Merge tag 'm68k-for-v4.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[platform/kernel/linux-exynos.git] / drivers / acpi / cppc_acpi.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37
38 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         int pcc_subspace_idx;
52         bool pcc_channel_acquired;
53         ktime_t deadline;
54         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
57         bool platform_owns_pcc;         /* Ownership of PCC subspace */
58         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
59
60         /*
61          * Lock to provide controlled access to the PCC channel.
62          *
63          * For performance critical usecases(currently cppc_set_perf)
64          *      We need to take read_lock and check if channel belongs to OSPM
65          * before reading or writing to PCC subspace
66          *      We need to take write_lock before transferring the channel
67          * ownership to the platform via a Doorbell
68          *      This allows us to batch a number of CPPC requests if they happen
69          * to originate in about the same time
70          *
71          * For non-performance critical usecases(init)
72          *      Take write_lock for all purposes which gives exclusive access
73          */
74         struct rw_semaphore pcc_lock;
75
76         /* Wait queue for CPUs whose requests were batched */
77         wait_queue_head_t pcc_write_wait_q;
78 };
79
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82         .pcc_subspace_idx = -1,
83         .platform_owns_pcc = true,
84 };
85
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97
98 /* Check if a CPC regsiter is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500
120
121 struct cppc_attr {
122         struct attribute attr;
123         ssize_t (*show)(struct kobject *kobj,
124                         struct attribute *attr, char *buf);
125         ssize_t (*store)(struct kobject *kobj,
126                         struct attribute *attr, const char *c, ssize_t count);
127 };
128
129 #define define_one_cppc_ro(_name)               \
130 static struct cppc_attr _name =                 \
131 __ATTR(_name, 0444, show_##_name, NULL)
132
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135 static ssize_t show_feedback_ctrs(struct kobject *kobj,
136                 struct attribute *attr, char *buf)
137 {
138         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139         struct cppc_perf_fb_ctrs fb_ctrs = {0};
140
141         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
142
143         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144                         fb_ctrs.reference, fb_ctrs.delivered);
145 }
146 define_one_cppc_ro(feedback_ctrs);
147
148 static ssize_t show_reference_perf(struct kobject *kobj,
149                 struct attribute *attr, char *buf)
150 {
151         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152         struct cppc_perf_fb_ctrs fb_ctrs = {0};
153
154         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
155
156         return scnprintf(buf, PAGE_SIZE, "%llu\n",
157                         fb_ctrs.reference_perf);
158 }
159 define_one_cppc_ro(reference_perf);
160
161 static ssize_t show_wraparound_time(struct kobject *kobj,
162                                 struct attribute *attr, char *buf)
163 {
164         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165         struct cppc_perf_fb_ctrs fb_ctrs = {0};
166
167         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
168
169         return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
170
171 }
172 define_one_cppc_ro(wraparound_time);
173
174 static struct attribute *cppc_attrs[] = {
175         &feedback_ctrs.attr,
176         &reference_perf.attr,
177         &wraparound_time.attr,
178         NULL
179 };
180
181 static struct kobj_type cppc_ktype = {
182         .sysfs_ops = &kobj_sysfs_ops,
183         .default_attrs = cppc_attrs,
184 };
185
186 static int check_pcc_chan(bool chk_err_bit)
187 {
188         int ret = -EIO, status = 0;
189         struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
190         ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
191
192         if (!pcc_data.platform_owns_pcc)
193                 return 0;
194
195         /* Retry in case the remote processor was too slow to catch up. */
196         while (!ktime_after(ktime_get(), next_deadline)) {
197                 /*
198                  * Per spec, prior to boot the PCC space wil be initialized by
199                  * platform and should have set the command completion bit when
200                  * PCC can be used by OSPM
201                  */
202                 status = readw_relaxed(&generic_comm_base->status);
203                 if (status & PCC_CMD_COMPLETE_MASK) {
204                         ret = 0;
205                         if (chk_err_bit && (status & PCC_ERROR_MASK))
206                                 ret = -EIO;
207                         break;
208                 }
209                 /*
210                  * Reducing the bus traffic in case this loop takes longer than
211                  * a few retries.
