1 // SPDX-License-Identifier: GPL-2.0-only
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
43 #include <acpi/cppc_acpi.h>
45 struct cppc_pcc_data {
46 struct pcc_mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
57 * Lock to provide controlled access to the PCC channel.
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
70 struct rw_semaphore pcc_lock;
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Check if a CPC register is in SystemMemory */
104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
105 (cpc)->cpc_entry.reg.space_id == \
106 ACPI_ADR_SPACE_SYSTEM_MEMORY)
108 /* Check if a CPC register is in SystemIo */
109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
110 (cpc)->cpc_entry.reg.space_id == \
111 ACPI_ADR_SPACE_SYSTEM_IO)
113 /* Evaluates to True if reg is a NULL register descriptor */
114 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115 (reg)->address == 0 && \
116 (reg)->bit_width == 0 && \
117 (reg)->bit_offset == 0 && \
118 (reg)->access_width == 0)
120 /* Evaluates to True if an optional cpc field is supported */
121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
122 !!(cpc)->cpc_entry.int_value : \
123 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
125 * Arbitrary Retries in case the remote processor is slow to respond
126 * to PCC commands. Keeping it high enough to cover emulators where
127 * the processors run painfully slow.
129 #define NUM_RETRIES 500ULL
131 #define OVER_16BTS_MASK ~0xFFFFULL
133 #define define_one_cppc_ro(_name) \
134 static struct kobj_attribute _name = \
135 __ATTR(_name, 0444, show_##_name, NULL)
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
139 #define show_cppc_data(access_fn, struct_name, member_name) \
140 static ssize_t show_##member_name(struct kobject *kobj, \
141 struct kobj_attribute *attr, char *buf) \
143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
144 struct struct_name st_name = {0}; \
147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
151 return sysfs_emit(buf, "%llu\n", \
152 (u64)st_name.member_name); \
154 define_one_cppc_ro(member_name)
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
166 static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
169 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 struct cppc_perf_fb_ctrs fb_ctrs = {0};
173 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
177 return sysfs_emit(buf, "ref:%llu del:%llu\n",
178 fb_ctrs.reference, fb_ctrs.delivered);
180 define_one_cppc_ro(feedback_ctrs);
182 static struct attribute *cppc_attrs[] = {
184 &reference_perf.attr,
185 &wraparound_time.attr,
188 &lowest_nonlinear_perf.attr,
194 ATTRIBUTE_GROUPS(cppc);
196 static const struct kobj_type cppc_ktype = {
197 .sysfs_ops = &kobj_sysfs_ops,
198 .default_groups = cppc_groups,
201 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
204 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
205 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
206 pcc_ss_data->pcc_comm_addr;
208 if (!pcc_ss_data->platform_owns_pcc)
212 * Poll PCC status register every 3us(delay_us) for maximum of
213 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
215 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
216 status & PCC_CMD_COMPLETE_MASK, 3,
217 pcc_ss_data->deadline_us);
220 pcc_ss_data->platform_owns_pcc = false;
221 if (chk_err_bit && (status & PCC_ERROR_MASK))
226 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
233 * This function transfers the ownership of the PCC to the platform
234 * So it must be called while holding write_lock(pcc_lock)
236 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
239 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
240 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
241 pcc_ss_data->pcc_comm_addr;
242 unsigned int time_delta;
245 * For CMD_WRITE we know for a fact the caller should have checked
246 * the channel before writing to PCC space
248 if (cmd == CMD_READ) {
250 * If there are pending cpc_writes, then we stole the channel
251 * before write completion, so first send a WRITE command to
254 if (pcc_ss_data->pending_pcc_write_cmd)
255 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
257 ret = check_pcc_chan(pcc_ss_id, false);
260 } else /* CMD_WRITE */
261 pcc_ss_data->pending_pcc_write_cmd = FALSE;
264 * Handle the Minimum Request Turnaround Time(MRTT)
265 * "The minimum amount of time that OSPM must wait after the completion
266 * of a command before issuing the next command, in microseconds"
268 if (pcc_ss_data->pcc_mrtt) {
269 time_delta = ktime_us_delta(ktime_get(),
270 pcc_ss_data->last_cmd_cmpl_time);
271 if (pcc_ss_data->pcc_mrtt > time_delta)
272 udelay(pcc_ss_data->pcc_mrtt - time_delta);
276 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
277 * "The maximum number of periodic requests that the subspace channel can
278 * support, reported in commands per minute. 0 indicates no limitation."
