PCI/ACPI: Guard ARM64-specific mcfg_quirks
[platform/kernel/linux-rpi.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46         struct mbox_chan *pcc_channel;
47         void __iomem *pcc_comm_addr;
48         bool pcc_channel_acquired;
49         unsigned int deadline_us;
50         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
53         bool platform_owns_pcc;         /* Ownership of PCC subspace */
54         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
55
56         /*
57          * Lock to provide controlled access to the PCC channel.
58          *
59          * For performance critical usecases(currently cppc_set_perf)
60          *      We need to take read_lock and check if channel belongs to OSPM
61          * before reading or writing to PCC subspace
62          *      We need to take write_lock before transferring the channel
63          * ownership to the platform via a Doorbell
64          *      This allows us to batch a number of CPPC requests if they happen
65          * to originate in about the same time
66          *
67          * For non-performance critical usecases(init)
68          *      Take write_lock for all purposes which gives exclusive access
69          */
70         struct rw_semaphore pcc_lock;
71
72         /* Wait queue for CPUs whose requests were batched */
73         wait_queue_head_t pcc_write_wait_q;
74         ktime_t last_cmd_cmpl_time;
75         ktime_t last_mpar_reset;
76         int mpar_count;
77         int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96                                                 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Check if a CPC register is in SystemMemory */
104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&   \
105                                 (cpc)->cpc_entry.reg.space_id ==        \
106                                 ACPI_ADR_SPACE_SYSTEM_MEMORY)
107
108 /* Check if a CPC register is in SystemIo */
109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&       \
110                                 (cpc)->cpc_entry.reg.space_id ==        \
111                                 ACPI_ADR_SPACE_SYSTEM_IO)
112
113 /* Evaluates to True if reg is a NULL register descriptor */
114 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115                                 (reg)->address == 0 &&                  \
116                                 (reg)->bit_width == 0 &&                \
117                                 (reg)->bit_offset == 0 &&               \
118                                 (reg)->access_width == 0)
119
120 /* Evaluates to True if an optional cpc field is supported */
121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
122                                 !!(cpc)->cpc_entry.int_value :          \
123                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
124 /*
125  * Arbitrary Retries in case the remote processor is slow to respond
126  * to PCC commands. Keeping it high enough to cover emulators where
127  * the processors run painfully slow.
128  */
129 #define NUM_RETRIES 500ULL
130
131 #define define_one_cppc_ro(_name)               \
132 static struct kobj_attribute _name =            \
133 __ATTR(_name, 0444, show_##_name, NULL)
134
135 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
136
137 #define show_cppc_data(access_fn, struct_name, member_name)             \
138         static ssize_t show_##member_name(struct kobject *kobj,         \
139                                 struct kobj_attribute *attr, char *buf) \
140         {                                                               \
141                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
142                 struct struct_name st_name = {0};                       \
143                 int ret;                                                \
144                                                                         \
145                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
146                 if (ret)                                                \
147                         return ret;                                     \
148                                                                         \
149                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
150                                 (u64)st_name.member_name);              \
151         }                                                               \
152         define_one_cppc_ro(member_name)
153
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
160
161 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
162 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
163
164 static ssize_t show_feedback_ctrs(struct kobject *kobj,
165                 struct kobj_attribute *attr, char *buf)
166 {
167         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
168         struct cppc_perf_fb_ctrs fb_ctrs = {0};
169         int ret;
170
171         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
172         if (ret)
173                 return ret;
174
175         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
176                         fb_ctrs.reference, fb_ctrs.delivered);
177 }
178 define_one_cppc_ro(feedback_ctrs);
179
180 static struct attribute *cppc_attrs[] = {
181         &feedback_ctrs.attr,
182         &reference_perf.attr,
183         &wraparound_time.attr,
184         &highest_perf.attr,
185         &lowest_perf.attr,
186         &lowest_nonlinear_perf.attr,
187         &nominal_perf.attr,
188         &nominal_freq.attr,
189         &lowest_freq.attr,
190         NULL
191 };
192
193 static struct kobj_type cppc_ktype = {
194         .sysfs_ops = &kobj_sysfs_ops,
195         .default_attrs = cppc_attrs,
196 };
197
198 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
199 {
200         int ret, status;
201         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
202         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
203                 pcc_ss_data->pcc_comm_addr;
204
205         if (!pcc_ss_data->platform_owns_pcc)
206                 return 0;
207
208         /*
209          * Poll PCC status register every 3us(delay_us) for maximum of
210          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
211          */
212         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
213                                         status & PCC_CMD_COMPLETE_MASK, 3,
214                                         pcc_ss_data->deadline_us);
215
216         if (likely(!ret)) {
217                 pcc_ss_data->platform_owns_pcc = false;
218                 if (chk_err_bit && (status & PCC_ERROR_MASK))
219                         ret = -EIO;
220         }
221
222         if (unlikely(ret))
223                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
224                        pcc_ss_id, ret);
225
226         return ret;
227 }
228
229 /*
230  * This function transfers the ownership of the PCC to the platform
231  * So it must be called while holding write_lock(pcc_lock)
232  */
233 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
234 {
235         int ret = -EIO, i;
236         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
237         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
238                 pcc_ss_data->pcc_comm_addr;
239         unsigned int time_delta;
240
241         /*
242          * For CMD_WRITE we know for a fact the caller should have checked
243          * the channel before writing to PCC space
244          */
245         if (cmd == CMD_READ) {
