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1619 spin_unlock_irqrestore(lockp, flags);
1622 #ifndef ACPI_USE_LOCAL_CACHE
1624 /*******************************************************************************
1626 * FUNCTION: acpi_os_create_cache
1628 * PARAMETERS: name - Ascii name for the cache
1629 * size - Size of each cached object
1630 * depth - Maximum depth of the cache (in objects) <ignored>
1631 * cache - Where the new cache object is returned
1635 * DESCRIPTION: Create a cache object
1637 ******************************************************************************/
1640 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1642 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1649 /*******************************************************************************
1651 * FUNCTION: acpi_os_purge_cache
1653 * PARAMETERS: Cache - Handle to cache object
1657 * DESCRIPTION: Free all objects within the requested cache.
1659 ******************************************************************************/
1661 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1663 kmem_cache_shrink(cache);
1667 /*******************************************************************************
1669 * FUNCTION: acpi_os_delete_cache
1671 * PARAMETERS: Cache - Handle to cache object
1675 * DESCRIPTION: Free all objects within the requested cache and delete the
1678 ******************************************************************************/
1680 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1682 kmem_cache_destroy(cache);
1686 /*******************************************************************************
1688 * FUNCTION: acpi_os_release_object
1690 * PARAMETERS: Cache - Handle to cache object
1691 * Object - The object to be released
1695 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1696 * the object is deleted.
1698 ******************************************************************************/
1700 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1702 kmem_cache_free(cache, object);
1707 static int __init acpi_no_static_ssdt_setup(char *s)
1709 acpi_gbl_disable_ssdt_table_install = TRUE;
1710 pr_info("Static SSDT installation disabled\n");
1715 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1717 static int __init acpi_disable_return_repair(char *s)
1719 pr_notice("Predefined validation mechanism disabled\n");
1720 acpi_gbl_disable_auto_repair = TRUE;
1725 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1727 acpi_status __init acpi_os_initialize(void)
1729 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1730 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1732 acpi_gbl_xgpe0_block_logical_address =
1733 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1734 acpi_gbl_xgpe1_block_logical_address =
1735 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1737 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1739 * Use acpi_os_map_generic_address to pre-map the reset
1740 * register if it's in system memory.
1744 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1745 pr_debug("%s: Reset register mapping %s\n", __func__,
1746 rv ? "successful" : "failed");
1748 acpi_os_initialized = true;
1753 acpi_status __init acpi_os_initialize1(void)
1755 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1756 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1757 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1759 BUG_ON(!kacpi_notify_wq);
1760 BUG_ON(!kacpi_hotplug_wq);
1765 acpi_status acpi_os_terminate(void)
1767 if (acpi_irq_handler) {
1768 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1772 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1773 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1774 acpi_gbl_xgpe0_block_logical_address = 0UL;
1775 acpi_gbl_xgpe1_block_logical_address = 0UL;
1777 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1778 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1780 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1781 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1783 destroy_workqueue(kacpid_wq);
1784 destroy_workqueue(kacpi_notify_wq);
1785 destroy_workqueue(kacpi_hotplug_wq);
1790 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1794 if (__acpi_os_prepare_sleep)
1795 rc = __acpi_os_prepare_sleep(sleep_state,
1796 pm1a_control, pm1b_control);
1800 return AE_CTRL_TERMINATE;
1805 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1806 u32 pm1a_ctrl, u32 pm1b_ctrl))
1808 __acpi_os_prepare_sleep = func;
1811 #if (ACPI_REDUCED_HARDWARE)
1812 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1816 if (__acpi_os_prepare_extended_sleep)
1817 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1822 return AE_CTRL_TERMINATE;
1827 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1834 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1835 u32 val_a, u32 val_b))
1837 __acpi_os_prepare_extended_sleep = func;
1840 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1841 u32 reg_a_value, u32 reg_b_value)
1845 if (acpi_gbl_reduced_hardware)
1846 status = acpi_os_prepare_extended_sleep(sleep_state,
1850 status = acpi_os_prepare_sleep(sleep_state,
1851 reg_a_value, reg_b_value);