212                  */
213                 udelay(3);
214         }
215
216         if (likely(!ret))
217                 pcc_data.platform_owns_pcc = false;
218         else
219                 pr_err("PCC check channel failed. Status=%x\n", status);
220
221         return ret;
222 }
223
224 /*
225  * This function transfers the ownership of the PCC to the platform
226  * So it must be called while holding write_lock(pcc_lock)
227  */
228 static int send_pcc_cmd(u16 cmd)
229 {
230         int ret = -EIO, i;
231         struct acpi_pcct_shared_memory *generic_comm_base =
232                 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
233         static ktime_t last_cmd_cmpl_time, last_mpar_reset;
234         static int mpar_count;
235         unsigned int time_delta;
236
237         /*
238          * For CMD_WRITE we know for a fact the caller should have checked
239          * the channel before writing to PCC space
240          */
241         if (cmd == CMD_READ) {
242                 /*
243                  * If there are pending cpc_writes, then we stole the channel
244                  * before write completion, so first send a WRITE command to
245                  * platform
246                  */
247                 if (pcc_data.pending_pcc_write_cmd)
248                         send_pcc_cmd(CMD_WRITE);
249
250                 ret = check_pcc_chan(false);
251                 if (ret)
252                         goto end;
253         } else /* CMD_WRITE */
254                 pcc_data.pending_pcc_write_cmd = FALSE;
255
256         /*
257          * Handle the Minimum Request Turnaround Time(MRTT)
258          * "The minimum amount of time that OSPM must wait after the completion
259          * of a command before issuing the next command, in microseconds"
260          */
261         if (pcc_data.pcc_mrtt) {
262                 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
263                 if (pcc_data.pcc_mrtt > time_delta)
264                         udelay(pcc_data.pcc_mrtt - time_delta);
265         }
266
267         /*
268          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
269          * "The maximum number of periodic requests that the subspace channel can
270          * support, reported in commands per minute. 0 indicates no limitation."
271          *
272          * This parameter should be ideally zero or large enough so that it can
273          * handle maximum number of requests that all the cores in the system can
274          * collectively generate. If it is not, we will follow the spec and just
275          * not send the request to the platform after hitting the MPAR limit in
276          * any 60s window
277          */
278         if (pcc_data.pcc_mpar) {
279                 if (mpar_count == 0) {
280                         time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
281                         if (time_delta < 60 * MSEC_PER_SEC) {
282                                 pr_debug("PCC cmd not sent due to MPAR limit");
283                                 ret = -EIO;
284                                 goto end;
285                         }
286                         last_mpar_reset = ktime_get();
287                         mpar_count = pcc_data.pcc_mpar;
288                 }
289                 mpar_count--;
290         }
291
292         /* Write to the shared comm region. */
293         writew_relaxed(cmd, &generic_comm_base->command);
294
295         /* Flip CMD COMPLETE bit */
296         writew_relaxed(0, &generic_comm_base->status);
297
298         pcc_data.platform_owns_pcc = true;
299
300         /* Ring doorbell */
301         ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
302         if (ret < 0) {
303                 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
304                                 cmd, ret);
305                 goto end;
306         }
307
308         /* wait for completion and check for PCC errro bit */
309         ret = check_pcc_chan(true);
310
311         if (pcc_data.pcc_mrtt)
312                 last_cmd_cmpl_time = ktime_get();
313
314         if (pcc_data.pcc_channel->mbox->txdone_irq)
315                 mbox_chan_txdone(pcc_data.pcc_channel, ret);
316         else
317                 mbox_client_txdone(pcc_data.pcc_channel, ret);
318
319 end:
320         if (cmd == CMD_WRITE) {
321                 if (unlikely(ret)) {
322                         for_each_possible_cpu(i) {
323                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324                                 if (!desc)
325                                         continue;
326
327                                 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
328                                         desc->write_cmd_status = ret;
329                         }
330                 }
331                 pcc_data.pcc_write_cnt++;
332                 wake_up_all(&pcc_data.pcc_write_wait_q);
333         }
334
335         return ret;
336 }
337
338 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
339 {
340         if (ret < 0)
341                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
342                                 *(u16 *)msg, ret);
343         else
344                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
345                                 *(u16 *)msg, ret);
346 }
347
348 struct mbox_client cppc_mbox_cl = {
349         .tx_done = cppc_chan_tx_done,
350         .knows_txdone = true,
351 };
352
353 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
354 {
355         int result = -EFAULT;
356         acpi_status status = AE_OK;
357         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
358         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
359         struct acpi_buffer state = {0, NULL};
360         union acpi_object  *psd = NULL;
361         struct acpi_psd_package *pdomain;
362
363         status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
364                         ACPI_TYPE_PACKAGE);
365         if (ACPI_FAILURE(status))
366                 return -ENODEV;
367
368         psd = buffer.pointer;
369         if (!psd || psd->package.count != 1) {
370                 pr_debug("Invalid _PSD data\n");
371                 goto end;
372         }
373
374         pdomain = &(cpc_ptr->domain_info);
375
376         state.length = sizeof(struct acpi_psd_package);
377         state.pointer = pdomain;
378
379         status = acpi_extract_package(&(psd->package.elements[0]),
380                 &format, &state);
381         if (ACPI_FAILURE(status)) {
382                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
383                 goto end;
384         }
385
386         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
387                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
388                 goto end;
389         }
390
391         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
392                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
393                 goto end;
394         }
395
396         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
397             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
398             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
399                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
400                 goto end;
401         }
402
403         result = 0;
404 end:
405         kfree(buffer.pointer);
406         return result;
407 }
408
409 /**
410  * acpi_get_psd_map - Map the CPUs in a common freq domain.