246                 /*
247                  * If there are pending cpc_writes, then we stole the channel
248                  * before write completion, so first send a WRITE command to
249                  * platform
250                  */
251                 if (pcc_ss_data->pending_pcc_write_cmd)
252                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
253
254                 ret = check_pcc_chan(pcc_ss_id, false);
255                 if (ret)
256                         goto end;
257         } else /* CMD_WRITE */
258                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
259
260         /*
261          * Handle the Minimum Request Turnaround Time(MRTT)
262          * "The minimum amount of time that OSPM must wait after the completion
263          * of a command before issuing the next command, in microseconds"
264          */
265         if (pcc_ss_data->pcc_mrtt) {
266                 time_delta = ktime_us_delta(ktime_get(),
267                                             pcc_ss_data->last_cmd_cmpl_time);
268                 if (pcc_ss_data->pcc_mrtt > time_delta)
269                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
270         }
271
272         /*
273          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
274          * "The maximum number of periodic requests that the subspace channel can
275          * support, reported in commands per minute. 0 indicates no limitation."
276          *
277          * This parameter should be ideally zero or large enough so that it can
278          * handle maximum number of requests that all the cores in the system can
279          * collectively generate. If it is not, we will follow the spec and just
280          * not send the request to the platform after hitting the MPAR limit in
281          * any 60s window
282          */
283         if (pcc_ss_data->pcc_mpar) {
284                 if (pcc_ss_data->mpar_count == 0) {
285                         time_delta = ktime_ms_delta(ktime_get(),
286                                                     pcc_ss_data->last_mpar_reset);
287                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
288                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
289                                          pcc_ss_id);
290                                 ret = -EIO;
291                                 goto end;
292                         }
293                         pcc_ss_data->last_mpar_reset = ktime_get();
294                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
295                 }
296                 pcc_ss_data->mpar_count--;
297         }
298
299         /* Write to the shared comm region. */
300         writew_relaxed(cmd, &generic_comm_base->command);
301
302         /* Flip CMD COMPLETE bit */
303         writew_relaxed(0, &generic_comm_base->status);
304
305         pcc_ss_data->platform_owns_pcc = true;
306
307         /* Ring doorbell */
308         ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
309         if (ret < 0) {
310                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
311                        pcc_ss_id, cmd, ret);
312                 goto end;
313         }
314
315         /* wait for completion and check for PCC errro bit */
316         ret = check_pcc_chan(pcc_ss_id, true);
317
318         if (pcc_ss_data->pcc_mrtt)
319                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
320
321         if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
322                 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
323         else
324                 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
325
326 end:
327         if (cmd == CMD_WRITE) {
328                 if (unlikely(ret)) {
329                         for_each_possible_cpu(i) {
330                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
331
332                                 if (!desc)
333                                         continue;
334
335                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
336                                         desc->write_cmd_status = ret;
337                         }
338                 }
339                 pcc_ss_data->pcc_write_cnt++;
340                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
341         }
342
343         return ret;
344 }
345
346 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
347 {
348         if (ret < 0)
349                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
350                                 *(u16 *)msg, ret);
351         else
352                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
353                                 *(u16 *)msg, ret);
354 }
355
356 static struct mbox_client cppc_mbox_cl = {
357         .tx_done = cppc_chan_tx_done,
358         .knows_txdone = true,
359 };
360
361 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
362 {
363         int result = -EFAULT;
364         acpi_status status = AE_OK;
365         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
366         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
367         struct acpi_buffer state = {0, NULL};
368         union acpi_object  *psd = NULL;
369         struct acpi_psd_package *pdomain;
370
371         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
372                                             &buffer, ACPI_TYPE_PACKAGE);
373         if (status == AE_NOT_FOUND)     /* _PSD is optional */
374                 return 0;
375         if (ACPI_FAILURE(status))
376                 return -ENODEV;
377
378         psd = buffer.pointer;
379         if (!psd || psd->package.count != 1) {
380                 pr_debug("Invalid _PSD data\n");
381                 goto end;
382         }
383
384         pdomain = &(cpc_ptr->domain_info);
385
386         state.length = sizeof(struct acpi_psd_package);
387         state.pointer = pdomain;
388
389         status = acpi_extract_package(&(psd->package.elements[0]),
390                 &format, &state);
391         if (ACPI_FAILURE(status)) {
392                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
393                 goto end;
394         }
395
396         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
397                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
398                 goto end;
399         }
400
401         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
402                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
403                 goto end;
404         }
405
406         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
407             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
408             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
409                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
410                 goto end;
411         }
412
413         result = 0;
414 end:
415         kfree(buffer.pointer);
416         return result;
417 }
418
419 bool acpi_cpc_valid(void)
420 {
421         struct cpc_desc *cpc_ptr;
422         int cpu;
423
424         for_each_present_cpu(cpu) {
425                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
426                 if (!cpc_ptr)
427                         return false;
428         }
429
430         return true;
431 }
432 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
433
434 /**
435  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
436  * @cpu: Find all CPUs that share a domain with cpu.
