2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
27 * - Platform conveys its decision back to OS
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
38 #define pr_fmt(fmt) "ACPI CPPC: " fmt
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
46 #include <acpi/cppc_acpi.h>
48 struct cppc_pcc_data {
49 struct mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
52 bool pcc_channel_acquired;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
61 * Lock to provide controlled access to the PCC channel.
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
74 struct rw_semaphore pcc_lock;
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82 .pcc_subspace_idx = -1,
83 .platform_owns_pcc = true,
87 * The cpc_desc structure contains the ACPI register details
88 * as described in the per CPU _CPC tables. The details
89 * include the type of register (e.g. PCC, System IO, FFH etc.)
90 * and destination addresses which lets us READ/WRITE CPU performance
91 * information using the appropriate I/O methods.
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
98 /* Check if a CPC regsiter is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500
122 struct attribute attr;
123 ssize_t (*show)(struct kobject *kobj,
124 struct attribute *attr, char *buf);
125 ssize_t (*store)(struct kobject *kobj,
126 struct attribute *attr, const char *c, ssize_t count);
129 #define define_one_cppc_ro(_name) \
130 static struct cppc_attr _name = \
131 __ATTR(_name, 0444, show_##_name, NULL)
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135 static ssize_t show_feedback_ctrs(struct kobject *kobj,
136 struct attribute *attr, char *buf)
138 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139 struct cppc_perf_fb_ctrs fb_ctrs = {0};
141 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
143 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144 fb_ctrs.reference, fb_ctrs.delivered);
146 define_one_cppc_ro(feedback_ctrs);
148 static ssize_t show_reference_perf(struct kobject *kobj,
149 struct attribute *attr, char *buf)
151 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152 struct cppc_perf_fb_ctrs fb_ctrs = {0};
154 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
156 return scnprintf(buf, PAGE_SIZE, "%llu\n",
157 fb_ctrs.reference_perf);
159 define_one_cppc_ro(reference_perf);
161 static ssize_t show_wraparound_time(struct kobject *kobj,
162 struct attribute *attr, char *buf)
164 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165 struct cppc_perf_fb_ctrs fb_ctrs = {0};
167 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
169 return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
172 define_one_cppc_ro(wraparound_time);
174 static struct attribute *cppc_attrs[] = {
176 &reference_perf.attr,
177 &wraparound_time.attr,
181 static struct kobj_type cppc_ktype = {
182 .sysfs_ops = &kobj_sysfs_ops,
183 .default_attrs = cppc_attrs,
186 static int check_pcc_chan(bool chk_err_bit)
188 int ret = -EIO, status = 0;
189 struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
190 ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
192 if (!pcc_data.platform_owns_pcc)
195 /* Retry in case the remote processor was too slow to catch up. */
196 while (!ktime_after(ktime_get(), next_deadline)) {
198 * Per spec, prior to boot the PCC space wil be initialized by
199 * platform and should have set the command completion bit when
200 * PCC can be used by OSPM
202 status = readw_relaxed(&generic_comm_base->status);
203 if (status & PCC_CMD_COMPLETE_MASK) {
205 if (chk_err_bit && (status & PCC_ERROR_MASK))
210 * Reducing the bus traffic in case this loop takes longer than
217 pcc_data.platform_owns_pcc = false;
219 pr_err("PCC check channel failed. Status=%x\n", status);
225 * This function transfers the ownership of the PCC to the platform
226 * So it must be called while holding write_lock(pcc_lock)
228 static int send_pcc_cmd(u16 cmd)
231 struct acpi_pcct_shared_memory *generic_comm_base =
232 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
233 static ktime_t last_cmd_cmpl_time, last_mpar_reset;
234 static int mpar_count;
235 unsigned int time_delta;
238 * For CMD_WRITE we know for a fact the caller should have checked
239 * the channel before writing to PCC space
241 if (cmd == CMD_READ) {
243 * If there are pending cpc_writes, then we stole the channel
244 * before write completion, so first send a WRITE command to
247 if (pcc_data.pending_pcc_write_cmd)
248 send_pcc_cmd(CMD_WRITE);
250 ret = check_pcc_chan(false);
253 } else /* CMD_WRITE */
254 pcc_data.pending_pcc_write_cmd = FALSE;
257 * Handle the Minimum Request Turnaround Time(MRTT)
258 * "The minimum amount of time that OSPM must wait after the completion
259 * of a command before issuing the next command, in microseconds"
261 if (pcc_data.pcc_mrtt) {
262 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
263 if (pcc_data.pcc_mrtt > time_delta)
264 udelay(pcc_data.pcc_mrtt - time_delta);
268 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
269 * "The maximum number of periodic requests that the subspace channel can
270 * support, reported in commands per minute. 0 indicates no limitation."