411  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
412  *
413  *      Return: 0 for success or negative value for err.
414  */
415 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
416 {
417         int count_target;
418         int retval = 0;
419         unsigned int i, j;
420         cpumask_var_t covered_cpus;
421         struct cppc_cpudata *pr, *match_pr;
422         struct acpi_psd_package *pdomain;
423         struct acpi_psd_package *match_pdomain;
424         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
425
426         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
427                 return -ENOMEM;
428
429         /*
430          * Now that we have _PSD data from all CPUs, lets setup P-state
431          * domain info.
432          */
433         for_each_possible_cpu(i) {
434                 pr = all_cpu_data[i];
435                 if (!pr)
436                         continue;
437
438                 if (cpumask_test_cpu(i, covered_cpus))
439                         continue;
440
441                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
442                 if (!cpc_ptr) {
443                         retval = -EFAULT;
444                         goto err_ret;
445                 }
446
447                 pdomain = &(cpc_ptr->domain_info);
448                 cpumask_set_cpu(i, pr->shared_cpu_map);
449                 cpumask_set_cpu(i, covered_cpus);
450                 if (pdomain->num_processors <= 1)
451                         continue;
452
453                 /* Validate the Domain info */
454                 count_target = pdomain->num_processors;
455                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
456                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
457                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
458                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
459                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
460                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
461
462                 for_each_possible_cpu(j) {
463                         if (i == j)
464                                 continue;
465
466                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
467                         if (!match_cpc_ptr) {
468                                 retval = -EFAULT;
469                                 goto err_ret;
470                         }
471
472                         match_pdomain = &(match_cpc_ptr->domain_info);
473                         if (match_pdomain->domain != pdomain->domain)
474                                 continue;
475
476                         /* Here i and j are in the same domain */
477                         if (match_pdomain->num_processors != count_target) {
478                                 retval = -EFAULT;
479                                 goto err_ret;
480                         }
481
482                         if (pdomain->coord_type != match_pdomain->coord_type) {
483                                 retval = -EFAULT;
484                                 goto err_ret;
485                         }
486
487                         cpumask_set_cpu(j, covered_cpus);
488                         cpumask_set_cpu(j, pr->shared_cpu_map);
489                 }
490
491                 for_each_possible_cpu(j) {
492                         if (i == j)
493                                 continue;
494
495                         match_pr = all_cpu_data[j];
496                         if (!match_pr)
497                                 continue;
498
499                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
500                         if (!match_cpc_ptr) {
501                                 retval = -EFAULT;
502                                 goto err_ret;
503                         }
504
505                         match_pdomain = &(match_cpc_ptr->domain_info);
506                         if (match_pdomain->domain != pdomain->domain)
507                                 continue;
508
509                         match_pr->shared_type = pr->shared_type;
510                         cpumask_copy(match_pr->shared_cpu_map,
511                                      pr->shared_cpu_map);
512                 }
513         }
514
515 err_ret:
516         for_each_possible_cpu(i) {
517                 pr = all_cpu_data[i];
518                 if (!pr)
519                         continue;
520
521                 /* Assume no coordination on any error parsing domain info */
522                 if (retval) {
523                         cpumask_clear(pr->shared_cpu_map);
524                         cpumask_set_cpu(i, pr->shared_cpu_map);
525                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
526                 }
527         }
528
529         free_cpumask_var(covered_cpus);
530         return retval;
531 }
532 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
533
534 static int register_pcc_channel(int pcc_subspace_idx)
535 {
536         struct acpi_pcct_hw_reduced *cppc_ss;
537         u64 usecs_lat;
538
539         if (pcc_subspace_idx >= 0) {
540                 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
541                                 pcc_subspace_idx);
542
543                 if (IS_ERR(pcc_data.pcc_channel)) {
544                         pr_err("Failed to find PCC communication channel\n");
545                         return -ENODEV;
546                 }
547
548                 /*
549                  * The PCC mailbox controller driver should
550                  * have parsed the PCCT (global table of all
551                  * PCC channels) and stored pointers to the
552                  * subspace communication region in con_priv.