280 * This parameter should be ideally zero or large enough so that it can
281 * handle maximum number of requests that all the cores in the system can
282 * collectively generate. If it is not, we will follow the spec and just
283 * not send the request to the platform after hitting the MPAR limit in
286 if (pcc_ss_data->pcc_mpar) {
287 if (pcc_ss_data->mpar_count == 0) {
288 time_delta = ktime_ms_delta(ktime_get(),
289 pcc_ss_data->last_mpar_reset);
290 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
291 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
296 pcc_ss_data->last_mpar_reset = ktime_get();
297 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
299 pcc_ss_data->mpar_count--;
302 /* Write to the shared comm region. */
303 writew_relaxed(cmd, &generic_comm_base->command);
305 /* Flip CMD COMPLETE bit */
306 writew_relaxed(0, &generic_comm_base->status);
308 pcc_ss_data->platform_owns_pcc = true;
311 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
313 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
314 pcc_ss_id, cmd, ret);
318 /* wait for completion and check for PCC error bit */
319 ret = check_pcc_chan(pcc_ss_id, true);
321 if (pcc_ss_data->pcc_mrtt)
322 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
324 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
325 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
327 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
330 if (cmd == CMD_WRITE) {
332 for_each_possible_cpu(i) {
333 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
338 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
339 desc->write_cmd_status = ret;
342 pcc_ss_data->pcc_write_cnt++;
343 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
349 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
352 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
355 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
359 static struct mbox_client cppc_mbox_cl = {
360 .tx_done = cppc_chan_tx_done,
361 .knows_txdone = true,
364 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
366 int result = -EFAULT;
367 acpi_status status = AE_OK;
368 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
370 struct acpi_buffer state = {0, NULL};
371 union acpi_object *psd = NULL;
372 struct acpi_psd_package *pdomain;
374 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
375 &buffer, ACPI_TYPE_PACKAGE);
376 if (status == AE_NOT_FOUND) /* _PSD is optional */
378 if (ACPI_FAILURE(status))
381 psd = buffer.pointer;
382 if (!psd || psd->package.count != 1) {
383 pr_debug("Invalid _PSD data\n");
387 pdomain = &(cpc_ptr->domain_info);
389 state.length = sizeof(struct acpi_psd_package);
390 state.pointer = pdomain;
392 status = acpi_extract_package(&(psd->package.elements[0]),
394 if (ACPI_FAILURE(status)) {
395 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
399 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
400 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
404 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
405 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
409 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
410 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
411 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
412 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
418 kfree(buffer.pointer);
422 bool acpi_cpc_valid(void)
424 struct cpc_desc *cpc_ptr;
430 for_each_present_cpu(cpu) {
431 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
438 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
440 bool cppc_allow_fast_switch(void)
442 struct cpc_register_resource *desired_reg;
443 struct cpc_desc *cpc_ptr;
446 for_each_possible_cpu(cpu) {
447 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
448 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
449 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
450 !CPC_IN_SYSTEM_IO(desired_reg))
456 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
459 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
460 * @cpu: Find all CPUs that share a domain with cpu.
461 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
463 * Return: 0 for success or negative value for err.
465 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
467 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
468 struct acpi_psd_package *match_pdomain;
469 struct acpi_psd_package *pdomain;
473 * Now that we have _PSD data from all CPUs, let's setup P-state
476 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
480 pdomain = &(cpc_ptr->domain_info);
481 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
482 if (pdomain->num_processors <= 1)
485 /* Validate the Domain info */
486 count_target = pdomain->num_processors;
487 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
488 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
489 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
490 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
491 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
492 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
494 for_each_possible_cpu(i) {
498 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
502 match_pdomain = &(match_cpc_ptr->domain_info);
503 if (match_pdomain->domain != pdomain->domain)
506 /* Here i and cpu are in the same domain */
507 if (match_pdomain->num_processors != count_target)
510 if (pdomain->coord_type != match_pdomain->coord_type)
513 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
519 /* Assume no coordination on any error parsing domain info */
520 cpumask_clear(cpu_data->shared_cpu_map);
521 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
522 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
526 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
528 static int register_pcc_channel(int pcc_ss_idx)
530 struct pcc_mbox_chan *pcc_chan;
533 if (pcc_ss_idx >= 0) {
534 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
536 if (IS_ERR(pcc_chan)) {
537 pr_err("Failed to find PCC channel for subspace %d\n",
542 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
544 * cppc_ss->latency is just a Nominal value. In reality
545 * the remote processor could be much slower to reply.