437  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
438  *
439  *      Return: 0 for success or negative value for err.
440  */
441 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
442 {
443         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
444         struct acpi_psd_package *match_pdomain;
445         struct acpi_psd_package *pdomain;
446         int count_target, i;
447
448         /*
449          * Now that we have _PSD data from all CPUs, let's setup P-state
450          * domain info.
451          */
452         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
453         if (!cpc_ptr)
454                 return -EFAULT;
455
456         pdomain = &(cpc_ptr->domain_info);
457         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
458         if (pdomain->num_processors <= 1)
459                 return 0;
460
461         /* Validate the Domain info */
462         count_target = pdomain->num_processors;
463         if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
464                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
465         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
466                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
467         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
468                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
469
470         for_each_possible_cpu(i) {
471                 if (i == cpu)
472                         continue;
473
474                 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
475                 if (!match_cpc_ptr)
476                         goto err_fault;
477
478                 match_pdomain = &(match_cpc_ptr->domain_info);
479                 if (match_pdomain->domain != pdomain->domain)
480                         continue;
481
482                 /* Here i and cpu are in the same domain */
483                 if (match_pdomain->num_processors != count_target)
484                         goto err_fault;
485
486                 if (pdomain->coord_type != match_pdomain->coord_type)
487                         goto err_fault;
488
489                 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
490         }
491
492         return 0;
493
494 err_fault:
495         /* Assume no coordination on any error parsing domain info */
496         cpumask_clear(cpu_data->shared_cpu_map);
497         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
498         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
499
500         return -EFAULT;
501 }
502 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
503
504 static int register_pcc_channel(int pcc_ss_idx)
505 {
506         struct acpi_pcct_hw_reduced *cppc_ss;
507         u64 usecs_lat;
508
509         if (pcc_ss_idx >= 0) {
510                 pcc_data[pcc_ss_idx]->pcc_channel =
511                         pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
512
513                 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
514                         pr_err("Failed to find PCC channel for subspace %d\n",
515                                pcc_ss_idx);
516                         return -ENODEV;
517                 }
518
519                 /*
520                  * The PCC mailbox controller driver should
521                  * have parsed the PCCT (global table of all
522                  * PCC channels) and stored pointers to the
523                  * subspace communication region in con_priv.
524                  */
525                 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
526
527                 if (!cppc_ss) {
528                         pr_err("No PCC subspace found for %d CPPC\n",
529                                pcc_ss_idx);
530                         return -ENODEV;
531                 }
532
533                 /*
534                  * cppc_ss->latency is just a Nominal value. In reality
535                  * the remote processor could be much slower to reply.
536                  * So add an arbitrary amount of wait on top of Nominal.
537                  */
538                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
539                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
540                 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
541                 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
542                 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
543
544                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
545                         acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
546                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
547                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
548                                pcc_ss_idx);
549                         return -ENOMEM;
550                 }
551
552                 /* Set flag so that we don't come here for each CPU. */
553                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
554         }
555
556         return 0;
557 }
558
559 /**
560  * cpc_ffh_supported() - check if FFH reading supported
561  *
562  * Check if the architecture has support for functional fixed hardware
563  * read/write capability.
564  *
565  * Return: true for supported, false for not supported
566  */
567 bool __weak cpc_ffh_supported(void)
568 {
569         return false;
570 }
571
572 /**
573  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
574  *
575  * Check and allocate the cppc_pcc_data memory.
576  * In some processor configurations it is possible that same subspace
577  * is shared between multiple CPUs. This is seen especially in CPUs
578  * with hardware multi-threading support.
579  *
580  * Return: 0 for success, errno for failure
581  */
582 static int pcc_data_alloc(int pcc_ss_id)
583 {
584         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
585                 return -EINVAL;
586
587         if (pcc_data[pcc_ss_id]) {
588                 pcc_data[pcc_ss_id]->refcount++;
589         } else {
590                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
591                                               GFP_KERNEL);
592                 if (!pcc_data[pcc_ss_id])
593                         return -ENOMEM;
594                 pcc_data[pcc_ss_id]->refcount++;
595         }
596
597         return 0;
598 }
599
600 /*
601  * An example CPC table looks like the following.