272 * This parameter should be ideally zero or large enough so that it can
273 * handle maximum number of requests that all the cores in the system can
274 * collectively generate. If it is not, we will follow the spec and just
275 * not send the request to the platform after hitting the MPAR limit in
278 if (pcc_data.pcc_mpar) {
279 if (mpar_count == 0) {
280 time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
281 if (time_delta < 60 * MSEC_PER_SEC) {
282 pr_debug("PCC cmd not sent due to MPAR limit");
286 last_mpar_reset = ktime_get();
287 mpar_count = pcc_data.pcc_mpar;
292 /* Write to the shared comm region. */
293 writew_relaxed(cmd, &generic_comm_base->command);
295 /* Flip CMD COMPLETE bit */
296 writew_relaxed(0, &generic_comm_base->status);
298 pcc_data.platform_owns_pcc = true;
301 ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
303 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
308 /* wait for completion and check for PCC errro bit */
309 ret = check_pcc_chan(true);
311 if (pcc_data.pcc_mrtt)
312 last_cmd_cmpl_time = ktime_get();
314 if (pcc_data.pcc_channel->mbox->txdone_irq)
315 mbox_chan_txdone(pcc_data.pcc_channel, ret);
317 mbox_client_txdone(pcc_data.pcc_channel, ret);
320 if (cmd == CMD_WRITE) {
322 for_each_possible_cpu(i) {
323 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
327 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
328 desc->write_cmd_status = ret;
331 pcc_data.pcc_write_cnt++;
332 wake_up_all(&pcc_data.pcc_write_wait_q);
338 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
341 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
344 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
348 struct mbox_client cppc_mbox_cl = {
349 .tx_done = cppc_chan_tx_done,
350 .knows_txdone = true,
353 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
355 int result = -EFAULT;
356 acpi_status status = AE_OK;
357 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
358 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
359 struct acpi_buffer state = {0, NULL};
360 union acpi_object *psd = NULL;
361 struct acpi_psd_package *pdomain;
363 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
365 if (ACPI_FAILURE(status))
368 psd = buffer.pointer;
369 if (!psd || psd->package.count != 1) {
370 pr_debug("Invalid _PSD data\n");
374 pdomain = &(cpc_ptr->domain_info);
376 state.length = sizeof(struct acpi_psd_package);
377 state.pointer = pdomain;
379 status = acpi_extract_package(&(psd->package.elements[0]),
381 if (ACPI_FAILURE(status)) {
382 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
386 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
387 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
391 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
392 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
396 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
397 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
398 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
399 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
405 kfree(buffer.pointer);
410 * acpi_get_psd_map - Map the CPUs in a common freq domain.
411 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
413 * Return: 0 for success or negative value for err.