546 * So add an arbitrary amount of wait on top of Nominal.
548 usecs_lat = NUM_RETRIES * pcc_chan->latency;
549 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
550 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
551 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
552 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
554 pcc_data[pcc_ss_idx]->pcc_comm_addr =
555 acpi_os_ioremap(pcc_chan->shmem_base_addr,
556 pcc_chan->shmem_size);
557 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
558 pr_err("Failed to ioremap PCC comm region mem for %d\n",
563 /* Set flag so that we don't come here for each CPU. */
564 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
571 * cpc_ffh_supported() - check if FFH reading supported
573 * Check if the architecture has support for functional fixed hardware
574 * read/write capability.
576 * Return: true for supported, false for not supported
578 bool __weak cpc_ffh_supported(void)
584 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
586 * Check if the architectural support for CPPC is present even
587 * if the _OSC hasn't prescribed it
589 * Return: true for supported, false for not supported
591 bool __weak cpc_supported_by_cpu(void)
597 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
598 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
600 * Check and allocate the cppc_pcc_data memory.
601 * In some processor configurations it is possible that same subspace
602 * is shared between multiple CPUs. This is seen especially in CPUs
603 * with hardware multi-threading support.
605 * Return: 0 for success, errno for failure
607 static int pcc_data_alloc(int pcc_ss_id)
609 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
612 if (pcc_data[pcc_ss_id]) {
613 pcc_data[pcc_ss_id]->refcount++;
615 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
617 if (!pcc_data[pcc_ss_id])
619 pcc_data[pcc_ss_id]->refcount++;
626 * An example CPC table looks like the following.
628 * Name (_CPC, Package() {
631 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
632 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
633 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
634 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
635 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
636 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
637 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
642 * Each Register() encodes how to access that specific register.
643 * e.g. a sample PCC entry has the following encoding:
646 * PCC, // AddressSpaceKeyword
647 * 8, // RegisterBitWidth
648 * 8, // RegisterBitOffset
649 * 0x30, // RegisterAddress
650 * 9, // AccessSize (subspace ID)
654 #ifndef arch_init_invariance_cppc
655 static inline void arch_init_invariance_cppc(void) { }
659 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
660 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
662 * Return: 0 for success or negative value for err.
664 int acpi_cppc_processor_probe(struct acpi_processor *pr)
666 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
667 union acpi_object *out_obj, *cpc_obj;
668 struct cpc_desc *cpc_ptr;
669 struct cpc_reg *gas_t;
670 struct device *cpu_dev;
671 acpi_handle handle = pr->handle;
672 unsigned int num_ent, i, cpc_rev;
673 int pcc_subspace_id = -1;
677 if (!osc_sb_cppc2_support_acked) {
678 pr_debug("CPPC v2 _OSC not acked\n");
679 if (!cpc_supported_by_cpu())
683 /* Parse the ACPI _CPC table for this CPU. */
684 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
686 if (ACPI_FAILURE(status)) {
691 out_obj = (union acpi_object *) output.pointer;
693 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
699 /* First entry is NumEntries. */
700 cpc_obj = &out_obj->package.elements[0];
701 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
702 num_ent = cpc_obj->integer.value;
704 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
709 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
710 cpc_obj->type, pr->id);
714 /* Second entry should be revision. */
715 cpc_obj = &out_obj->package.elements[1];
716 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
717 cpc_rev = cpc_obj->integer.value;
719 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
720 cpc_obj->type, pr->id);
724 if (cpc_rev < CPPC_V2_REV) {
725 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
731 * Disregard _CPC if the number of entries in the return pachage is not
732 * as expected, but support future revisions being proper supersets of
733 * the v3 and only causing more entries to be returned by _CPC.