553                  */
554                 cppc_ss = (pcc_data.pcc_channel)->con_priv;
555
556                 if (!cppc_ss) {
557                         pr_err("No PCC subspace found for CPPC\n");
558                         return -ENODEV;
559                 }
560
561                 /*
562                  * cppc_ss->latency is just a Nominal value. In reality
563                  * the remote processor could be much slower to reply.
564                  * So add an arbitrary amount of wait on top of Nominal.
565                  */
566                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
567                 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
568                 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
569                 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
570                 pcc_data.pcc_nominal = cppc_ss->latency;
571
572                 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
573                 if (!pcc_data.pcc_comm_addr) {
574                         pr_err("Failed to ioremap PCC comm region mem\n");
575                         return -ENOMEM;
576                 }
577
578                 /* Set flag so that we dont come here for each CPU. */
579                 pcc_data.pcc_channel_acquired = true;
580         }
581
582         return 0;
583 }
584
585 /**
586  * cpc_ffh_supported() - check if FFH reading supported
587  *
588  * Check if the architecture has support for functional fixed hardware
589  * read/write capability.
590  *
591  * Return: true for supported, false for not supported
592  */
593 bool __weak cpc_ffh_supported(void)
594 {
595         return false;
596 }
597
598 /*
599  * An example CPC table looks like the following.
600  *
601  *      Name(_CPC, Package()
602  *                      {
603  *                      17,
604  *                      NumEntries
605  *                      1,
606  *                      // Revision
607  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
608  *                      // Highest Performance
609  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
610  *                      // Nominal Performance
611  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
612  *                      // Lowest Nonlinear Performance
613  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
614  *                      // Lowest Performance
615  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
616  *                      // Guaranteed Performance Register
617  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
618  *                      // Desired Performance Register
619  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
620  *                      ..
621  *                      ..
622  *                      ..
623  *
624  *              }
625  * Each Register() encodes how to access that specific register.
626  * e.g. a sample PCC entry has the following encoding:
627  *
628  *      Register (
629  *              PCC,
630  *              AddressSpaceKeyword
631  *              8,
632  *              //RegisterBitWidth
633  *              8,
634  *              //RegisterBitOffset
635  *              0x30,
636  *              //RegisterAddress
637  *              9
638  *              //AccessSize (subspace ID)
639  *              0
640  *              )
641  *      }
642  */
643
644 /**
645  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
646  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
647  *
648  *      Return: 0 for success or negative value for err.