415 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
420 cpumask_var_t covered_cpus;
421 struct cppc_cpudata *pr, *match_pr;
422 struct acpi_psd_package *pdomain;
423 struct acpi_psd_package *match_pdomain;
424 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
426 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
430 * Now that we have _PSD data from all CPUs, lets setup P-state
433 for_each_possible_cpu(i) {
434 pr = all_cpu_data[i];
438 if (cpumask_test_cpu(i, covered_cpus))
441 cpc_ptr = per_cpu(cpc_desc_ptr, i);
447 pdomain = &(cpc_ptr->domain_info);
448 cpumask_set_cpu(i, pr->shared_cpu_map);
449 cpumask_set_cpu(i, covered_cpus);
450 if (pdomain->num_processors <= 1)
453 /* Validate the Domain info */
454 count_target = pdomain->num_processors;
455 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
456 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
457 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
458 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
459 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
460 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
462 for_each_possible_cpu(j) {
466 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
467 if (!match_cpc_ptr) {
472 match_pdomain = &(match_cpc_ptr->domain_info);
473 if (match_pdomain->domain != pdomain->domain)
476 /* Here i and j are in the same domain */
477 if (match_pdomain->num_processors != count_target) {
482 if (pdomain->coord_type != match_pdomain->coord_type) {
487 cpumask_set_cpu(j, covered_cpus);
488 cpumask_set_cpu(j, pr->shared_cpu_map);
491 for_each_possible_cpu(j) {
495 match_pr = all_cpu_data[j];
499 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
500 if (!match_cpc_ptr) {
505 match_pdomain = &(match_cpc_ptr->domain_info);
506 if (match_pdomain->domain != pdomain->domain)
509 match_pr->shared_type = pr->shared_type;
510 cpumask_copy(match_pr->shared_cpu_map,
516 for_each_possible_cpu(i) {
517 pr = all_cpu_data[i];
521 /* Assume no coordination on any error parsing domain info */
523 cpumask_clear(pr->shared_cpu_map);
524 cpumask_set_cpu(i, pr->shared_cpu_map);
525 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
529 free_cpumask_var(covered_cpus);
532 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
534 static int register_pcc_channel(int pcc_subspace_idx)
536 struct acpi_pcct_hw_reduced *cppc_ss;
539 if (pcc_subspace_idx >= 0) {
540 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
543 if (IS_ERR(pcc_data.pcc_channel)) {
544 pr_err("Failed to find PCC communication channel\n");
549 * The PCC mailbox controller driver should
550 * have parsed the PCCT (global table of all
551 * PCC channels) and stored pointers to the
552 * subspace communication region in con_priv.
554 cppc_ss = (pcc_data.pcc_channel)->con_priv;
557 pr_err("No PCC subspace found for CPPC\n");
562 * cppc_ss->latency is just a Nominal value. In reality
563 * the remote processor could be much slower to reply.
564 * So add an arbitrary amount of wait on top of Nominal.
566 usecs_lat = NUM_RETRIES * cppc_ss->latency;
567 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
568 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
569 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
570 pcc_data.pcc_nominal = cppc_ss->latency;
572 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
573 if (!pcc_data.pcc_comm_addr) {
574 pr_err("Failed to ioremap PCC comm region mem\n");
578 /* Set flag so that we dont come here for each CPU. */
579 pcc_data.pcc_channel_acquired = true;
586 * cpc_ffh_supported() - check if FFH reading supported
588 * Check if the architecture has support for functional fixed hardware
589 * read/write capability.
591 * Return: true for supported, false for not supported
593 bool __weak cpc_ffh_supported(void)
599 * An example CPC table looks like the following.
601 * Name(_CPC, Package()
607 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
608 * // Highest Performance
609 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
610 * // Nominal Performance
611 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
612 * // Lowest Nonlinear Performance
613 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
614 * // Lowest Performance
615 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
616 * // Guaranteed Performance Register
617 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
618 * // Desired Performance Register
619 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
625 * Each Register() encodes how to access that specific register.
626 * e.g. a sample PCC entry has the following encoding:
630 * AddressSpaceKeyword
634 * //RegisterBitOffset
638 * //AccessSize (subspace ID)
645 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
646 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
648 * Return: 0 for success or negative value for err.