602  *
603  *      Name(_CPC, Package()
604  *                      {
605  *                      17,
606  *                      NumEntries
607  *                      1,
608  *                      // Revision
609  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
610  *                      // Highest Performance
611  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
612  *                      // Nominal Performance
613  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
614  *                      // Lowest Nonlinear Performance
615  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
616  *                      // Lowest Performance
617  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
618  *                      // Guaranteed Performance Register
619  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
620  *                      // Desired Performance Register
621  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
622  *                      ..
623  *                      ..
624  *                      ..
625  *
626  *              }
627  * Each Register() encodes how to access that specific register.
628  * e.g. a sample PCC entry has the following encoding:
629  *
630  *      Register (
631  *              PCC,
632  *              AddressSpaceKeyword
633  *              8,
634  *              //RegisterBitWidth
635  *              8,
636  *              //RegisterBitOffset
637  *              0x30,
638  *              //RegisterAddress
639  *              9
640  *              //AccessSize (subspace ID)
641  *              0
642  *              )
643  *      }
644  */
645
646 #ifndef init_freq_invariance_cppc
647 static inline void init_freq_invariance_cppc(void) { }
648 #endif
649
650 /**
651  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
652  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
653  *
654  *      Return: 0 for success or negative value for err.
655  */
656 int acpi_cppc_processor_probe(struct acpi_processor *pr)
657 {
658         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
659         union acpi_object *out_obj, *cpc_obj;
660         struct cpc_desc *cpc_ptr;
661         struct cpc_reg *gas_t;
662         struct device *cpu_dev;
663         acpi_handle handle = pr->handle;
664         unsigned int num_ent, i, cpc_rev;
665         int pcc_subspace_id = -1;
666         acpi_status status;
667         int ret = -EFAULT;
668
669         /* Parse the ACPI _CPC table for this CPU. */
670         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
671                         ACPI_TYPE_PACKAGE);
672         if (ACPI_FAILURE(status)) {
673                 ret = -ENODEV;
674                 goto out_buf_free;
675         }
676
677         out_obj = (union acpi_object *) output.pointer;
678
679         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
680         if (!cpc_ptr) {
681                 ret = -ENOMEM;
682                 goto out_buf_free;
683         }
684
685         /* First entry is NumEntries. */
686         cpc_obj = &out_obj->package.elements[0];
687         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
688                 num_ent = cpc_obj->integer.value;
689                 if (num_ent <= 1) {
690                         pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
691                                  num_ent, pr->id);
692                         goto out_free;
693                 }
694         } else {
695                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
696                                 cpc_obj->type);
697                 goto out_free;
698         }
699
700         /* Second entry should be revision. */
701         cpc_obj = &out_obj->package.elements[1];
702         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
703                 cpc_rev = cpc_obj->integer.value;
704         } else {
705                 pr_debug("Unexpected entry type(%d) for Revision\n",
706                                 cpc_obj->type);
707                 goto out_free;
708         }
709
710         if (cpc_rev < CPPC_V2_REV) {
711                 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
712                          pr->id);
713                 goto out_free;
714         }
715
716         /*
717          * Disregard _CPC if the number of entries in the return pachage is not
718          * as expected, but support future revisions being proper supersets of
719          * the v3 and only causing more entries to be returned by _CPC.
720          */
721         if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
722             (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
723             (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
724                 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
725                          num_ent, pr->id);
726                 goto out_free;
727         }
728         if (cpc_rev > CPPC_V3_REV) {
729                 num_ent = CPPC_V3_NUM_ENT;
730                 cpc_rev = CPPC_V3_REV;
731         }
732
733         cpc_ptr->num_entries = num_ent;
734         cpc_ptr->version = cpc_rev;
735
736         /* Iterate through remaining entries in _CPC */
737         for (i = 2; i < num_ent; i++) {
738                 cpc_obj = &out_obj->package.elements[i];
739
740                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
741                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
742                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
743                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
744                         gas_t = (struct cpc_reg *)
745                                 cpc_obj->buffer.pointer;
746
747                         /*
748                          * The PCC Subspace index is encoded inside
749                          * the CPC table entries. The same PCC index
750                          * will be used for all the PCC entries,
751                          * so extract it only once.