649  */
650 int acpi_cppc_processor_probe(struct acpi_processor *pr)
651 {
652         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
653         union acpi_object *out_obj, *cpc_obj;
654         struct cpc_desc *cpc_ptr;
655         struct cpc_reg *gas_t;
656         struct device *cpu_dev;
657         acpi_handle handle = pr->handle;
658         unsigned int num_ent, i, cpc_rev;
659         acpi_status status;
660         int ret = -EFAULT;
661
662         /* Parse the ACPI _CPC table for this cpu. */
663         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
664                         ACPI_TYPE_PACKAGE);
665         if (ACPI_FAILURE(status)) {
666                 ret = -ENODEV;
667                 goto out_buf_free;
668         }
669
670         out_obj = (union acpi_object *) output.pointer;
671
672         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
673         if (!cpc_ptr) {
674                 ret = -ENOMEM;
675                 goto out_buf_free;
676         }
677
678         /* First entry is NumEntries. */
679         cpc_obj = &out_obj->package.elements[0];
680         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
681                 num_ent = cpc_obj->integer.value;
682         } else {
683                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
684                                 cpc_obj->type);
685                 goto out_free;
686         }
687
688         /* Only support CPPCv2. Bail otherwise. */
689         if (num_ent != CPPC_NUM_ENT) {
690                 pr_debug("Firmware exports %d entries. Expected: %d\n",
691                                 num_ent, CPPC_NUM_ENT);
692                 goto out_free;
693         }
694
695         cpc_ptr->num_entries = num_ent;
696
697         /* Second entry should be revision. */
698         cpc_obj = &out_obj->package.elements[1];
699         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
700                 cpc_rev = cpc_obj->integer.value;
701         } else {
702                 pr_debug("Unexpected entry type(%d) for Revision\n",
703                                 cpc_obj->type);
704                 goto out_free;
705         }
706
707         if (cpc_rev != CPPC_REV) {
708                 pr_debug("Firmware exports revision:%d. Expected:%d\n",
709                                 cpc_rev, CPPC_REV);
710                 goto out_free;
711         }
712
713         /* Iterate through remaining entries in _CPC */
714         for (i = 2; i < num_ent; i++) {
715                 cpc_obj = &out_obj->package.elements[i];
716
717                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
718                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
719                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
720                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
721                         gas_t = (struct cpc_reg *)
722                                 cpc_obj->buffer.pointer;
723
724                         /*
725                          * The PCC Subspace index is encoded inside
726                          * the CPC table entries. The same PCC index
727                          * will be used for all the PCC entries,
728                          * so extract it only once.
729                          */
730                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
731                                 if (pcc_data.pcc_subspace_idx < 0)
732                                         pcc_data.pcc_subspace_idx = gas_t->access_width;
733                                 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
734                                         pr_debug("Mismatched PCC ids.\n");
735                                         goto out_free;
736                                 }
737                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
738                                 if (gas_t->address) {
739                                         void __iomem *addr;
740
741                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
742                                         if (!addr)
743                                                 goto out_free;
744                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
745                                 }
746                         } else {
747                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
748                                         /* Support only PCC ,SYS MEM and FFH type regs */
749                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
750                                         goto out_free;
751                                 }
752                         }
753
754                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
755                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
756                 } else {
757                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
758                         goto out_free;
759                 }
760         }
761         /* Store CPU Logical ID */
762         cpc_ptr->cpu_id = pr->id;
763
764         /* Parse PSD data for this CPU */
765         ret = acpi_get_psd(cpc_ptr, handle);
766         if (ret)
767                 goto out_free;
768
769         /* Register PCC channel once for all CPUs. */
770         if (!pcc_data.pcc_channel_acquired) {
771                 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
772                 if (ret)
773                         goto out_free;
774
775                 init_rwsem(&pcc_data.pcc_lock);
776                 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
777         }
778
779         /* Plug PSD data into this CPUs CPC descriptor. */
780         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
781
782         /* Everything looks okay */
783         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
784
785         /* Add per logical CPU nodes for reading its feedback counters. */
786         cpu_dev = get_cpu_device(pr->id);
787         if (!cpu_dev)
788                 goto out_free;
789
790         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
791                         "acpi_cppc");
792         if (ret)
793                 goto out_free;
794
795         kfree(output.pointer);
796         return 0;
797
798 out_free:
799         /* Free all the mapped sys mem areas for this CPU */
800         for (i = 2; i < cpc_ptr->num_entries; i++) {
801                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
802
803                 if (addr)
804                         iounmap(addr);
805         }
806         kfree(cpc_ptr);
807
808 out_buf_free:
809         kfree(output.pointer);
810         return ret;
811 }
812 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
813
814 /**
815  * acpi_cppc_processor_exit - Cleanup CPC structs.