650 int acpi_cppc_processor_probe(struct acpi_processor *pr)
652 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
653 union acpi_object *out_obj, *cpc_obj;
654 struct cpc_desc *cpc_ptr;
655 struct cpc_reg *gas_t;
656 struct device *cpu_dev;
657 acpi_handle handle = pr->handle;
658 unsigned int num_ent, i, cpc_rev;
662 /* Parse the ACPI _CPC table for this cpu. */
663 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
665 if (ACPI_FAILURE(status)) {
670 out_obj = (union acpi_object *) output.pointer;
672 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
678 /* First entry is NumEntries. */
679 cpc_obj = &out_obj->package.elements[0];
680 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
681 num_ent = cpc_obj->integer.value;
683 pr_debug("Unexpected entry type(%d) for NumEntries\n",
688 /* Only support CPPCv2. Bail otherwise. */
689 if (num_ent != CPPC_NUM_ENT) {
690 pr_debug("Firmware exports %d entries. Expected: %d\n",
691 num_ent, CPPC_NUM_ENT);
695 cpc_ptr->num_entries = num_ent;
697 /* Second entry should be revision. */
698 cpc_obj = &out_obj->package.elements[1];
699 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
700 cpc_rev = cpc_obj->integer.value;
702 pr_debug("Unexpected entry type(%d) for Revision\n",
707 if (cpc_rev != CPPC_REV) {
708 pr_debug("Firmware exports revision:%d. Expected:%d\n",
713 /* Iterate through remaining entries in _CPC */
714 for (i = 2; i < num_ent; i++) {
715 cpc_obj = &out_obj->package.elements[i];
717 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
718 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
719 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
720 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
721 gas_t = (struct cpc_reg *)
722 cpc_obj->buffer.pointer;
725 * The PCC Subspace index is encoded inside
726 * the CPC table entries. The same PCC index
727 * will be used for all the PCC entries,
728 * so extract it only once.
730 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
731 if (pcc_data.pcc_subspace_idx < 0)
732 pcc_data.pcc_subspace_idx = gas_t->access_width;
733 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
734 pr_debug("Mismatched PCC ids.\n");
737 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
738 if (gas_t->address) {
741 addr = ioremap(gas_t->address, gas_t->bit_width/8);
744 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
747 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
748 /* Support only PCC ,SYS MEM and FFH type regs */
749 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
754 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
755 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
757 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
761 /* Store CPU Logical ID */
762 cpc_ptr->cpu_id = pr->id;
764 /* Parse PSD data for this CPU */
765 ret = acpi_get_psd(cpc_ptr, handle);
769 /* Register PCC channel once for all CPUs. */
770 if (!pcc_data.pcc_channel_acquired) {
771 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
775 init_rwsem(&pcc_data.pcc_lock);
776 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
779 /* Plug PSD data into this CPUs CPC descriptor. */
780 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
782 /* Everything looks okay */
783 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
785 /* Add per logical CPU nodes for reading its feedback counters. */
786 cpu_dev = get_cpu_device(pr->id);
790 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
795 kfree(output.pointer);
799 /* Free all the mapped sys mem areas for this CPU */
800 for (i = 2; i < cpc_ptr->num_entries; i++) {
801 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
809 kfree(output.pointer);
812 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
815 * acpi_cppc_processor_exit - Cleanup CPC structs.
816 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
820 void acpi_cppc_processor_exit(struct acpi_processor *pr)
822 struct cpc_desc *cpc_ptr;
826 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
828 /* Free all the mapped sys mem areas for this CPU */
829 for (i = 2; i < cpc_ptr->num_entries; i++) {
830 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
835 kobject_put(&cpc_ptr->kobj);
838 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
841 * cpc_read_ffh() - Read FFH register
842 * @cpunum: cpu number to read
843 * @reg: cppc register information
844 * @val: place holder for return value
846 * Read bit_width bits from a specified address and bit_offset
848 * Return: 0 for success and error code
850 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
856 * cpc_write_ffh() - Write FFH register
857 * @cpunum: cpu number to write
858 * @reg: cppc register information
859 * @val: value to write
861 * Write value of bit_width bits to a specified address and bit_offset
863 * Return: 0 for success and error code
865 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
871 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
872 * as fast as possible. We have already mapped the PCC subspace during init, so
873 * we can directly write to it.