752                          */
753                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
754                                 if (pcc_subspace_id < 0) {
755                                         pcc_subspace_id = gas_t->access_width;
756                                         if (pcc_data_alloc(pcc_subspace_id))
757                                                 goto out_free;
758                                 } else if (pcc_subspace_id != gas_t->access_width) {
759                                         pr_debug("Mismatched PCC ids.\n");
760                                         goto out_free;
761                                 }
762                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
763                                 if (gas_t->address) {
764                                         void __iomem *addr;
765
766                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
767                                         if (!addr)
768                                                 goto out_free;
769                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
770                                 }
771                         } else {
772                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
773                                         /* Support only PCC ,SYS MEM and FFH type regs */
774                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
775                                         goto out_free;
776                                 }
777                         }
778
779                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
780                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
781                 } else {
782                         pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
783                         goto out_free;
784                 }
785         }
786         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
787
788         /*
789          * Initialize the remaining cpc_regs as unsupported.
790          * Example: In case FW exposes CPPC v2, the below loop will initialize
791          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
792          */
793         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
794                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
795                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
796         }
797
798
799         /* Store CPU Logical ID */
800         cpc_ptr->cpu_id = pr->id;
801
802         /* Parse PSD data for this CPU */
803         ret = acpi_get_psd(cpc_ptr, handle);
804         if (ret)
805                 goto out_free;
806
807         /* Register PCC channel once for all PCC subspace ID. */
808         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
809                 ret = register_pcc_channel(pcc_subspace_id);
810                 if (ret)
811                         goto out_free;
812
813                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
814                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
815         }
816
817         /* Everything looks okay */
818         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
819
820         /* Add per logical CPU nodes for reading its feedback counters. */
821         cpu_dev = get_cpu_device(pr->id);
822         if (!cpu_dev) {
823                 ret = -EINVAL;
824                 goto out_free;
825         }
826
827         /* Plug PSD data into this CPU's CPC descriptor. */
828         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
829
830         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
831                         "acpi_cppc");
832         if (ret) {
833                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
834                 kobject_put(&cpc_ptr->kobj);
835                 goto out_free;
836         }
837
838         init_freq_invariance_cppc();
839
840         kfree(output.pointer);
841         return 0;
842
843 out_free:
844         /* Free all the mapped sys mem areas for this CPU */
845         for (i = 2; i < cpc_ptr->num_entries; i++) {
846                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
847
848                 if (addr)
849                         iounmap(addr);
850         }
851         kfree(cpc_ptr);
852
853 out_buf_free:
854         kfree(output.pointer);
855         return ret;
856 }
857 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
858
859 /**
860  * acpi_cppc_processor_exit - Cleanup CPC structs.
861  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
862  *
863  * Return: Void
864  */
865 void acpi_cppc_processor_exit(struct acpi_processor *pr)
866 {
867         struct cpc_desc *cpc_ptr;
868         unsigned int i;
869         void __iomem *addr;
870         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
871
872         if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
873                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
874                         pcc_data[pcc_ss_id]->refcount--;
875                         if (!pcc_data[pcc_ss_id]->refcount) {
876                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
877                                 kfree(pcc_data[pcc_ss_id]);
878                                 pcc_data[pcc_ss_id] = NULL;
879                         }
880                 }
881         }
882
883         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
884         if (!cpc_ptr)
885                 return;
886
887         /* Free all the mapped sys mem areas for this CPU */
888         for (i = 2; i < cpc_ptr->num_entries; i++) {
889                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
890                 if (addr)
891                         iounmap(addr);
892         }
893
894         kobject_put(&cpc_ptr->kobj);
895         kfree(cpc_ptr);
896 }
897 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
898
899 /**
900  * cpc_read_ffh() - Read FFH register
901  * @cpunum:     CPU number to read
902  * @reg:        cppc register information
903  * @val:        place holder for return value
904  *
905  * Read bit_width bits from a specified address and bit_offset
906  *
907  * Return: 0 for success and error code
908  */
909 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
910 {
911         return -ENOTSUPP;
912 }
913
914 /**
915  * cpc_write_ffh() - Write FFH register
916  * @cpunum:     CPU number to write
917  * @reg:        cppc register information
918  * @val:        value to write
919  *
920  * Write value of bit_width bits to a specified address and bit_offset
921  *
922  * Return: 0 for success and error code
923  */
924 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
925 {
926         return -ENOTSUPP;
927 }
928
929 /*
930  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
931  * as fast as possible. We have already mapped the PCC subspace during init, so
932  * we can directly write to it.