816  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
817  *
818  * Return: Void
819  */
820 void acpi_cppc_processor_exit(struct acpi_processor *pr)
821 {
822         struct cpc_desc *cpc_ptr;
823         unsigned int i;
824         void __iomem *addr;
825
826         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
827
828         /* Free all the mapped sys mem areas for this CPU */
829         for (i = 2; i < cpc_ptr->num_entries; i++) {
830                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
831                 if (addr)
832                         iounmap(addr);
833         }
834
835         kobject_put(&cpc_ptr->kobj);
836         kfree(cpc_ptr);
837 }
838 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
839
840 /**
841  * cpc_read_ffh() - Read FFH register
842  * @cpunum:     cpu number to read
843  * @reg:        cppc register information
844  * @val:        place holder for return value
845  *
846  * Read bit_width bits from a specified address and bit_offset
847  *
848  * Return: 0 for success and error code
849  */
850 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
851 {
852         return -ENOTSUPP;
853 }
854
855 /**
856  * cpc_write_ffh() - Write FFH register
857  * @cpunum:     cpu number to write
858  * @reg:        cppc register information
859  * @val:        value to write
860  *
861  * Write value of bit_width bits to a specified address and bit_offset
862  *
863  * Return: 0 for success and error code
864  */
865 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
866 {
867         return -ENOTSUPP;
868 }
869
870 /*
871  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
872  * as fast as possible. We have already mapped the PCC subspace during init, so
873  * we can directly write to it.
874  */
875
876 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
877 {
878         int ret_val = 0;
879         void __iomem *vaddr = 0;
880         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
881
882         if (reg_res->type == ACPI_TYPE_INTEGER) {
883                 *val = reg_res->cpc_entry.int_value;
884                 return ret_val;
885         }
886
887         *val = 0;
888         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
889                 vaddr = GET_PCC_VADDR(reg->address);
890         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
891                 vaddr = reg_res->sys_mem_vaddr;
892         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
893                 return cpc_read_ffh(cpu, reg, val);
894         else
895                 return acpi_os_read_memory((acpi_physical_address)reg->address,
896                                 val, reg->bit_width);
897
898         switch (reg->bit_width) {
899                 case 8:
900                         *val = readb_relaxed(vaddr);
901                         break;
902                 case 16:
903                         *val = readw_relaxed(vaddr);
904                         break;
905                 case 32:
906                         *val = readl_relaxed(vaddr);
907                         break;
908                 case 64:
909                         *val = readq_relaxed(vaddr);
910                         break;
911                 default:
912                         pr_debug("Error: Cannot read %u bit width from PCC\n",
913                                         reg->bit_width);
914                         ret_val = -EFAULT;
915         }
916
917         return ret_val;
918 }
919
920 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
921 {
922         int ret_val = 0;
923         void __iomem *vaddr = 0;
924         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
925
926         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
927                 vaddr = GET_PCC_VADDR(reg->address);
928         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
929                 vaddr = reg_res->sys_mem_vaddr;
930         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
931                 return cpc_write_ffh(cpu, reg, val);
932         else
933                 return acpi_os_write_memory((acpi_physical_address)reg->address,
934                                 val, reg->bit_width);
935
936         switch (reg->bit_width) {
937                 case 8:
938                         writeb_relaxed(val, vaddr);
939                         break;
940                 case 16:
941                         writew_relaxed(val, vaddr);
942                         break;
943                 case 32:
944                         writel_relaxed(val, vaddr);
945                         break;
946                 case 64:
947                         writeq_relaxed(val, vaddr);
948                         break;
949                 default:
950                         pr_debug("Error: Cannot write %u bit width to PCC\n",
951                                         reg->bit_width);
952                         ret_val = -EFAULT;
953                         break;
954         }
955
956         return ret_val;
957 }
958
959 /**
960  * cppc_get_perf_caps - Get a CPUs performance capabilities.
961  * @cpunum: CPU from which to get capabilities info.
962  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
963  *
964  * Return: 0 for success with perf_caps populated else -ERRNO.
965  */
966 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
967 {
968         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
969         struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
970                                                                  *nom_perf;
971         u64 high, low, nom;
972         int ret = 0, regs_in_pcc = 0;
973
974         if (!cpc_desc) {
975                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
976                 return -ENODEV;
977         }
978
979         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
980         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
981         ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
982         nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
983
984         /* Are any of the regs PCC ?*/
985         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
986                 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
987                 regs_in_pcc = 1;
988                 down_write(&pcc_data.pcc_lock);
989                 /* Ring doorbell once to update PCC subspace */
990                 if (send_pcc_cmd(CMD_READ) < 0) {
991                         ret = -EIO;
992                         goto out_err;
993                 }
994         }
995
996         cpc_read(cpunum, highest_reg, &high);
997         perf_caps->highest_perf = high;
998
999         cpc_read(cpunum, lowest_reg, &low);
1000         perf_caps->lowest_perf = low;
1001
1002         cpc_read(cpunum, nom_perf, &nom);
1003         perf_caps->nominal_perf = nom;
1004
1005         if (!high || !low || !nom)
1006                 ret = -EFAULT;
1007
1008 out_err:
1009         if (regs_in_pcc)
1010                 up_write(&pcc_data.pcc_lock);
1011         return ret;
1012 }
1013 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1014
1015 /**
1016  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1017  * @cpunum: CPU from which to read counters.