735 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
736 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
737 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
738 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
742 if (cpc_rev > CPPC_V3_REV) {
743 num_ent = CPPC_V3_NUM_ENT;
744 cpc_rev = CPPC_V3_REV;
747 cpc_ptr->num_entries = num_ent;
748 cpc_ptr->version = cpc_rev;
750 /* Iterate through remaining entries in _CPC */
751 for (i = 2; i < num_ent; i++) {
752 cpc_obj = &out_obj->package.elements[i];
754 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
755 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
756 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
757 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
758 gas_t = (struct cpc_reg *)
759 cpc_obj->buffer.pointer;
762 * The PCC Subspace index is encoded inside
763 * the CPC table entries. The same PCC index
764 * will be used for all the PCC entries,
765 * so extract it only once.
767 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
768 if (pcc_subspace_id < 0) {
769 pcc_subspace_id = gas_t->access_width;
770 if (pcc_data_alloc(pcc_subspace_id))
772 } else if (pcc_subspace_id != gas_t->access_width) {
773 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
777 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
778 if (gas_t->address) {
781 if (!osc_cpc_flexible_adr_space_confirmed) {
782 pr_debug("Flexible address space capability not supported\n");
783 if (!cpc_supported_by_cpu())
787 addr = ioremap(gas_t->address, gas_t->bit_width/8);
790 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
792 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
793 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
795 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
796 * SystemIO doesn't implement 64-bit
799 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
800 gas_t->access_width);
803 if (gas_t->address & OVER_16BTS_MASK) {
804 /* SystemIO registers use 16-bit integer addresses */
805 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
809 if (!osc_cpc_flexible_adr_space_confirmed) {
810 pr_debug("Flexible address space capability not supported\n");
811 if (!cpc_supported_by_cpu())
815 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
816 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
817 pr_debug("Unsupported register type (%d) in _CPC\n",
823 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
824 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
826 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
831 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
834 * Initialize the remaining cpc_regs as unsupported.
835 * Example: In case FW exposes CPPC v2, the below loop will initialize
836 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
838 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
839 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
840 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
844 /* Store CPU Logical ID */
845 cpc_ptr->cpu_id = pr->id;
847 /* Parse PSD data for this CPU */
848 ret = acpi_get_psd(cpc_ptr, handle);
852 /* Register PCC channel once for all PCC subspace ID. */
853 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
854 ret = register_pcc_channel(pcc_subspace_id);
858 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
859 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
862 /* Everything looks okay */
863 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
865 /* Add per logical CPU nodes for reading its feedback counters. */
866 cpu_dev = get_cpu_device(pr->id);
872 /* Plug PSD data into this CPU's CPC descriptor. */
873 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
875 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
878 per_cpu(cpc_desc_ptr, pr->id) = NULL;
879 kobject_put(&cpc_ptr->kobj);
883 arch_init_invariance_cppc();
885 kfree(output.pointer);
889 /* Free all the mapped sys mem areas for this CPU */
890 for (i = 2; i < cpc_ptr->num_entries; i++) {
891 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
899 kfree(output.pointer);
902 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
905 * acpi_cppc_processor_exit - Cleanup CPC structs.
906 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
910 void acpi_cppc_processor_exit(struct acpi_processor *pr)
912 struct cpc_desc *cpc_ptr;
915 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
917 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
918 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
919 pcc_data[pcc_ss_id]->refcount--;
920 if (!pcc_data[pcc_ss_id]->refcount) {
921 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
922 kfree(pcc_data[pcc_ss_id]);
923 pcc_data[pcc_ss_id] = NULL;
928 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
932 /* Free all the mapped sys mem areas for this CPU */
933 for (i = 2; i < cpc_ptr->num_entries; i++) {
934 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
939 kobject_put(&cpc_ptr->kobj);
942 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
945 * cpc_read_ffh() - Read FFH register
946 * @cpunum: CPU number to read
947 * @reg: cppc register information
948 * @val: place holder for return value
950 * Read bit_width bits from a specified address and bit_offset
952 * Return: 0 for success and error code
954 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
960 * cpc_write_ffh() - Write FFH register
961 * @cpunum: CPU number to write
962 * @reg: cppc register information
963 * @val: value to write
965 * Write value of bit_width bits to a specified address and bit_offset
967 * Return: 0 for success and error code
969 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
975 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
976 * as fast as possible. We have already mapped the PCC subspace during init, so
977 * we can directly write to it.