933  */
934
935 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
936 {
937         int ret_val = 0;
938         void __iomem *vaddr = NULL;
939         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
940         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
941
942         if (reg_res->type == ACPI_TYPE_INTEGER) {
943                 *val = reg_res->cpc_entry.int_value;
944                 return ret_val;
945         }
946
947         *val = 0;
948         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
949                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
950         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
951                 vaddr = reg_res->sys_mem_vaddr;
952         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
953                 return cpc_read_ffh(cpu, reg, val);
954         else
955                 return acpi_os_read_memory((acpi_physical_address)reg->address,
956                                 val, reg->bit_width);
957
958         switch (reg->bit_width) {
959         case 8:
960                 *val = readb_relaxed(vaddr);
961                 break;
962         case 16:
963                 *val = readw_relaxed(vaddr);
964                 break;
965         case 32:
966                 *val = readl_relaxed(vaddr);
967                 break;
968         case 64:
969                 *val = readq_relaxed(vaddr);
970                 break;
971         default:
972                 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
973                          reg->bit_width, pcc_ss_id);
974                 ret_val = -EFAULT;
975         }
976
977         return ret_val;
978 }
979
980 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
981 {
982         int ret_val = 0;
983         void __iomem *vaddr = NULL;
984         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
985         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
986
987         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
988                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
989         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
990                 vaddr = reg_res->sys_mem_vaddr;
991         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
992                 return cpc_write_ffh(cpu, reg, val);
993         else
994                 return acpi_os_write_memory((acpi_physical_address)reg->address,
995                                 val, reg->bit_width);
996
997         switch (reg->bit_width) {
998         case 8:
999                 writeb_relaxed(val, vaddr);
1000                 break;
1001         case 16:
1002                 writew_relaxed(val, vaddr);
1003                 break;
1004         case 32:
1005                 writel_relaxed(val, vaddr);
1006                 break;
1007         case 64:
1008                 writeq_relaxed(val, vaddr);
1009                 break;
1010         default:
1011                 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1012                          reg->bit_width, pcc_ss_id);
1013                 ret_val = -EFAULT;
1014                 break;
1015         }
1016
1017         return ret_val;
1018 }
1019
1020 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1021 {
1022         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1023         struct cpc_register_resource *reg;
1024
1025         if (!cpc_desc) {
1026                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1027                 return -ENODEV;
1028         }
1029
1030         reg = &cpc_desc->cpc_regs[reg_idx];
1031
1032         if (CPC_IN_PCC(reg)) {
1033                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1034                 struct cppc_pcc_data *pcc_ss_data = NULL;
1035                 int ret = 0;
1036
1037                 if (pcc_ss_id < 0)
1038                         return -EIO;
1039
1040                 pcc_ss_data = pcc_data[pcc_ss_id];
1041
1042                 down_write(&pcc_ss_data->pcc_lock);
1043
1044                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1045                         cpc_read(cpunum, reg, perf);
1046                 else
1047                         ret = -EIO;
1048
1049                 up_write(&pcc_ss_data->pcc_lock);
1050
1051                 return ret;
1052         }
1053
1054         cpc_read(cpunum, reg, perf);
1055
1056         return 0;
1057 }
1058
1059 /**
1060  * cppc_get_desired_perf - Get the desired performance register value.
1061  * @cpunum: CPU from which to get desired performance.
1062  * @desired_perf: Return address.
1063  *
1064  * Return: 0 for success, -EIO otherwise.
1065  */
1066 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1067 {
1068         return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1069 }
1070 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1071
1072 /**
1073  * cppc_get_nominal_perf - Get the nominal performance register value.
1074  * @cpunum: CPU from which to get nominal performance.
1075  * @nominal_perf: Return address.
1076  *
1077  * Return: 0 for success, -EIO otherwise.
1078  */
1079 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1080 {
1081         return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1082 }
1083
1084 /**
1085  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1086  * @cpunum: CPU from which to get capabilities info.
1087  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1088  *
1089  * Return: 0 for success with perf_caps populated else -ERRNO.
1090  */
1091 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1092 {
1093         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1094         struct cpc_register_resource *highest_reg, *lowest_reg,
1095                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1096                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1097         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1098         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1099         struct cppc_pcc_data *pcc_ss_data = NULL;
1100         int ret = 0, regs_in_pcc = 0;
1101
1102         if (!cpc_desc) {
1103                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1104                 return -ENODEV;
1105         }
1106
1107         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1108         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1109         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1110         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1111         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1112         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1113         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1114
1115         /* Are any of the regs PCC ?*/
1116         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1117                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1118                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1119                 if (pcc_ss_id < 0) {
1120                         pr_debug("Invalid pcc_ss_id\n");
1121                         return -ENODEV;
1122                 }
1123                 pcc_ss_data = pcc_data[pcc_ss_id];
1124                 regs_in_pcc = 1;
1125                 down_write(&pcc_ss_data->pcc_lock);
1126                 /* Ring doorbell once to update PCC subspace */
1127                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1128                         ret = -EIO;
1129                         goto out_err;
1130                 }
1131         }
1132
1133         cpc_read(cpunum, highest_reg, &high);
1134         perf_caps->highest_perf = high;
1135
1136         cpc_read(cpunum, lowest_reg, &low);
1137         perf_caps->lowest_perf = low;
1138
1139         cpc_read(cpunum, nominal_reg, &nom);
1140         perf_caps->nominal_perf = nom;
1141
1142         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1143             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1144                 perf_caps->guaranteed_perf = 0;
1145         } else {
1146                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1147                 perf_caps->guaranteed_perf = guaranteed;
1148         }
1149
1150         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1151         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1152
1153         if (!high || !low || !nom || !min_nonlinear)
1154                 ret = -EFAULT;
1155
1156         /* Read optional lowest and nominal frequencies if present */
1157         if (CPC_SUPPORTED(low_freq_reg))
1158                 cpc_read(cpunum, low_freq_reg, &low_f);
1159
1160         if (CPC_SUPPORTED(nom_freq_reg))
1161                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1162
1163         perf_caps->lowest_freq = low_f;
1164         perf_caps->nominal_freq = nom_f;
1165
1166
1167 out_err:
1168         if (regs_in_pcc)
1169                 up_write(&pcc_ss_data->pcc_lock);
1170         return ret;
1171 }
1172 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1173
1174 /**
1175  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1176  * @cpunum: CPU from which to read counters.