1018  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1019  *
1020  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1021  */
1022 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1023 {
1024         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1025         struct cpc_register_resource *delivered_reg, *reference_reg,
1026                 *ref_perf_reg, *ctr_wrap_reg;
1027         u64 delivered, reference, ref_perf, ctr_wrap_time;
1028         int ret = 0, regs_in_pcc = 0;
1029
1030         if (!cpc_desc) {
1031                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1032                 return -ENODEV;
1033         }
1034
1035         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1036         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1037         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1038         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1039
1040         /*
1041          * If refernce perf register is not supported then we should
1042          * use the nominal perf value
1043          */
1044         if (!CPC_SUPPORTED(ref_perf_reg))
1045                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1046
1047         /* Are any of the regs PCC ?*/
1048         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1049                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1050                 down_write(&pcc_data.pcc_lock);
1051                 regs_in_pcc = 1;
1052                 /* Ring doorbell once to update PCC subspace */
1053                 if (send_pcc_cmd(CMD_READ) < 0) {
1054                         ret = -EIO;
1055                         goto out_err;
1056                 }
1057         }
1058
1059         cpc_read(cpunum, delivered_reg, &delivered);
1060         cpc_read(cpunum, reference_reg, &reference);
1061         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1062
1063         /*
1064          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1065          * performance counters are assumed to never wrap during the lifetime of
1066          * platform
1067          */
1068         ctr_wrap_time = (u64)(~((u64)0));
1069         if (CPC_SUPPORTED(ctr_wrap_reg))
1070                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1071
1072         if (!delivered || !reference || !ref_perf) {
1073                 ret = -EFAULT;
1074                 goto out_err;
1075         }
1076
1077         perf_fb_ctrs->delivered = delivered;
1078         perf_fb_ctrs->reference = reference;
1079         perf_fb_ctrs->reference_perf = ref_perf;
1080         perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1081 out_err:
1082         if (regs_in_pcc)
1083                 up_write(&pcc_data.pcc_lock);
1084         return ret;
1085 }
1086 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1087
1088 /**
1089  * cppc_set_perf - Set a CPUs performance controls.
1090  * @cpu: CPU for which to set performance controls.
1091  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1092  *
1093  * Return: 0 for success, -ERRNO otherwise.
1094  */
1095 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1096 {
1097         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1098         struct cpc_register_resource *desired_reg;
1099         int ret = 0;
1100
1101         if (!cpc_desc) {
1102                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1103                 return -ENODEV;
1104         }
1105
1106         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1107
1108         /*
1109          * This is Phase-I where we want to write to CPC registers
1110          * -> We want all CPUs to be able to execute this phase in parallel
1111          *
1112          * Since read_lock can be acquired by multiple CPUs simultaneously we
1113          * achieve that goal here
1114          */
1115         if (CPC_IN_PCC(desired_reg)) {
1116                 down_read(&pcc_data.pcc_lock);  /* BEGIN Phase-I */
1117                 if (pcc_data.platform_owns_pcc) {
1118                         ret = check_pcc_chan(false);
1119                         if (ret) {
1120                                 up_read(&pcc_data.pcc_lock);
1121                                 return ret;
1122                         }
1123                 }
1124                 /*
1125                  * Update the pending_write to make sure a PCC CMD_READ will not
1126                  * arrive and steal the channel during the switch to write lock
1127                  */
1128                 pcc_data.pending_pcc_write_cmd = true;
1129                 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1130                 cpc_desc->write_cmd_status = 0;
1131         }
1132
1133         /*
1134          * Skip writing MIN/MAX until Linux knows how to come up with
1135          * useful values.