980 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
982 void __iomem *vaddr = NULL;
983 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
984 struct cpc_reg *reg = ®_res->cpc_entry.reg;
986 if (reg_res->type == ACPI_TYPE_INTEGER) {
987 *val = reg_res->cpc_entry.int_value;
993 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
994 u32 width = 8 << (reg->access_width - 1);
998 status = acpi_os_read_port((acpi_io_address)reg->address,
1000 if (ACPI_FAILURE(status)) {
1001 pr_debug("Error: Failed to read SystemIO port %llx\n",
1008 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1009 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1010 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1011 vaddr = reg_res->sys_mem_vaddr;
1012 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1013 return cpc_read_ffh(cpu, reg, val);
1015 return acpi_os_read_memory((acpi_physical_address)reg->address,
1016 val, reg->bit_width);
1018 switch (reg->bit_width) {
1020 *val = readb_relaxed(vaddr);
1023 *val = readw_relaxed(vaddr);
1026 *val = readl_relaxed(vaddr);
1029 *val = readq_relaxed(vaddr);
1032 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1033 reg->bit_width, pcc_ss_id);
1040 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1043 void __iomem *vaddr = NULL;
1044 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1045 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1047 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1048 u32 width = 8 << (reg->access_width - 1);
1051 status = acpi_os_write_port((acpi_io_address)reg->address,
1053 if (ACPI_FAILURE(status)) {
1054 pr_debug("Error: Failed to write SystemIO port %llx\n",
1060 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1061 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1062 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1063 vaddr = reg_res->sys_mem_vaddr;
1064 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1065 return cpc_write_ffh(cpu, reg, val);
1067 return acpi_os_write_memory((acpi_physical_address)reg->address,
1068 val, reg->bit_width);
1070 switch (reg->bit_width) {
1072 writeb_relaxed(val, vaddr);
1075 writew_relaxed(val, vaddr);
1078 writel_relaxed(val, vaddr);
1081 writeq_relaxed(val, vaddr);
1084 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1085 reg->bit_width, pcc_ss_id);
1093 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1095 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1096 struct cpc_register_resource *reg;
1099 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1103 reg = &cpc_desc->cpc_regs[reg_idx];
1105 if (CPC_IN_PCC(reg)) {
1106 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1107 struct cppc_pcc_data *pcc_ss_data = NULL;
1113 pcc_ss_data = pcc_data[pcc_ss_id];
1115 down_write(&pcc_ss_data->pcc_lock);
1117 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1118 cpc_read(cpunum, reg, perf);
1122 up_write(&pcc_ss_data->pcc_lock);
1127 cpc_read(cpunum, reg, perf);
1133 * cppc_get_desired_perf - Get the desired performance register value.
1134 * @cpunum: CPU from which to get desired performance.
1135 * @desired_perf: Return address.
1137 * Return: 0 for success, -EIO otherwise.
1139 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1141 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1143 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1146 * cppc_get_nominal_perf - Get the nominal performance register value.
1147 * @cpunum: CPU from which to get nominal performance.
1148 * @nominal_perf: Return address.
1150 * Return: 0 for success, -EIO otherwise.
1152 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1154 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1158 * cppc_get_epp_perf - Get the epp register value.
1159 * @cpunum: CPU from which to get epp preference value.
1160 * @epp_perf: Return address.
1162 * Return: 0 for success, -EIO otherwise.
1164 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1166 return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1168 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1171 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1172 * @cpunum: CPU from which to get capabilities info.
1173 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1175 * Return: 0 for success with perf_caps populated else -ERRNO.