876 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
879 void __iomem *vaddr = 0;
880 struct cpc_reg *reg = ®_res->cpc_entry.reg;
882 if (reg_res->type == ACPI_TYPE_INTEGER) {
883 *val = reg_res->cpc_entry.int_value;
888 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
889 vaddr = GET_PCC_VADDR(reg->address);
890 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
891 vaddr = reg_res->sys_mem_vaddr;
892 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
893 return cpc_read_ffh(cpu, reg, val);
895 return acpi_os_read_memory((acpi_physical_address)reg->address,
896 val, reg->bit_width);
898 switch (reg->bit_width) {
900 *val = readb_relaxed(vaddr);
903 *val = readw_relaxed(vaddr);
906 *val = readl_relaxed(vaddr);
909 *val = readq_relaxed(vaddr);
912 pr_debug("Error: Cannot read %u bit width from PCC\n",
920 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
923 void __iomem *vaddr = 0;
924 struct cpc_reg *reg = ®_res->cpc_entry.reg;
926 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
927 vaddr = GET_PCC_VADDR(reg->address);
928 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
929 vaddr = reg_res->sys_mem_vaddr;
930 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
931 return cpc_write_ffh(cpu, reg, val);
933 return acpi_os_write_memory((acpi_physical_address)reg->address,
934 val, reg->bit_width);
936 switch (reg->bit_width) {
938 writeb_relaxed(val, vaddr);
941 writew_relaxed(val, vaddr);
944 writel_relaxed(val, vaddr);
947 writeq_relaxed(val, vaddr);
950 pr_debug("Error: Cannot write %u bit width to PCC\n",
960 * cppc_get_perf_caps - Get a CPUs performance capabilities.
961 * @cpunum: CPU from which to get capabilities info.
962 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
964 * Return: 0 for success with perf_caps populated else -ERRNO.
966 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
968 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
969 struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
972 int ret = 0, regs_in_pcc = 0;
975 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
979 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
980 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
981 ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
982 nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
984 /* Are any of the regs PCC ?*/
985 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
986 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
988 down_write(&pcc_data.pcc_lock);
989 /* Ring doorbell once to update PCC subspace */
990 if (send_pcc_cmd(CMD_READ) < 0) {
996 cpc_read(cpunum, highest_reg, &high);
997 perf_caps->highest_perf = high;
999 cpc_read(cpunum, lowest_reg, &low);
1000 perf_caps->lowest_perf = low;
1002 cpc_read(cpunum, nom_perf, &nom);
1003 perf_caps->nominal_perf = nom;
1005 if (!high || !low || !nom)
1010 up_write(&pcc_data.pcc_lock);
1013 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1016 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1017 * @cpunum: CPU from which to read counters.
1018 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1020 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1022 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1024 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1025 struct cpc_register_resource *delivered_reg, *reference_reg,
1026 *ref_perf_reg, *ctr_wrap_reg;
1027 u64 delivered, reference, ref_perf, ctr_wrap_time;
1028 int ret = 0, regs_in_pcc = 0;
1031 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1035 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1036 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1037 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1038 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1041 * If refernce perf register is not supported then we should
1042 * use the nominal perf value
1044 if (!CPC_SUPPORTED(ref_perf_reg))
1045 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1047 /* Are any of the regs PCC ?*/
1048 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1049 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1050 down_write(&pcc_data.pcc_lock);
1052 /* Ring doorbell once to update PCC subspace */
1053 if (send_pcc_cmd(CMD_READ) < 0) {
1059 cpc_read(cpunum, delivered_reg, &delivered);
1060 cpc_read(cpunum, reference_reg, &reference);
1061 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1064 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1065 * performance counters are assumed to never wrap during the lifetime of
1068 ctr_wrap_time = (u64)(~((u64)0));
1069 if (CPC_SUPPORTED(ctr_wrap_reg))
1070 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1072 if (!delivered || !reference || !ref_perf) {
1077 perf_fb_ctrs->delivered = delivered;
1078 perf_fb_ctrs->reference = reference;
1079 perf_fb_ctrs->reference_perf = ref_perf;
1080 perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1083 up_write(&pcc_data.pcc_lock);
1086 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1089 * cppc_set_perf - Set a CPUs performance controls.
1090 * @cpu: CPU for which to set performance controls.
1091 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1093 * Return: 0 for success, -ERRNO otherwise.