1136          */
1137         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1138
1139         if (CPC_IN_PCC(desired_reg))
1140                 up_read(&pcc_data.pcc_lock);    /* END Phase-I */
1141         /*
1142          * This is Phase-II where we transfer the ownership of PCC to Platform
1143          *
1144          * Short Summary: Basically if we think of a group of cppc_set_perf
1145          * requests that happened in short overlapping interval. The last CPU to
1146          * come out of Phase-I will enter Phase-II and ring the doorbell.
1147          *
1148          * We have the following requirements for Phase-II:
1149          *     1. We want to execute Phase-II only when there are no CPUs
1150          * currently executing in Phase-I
1151          *     2. Once we start Phase-II we want to avoid all other CPUs from
1152          * entering Phase-I.
1153          *     3. We want only one CPU among all those who went through Phase-I
1154          * to run phase-II
1155          *
1156          * If write_trylock fails to get the lock and doesn't transfer the
1157          * PCC ownership to the platform, then one of the following will be TRUE
1158          *     1. There is at-least one CPU in Phase-I which will later execute
1159          * write_trylock, so the CPUs in Phase-I will be responsible for
1160          * executing the Phase-II.
1161          *     2. Some other CPU has beaten this CPU to successfully execute the
1162          * write_trylock and has already acquired the write_lock. We know for a
1163          * fact it(other CPU acquiring the write_lock) couldn't have happened
1164          * before this CPU's Phase-I as we held the read_lock.
1165          *     3. Some other CPU executing pcc CMD_READ has stolen the
1166          * down_write, in which case, send_pcc_cmd will check for pending
1167          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1168          * So this CPU can be certain that its request will be delivered
1169          *    So in all cases, this CPU knows that its request will be delivered
1170          * by another CPU and can return
1171          *
1172          * After getting the down_write we still need to check for
1173          * pending_pcc_write_cmd to take care of the following scenario
1174          *    The thread running this code could be scheduled out between
1175          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1176          * could have delivered the request to Platform by triggering the
1177          * doorbell and transferred the ownership of PCC to platform. So this
1178          * avoids triggering an unnecessary doorbell and more importantly before
1179          * triggering the doorbell it makes sure that the PCC channel ownership
1180          * is still with OSPM.
1181          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1182          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1183          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1184          * case during a CMD_READ and if there are pending writes it delivers
1185          * the write command before servicing the read command
1186          */
1187         if (CPC_IN_PCC(desired_reg)) {
1188                 if (down_write_trylock(&pcc_data.pcc_lock)) {   /* BEGIN Phase-II */
1189                         /* Update only if there are pending write commands */
1190                         if (pcc_data.pending_pcc_write_cmd)
1191                                 send_pcc_cmd(CMD_WRITE);
1192                         up_write(&pcc_data.pcc_lock);           /* END Phase-II */
1193                 } else
1194                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1195                         wait_event(pcc_data.pcc_write_wait_q,
1196                                 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1197
1198                 /* send_pcc_cmd updates the status in case of failure */
1199                 ret = cpc_desc->write_cmd_status;
1200         }
1201         return ret;
1202 }
1203 EXPORT_SYMBOL_GPL(cppc_set_perf);
1204
1205 /**
1206  * cppc_get_transition_latency - returns frequency transition latency in ns
1207  *
1208  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1209  * transition latency for perfromance change requests. The closest we have
1210  * is the timing information from the PCCT tables which provides the info
1211  * on the number and frequency of PCC commands the platform can handle.
1212  */
1213 unsigned int cppc_get_transition_latency(int cpu_num)
1214 {
1215         /*
1216          * Expected transition latency is based on the PCCT timing values
1217          * Below are definition from ACPI spec:
1218          * pcc_nominal- Expected latency to process a command, in microseconds
1219          * pcc_mpar   - The maximum number of periodic requests that the subspace
1220          *              channel can support, reported in commands per minute. 0
1221          *              indicates no limitation.
1222          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1223          *              completion of a command before issuing the next command,
1224          *              in microseconds.
1225          */
1226         unsigned int latency_ns = 0;
1227         struct cpc_desc *cpc_desc;
1228         struct cpc_register_resource *desired_reg;
1229
1230         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1231         if (!cpc_desc)
1232                 return CPUFREQ_ETERNAL;
1233
1234         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1235         if (!CPC_IN_PCC(desired_reg))
1236                 return CPUFREQ_ETERNAL;
1237
1238         if (pcc_data.pcc_mpar)
1239                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1240
1241         latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1242         latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1243
1244         return latency_ns;
1245 }
1246 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);