1177 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1179 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1180 struct cpc_register_resource *highest_reg, *lowest_reg,
1181 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1182 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1183 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1184 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1185 struct cppc_pcc_data *pcc_ss_data = NULL;
1186 int ret = 0, regs_in_pcc = 0;
1189 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1193 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1194 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1195 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1196 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1197 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1198 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1199 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1201 /* Are any of the regs PCC ?*/
1202 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1203 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1204 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1205 if (pcc_ss_id < 0) {
1206 pr_debug("Invalid pcc_ss_id\n");
1209 pcc_ss_data = pcc_data[pcc_ss_id];
1211 down_write(&pcc_ss_data->pcc_lock);
1212 /* Ring doorbell once to update PCC subspace */
1213 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1219 cpc_read(cpunum, highest_reg, &high);
1220 perf_caps->highest_perf = high;
1222 cpc_read(cpunum, lowest_reg, &low);
1223 perf_caps->lowest_perf = low;
1225 cpc_read(cpunum, nominal_reg, &nom);
1226 perf_caps->nominal_perf = nom;
1228 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1229 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1230 perf_caps->guaranteed_perf = 0;
1232 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1233 perf_caps->guaranteed_perf = guaranteed;
1236 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1237 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1239 if (!high || !low || !nom || !min_nonlinear)
1242 /* Read optional lowest and nominal frequencies if present */
1243 if (CPC_SUPPORTED(low_freq_reg))
1244 cpc_read(cpunum, low_freq_reg, &low_f);
1246 if (CPC_SUPPORTED(nom_freq_reg))
1247 cpc_read(cpunum, nom_freq_reg, &nom_f);
1249 perf_caps->lowest_freq = low_f;
1250 perf_caps->nominal_freq = nom_f;
1255 up_write(&pcc_ss_data->pcc_lock);
1258 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1261 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1263 * CPPC has flexibility about how CPU performance counters are accessed.
1264 * One of the choices is PCC regions, which can have a high access latency. This
1265 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1267 * Return: true if any of the counters are in PCC regions, false otherwise
1269 bool cppc_perf_ctrs_in_pcc(void)
1273 for_each_present_cpu(cpu) {
1274 struct cpc_register_resource *ref_perf_reg;
1275 struct cpc_desc *cpc_desc;
1277 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1279 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1280 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1281 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1285 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1288 * If reference perf register is not supported then we should
1289 * use the nominal perf value
1291 if (!CPC_SUPPORTED(ref_perf_reg))
1292 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1294 if (CPC_IN_PCC(ref_perf_reg))
1300 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1303 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1304 * @cpunum: CPU from which to read counters.
1305 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1307 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1309 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1311 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1312 struct cpc_register_resource *delivered_reg, *reference_reg,
1313 *ref_perf_reg, *ctr_wrap_reg;
1314 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1315 struct cppc_pcc_data *pcc_ss_data = NULL;
1316 u64 delivered, reference, ref_perf, ctr_wrap_time;
1317 int ret = 0, regs_in_pcc = 0;
1320 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1324 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1325 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1326 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1327 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1330 * If reference perf register is not supported then we should
1331 * use the nominal perf value
1333 if (!CPC_SUPPORTED(ref_perf_reg))
1334 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1336 /* Are any of the regs PCC ?*/
1337 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1338 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1339 if (pcc_ss_id < 0) {
1340 pr_debug("Invalid pcc_ss_id\n");
1343 pcc_ss_data = pcc_data[pcc_ss_id];
1344 down_write(&pcc_ss_data->pcc_lock);
1346 /* Ring doorbell once to update PCC subspace */
1347 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1353 cpc_read(cpunum, delivered_reg, &delivered);
1354 cpc_read(cpunum, reference_reg, &reference);
1355 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1358 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1359 * performance counters are assumed to never wrap during the lifetime of
1362 ctr_wrap_time = (u64)(~((u64)0));
1363 if (CPC_SUPPORTED(ctr_wrap_reg))
1364 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1366 if (!delivered || !reference || !ref_perf) {
1371 perf_fb_ctrs->delivered = delivered;
1372 perf_fb_ctrs->reference = reference;
1373 perf_fb_ctrs->reference_perf = ref_perf;
1374 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1377 up_write(&pcc_ss_data->pcc_lock);
1380 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1383 * Set Energy Performance Preference Register value through
1384 * Performance Controls Interface
1386 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1388 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1389 struct cpc_register_resource *epp_set_reg;
1390 struct cpc_register_resource *auto_sel_reg;
1391 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1392 struct cppc_pcc_data *pcc_ss_data = NULL;
1396 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1400 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1401 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1403 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1404 if (pcc_ss_id < 0) {
1405 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1409 if (CPC_SUPPORTED(auto_sel_reg)) {
1410 ret = cpc_write(cpu, auto_sel_reg, enable);
1415 if (CPC_SUPPORTED(epp_set_reg)) {
1416 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1421 pcc_ss_data = pcc_data[pcc_ss_id];
1423 down_write(&pcc_ss_data->pcc_lock);
1424 /* after writing CPC, transfer the ownership of PCC to platform */
1425 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1426 up_write(&pcc_ss_data->pcc_lock);
1429 pr_debug("_CPC in PCC is not supported\n");
1434 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1437 * cppc_get_auto_sel_caps - Read autonomous selection register.