1095 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1097 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1098 struct cpc_register_resource *desired_reg;
1102 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1106 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1109 * This is Phase-I where we want to write to CPC registers
1110 * -> We want all CPUs to be able to execute this phase in parallel
1112 * Since read_lock can be acquired by multiple CPUs simultaneously we
1113 * achieve that goal here
1115 if (CPC_IN_PCC(desired_reg)) {
1116 down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
1117 if (pcc_data.platform_owns_pcc) {
1118 ret = check_pcc_chan(false);
1120 up_read(&pcc_data.pcc_lock);
1125 * Update the pending_write to make sure a PCC CMD_READ will not
1126 * arrive and steal the channel during the switch to write lock
1128 pcc_data.pending_pcc_write_cmd = true;
1129 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1130 cpc_desc->write_cmd_status = 0;
1134 * Skip writing MIN/MAX until Linux knows how to come up with
1137 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1139 if (CPC_IN_PCC(desired_reg))
1140 up_read(&pcc_data.pcc_lock); /* END Phase-I */
1142 * This is Phase-II where we transfer the ownership of PCC to Platform
1144 * Short Summary: Basically if we think of a group of cppc_set_perf
1145 * requests that happened in short overlapping interval. The last CPU to
1146 * come out of Phase-I will enter Phase-II and ring the doorbell.
1148 * We have the following requirements for Phase-II:
1149 * 1. We want to execute Phase-II only when there are no CPUs
1150 * currently executing in Phase-I
1151 * 2. Once we start Phase-II we want to avoid all other CPUs from
1153 * 3. We want only one CPU among all those who went through Phase-I
1156 * If write_trylock fails to get the lock and doesn't transfer the
1157 * PCC ownership to the platform, then one of the following will be TRUE
1158 * 1. There is at-least one CPU in Phase-I which will later execute
1159 * write_trylock, so the CPUs in Phase-I will be responsible for
1160 * executing the Phase-II.
1161 * 2. Some other CPU has beaten this CPU to successfully execute the
1162 * write_trylock and has already acquired the write_lock. We know for a
1163 * fact it(other CPU acquiring the write_lock) couldn't have happened
1164 * before this CPU's Phase-I as we held the read_lock.
1165 * 3. Some other CPU executing pcc CMD_READ has stolen the
1166 * down_write, in which case, send_pcc_cmd will check for pending
1167 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1168 * So this CPU can be certain that its request will be delivered
1169 * So in all cases, this CPU knows that its request will be delivered
1170 * by another CPU and can return
1172 * After getting the down_write we still need to check for
1173 * pending_pcc_write_cmd to take care of the following scenario
1174 * The thread running this code could be scheduled out between
1175 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1176 * could have delivered the request to Platform by triggering the
1177 * doorbell and transferred the ownership of PCC to platform. So this
1178 * avoids triggering an unnecessary doorbell and more importantly before
1179 * triggering the doorbell it makes sure that the PCC channel ownership
1180 * is still with OSPM.
1181 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1182 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1183 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1184 * case during a CMD_READ and if there are pending writes it delivers
1185 * the write command before servicing the read command
1187 if (CPC_IN_PCC(desired_reg)) {
1188 if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
1189 /* Update only if there are pending write commands */
1190 if (pcc_data.pending_pcc_write_cmd)
1191 send_pcc_cmd(CMD_WRITE);
1192 up_write(&pcc_data.pcc_lock); /* END Phase-II */
1194 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1195 wait_event(pcc_data.pcc_write_wait_q,
1196 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1198 /* send_pcc_cmd updates the status in case of failure */
1199 ret = cpc_desc->write_cmd_status;
1203 EXPORT_SYMBOL_GPL(cppc_set_perf);
1206 * cppc_get_transition_latency - returns frequency transition latency in ns
1208 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1209 * transition latency for perfromance change requests. The closest we have
1210 * is the timing information from the PCCT tables which provides the info
1211 * on the number and frequency of PCC commands the platform can handle.
1213 unsigned int cppc_get_transition_latency(int cpu_num)
1216 * Expected transition latency is based on the PCCT timing values
1217 * Below are definition from ACPI spec:
1218 * pcc_nominal- Expected latency to process a command, in microseconds
1219 * pcc_mpar - The maximum number of periodic requests that the subspace
1220 * channel can support, reported in commands per minute. 0
1221 * indicates no limitation.
1222 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1223 * completion of a command before issuing the next command,
1226 unsigned int latency_ns = 0;
1227 struct cpc_desc *cpc_desc;
1228 struct cpc_register_resource *desired_reg;
1230 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1232 return CPUFREQ_ETERNAL;
1234 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1235 if (!CPC_IN_PCC(desired_reg))
1236 return CPUFREQ_ETERNAL;
1238 if (pcc_data.pcc_mpar)
1239 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1241 latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1242 latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1246 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);