1177  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1178  *
1179  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1180  */
1181 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1182 {
1183         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1184         struct cpc_register_resource *delivered_reg, *reference_reg,
1185                 *ref_perf_reg, *ctr_wrap_reg;
1186         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1187         struct cppc_pcc_data *pcc_ss_data = NULL;
1188         u64 delivered, reference, ref_perf, ctr_wrap_time;
1189         int ret = 0, regs_in_pcc = 0;
1190
1191         if (!cpc_desc) {
1192                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1193                 return -ENODEV;
1194         }
1195
1196         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1197         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1198         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1199         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1200
1201         /*
1202          * If reference perf register is not supported then we should
1203          * use the nominal perf value
1204          */
1205         if (!CPC_SUPPORTED(ref_perf_reg))
1206                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1207
1208         /* Are any of the regs PCC ?*/
1209         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1210                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1211                 if (pcc_ss_id < 0) {
1212                         pr_debug("Invalid pcc_ss_id\n");
1213                         return -ENODEV;
1214                 }
1215                 pcc_ss_data = pcc_data[pcc_ss_id];
1216                 down_write(&pcc_ss_data->pcc_lock);
1217                 regs_in_pcc = 1;
1218                 /* Ring doorbell once to update PCC subspace */
1219                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1220                         ret = -EIO;
1221                         goto out_err;
1222                 }
1223         }
1224
1225         cpc_read(cpunum, delivered_reg, &delivered);
1226         cpc_read(cpunum, reference_reg, &reference);
1227         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1228
1229         /*
1230          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1231          * performance counters are assumed to never wrap during the lifetime of
1232          * platform
1233          */
1234         ctr_wrap_time = (u64)(~((u64)0));
1235         if (CPC_SUPPORTED(ctr_wrap_reg))
1236                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1237
1238         if (!delivered || !reference || !ref_perf) {
1239                 ret = -EFAULT;
1240                 goto out_err;
1241         }
1242
1243         perf_fb_ctrs->delivered = delivered;
1244         perf_fb_ctrs->reference = reference;
1245         perf_fb_ctrs->reference_perf = ref_perf;
1246         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1247 out_err:
1248         if (regs_in_pcc)
1249                 up_write(&pcc_ss_data->pcc_lock);
1250         return ret;
1251 }
1252 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1253
1254 /**
1255  * cppc_set_perf - Set a CPU's performance controls.
1256  * @cpu: CPU for which to set performance controls.
1257  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1258  *
1259  * Return: 0 for success, -ERRNO otherwise.
1260  */
1261 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1262 {
1263         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1264         struct cpc_register_resource *desired_reg;
1265         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1266         struct cppc_pcc_data *pcc_ss_data = NULL;
1267         int ret = 0;
1268
1269         if (!cpc_desc) {
1270                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1271                 return -ENODEV;
1272         }
1273
1274         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1275
1276         /*
1277          * This is Phase-I where we want to write to CPC registers
1278          * -> We want all CPUs to be able to execute this phase in parallel
1279          *
1280          * Since read_lock can be acquired by multiple CPUs simultaneously we
1281          * achieve that goal here
1282          */
1283         if (CPC_IN_PCC(desired_reg)) {
1284                 if (pcc_ss_id < 0) {
1285                         pr_debug("Invalid pcc_ss_id\n");
1286                         return -ENODEV;
1287                 }
1288                 pcc_ss_data = pcc_data[pcc_ss_id];
1289                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1290                 if (pcc_ss_data->platform_owns_pcc) {
1291                         ret = check_pcc_chan(pcc_ss_id, false);
1292                         if (ret) {
1293                                 up_read(&pcc_ss_data->pcc_lock);
1294                                 return ret;
1295                         }
1296                 }
1297                 /*
1298                  * Update the pending_write to make sure a PCC CMD_READ will not
1299                  * arrive and steal the channel during the switch to write lock
1300                  */
1301                 pcc_ss_data->pending_pcc_write_cmd = true;
1302                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1303                 cpc_desc->write_cmd_status = 0;
1304         }
1305
1306         /*
1307          * Skip writing MIN/MAX until Linux knows how to come up with
1308          * useful values.