1438 * @cpunum : CPU from which to read register.
1439 * @perf_caps : struct where autonomous selection register value is updated.
1441 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1443 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1444 struct cpc_register_resource *auto_sel_reg;
1448 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1452 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1454 if (!CPC_SUPPORTED(auto_sel_reg))
1455 pr_warn_once("Autonomous mode is not unsupported!\n");
1457 if (CPC_IN_PCC(auto_sel_reg)) {
1458 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1459 struct cppc_pcc_data *pcc_ss_data = NULL;
1465 pcc_ss_data = pcc_data[pcc_ss_id];
1467 down_write(&pcc_ss_data->pcc_lock);
1469 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1470 cpc_read(cpunum, auto_sel_reg, &auto_sel);
1471 perf_caps->auto_sel = (bool)auto_sel;
1476 up_write(&pcc_ss_data->pcc_lock);
1483 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1486 * cppc_set_auto_sel - Write autonomous selection register.
1487 * @cpu : CPU to which to write register.
1488 * @enable : the desired value of autonomous selection resiter to be updated.
1490 int cppc_set_auto_sel(int cpu, bool enable)
1492 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1493 struct cpc_register_resource *auto_sel_reg;
1494 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1495 struct cppc_pcc_data *pcc_ss_data = NULL;
1499 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1503 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1505 if (CPC_IN_PCC(auto_sel_reg)) {
1506 if (pcc_ss_id < 0) {
1507 pr_debug("Invalid pcc_ss_id\n");
1511 if (CPC_SUPPORTED(auto_sel_reg)) {
1512 ret = cpc_write(cpu, auto_sel_reg, enable);
1517 pcc_ss_data = pcc_data[pcc_ss_id];
1519 down_write(&pcc_ss_data->pcc_lock);
1520 /* after writing CPC, transfer the ownership of PCC to platform */
1521 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1522 up_write(&pcc_ss_data->pcc_lock);
1525 pr_debug("_CPC in PCC is not supported\n");
1530 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1533 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1534 * Continuous Performance Control package EnableRegister field.
1535 * @cpu: CPU for which to enable CPPC register.
1536 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1538 * Return: 0 for success, -ERRNO or -EIO otherwise.
1540 int cppc_set_enable(int cpu, bool enable)
1542 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1543 struct cpc_register_resource *enable_reg;
1544 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1545 struct cppc_pcc_data *pcc_ss_data = NULL;
1549 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1553 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1555 if (CPC_IN_PCC(enable_reg)) {
1560 ret = cpc_write(cpu, enable_reg, enable);
1564 pcc_ss_data = pcc_data[pcc_ss_id];
1566 down_write(&pcc_ss_data->pcc_lock);
1567 /* after writing CPC, transfer the ownership of PCC to platfrom */
1568 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1569 up_write(&pcc_ss_data->pcc_lock);
1573 return cpc_write(cpu, enable_reg, enable);
1575 EXPORT_SYMBOL_GPL(cppc_set_enable);
1578 * cppc_set_perf - Set a CPU's performance controls.
1579 * @cpu: CPU for which to set performance controls.
1580 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1582 * Return: 0 for success, -ERRNO otherwise.
1584 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1586 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1587 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1588 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1589 struct cppc_pcc_data *pcc_ss_data = NULL;
1593 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1597 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1598 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1599 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1602 * This is Phase-I where we want to write to CPC registers
1603 * -> We want all CPUs to be able to execute this phase in parallel
1605 * Since read_lock can be acquired by multiple CPUs simultaneously we
1606 * achieve that goal here
1608 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1609 if (pcc_ss_id < 0) {
1610 pr_debug("Invalid pcc_ss_id\n");
1613 pcc_ss_data = pcc_data[pcc_ss_id];
1614 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1615 if (pcc_ss_data->platform_owns_pcc) {
1616 ret = check_pcc_chan(pcc_ss_id, false);
1618 up_read(&pcc_ss_data->pcc_lock);
1623 * Update the pending_write to make sure a PCC CMD_READ will not
1624 * arrive and steal the channel during the switch to write lock
1626 pcc_ss_data->pending_pcc_write_cmd = true;
1627 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1628 cpc_desc->write_cmd_status = 0;
1631 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1634 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1635 * value to min and max perf, but they don't mean to set the zero value,
1636 * they just don't want to write to those registers.
1638 if (perf_ctrls->min_perf)
1639 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1640 if (perf_ctrls->max_perf)
1641 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1643 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1644 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1646 * This is Phase-II where we transfer the ownership of PCC to Platform
1648 * Short Summary: Basically if we think of a group of cppc_set_perf
1649 * requests that happened in short overlapping interval. The last CPU to
1650 * come out of Phase-I will enter Phase-II and ring the doorbell.
1652 * We have the following requirements for Phase-II:
1653 * 1. We want to execute Phase-II only when there are no CPUs
1654 * currently executing in Phase-I
1655 * 2. Once we start Phase-II we want to avoid all other CPUs from
1657 * 3. We want only one CPU among all those who went through Phase-I
1660 * If write_trylock fails to get the lock and doesn't transfer the
1661 * PCC ownership to the platform, then one of the following will be TRUE
1662 * 1. There is at-least one CPU in Phase-I which will later execute
1663 * write_trylock, so the CPUs in Phase-I will be responsible for
1664 * executing the Phase-II.
1665 * 2. Some other CPU has beaten this CPU to successfully execute the
1666 * write_trylock and has already acquired the write_lock. We know for a
1667 * fact it (other CPU acquiring the write_lock) couldn't have happened
1668 * before this CPU's Phase-I as we held the read_lock.
1669 * 3. Some other CPU executing pcc CMD_READ has stolen the
1670 * down_write, in which case, send_pcc_cmd will check for pending
1671 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1672 * So this CPU can be certain that its request will be delivered
1673 * So in all cases, this CPU knows that its request will be delivered
1674 * by another CPU and can return
1676 * After getting the down_write we still need to check for
1677 * pending_pcc_write_cmd to take care of the following scenario
1678 * The thread running this code could be scheduled out between
1679 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1680 * could have delivered the request to Platform by triggering the
1681 * doorbell and transferred the ownership of PCC to platform. So this
1682 * avoids triggering an unnecessary doorbell and more importantly before
1683 * triggering the doorbell it makes sure that the PCC channel ownership
1684 * is still with OSPM.
1685 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1686 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1687 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1688 * case during a CMD_READ and if there are pending writes it delivers
1689 * the write command before servicing the read command
1691 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1692 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1693 /* Update only if there are pending write commands */
1694 if (pcc_ss_data->pending_pcc_write_cmd)
1695 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1696 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1698 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1699 wait_event(pcc_ss_data->pcc_write_wait_q,
1700 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1702 /* send_pcc_cmd updates the status in case of failure */
1703 ret = cpc_desc->write_cmd_status;
1707 EXPORT_SYMBOL_GPL(cppc_set_perf);
1710 * cppc_get_transition_latency - returns frequency transition latency in ns
1711 * @cpu_num: CPU number for per_cpu().
1713 * ACPI CPPC does not explicitly specify how a platform can specify the
1714 * transition latency for performance change requests. The closest we have
1715 * is the timing information from the PCCT tables which provides the info
1716 * on the number and frequency of PCC commands the platform can handle.
1718 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1719 * then assume there is no latency.
1721 unsigned int cppc_get_transition_latency(int cpu_num)
1724 * Expected transition latency is based on the PCCT timing values
1725 * Below are definition from ACPI spec:
1726 * pcc_nominal- Expected latency to process a command, in microseconds
1727 * pcc_mpar - The maximum number of periodic requests that the subspace
1728 * channel can support, reported in commands per minute. 0
1729 * indicates no limitation.
1730 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1731 * completion of a command before issuing the next command,
1734 unsigned int latency_ns = 0;
1735 struct cpc_desc *cpc_desc;
1736 struct cpc_register_resource *desired_reg;
1737 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1738 struct cppc_pcc_data *pcc_ss_data;
1740 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1742 return CPUFREQ_ETERNAL;
1744 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1745 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1747 else if (!CPC_IN_PCC(desired_reg))
1748 return CPUFREQ_ETERNAL;
1751 return CPUFREQ_ETERNAL;
1753 pcc_ss_data = pcc_data[pcc_ss_id];
1754 if (pcc_ss_data->pcc_mpar)
1755 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1757 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1758 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1762 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);