1309          */
1310         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1311
1312         if (CPC_IN_PCC(desired_reg))
1313                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1314         /*
1315          * This is Phase-II where we transfer the ownership of PCC to Platform
1316          *
1317          * Short Summary: Basically if we think of a group of cppc_set_perf
1318          * requests that happened in short overlapping interval. The last CPU to
1319          * come out of Phase-I will enter Phase-II and ring the doorbell.
1320          *
1321          * We have the following requirements for Phase-II:
1322          *     1. We want to execute Phase-II only when there are no CPUs
1323          * currently executing in Phase-I
1324          *     2. Once we start Phase-II we want to avoid all other CPUs from
1325          * entering Phase-I.
1326          *     3. We want only one CPU among all those who went through Phase-I
1327          * to run phase-II
1328          *
1329          * If write_trylock fails to get the lock and doesn't transfer the
1330          * PCC ownership to the platform, then one of the following will be TRUE
1331          *     1. There is at-least one CPU in Phase-I which will later execute
1332          * write_trylock, so the CPUs in Phase-I will be responsible for
1333          * executing the Phase-II.
1334          *     2. Some other CPU has beaten this CPU to successfully execute the
1335          * write_trylock and has already acquired the write_lock. We know for a
1336          * fact it (other CPU acquiring the write_lock) couldn't have happened
1337          * before this CPU's Phase-I as we held the read_lock.
1338          *     3. Some other CPU executing pcc CMD_READ has stolen the
1339          * down_write, in which case, send_pcc_cmd will check for pending
1340          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1341          * So this CPU can be certain that its request will be delivered
1342          *    So in all cases, this CPU knows that its request will be delivered
1343          * by another CPU and can return
1344          *
1345          * After getting the down_write we still need to check for
1346          * pending_pcc_write_cmd to take care of the following scenario
1347          *    The thread running this code could be scheduled out between
1348          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1349          * could have delivered the request to Platform by triggering the
1350          * doorbell and transferred the ownership of PCC to platform. So this
1351          * avoids triggering an unnecessary doorbell and more importantly before
1352          * triggering the doorbell it makes sure that the PCC channel ownership
1353          * is still with OSPM.
1354          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1355          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1356          * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1357          * case during a CMD_READ and if there are pending writes it delivers
1358          * the write command before servicing the read command
1359          */
1360         if (CPC_IN_PCC(desired_reg)) {
1361                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1362                         /* Update only if there are pending write commands */
1363                         if (pcc_ss_data->pending_pcc_write_cmd)
1364                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1365                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1366                 } else
1367                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1368                         wait_event(pcc_ss_data->pcc_write_wait_q,
1369                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1370
1371                 /* send_pcc_cmd updates the status in case of failure */
1372                 ret = cpc_desc->write_cmd_status;
1373         }
1374         return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(cppc_set_perf);
1377
1378 /**
1379  * cppc_get_transition_latency - returns frequency transition latency in ns
1380  *
1381  * ACPI CPPC does not explicitly specify how a platform can specify the
1382  * transition latency for performance change requests. The closest we have
1383  * is the timing information from the PCCT tables which provides the info
1384  * on the number and frequency of PCC commands the platform can handle.
1385  *
1386  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1387  * then assume there is no latency.
1388  */
1389 unsigned int cppc_get_transition_latency(int cpu_num)
1390 {
1391         /*
1392          * Expected transition latency is based on the PCCT timing values
1393          * Below are definition from ACPI spec:
1394          * pcc_nominal- Expected latency to process a command, in microseconds
1395          * pcc_mpar   - The maximum number of periodic requests that the subspace
1396          *              channel can support, reported in commands per minute. 0
1397          *              indicates no limitation.
1398          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1399          *              completion of a command before issuing the next command,
1400          *              in microseconds.
1401          */
1402         unsigned int latency_ns = 0;
1403         struct cpc_desc *cpc_desc;
1404         struct cpc_register_resource *desired_reg;
1405         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1406         struct cppc_pcc_data *pcc_ss_data;
1407
1408         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1409         if (!cpc_desc)
1410                 return CPUFREQ_ETERNAL;
1411
1412         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1413         if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1414                 return 0;
1415         else if (!CPC_IN_PCC(desired_reg))
1416                 return CPUFREQ_ETERNAL;
1417
1418         if (pcc_ss_id < 0)
1419                 return CPUFREQ_ETERNAL;
1420
1421         pcc_ss_data = pcc_data[pcc_ss_id];
1422         if (pcc_ss_data->pcc_mpar)
1423                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1424
1425         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1426         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1427
1428         return latency_ns;
1429 }
1430 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);